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Abstract—Brain-computer interfaces (BCI) harnessing Steady
State Visual Evoked Potentials (SSVEP) manipulate the fre-
quency and phase of visual stimuli to generate predictable oscilla-
tions in neural activity. For BCI spellers, oscillations are matched
with alphanumeric characters allowing users to select target
numbers and letters. Advances in BCI spellers can, in part, be
accredited to subject-specific optimization, including; 1) custom
electrode arrangements, 2) filter sub-band assessments and 3)
stimulus parameter tuning. Here we apply deep convolutional
neural networks (DCNN) demonstrating cross-subject functional-
ity for the classification of frequency and phase encoded SSVEP.
Electroencephalogram (EEG) data are collected and classified
using the same parameters across subjects. Subjects fixate forty
randomly cued flickering characters (5 × 8 keyboard array)
during concurrent wet-EEG acquisition. These data are provided
by an open source SSVEP dataset. Our proposed DCNN, PodNet,
achieves 86% and 77% offline Accuracy of Classification across-
subjects for two data capture periods, respectively, 6-seconds
(information transfer rate=40bpm) and 2-seconds (information
transfer rate= 101bpm). Subjects demonstrating sub-optimal
(<70%) performance are classified to similar levels after a short
subject-specific training period. PodNet outperforms filter-bank
canonical correlation analysis (FBCCA) for a low volume (3-
channel) clinically feasible occipital electrode configuration. The
networks defined in this study achieve functional performance
for the largest number of SSVEP classes decoded via DCNN to
date. Our results demonstrate PodNet achieves cross-subject, cal-
ibrationless classification and adaptability to sub-optimal subject
data and low-volume EEG electrode arrangements.

Index Terms—Brain-Computer Interface, Deep Convolutional
Neural Network, Electroencephalography, Steady State Visual
Evoked Potential, Calibrationless, BCI, DCNN, CNN, EEG,
SSVEP.

I. INTRODUCTION

BRAIN-computer interfaces (BCI) are integrated hardware
and software ensembles that control assistive devices

with brain-based bio-signals [1]. Electroencephalograms
(EEG) are widely used for BCI research due to high temporal
resolution, short set-up times and a low risk, non-invasive
acquisition process [2]. The most effective EEG-based BCI
to date [3] feature substantial optimization of data acquisition
tools and stimuli presentation methods at the single-subject
level. The move toward subject-specific analyses is due
to individual differences in EEG data as well as the non-
stationary and non-linear characteristics of EEG. Researchers
have developed offline methods to find ideal EEG electrode
configurations [4], [5], subject-specific frequency bands
with Common Spatial Pattern algorithms [6] and stimulus
parameter tuning [3]. Online BCI calibration has also been
explored to improve signal-to-noise ratio using adaptive EEG
reference selection [7].

In this study, we show calibrationless BCI decoding for
the highest number of EEG-based Steady State Visual Evoked
Potential (SSVEP) classes (40) with deep convolutional neural
networks (DCNN) to date. SSVEP are frequency and phase
dependent bio-signals detected from EEG electrodes over
occipital and occipital-parietal regions [8]. These bio-signals
are used in the development of BCI communication devices,
known as spellers, which aim to provide users with the ability
to converse with caregivers, clinicians and family members [2].

In BCI speller paradigms, visual stimuli typically consist
of a target matrix containing alphanumeric characters and
grammatical symbols presented via a computer monitor. A
stimulus square is positioned behind each target and assigned
a unique stimulus flicker pattern varying in frequency (Hz)
and or phase. A stimulus square coded with an 8Hz flicker
rate and zero-degree phase shift switches between white and
black at intervals of 125ms (1000ms/8Hz). Fixation of a
target paired to a stimulus square with these same properties
leads to the propagation of an SSVEP waveform with the
same oscillatory characteristics. Stimulus patterns embedded
in the EEG signal timecourse are extracted and analyzed to
determine the target intended for spelling.

SSVEP latency is low (150-350ms) and less prone to
degradation over time, as compared to alternative bio-signals
[9]. This makes SSVEP ideal for attaining high information
transfer rates (ITR) during long-term real-world use. The ITR
statistic defines BCI communication speed, expressed in bits
per minute (bpm). This indicates device usability as ITR is
dependent on; 1) Accuracy of Classification (AoC), 2) the
number of stimulus targets; and 3) the data capture duration
per target (refer to equation in section 3.2).

