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A theoretically interesting and practically important question in cosmology is the reconstruction of the
initial density distribution provided a late-time density field. This is a long-standing question with a revived
interest recently, especially in the context of optimally extracting the baryonic acoustic oscillation (BAO)
signals from observed galaxy distributions. We present a new efficient method to carry out this
reconstruction, which is based on numerical solutions to the nonlinear partial differential equation that
governs the mapping between the initial Lagrangian and final Eulerian coordinates of particles in evolved
density fields. This is motivated by numerical simulations of the quartic Galileon gravity model, which has
similar equations that can be solved effectively by multigrid Gauss-Seidel relaxation. The method is based
on mass conservation, and does not assume any specific cosmological model. Our test shows that it has a
performance comparable to that of state-of-the-art algorithms that were very recently put forward in the
literature, with the reconstructed density field over ∼80% (50%) correlated with the initial condition at
k ≲ 0.6 h=Mpc (1.0 h=Mpc). With an example, we demonstrate that this method can significantly improve
the accuracy of BAO reconstruction.
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I. INTRODUCTION

Cosmology used to be a data-starved field, and
high-quality observational data only existed in very limited
patches of the Universe. The standard approach for con-
straining cosmological models was to generate random
realizations of our Universe from some theoretical prescrip-
tion and confront statistical quantities against true data. This
situation has dramatically changedover the past twodecades:
from the local to thewhole, from the recent to the distant past,
a wide array of ongoing and planned astronomical surveys
have been making accurate maps of the large-scale matter
distribution (e.g., 2MASS [1], WMAP [2], PLANCK [3], SDSS
[4], DES [5], HSC [6], DESI [7], EUCLID [8], 4MOST [9], LSST
[10], TIANLAI [11], and SKA [12]). The explosion of
observational data will rejuvenate cosmology; for example,
constrained (in contrast to random) realizations of the
Universe can bemade from the data available (e.g., [13–15]).
Another possibility enabled by the flooding data is the

reconstructionof initial density fromanobserveddistribution
of matter, which has both unique theoretical merits and
important practical applications. The late-time Universe is a
highly complicated entity shaped by various physical
processes, such as the nonlinear evolution of large-scale
structures under gravity. While these processes enrich the

observational features of theUniverse, they alsomake certain
targeted features entangled with or contaminated by other
effects. One prominent example is the baryonic acoustic
oscillations (BAO) scale, a pattern imprinted in the matter
distribution by prerecombination physics which can serve as
a standard ruler for measuring the cosmic expansion history.
The nonlinear structure growth significantly decreases the
BAOsignature and thereforeweakens its constraining power.
If the initial linear density field is recovered by some
reconstruction method, it will help enrich the information
to be extracted from data in such situations [16–19].
Reconstruction in the context of cosmology has been

visited by various groups that utilize different techniques,
for example, [16,20–35] (see Refs. [30,32] for detailed
historical reviews). Reference [16] proposed a simple
reconstruction based on Zel’dovich approximation that
can sharpen the BAO peak and thus improve the BAO
measurement accuracy, which has been demonstrated in
real observations [4,36,37]. This has motivated many
studies of alternative methods of improving the BAO signal
(e.g., [28,32,38,39]). Reconstructing the initial conditions
helps to reduce the damping of the BAO peaks caused by
nonlinear evolution, which, for example, Ref. [17] showed
in the context of Lagrangian perturbation theory. The
reconstruction methods are not limited to the matter
distribution, but they have been extended towards realistic
situations, such as using dark matter haloes as tracers and
accounting for redshift-space distortions [27,31,40].
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Recently proposed iterative methods such as [28,32]
managed to push the scale where linear density information
can be reliably recovered to k ∼ 0.5–0.6 h=Mpc, which can
lead to a substantial reduction of the uncertainty in BAO
measurement [30,32]. However, given the importance of the
BAO reconstruction problem, and that different methods
could have different limitations, it will be highly beneficial
to develop independent methods that have their own merits.
In this paper,we propose a novelmethod for initial density

