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Supplementary Information 1: Hazard area performance with optimised, global and hold-1 

back parameters 2 

At each of the six study sites we optimise the two parameters in the SHALRUN-EQ model required 3 

to predict hazard area, initiation angle (θm) and stopping angle (θs), by sampling values for each 4 

parameter uniformly in 1 degree increments over the range [20,70] for initiation angle and [0,50] for 5 

stopping angle, and imposing the requirement: θm > θs. For our objective function, we use the area 6 

under the receiver operating characteristic (ROC) curve, comparing landslide hazard derived from 7 

hazard area to the inventory of observed landslides at each site. The optimisation surfaces are 8 

shown in Figure S1. To generalise our results, we then take arithmetic means of the optimum 9 

initiation and stopping angles, to generate hazard area predictions using a single ‘global’ rule 10 

averaged over all six inventories (Table S1). To remove the influence of test data on the test itself, 11 

we re-run the hazard area prediction for each inventory as a hold back-test, in which we re-calculate 12 

the initiation and stopping parameters excluding the optimised values from that inventory and using 13 

only the remaining five inventories.  14 

We find that the differences in ROC curves (Figure S2) and area under the curve values (Table S1) 15 

are fairly subtle. Hazard area with global average parameters performs well overall, with AUC values 16 

that range from 0.78 to 0.86. Hazard area with parameters that are optimised for each inventory 17 

offers only a slight further improvement, with AUC increased by <3% in each case (Table S1). 18 

Optimised initiation and stopping angles can differ quite radically between sites, ranging from 31-45˚ 19 

for initiation angle and from 3-19˚ for stopping angle. This might signal cause for concern about how 20 

feasible it is to find a single general rule, given such variability in optimum parameters between sites. 21 

However, hazard area skill is relatively insensitive to parameter variation close to the optimum 22 

parameters, as indicated by the relatively smooth and gentle peaks of the optimisation surfaces in 23 

Figure S1. Thus, the (sometimes large) differences between global and optimised parameter values 24 

do not translate into large performance differences between hazard area predictions using global or 25 

optimised parameters. The use of hold-back rather than global parameters results in an even smaller 26 

difference in performance; AUC values are reduced by <1% for every inventory and hazard area is 27 

still the best metric at all sites. For this reason, we include hold-back tests here but report results 28 

from global average parameters rather than hold-back parameters in the paper for simplicity. It is 29 



these global average parameters (initiation angle of 40° and stopping angle of 10° when rounded to 30 

one significant figure) that form the basis of our simple rule, and that we would recommend when 31 

applying the SHALRUN-EQ approach to a new location (in the absence of a landslide inventory with 32 

which to test and calibrate the parameters). 33 

 34 

Table S1: Parameter values and areas under the ROC curve for the six inventories 35 

  Parameters   Area Under ROC Curve 

  

Initiation 

slope θi 

(˚) 

Stopping 

slope θs 

(˚) 
 

Hazard 

area 

optimised 

Hazard 

area 

global 

Hazard 

area 

holdback 

Finisterre 34 19 
 

0.91 0.89 0.88 

Northridge 41 19  0.80 0.79 0.78 

Chichi 44 4 
 

0.80 0.80 0.79 

Wenchuan 39 3 
 

0.78 0.78 0.78 

Haiti 31 9  0.88 0.86 0.85 

Gorkha 45 6 
 

0.89 0.88 0.88 

Average 39 10 
 

0.84 0.83 0.83 

1σ 6 7 
 

0.1 0.1 0.1 

 36 

  37 



 38 

 39 

Figure S1: Model predictive skill for SHALRUN-EQ for each of the six landslide inventories across 40 

reasonable ranges for the two parameters, initiation angle (θm) and stopping angle (θs). Predictive 41 

skill is quantified using area under the receiver operating characteristic curve. The six inventories 42 

are: a) Finisterre, b) Northridge, c) Chi-Chi, d) Wenchuan, e) Haiti, f) Gorkha. Symbols show the 43 

parameter combinations from site specific optimisation, global average, and hold-back average. 44 

  45 



 46 

Figure S2: Receiver operating characteristic (ROC) curves for the six landslide inventories and five 47 

metrics examined here, as shown in Figure 6 of the paper, but with the addition of ROC curves for 48 

hazard area with (1) site-specific optimised parameters and (2) hold-back parameters (i.e., global 49 

averages from five sites excluding the test site). The six inventories are: a) Finisterre, b) 50 

Northridge, c) Chi-Chi, d) Wenchuan, e) Haiti, f) Gorkha. False positive rate is given by the number 51 

of false positives divided by the sum of false positives and true negatives. True positive rate is 52 

given by the number of true positives divided by the sum of true positives and false negatives. The 53 

1:1 line represents the naïve (random) case. Curves plotting closer to the top left corner of each 54 

panel represent better model performance. 55 

  56 



Supplementary Information 2: Table S2. Study site characteristics 57 

 Northridge Finisterre Chi-Chi Wenchuan Haiti Gorkha 

Geology Weakly cemented sedimentary 
rocks[1]. 