In this study, we apply a DCNN, PodNet, to extract
stimulus pattern features embedded in EEG data for the
classification of SSVEP target stimuli. DCNN use multiple
convolutional layers to extract data features necessary to
differentiate between classes. In this work, classes refer to
the unique stimulus patterns assigned to stimulus squares.
Convolutions involve iterative matrix multiplications across
input data as confined by sliding windows with adjacent filter
matrices. This leads to the extraction of data features relevant
to the task of classification into feature maps [10]. We test the
performance of our proposed DCNN, PodNet, in the offline
classification of wet-EEG SSVEP-based bio-signals differing
in both frequency and phase for a 40-class problem.
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The networks are trained and tested for two data capture
durations per target, 6 and 2 seconds. This is done to evaluate
network performance at low data capture durations, as in
real-world online use this leads to higher ITR. Network
performance is also evaluated using data in which redundant
samples captured immediately before or after the SSVEP
stimulus period are excluded. In clinical settings, EEG-based
communication aids must balance the number of electrodes
used with functional performance. EEG devices using a
lower number of electrodes ultimately translate to lower;
1) hardware costs, 2) hygiene risk, and 3) user discomfort
[11]. The analyses are then tested using alternative electrode
arrangements ranging from 10 to 3-channels.

PodNet performance is compared against a shallow CNN
architecture, 1D SSVEP Convolutional Unit (1DSCU) [12]
and Filter-Bank Canonical Correlation Analysis (FBCCA)
[3]. We perform a single-subject level analysis and find
PodNet performs sub-optimally (<70%) for two subjects
(29 & 33). Individual pretrained PodNets are re-trained
at the single-subject level to test network adaptability. All
data used in network training, validation and testing are
derived from a benchmark dataset provided by [13]. The
PodNet DCNN defined herein demonstrate cross-subject
classification of wet-EEG based bio-signals for novel, naı̈ve
BCI subjects and show adaptation in response to sub-optimal
performance after a short subject-specific training period.
Further, these networks outperform FBCCA for a 3-channel
(occipital) electrode arrangement, making these techniques
more viable for long-term use in clinical settings. Moreover,
the significant contribution of the study is that PodNet
achieves >85% cross-subject accuracy for the highest number
of BCI-based bio-signal target classes (40) using DCNN [14],
[15], [16].

II. RELATED WORK

DCNN applications in EEG-based BCI research include
mental imagery decoding, primarily for mobility applications
[17], [18] and Event-Related Potential (ERP) detection,
primarily for BCI speller applications [19], [20]. The
first study to use DCNN in SSVEP classification [14] is
implemented for a 5 class problem. The network uses two
convolutional layers to develop spatial and time filters, with
an embedded fast-Fourier transform to amplify frequency
representations in feature maps. An AoC of 95.61% is
achieved at the single-subject level. [15] shows a DCNN,
EEGNet, consisting of 4 convolutional layers decodes four
brain-based bio-signals; 1) ERP, 2) movement-related cortical
potentials, 3) sensory-motor rhythms, and 4) error-related
negativity responses. EEGNet matches or exceeds each of
the leading classification methods for respective bio-signals
both within-and across-subjects. This demonstrates DCNN
can extract a wide range of BCI bio-signals.

In [16], a DCNN classifies 5 SSVEP targets providing
directional instructions for an exoskeleton. CNN significantly
outperforms canonical correlation analysis (CCA) and a
hybrid CCA and k nearest neighbours method in the real-time
classification of SSVEP during both static (99.28%) and
ambulatory (92.28%) operation. This demonstrates that CNN
can accommodate for EEG movement artefacts.

In [21], CNN trained using cross-subject and single-subject
data are compared for the classification of Rapid Serial
Visual Presentation (RSVP) EEG-based bio-signals. The
larger cross-subject datasets for network training enhance
the quality of feature maps, resulting in higher classification
accuracy (>90%). Along these very same lines, [12]
implement cross-subject training for the 1DSCU CNN in
the classification of 4 unique SSVEP as collected using a
Dry-EEG system. The network contains one convolutional
layer and outperforms Support Vector Machines (SVM),
Linear Discriminant Analysis (LDA), Minimum Distance
to Mean (MDM) and Recurrent Neural Networks (RNN).
Cross-subject training is used in the optimization of all
PodNet configurations defined in this study and the 1DSCU
is implemented as a baseline assessment.