reconstruction, which is simple in concept and straightfor-
ward in implementation. This method is based on numerical
solutions to theMonger-Ampere equation, which originates
from mass conservation and governs the mapping between
the initial and final coordinates of some mass distribution.
Previous attempts to solve this equation, such as Ref. [24],
reduce this to an optimizedmass transportation problem and
propose sophisticated optimization algorithms to solve it by
minimizing a “cost function” defined by associating the
initial and final coordinates of particles. In contrast to this,
using the fact that this equation can be recast as a higher-
order nonlinear partial differential equation, we propose a
conceptually straightforward way to solve it using the
multigrid relaxation method.
Relaxation algorithms have been well established as an

efficient method to solve elliptical partial differential equa-
tions (PDEs), and they are particularly useful for nonlinear
PDEs, where the standard fast Fourier transform method is
of limited use. This algorithm is similar in spirit to the
Newton-Ralpson algorithm to solve nonlinear algebraic
equations: one starts from an initial guess of the solution,
and then iteratively improves the guess until the trial solution
is close enough to the true solution. This iterative nature of
ourmethod, however, is different from the iterations of other
methods, e.g., [28,32], in that we do not displace particles in
each iteration step, and the iteration here is purely a
numerical tool for solution finding. We can move particles
to their Lagrangian positions once the solution to the PDE is
obtained, although this is unnecessary if we are only
interested in having the initial density field. The relaxation
method has been used extensively in cosmology, e.g., in N-
body simulations of standard and nonstandard cosmological
models: in both cases it is known to have good scaling with
parallelization; we illustrate the efficiency of this method
using test examples below. Another important property of
this newmethod is that it does not have free parameters, apart
from the size of the mesh used to calculate the density field
—there is no need to presmooth the density field1 and all

wavelength modes are treated in the same away since the
calculation is done purely in real space. Finally, numerical
tests show that this method has good convergence properties
insensitive to mesh resolution: although our tests in this
paper are all donewithN3 particles on a mesh withN3 cubic
cells, we tried 8N3 particles on a N3 mesh, and N3 particles
on a 8N3mesh—in both caseswe found similar convergence
rates of the relaxation iterations as the default case, and this
feature gives the method greater flexibility to deal with
various tracer densities.
While our method is different from other state-of-the-art

ones such as Refs. [28,32], as we show below, it succeeds in
recovering the initial density field to the same accuracy as
the other methods, which suggests that these methods all
face the same limitation: after shell crossing it is no longer
possible to uniquely find a particle’s Lagrangian position.
Our test shows that, despite this limitation, the method can
greatly improve the reconstruction of BAO peaks in real
space. We leave extensions to redshift-space reconstruction
and biased tracers for future work.
This paper is organized as follows. In Sec. II we describe

the main ideas and practical implementations of our
method. This is followed by some tests of the method
and code, and then results showing how well the method
works, in Sec. III. We summarize and conclude in Sec. IV.
Throughout this paper we use the unit c ¼ 1, where c is the
speed of light, unless otherwise stated.

II. THE METHOD

To perform reconstruction, we need to link two sets of
coordinates: the Lagrangian coordinates q and the Eulerian
coordinates x, which correspond to initial and evolved
(final) matter distributions separately. There is a unique
one-to-one mapping between them before shell crossing
starts to take place in structure formation, and the mapping
is given by mass conservation,

ρfinðxÞd3x ¼ ρiniðqÞd3q; ð1Þ

where d3x and d3q are small volume elements in the
Eulerian and Lagrangian coordinates, and ρfin and ρini are
the densities in those volume elements. The evolution of
large-scale structure corresponds to a mapping of q into x,
and here we want to solve for the inverse of this mapping,
i.e., for given x coordinates find the corresponding q. After
shell crossing, the mapping is no longer unique, and mass
conservation does not guarantee a correct recovery of
the initial particle coordinates given their final ones.
This highlights the difficulties in reconstructing the initial
density field at very small scales where structure formation
has been highly nonlinear; however, since we only aim to
perform the reconstruction at relatively larger scales,
we can still use Eq. (1). Indeed, the application of this
equation guarantees that no shell crossing happens in the
reconstruction process. This is equivalent to assuming that