Volcaniclastic & volcanic 
rocks thrust over coarse-
grained foreland deposits 
capped by limestones [9] 

Neogene sediments and 
older metasedimentary 
rocks [15] 

Granitic massifs, a passive 
margin sequence, and a 
thick foreland basin 
succession [22] 

Sub-parallel belts of 
igneous, metamorphic 
and sedimentary rocks [28] 

Variably metamorphosed 
sedimentary and igneous 
rocks, some sedimentary 
metasedimentary [33] 

Denudation rates 0.1-1 mm/yr[2] up to 0.3 mm/yr [10] 3-7 mm/yr [16] 0.5 mm/yr [23]  0.3-3 mm/yr [34] 

Koppen climate 

classification 

Warm-summer 
Mediterranean.[3] 

Tropical [3] Humid subtropical[3] Humid subtropical[3]  Tropical [3] Humid subtropical[3] 

Temperature 1-18 ˚C [4] 26-27 ˚C [11] 22 ˚C [17] 15-17 °C [24] 25˚C [29] -6-18 ˚C [35] 

Annual precipitation 0.3–0.9 m [5] 2.5 - 4 m [11] 2.5 m [17] 0.6 - 1.1 m [24] ~1.2 m [29] 0.5 - 3 m [35] 

Vegetation annual grassland, sage scrub, 
and chaparral with some piñon-
juniper, oak and pine 
woodlands. [6] 

tropical wet or tropical 
montane evergreen forest 
some sub-alpine 
grasslands. [12] 

Subtropical moist 
broadleaf forests [18] 

montane broad-leaved and 
conifer forest with some 
alpine shrub and steppe [25] 

moist broadleaf forest 
some pine or dry 
broadleaf forest, with 
some savannah [19,30] 

temperate broadleaf and 
coniferous forests with 
some alpine tundra [36] 

Earthquake agnitude Mw 6.7 Mw 6.9 & Mw 6.7 Mw 7.6 Mw 7.9 Mw 7.0 Mw 7.8 & Mw 7.2 

Date 17/1/1994 13/10/93 & 25/10/93 21/9/1999 12/5/2008 12/1/2010 25/4/15 & 12/5/15 

Focal depth 19 km [7] 25 km & 30 km [13] 8–10 km [19] 14-19 km [26] 13 km [31] 8.2 km [37] 

Mapped landslides 11,111 [8] 4,790 [14] 9,272 [21] 18,824 of 69,606 [27] 23,567 [32] 24,915 [38] 

Study area 4,000 km2 4,300 km2 10,500 km2 9,800 of 38,000 km2 3,800 km2 29,000 km2 

Landslide mapping field & aerial reconnaissance, 
manually digitized on 1:24,000 
maps [8] 

30 m SPOT images[14] 20 m SPOT images [21] high-resolution (<15 m) 
satellite images and air 
photos [27] 

satellite imagery with a 
resolution 0.6 m [32] 

<0.5 m Worldview-2 
Worldview-3 & Pleiades 
images [38] 

Citations: [1] Colburn et al., 1981; Tsutsumi and Yeats, 1999; Parise and Jibson, 2000; [2] Meigs et al., 1999; Lave and Burbank, 2004; [3] Peel et al., 2007; [4] NOAA, 2017; [5] National Atlas of United 58 
States, 2011; [6] Griffith et al., 2016; [7] Hauksson et al., 1995; [8] Harp and Jibson, 1996; [9] Davies et al., 1987; Abbott et al., 1994; [10] Abbott et al., 1997; [11] Hovius et al., 1998; [12] MacKinnon 59 
1997; Paijmans 1975; [13] Stevens et al., 1998; [14] Meunier et al., 2007; [15] Lin et al., 2000; [16] Dadson et al., 2003; [17] Wu and Kuo, 1999; [18] Olsen et al., 2001; [19] Shin and Teng, 2001; [20] 60 
Lee et al., 2001; [21] Dadson et al., 2004; [22] Burchfiel et al., 1995; [23] Ouimet et al., 2009; Godard et al., 2010; Liu-Zeng et al., 2011; [24] Liu-Zeng et al., 2011; Li et al., 2016; [25] Yu et al., 2001; [26] 61 
Li et al., 2008; [27] Li et al., 2014; [28] Sen et al., 1988, Escuder-Viruete et al., 2007; [29] Gorum et al., 2013; Libohova et al., 2017; [30] Churches et al., 2014; [31] Mercier de Lépinay et al., 2011; [32] 62 
Harp et al., 2016; [33] Hodges et al., 1996; Searle and Godin, 2003; Craddock et al., 2007; [34] Lupker et al., 2012; Godard et al., 2014; [35] Bookhagen and Burbank, 2006; [36] Singh and Singh, 1987; 63 
[37] Hayes et al., 2015; [38] Roback et al., 2018  64 