Currently, FBCCA is the gold-standard in the classification
of frequency and phase encoded SSVEP and consistently
achieves >90% cross-subject accuracy [22], [3]. This
technique involves performing CCA across original EEG
data and filter transformed data to expose fundamental and
harmonic SSVEP frequency components. FBCCA is also
used as a baseline assessment to evaluate the performance
of PodNet. In contrast to earlier CNN-based approaches, we
implement PodNet for the classification of both frequency
and phase embedded SSVEP. PodNet classifies the highest
number of SSVEP targets (40) using DCNN to date [14],
[15], [16]. Moreover, the network proposed herein is capable
of >90% calibrationless classification on 95% of subjects.
PodNet outperforms baseline assessments for a clinically
feasible electrode arrangement and demonstrates the ability to
extract task-relevant SSVEP data features from data to which
networks initially perform sub-optimally.

III. METHODOLOGY

In this section, we discuss the experimental setup imple-
mented in the collection of SSVEP via wet-EEG. The datasets
used to evaluate both PodNet and baseline assessments are
outlined. The methods used to provide baseline assessments,
1DSCU and FBCCA, are explored. Additionally, the proposed
PodNet architecture is defined. We detail the methods used
for evaluating the analyses on alternative electrode arrange-
ments. Finally, we describe how to perform single-subject
optimization with pretrained PodNets for two subjects (29 &
33) demonstrating sub-optimal performance.

A. Experimental Setup
We present subjects with a 5 × 8 visual target array of

English alphabet characters (26), numbers (10) and symbols
(4). A 60Hz monitor displays the targets centrally oriented
inside stimulus squares, with a uniform distance between
adjacent targets. Stimulus presentation code is programmed
using MATLAB and Psychophysics Toolbox Release 2017a
(MathWorks, Inc., Natick, USA). Subjects are cued to fixate
targets (5s) via the presentation of a red square overlaid onto
the target (0.50s), after which the monitor returns to a black
screen resting stage (0.50s). One block consists of fixating
all 40 targets once. A total of 6 blocks are collected for each
subject. Wet-EEG samples are collected at a rate of 1000Hz.
For the purposes of this study, analyses are restricted to the
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following 10 electrodes, PO8, PO7, PO6, PO5, PO4, PO3,
POz, O2, O1, and Oz.

40 unique target stimulus patterns are used following
the approximation method in which joint frequency and
phase values are assigned to each stimulus square [23].
Stimulus frequencies are limited by the optimal range for
SSVEP propagation (8-15Hz) and monitor refresh rates.
A 60Hz monitor can display stable stimulus patterns at
8.57Hz (7 frames per second), 10Hz (6 fps), 12Hz (5
fps) and 15Hz (4 fps), as when the refresh rate is divided
by these values it produces an integer-valued frame-rate.
Non-integer frame-rates are achieved by interleaving two
stimulus frequencies within a 60Hz cycle [24], [22]. This
increases the number of possible stimuli patterns within the
optimal SSVEP range and allows for the implementation of a
dense 40-target visual array. Each target is assigned a unique
stimulus frequency ranging from 8.0Hz-15.8Hz, in 0.2Hz
increments. Neighbouring frequencies are assigned phase
values differing by 0.5π .

B. Datasets for Classification
The open source SSVEP data used in the training and

testing of all networks defined in this study is provided by
[13]. Data are collected from 35 subjects. A subset (n =
8) of the subjects have experience with SSVEP-based BCI
spellers. The remaining subjects (n = 27) have no prior
experience with BCI systems and are classed as BCI-naı̈ve
(see [13] for further details). The network test and validation
datasets this study contain only, novel BCI-naı̈ve subjects to
simulate real-world usage. Ethics approval was provided by
the relevant institutional committee [13]. Data preprocessing
involves downsampling data from 1000Hz to 250Hz and
normalization between -1 and +1.