1The interpolation scheme to calculate the density field from a
discrete set of particles or tracers can be considered as some sort
of smoothing, but this method can work with any density
assigning scheme including nearest grid point, clouds in cell,
and triangular-sized clouds, and some density assignment is
unavoidable anyway. Since there is guaranteed to be no shell
crossing in this method of reconstruction, it is not necessary to get
rid of short-wave modes by additional smoothing.
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shell crossing has been prevented by a mechanism, similar
in spirit to the adhesion model [41–47].
As a fine approximation, the initial particle distribution is

homogeneous and ρiniðqÞ ¼ ρ̄. Defining a displacement
potential ΘðxÞ so that q ¼ ∇xΘðxÞ, Eq. (1) can be
written as

det ½∇i∇jΘðxÞ� ¼ det

�∂qi
∂xj

�
¼ ρfinðxÞ

ρ̄
; ð2Þ

where i, j ¼ 1, 2, 3 label the three spatial coordinates and
det denotes the matrix determinant. This is a nonlinear
mapping that involves matrix operations and therefore is
difficult to solve directly, and therefore we cast it into a
different, easier-to-solve, form.
As mentioned above, the objective is to rewrite this

equation in the form of a nonlinear elliptical PDE with
proper (periodic) boundary conditions, which can be solved
using multigrid relaxation. To achieve this, we express
det ½∇i∇jΘðxÞ� as a linear combination of ð∇2ΘÞ3,
∇i∇jΘ∇j∇iΘ∇2Θ and ∇i∇jΘ∇j∇kΘ∇k∇iΘ, in which
Einstein convention for summation is used. After some
trivial mathematical calculation, Eq. (2) becomes

1

6
ð∇2ΘÞ3 − 1

2
∇i∇jΘ∇j∇iΘ∇2Θ

þ 1

3
∇i∇jΘ∇j∇kΘ∇k∇iΘ ¼ ρfinðxÞ

ρ̄
: ð3Þ

Equation (3) looks like a cubic equation for ∇2Θ, an
observation that is instrumental for our numerical algorithm
to work. Of course, this is not entirely true since there are
other terms such as ∇i∇jΘ∇i∇jΘ, which depends on Θ:
we see shortly how to overcome this hurdle in numerical
implementation.
Equation (3) is very similar to the field equation in the

so-called quartic Galileon model [48,49], a modified
gravity model for which N-body simulations have been
done in [50] by introducing a multigrid relaxation algo-
rithm to solve the PDE [see Eq. (32) in [50] for the field
equation]. In this work, we follow that method to solve
Eq. (3) in order to tackle the reconstruction problem.
As described in [50], for numerical reasons it is

convenient to split the ∇i∇jΘ matrix into a diagonal
and a traceless part by defining the barred derivatives as

∇i∇jΘ≡ 1

3
δij∇2Θþ ∇̄i∇̄jΘ: ð4Þ

To appreciate the benefit of this operator splitting, let us
recall that, as mentioned after Eq. (3), the objective is to
rewrite it as a cubic equation for ∇2Θ. This enables us to
separate the calculation into two steps: (i) solving for ∇2Θ
analytically to get ∇2Θ ¼ � � �, and (ii) solving the equation
∇2Θ ¼ � � � as a linear PDE numerically using relaxation.