 65 

Figure S3: Finisterre study area with PGA contours from USGS shakemap for the 13th and 25th October 1993 66 
earthquakes, elevation from 1 arcsecond SRTM and landslides from Meunier et al. (2007).  67 

 68 



 69 

Figure S4: Northridge study area with PGA contours from USGS shakemap, Elevation from 10 m NED and 70 
landslides from Harp and Jibson (1996).  71 

 72 



 73 

Figure S5: Chi-Chi study area with PGA contours from USGS shakemap, elevation from 1 arcsecond SRTM 74 
and landslides from Dadson et al. (2004).  75 

 76 



 77 

Figure S6: Wenchuan study area with PGA contours from USGS shakemap, Elevation from 1 arc second 78 
SRTM and landslides from Li et al. (2014). The dashed grey line shows a convex hull around the full 79 
inventory of landslides mapped by Li et al. the solid grey line indicates the study area used in this article. 80 
The study area was chosen to avoid the large gaps in the 1 arcsecond SRTM data (white patches above). 81 

 82 

 83 



 84 

Figure S7: Haiti study area with PGA contours from USGS shakemap, elevation from 1 arcsecond SRTM and 85 
landslides from Harp et al. (2016).  86 

Figure 87 
S8: Gorkha study area with PGA contours from USGS shakemap for the 25th April 2015 Gorkha earthquake, 88 
elevation from 1 arcsecond SRTM and landslides from Roback et al. (2018).  89 

 90 



Supplementary Information 3: Normalised results for slope and upslope contributing area in 91 

combination 92 

 93 

 94 

Figure S9. Two-dimensional plots of landslide hazard, defined as conditional landslide probability 95 
P(L|s,a) normalised by study area average landslide probability P(L), where s is local slope 96 
normalised by the study area average slope and a is upslope contributing area normalised by the 97 
upslope contributing area at which channels begin. Grey cells indicate slope-area pairs with data 98 
but with no cells touching a landslide. Fainter colours indicate landslide hazard estimates that do 99 
not differ significantly from the study area average. 100 

  101 



 102 

Supplementary Information 4: Impact of landslide inventory uncertainty and DEM resolution 103 

 104 

Figure S10. Comparing the impact of different landslide inventories. Landslide hazard is defined 105 
as P(L|x) / P(L) and is estimated from two different landslide inventories for the Wenchuan 106 
earthquake, where x is a) local slope, and b) upslope contributing area per unit contour length. 107 
Numbers in brackets show study area average landslide probabilities. Results from other 108 
earthquakes are shown in faint colours for context. The results from Li et al. (2014) and Xu et al. 109 
(2014) for the Wenchuan earthquake are strongly similar. 110 

  111 



 112 

Figure S11. Comparing the impact of different landslide inventories. Landslide hazard is defined 113 
as P(L|x) / P(L) and is estimated from two different landslide inventories for the Wenchuan 114 
earthquake, where x is a) skyline angle and b) upslope contributing area per unit contour length. 115 
Red bars show histograms of skyline angle and hazard area over the six inventories. Results from 116 
other earthquakes are shown in faint colours for context. The results from Li et al. (2014) and Xu et 117 
al. (2014) for the Wenchuan earthquake are strongly similar. 118 

Table S3. Area under the ROC curve for the five hazard metrics over the six coseismic landslide 119 
inventories. The best performing metric for each inventory is in bold, the second best is in italics. 120 

  
Hazard 
area 

Skyline 
angle 

Slope + upslope 
contributing area 

Local 
slope 

Upslope contributing 
area 

Northridge 10 0.91 0.91 0.86 0.85 0.63 

Northridge 20 0.91 0.88 0.86 0.85 0.63 

Northridge 30 

(NED DEM) 
0.89 0.83 0.84 0.84 0.62 

Northridge 30 

(SRTM DEM) 
0.66 0.83 0.83 0.83 0.64 

Northridge 60 0.83 0.80 0.80 0.80 0.62 

Northridge 90 0.75 0.77 0.78 0.78 0.61 

Wenchuan 

Li et al 
0.78 0.65 0.62 0.58 0.74 

Wenchuan 

Xu et al 
0.76 0.63 0.62 0.59 0.73 

 121 
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