Networks are evaluated on a range of datasets differing
in the duration of data capture per target, stimulus exclusive
data (refer to Table I) and electrode arrangements (refer to
Table II). In all instances, the datasets are parsed into training,
validation and test sets. Of the 35 subjects, 25 are used in
cross-subject network training, 5 are used as a validation
set to monitor network overfitting and 5 are used as a test
set. The performance metrics reported here are calculated
exclusively for 5 novel BCI-naı̈ve subjects in the test dataset.

Datasets Samples Selection Time (Seconds)

6Sec 1500 6
2Sec 500 2
5Sec 1250 5.5

1.5Sec 375 2

TABLE I: Datasets for network evaluation are presented specifying,
dataset naming scheme (Datasets), the number of samples per trial
(Samples) and the length of the data capture period per target
(Selection Time). These selection times are used in ITR calculations,
(refer to equation below). The 6Sec dataset includes samples collected
over the entire 6 Second trial period. The 2Sec dataset includes
samples from the first 2 seconds. The 5Sec dataset excludes samples
from the first 500ms of the trial period and samples collected in
the final 500ms resting stage. The 1.5Sec dataset includes samples
collected for 1.5 seconds after the initial 500ms visual search period.

This is done to simulate real-world BCI speller applications
and ensure no subject data used during weight optimization

is included in network evaluation. The purpose of training
the network on different data capture sizes is to test network
capabilities on low quantities of data, as shorter capture
windows are crucial to enhancing system performance in
real-world settings. Differences in the inclusion and exclusion
of redundant samples in the data are tested primarily to reveal
any potential benefits for DCNN.

To explore the applicability of analyses in clinical settings,
performance is evaluated when restricting the number of
electrodes sampled. Analyses using a high number of
electrodes is not feasible for long-term clinical use due
to; 1) patient discomfort, 2) device hygiene maintenance
and 3) electrode replacement costs. Four datasets are used
featuring alternative electrode arrangements. As shown
in Table II, the electrodes sampled incrementally regress
towards locations positioned over the occipital lobe. This is
based on previous source localization studies demonstrating
that the SSVEP waveform propagates primarily from the
occipital lobe [25]. All data used is collected exclusively
from the first 2 seconds of the trial period (refer to Table II).

Datasets N Electrodes

10Chan 10 O1, Oz, O2, POz, PO3, PO4, PO5, PO6, PO7, PO8
8Chan 8 O1, Oz, O2, POz, PO3, PO4, PO5, PO6
6Chan 6 O1, Oz, O2, POz, PO3, PO4
3Chan 3 O1, Oz, O2

TABLE II: Datasets for network evaluation are presented specifying
the dataset naming scheme (Datasets), the number of channels per
arrangement (N), and the electrode locations of each arrangement.
These datasets are compiled from the 2Sec and 1.5Sec datasets (refer
to Table I). These four electrode arrangements are chosen at each
step from the 10Chan to 3Chan electrode arrays, restricting the brain
surface sampled as a function of distance from the inion (cranial
protuberance indicating occipital lobe positioning).

PodNets are evaluated using AoC, Average Precision (AP)
and ITR. AoC refers to the number of correctly identified
targets users intended to spell relative to the total number
of targets users are instructed to fixate. AP refers to single
class selection, relative to all other classes. As defined in
[1], in computing ITR, N refers to the number of potential
targets for classification. P denotes the probability of target
classification. T indicates selection time duration per trial
(refer to Table I).

B = log2N + P log2P + (1− P ) log2[(1− P )/(N − 1)]

Bits perminute = B × (60 / T )

C. Baseline Assessments
To evaluate PodNet performance we compare against two

baseline assessments. Based on the recent results of [12]
the 1DSCU is evaluated to demonstrate the effectiveness
of shallow CNN for the task of classifying frequency and
phase encoded SSVEP. The 1DSCU is constructed from an
operational unit containing a one-dimensional convolutional,
batch normalization and max-pooling layer.