This means that we use analytical solutions as much as
possible, and this has the following advantages:

(i) a linear PDE is in general easier to solve, as it has
better convergence properties for relaxation (i.e., the
trial guesses can more quickly converge to the true
solution);

(ii) the fact that the PDE we solve takes the form of a
cubic equation for ∇2Θ means that there can be
multiple solutions for∇2Θ, only one of which can be
physical. If we happen to find a wrong branch of
solutions, numerically the PDE is satisfied but
physically the result does not make sense. We see
below how, by solving the cubic equation for ∇2Θ
analytically, we can ensure that the physical branch
of the solution is always chosen.

The question now is as follows: how can we make sure that
the PDE can be written as a cubic equation for ∇2Θ given
that it has other complicated terms containing Θ? This can
be seen once we insert Eq. (4) into Eq. (3), to obtain

ð∇2ΘÞ3 − 9

2
∇̄i∇̄jΘ∇̄j∇̄iΘ∇2Θ

þ 9∇̄i∇̄jΘ∇̄j∇̄kΘ∇̄k∇̄iΘ − 27½1þ δðxÞ� ¼ 0; ð5Þ

where we have introduced the notation of overdensity δðxÞ
as 1þ δðxÞ ¼ ρfinðxÞ=ρ̄.
The key point here is that we are solving the PDE on a

mesh or, in other words, trying to find the solution Θi;j;k for
cells labeled by i, j, k (the indices of the cell along the x, y,
z directions). In numerical implementations, after perform-
ing a second-order-accuracy discretization, it can be shown
that the expression of ∇2Θ depends on Θi;j;k, while ∇̄i∇̄jΘ
does not.2 This means that, as far as Θi;j;k is concerned,
Eq. (5) can be treated effectively as a cubic equation for
∇2Θ, where the various coefficients of the equation depend
only on combinations of ∇̄i∇̄jΘ, which, for cell i, j, k, do
not depend on Θi;j;k. This cubic equation can be solved
analytically to obtain ∇2Θ ¼ � � � (the exact expression is
rather involved and we present it later). Then, to solve
numerically for Θi;j;k, we insert the discretized expressions
into the ∇2Θ ¼ � � � equation, where the right-hand side
depends only on ∇̄i∇̄jΘ and thus does not involve
directly Θi;j;k.
In the homogeneous and uniform case (δðxÞ ¼ 0), we

have det ½∇i∇jΘ0ðxÞ� ¼ 1, which has an apparent solution

Θ0ðxÞ ¼
1

2
ðx2 þ y2 þ z2Þ; ð6Þ

2For an explicit expression for the discretized ∇2Θ, see
Eq. (11). The explicit expressions for ∇̄i∇̄jΘ∇̄j∇̄iΘ and
∇̄i∇̄jΘ∇̄j∇̄kΘ∇̄k∇̄iΘ can be found from Eqs. (B1) and (B3)
of Ref. [50]; they are too lengthy to reproduce here, and so we put
them in the appendix of this paper.
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corresponding to

q ¼ ∇xΘ0 ¼ x; ∇2Θ0 ¼ 3 and ∇̄i∇̄jΘ0 ¼ 0: ð7Þ

We can then introduce a new variable θ as Θ≡ Θ0 þ θ that
enables us to rewrite Eq. (5) as

ð∇2θ þ 3Þ3 þ pð∇2θ þ 3Þ þ q ¼ 0; ð8Þ

where

p ¼ −
9

2
∇̄i∇̄jθ∇̄j∇̄iθ;

q ¼ 9∇̄i∇̄jθ∇̄j∇̄kθ∇̄k∇̄iθ − 27ð1þ δÞ: ð9Þ

Note that in the numerical implementation what we solve is
the discrete version of Eq. (8),

½ð∇2θÞi;j;k þ 3�3 þ pi;j;k½ð∇2θÞi;j;k þ 3� þ qi;j;k ¼ 0;

where the subscripts i;j;k means taking the value of a
quantity in the cell labeled by i, j, k. In particular, pi;j;k and
qi;j;k do not contain θi;j;k. Since in a given relaxation
iteration for cell i, j, k we only want to find θi;j;k, in the
numerical implementation we can treat Eq. (8) as a cubic
equation for ∇2θ as already discussed.
As mentioned above, an advantage of splitting the

derivatives into barred and unbarred ones is that one can
solve ∇2Θ, or rather ∇2θ now, analytically. A cubic
equation has three branches of solutions, not all of which
are always real, so we need to decide which of them is
physical. This is complicated as the physical solution does
not necessarily always stay on the same branch, but varies
as coefficients p, q vary.
Defining the discriminant as