FBCCA is applied using the open-source MATLAB toolkit
defined in [3]. EEG signal timecourse data are transformed
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via bandpass filters exposing harmonic frequency components
of embedded SSVEP. Each filter-bank is processed using
CCA to determine the frequency and phase of the SSVEP
present within the original EEG data. Associated single-
subject calibration procedures typically include fine-tuning of
stimulus durations and phase offsets [3], [13]. Additionally,
CCA reference signals are often blended with subject-specific
EEG data [26], [3]. As this study aims to test calibrationless
functionality, these procedures are not implemented. Of note,
FBCCA is evaluated only in the analyses of datasets in which
redundant data is removed (5sec and 1.5Sec) as this is a
standardized practice when implementing the technique [22],
[3].

D. Deep Convolutional Neural Network Design
All PodNet variants are implemented using the MatConvNet

convolutional neural network library [27]. See Fig. 1 for
the PodNet configuration applied in the classification of the
6Sec dataset. Each PodNet is configured with consistent
architectural features. Operational layers are clustered into
Pods consisting of convolutional, drop-out (50%), batch
normalization, Rectified Linear Unit, and max pooling layers.
Additionally, the last Pod contains a final dense layer which
outputs to a softmax operation. This arrangement is consistent
throughout PodNet configurations. All network weights
are initialized using the Xavier method [28] and updated
following the Adam optimization algorithm [29].

In the first Pod, 10 × 30 convolutional filters are used.
This filter width (30) is used to capture the entire phase
cycle of the lowest target class stimuli frequency (8.0Hz).
Assigning filter depth to the number of channels sampled
(30) is a convenient way of performing the well-established
EEG research practice of average referencing. In this context,
matrix multiplications are performed across both time
and channel dimensions producing a 1D output array. All
subsequent convolution filters are one-dimensional of size:
1× 30. 2D Max-pooling operations of size: 2× 2, with stride:
2 and pad: 1 used throughout.

PodNet configurations implemented for the classification
of datasets 2Sec and 1.5Sec are constructed from 4 of the
above-mentioned Pods. This is due to the reduced size of
input data and our aim to ensure consistent convolution filter
dimensions (size: 1 × 30). This leads to a lower number
of Pods, with greater convolution and max pooling stride
values. These PodNet configurations feature the same level
of drop-out (50%) across convolutions, excluding the final
convolutional layer in all instances. Each network is optimised
over 2000 training epochs. Meta-parameters are consistent
across networks in terms of objective function (stochastic
gradient descent), learning rate (1e-5), momentum (0.9), and
batch size (5).

E. Single-Subject Optimization
Typically, researchers train CNN at the single-subject level

for SSVEP-based BCI speller applications [14]. This is not
viable for the deep networks as the degree of data collection
we require for effective weight optimization would constitute
an inordinate amount of testing time for an individual
subject. We implement a viable method of single-subject

Fig 1. Diagram of PodNet configuration implemented for the 6Sec
dataset, refer to Table I. Each Pod contains convolution (Conv),
drop-out (Drop-Out), batch normalization (Batch Norm), Rectified
Linear Unit (ReLU) and max pooling (Max Pool) layers. In the test
configuration, batch normalization and drop-out layers are by-passed.
Output dimensions refer to the depth and width of the data after
passing through the final layer of each Pod.

deep net optimization by using a PodNet, pretrained using
data from multiple subjects. This is then re-trained using data
exclusively from one subject.

To evaluate single-subject optimization using PodNet,
two subjects (29 & 33) for which PodNet demonstrates
sub-optimal performance are selected. This involves using a
PodNet pretrained on the 6Sec dataset and re-training this
network at the single-subject level. Each subject provides 6
blocks of EEG data (refer to Methods, Section A). Four of
these blocks are used for PodNet re-training, one block is
used as a validation set and one block is utilized for network
evaluation. Single-subject PodNets are trained for a total of
500 epochs, with batch size: 2, due to low data volume. All
additional meta-parameters as detailed above are maintained.
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IV. RESULTS AND DISCUSSION

A. Data Capture Comparison 6 vs 2 Seconds

The results for the classification of datasets 6Sec and 2Sec
are presented in Table III. PodNet substantially outperforms
the 1DSCU network in terms of AoC and ITR for both the
6Sec and 2Sec datasets. The high number of classes (40)
makes the use of confusion matrices unfeasible. PodNet
cross-class performance is presented using a graphical format
in which AoC is plotted against AP. As shown in Fig. 2,
PodNet demonstrates minimal variation in cross-class AoC
and AP.

Fig 2. Plotting within class AoC and within class AP of PodNet for
the 6Sec dataset. This contains 6 seconds of data capture per target.
Each data point represents one of the 40 stimulus pattern classes
differing in terms of both frequency and phase (refer to Table I).

PodNet shows substantially reduced performance and higher
cross-class variation for the 2Sec dataset (refer to Fig. 3). This
is due to the substantial reduction in data capture durations
per target. BCI-spellers using this PodNet configuration would
have an increased need for spelling correction and a higher
speed of operation given the substantially higher ITR (refer to
Table III).

Fig 3. Plotting within class AoC against within class AP of PodNet
for the 2Sec dataset. This contains 2 seconds of data capture per
target including samples from the initial 500ms visual search trial
period (refer to Table I).

Datasets Method Samples Selection Time AoC ITR

6Sec PodNet 1500 6 86.75 40.57
2Sec PodNet 500 5.5 77.06 99.98
6Sec 1DSCU 1500 2 74.73 31.71
2Sec 1DSCU 500 2 39.49 11.56

TABLE III: Cross-Subject AoC and ITR for PodNet and the
1DSCU network evaluated using the 6Sec and 2Sec datasets.

B. Stimulus Exclusive Data Evaluation

Classification results of PodNet and baseline assessments
for the 5Sec and 1.5Sec datasets are shown in Table IV. The
removal of redundant data for the 5Sec dataset leads to no
substantial changes in PodNet AoC or ITR. As shown in
Fig. 4, the variance in decode performance does not change
substantially for the PodNet optimized using the 5Sec dataset.
The 1DSCU demonstrates substantially reduced performance
for the 5Sec dataset as compared to the 6Sec dataset.

Fig 4. Plotting within class AoC and AP for PodNet, trained and
tested using the 5Sec dataset. This contains 5 seconds of data capture
per target, with redundant, non-stimulus data excluded (refer to Table
I).

PodNet performance decreases marginally for the 1.5Sec
dataset with pre-stimulus visual search data (500ms) removed.
This is due to redundant data representing 25% of the total
samples per trial. Within-class performance, as compared to
PodNet optimized for the 2Sec dataset, shows marginally
higher variance in AoC and AP (see Fig. 3 & 5).

Fig 5. Plotting within class AoC and AP for PodNet, trained and
tested using the 1.5Sec dataset. This excludes samples collected
during the initial 500ms pre-stimulus visual search period.
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FBCCA outperforms both PodNet and 1DSCU for the 5Sec
and 1.5Sec datasets. PodNet utilizes four more convolutional
layers than the 1DSCU. This added computation leads to the
development of richer feature maps for the differentiation
of classes, most markedly in low data capture contexts. The
enhanced performance suggests increasing network depth
can substantially improve AoC and ITR. It is suggested that
an increase in the availability of large open source datasets
would assist in the development of deeper networks with
greater classification performance. The collection of EEG
data at higher sampling rates (>250Hz) would increase the
likelihood of networks developing dense SSVEP feature
representations. Although speculative, it is predicted that
deeper PodNet architectures, with a larger, higher resolution
training dataset would show significantly higher AoC and ITR.

Datasets Method Samples Selection Time AoC ITR

5Sec PodNet 1250 5.5 86.19 43.78
5Sec 1DSCU 1250 5.5 68.63 30.18
5Sec FBCCA 1250 5.5 97.92 50.66

1.5Sec PodNet 500 2 75.64 96.99
1.5Sec 1DSCU 500 2 32.67 9.29
1.5Sec FBCCA 500 2 84.00 115.25

TABLE IV: Cross-Subject accuracy of classification and ITR for the
PodNet, 1DSCU and FBCCA evaluated using the 5Sec and 1.5Sec
datasets

C. Electrode Arrangement Assessment

Analyses performance is evaluated using 4 dataset subsets
comprising 4 unique electrode arrangements (refer to Table
II). Previous source localization research suggests the locus
of SSVEP signal propagation is positioned over the occipital
lobes, with signal degradation occur as a function of the
distance from the inion (external occipital protuberance). The
electrodes comprising the 4 subsets are stepped from 10 to
3-channels in order to restrict samples collected as a function
of distance from this biomarker.