Δ≡ q2

4
þ p3

27
;

we can classify the different situations by Δ.
(i) If Δ ≥ 0, there is only one real root, which must be

our physical branch;
(ii) when Δ transits across 0 from positive to negative,

there are three real roots, and the physical one should
change continuously.

Furthermore, when the density field is homogeneous
(δ ¼ 0), the solution should be consistent with θ ¼ 0

and therefore ∇2θ ¼ 0. With these constraints, the physical
branch of solution is found as

∇2θ ¼ −3þ
�
−
q
2
þ Δ1

2

�1
3 þ

�
−
q
2
− Δ1

2

�1
3

; if Δ ≥ 0;

∇2θ ¼ −3 −
�
−
p
3

�1
2

cos

�
1

3
ðσ þ 2πÞ

�
; if Δ < 0; ð10Þ

where σ ∈ ½0; π� is defined by

cos σ ≡ 3q
2p

�
−3
p

�1
2

:

The crucial step in our reconstruction algorithm is
solving Eq. (10) to obtain θðxÞ as well as its gradient.
For this purpose we have modified the ECOSMOG code
described in [50,51], which itself is based on the publicly
available N-body code RAMSES [52]. In the rest of this
section we give a brief summary of the algorithm.

A. Multigrid Gauss-Seidel relaxation

We have mentioned that we solve Eq. (10) using
multigrid Gauss-Seidel relaxation. In this subsection we
give more details about what this amounts to.

1. Discretization

Before being able to solve Eq. (10) on a mesh, we need
to first discretize it. As discussed in passing already, this
means replacing the different terms in the equation with
their values in mesh cells (labeled by i, j, k). The
derivatives will then be replaced by finite differences of
the values of the quantities in neighboring cells.
One example is the gradient of θ in the x-direction, ∇xθ.

Knowing the values of θ in three cells: cell ði; j; kÞ and its
left neighbor ði − 1; j; kÞ and right neighbor ðiþ 1; j; kÞ,
this can be calculated using either

∇xθ≐ 1

h
ðθiþ1;j;k − θi;j;kÞ;

or

∇xθ≐ 1

h
ðθi;j;k − θi−1;j;kÞ;

where h is the size of the cell. It turns out that these
expressions of finite difference lead to a “first-order”
accuracy, which means that as we decrease h by using
finer cells, the numerical error caused by the discretization
decays linearly with h. A scheme with second-order
accuracy can be achieved as follows:

∇xθ≐ 1

2h
ðθiþ1;j;k − θi−1;j;kÞ;

for which the discretization error decays as h2 with
decreasing h. An extension of this to second-order deriva-
tive ∇2

xθ can be obtained straightforwardly as

∇2
xθ≐ 1

h2
ðθiþ1;j;k þ θi−1;j;k − 2θi;j;kÞ:

This finite difference scheme makes use of three neighbor-
ing cells, which are said to form a three-point stencil.
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We can use more cells to find expressions of ∇2
xθ

with higher-order accuracy, but it is not necessary for
this work.
It can be shown that, up to second-order accuracy, the

three-dimensional second-order derivatives ∇2θ and terms
like ½∇i∇jθ�i≠j at cell ði; j; kÞ are given by