All analyses are tested using only the first two seconds
of data sampled, as this data collection parameter is more
functional in real-world settings as compared to the 6-second
data capture duration of the 6Sec dataset. PodNet is trained
and tested using the 2Sec dataset, FBCCA is tested using
the 1.5Sec dataset (see, Baseline Assessments). The 1DSCU
is not evaluated as previous assessments below the 6-second
data capture duration show performance below functional use
(refer to Table III and IV).

FBCCA PodNet

Datasets AoC ITR AoC ITR

10Chan 84.00 115.258 77.06 99.98
8Chan 84.33 116.028 77.78 101.50
6Chan 81.25 109.041 72.54 90.68
3Chan 62.083 70.8129 66.67 79.26

TABLE V: Cross-Subject accuracy of classification and ITR for the
PodNet and FBCCA networks evaluated using the 6Sec and 2Sec
datasets.

All analyses drop substantially in terms of AoC and
ITR in response to a reduction of input electrodes (refer to
Table V). For higher-volume electrode arrangements, FBCCA
shows the highest AoC and ITR. FBCCA also demonstrates
the largest drop in performance when comparing 10 to 3-
channel dataset evaluation. PodNet performance shows higher
resilience to the removal of electrodes, with a greater AoC
and ITR as compared to FBCCA for the 3-channel dataset.
This suggests PodNet has greater potential for long-term use
in clinical settings.

D. Single-Subject Optimized PodNet Classification
The pretrained PodNet used for single-subject optimization

is trained using the 6Sec dataset with both subject 29 and 33
removed. Cross-subject results for this PodNet configuration
include an AoC of 98.34% and ITR of 51.12bpm. Prior
to single-subject optimization, PodNet achieves an AoC of
75.00% for subject 29 and an ITR of 31.89bpm. Post-single-
subject training, PodNet AoC increases to 90.00% and ITR
increases to 43.24bpm (refer, to Fig. 6).

Fig 6. The graph shows the error loss (inverse of AoC) of PodNet
on training and validation data subsets for subject 29 data over 500
epochs.

For subject 33 the pretrained PodNet achieves an AoC
of 35.00% and ITR of 10.38bpm. Post-single-subject
optimization, PodNet AoC increases to 70.00% and ITR
increases to 28.55bpm, bringing performance up to the
threshold of functional use (refer to Fig. 7).

Fig 7. The graph shows the error loss (inverse of AoC) of PodNet
on training and validation data subsets for subject 33 data over 500
epochs.
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From the results presented (Table III, IV & V), we demon-
strate that the performance of the proposed PodNet substan-
tially outperforms prior DCNN-based work [14], [15], [16],
[12] in terms of AoC and ITR, relative to the number of
SSVEP targets decoded (40). PodNet evaluated using the
6Sec dataset achieves a mean AoC of 86.75% and ITR of
40.57bpm, and for the 1.5Sec dataset achieves a mean AoC
of 75.64% and an ITR of 96.99bpm, for offline classification.
Furthermore, the broad scope of our approach encompasses
40 joint frequency and phase encoded classes and is capable
of SSVEP classification with low-volume electrode configura-
tions and substantially enhances initially sub-optimal network
performance after a short subject-specific optimization period,
all of which are firsts for DCNN decoding of SSVEP.

V. CONCLUSION

The present study developed a DCNN, PodNet, for fre-
quency and phase encoded SSVEP classification to address the
absence of deep networks for high target density (>5 classes)
BCI-based bio-signal decoding. The DCNN, as developed,
outperform and extend the prior DCNN-based work of [14],
[15], [16], [12]. Crucially, for 95% of subjects, >90% AoC is
demonstrated in the absence of any subject-specific optimiza-
tion. For the first time, DCNN are optimized at the single-
subject level using pretrained networks to enhance sub-optimal
network performance. Crucially, PodNet outperforms FBCCA,
currently the gold-standard in SSVEP decoding, for a clinically
feasible occipital electrode arrangement. The development of
robust analytical methods benefits BCI users allowing for
faster, accurate classification and long-term clinical use.
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