∇2θ ¼ 1

h2
ðθiþ1;j;k þ θi−1;j;k þ θi;jþ1;k þ θi;j−1;k þ θi;j;kþ1

þ θi;j;k−1 − 6θi;j;kÞ þ oðh2Þ; ð11Þ

∇x∇yθ¼
1

4h2
ðθiþ1;jþ1;kþθi−1;j−1;k−θi−1;jþ1;k−θiþ1;j−1;kÞ

þoðh2Þ; ð12Þ

∇y∇zθ¼
1

4h2
ðθi;jþ1;kþ1þθi;j−1;k−1−θi;j−1;kþ1−θi;jþ1;k−1Þ

þoðh2Þ; ð13Þ

∇x∇zθ¼
1

4h2
ðθiþ1;j;kþ1þθi−1;j;k−1−θi−1;j;kþ1−θiþ1;j;k−1Þ

þoðh2Þ; ð14Þ
where oðh2Þ is a shorthand notation for all higher-order
contributions. Interested readers may check Appendix A
for expressions of more complicated quantities. After
discretization, Eq. (10) becomes

Lh½θi;j;k� ¼
1

h2
ðθiþ1;j;k þ θi−1;j;k þ θi;jþ1;k þ θi;j−1;k

þ θi;j;kþ1 þ θi;j;k−1 − 6θi;j;kÞ − Σi;j;k ¼ 0;

ð15Þ

where Σi;j;k is the right-hand side of Eq. (10), which is a
function of ∇̄i∇̄jθ∇̄j∇̄iθ, ∇̄i∇̄jθ∇̄j∇̄kθ∇̄k∇̄iθ and δ, all
evaluated in cell ði; j; kÞ and all independent of θi;j;k.
The superscript h in Lh reminds us that Lh is the differ-
ential operator on a mesh of cell size h.
When implemented into the ECOSMOG code, Eq. (15)

and all terms in it are actually expressed using an internal
code unit. In our code the internal units are specified by
using the tildered dimensionless quantities instead of the
untildered dimensional quantities as follows:

~x ¼ x
B
; ~ρ ¼ ρa3

ρcΩm
; ~θ ¼ θ

B2
; ð16Þ

where B is the comoving size of the simulation box and
ρcΩm is the mean matter density.

2. Gauss-Seidel relaxation

As briefly described in Sec. I, the relaxation method is a
method to update the initial guess of the solution θi;j;k for
all ði; j; kÞ iteratively until the trial solution becomes
sufficiently close to the true solution.
The explicit iteration scheme is

θnewi;j;k ¼ θoldi;j;k −
Lh½θoldi;j;k�

∂Lh½θoldi;j;k�=∂θoldi;j;k

; ð17Þ

in which θoldi;j;k is the value of θ in cell ði; j; kÞ at the present
iteration (or the initial guess if this is the first iteration),
while θnewi;j;k is the value of θ for the same cell at the next
iteration.
For this relaxation scheme to work, the discrete PDE has

to be supplemented by an initial guess and a suitable
boundary condition. An advantage of rewriting the original
PDE (for Θ) in terms of θ is that it makes it easier to write
down an initial guess for all cells: θi;j;k ¼ 0. This is a
simplification because there are a huge number of cells in
the computation, and it is generally more difficult to
motivate an initial guess that differs cell by cell than
simply using 0 in every cell. The use of θ instead of Θ
also makes it easier to set up periodic boundary conditions
for the relaxation: this is because, according to Eq. (6), even
in the case of a homogeneous density field where Θ ¼ Θ0,
Θ does not satisfy a periodic boundary condition.
The partial derivative with respect to θi;j;k in Eq. (17) is

evaluated at the present iteration, and according to Eq. (15)
it is given by the simple form

∂Lh½θoldi;j;k�=∂θoldi;j;k ¼ −
6

h2
;

thanks to the fact that we have solved the cubic equation to
find a linear equation for ∇2θ whose right-hand side does
not contain θi;j;k.
In practice, there are a large number of cells for all of

which the value of θi;j;k is updated during this iteration
process. The updates can be arranged in different ways. For
example, since the discretized operator Lh½θi;j;k� in Eq. (15)
depends on not only θi;j;k and δi;j;k, but the values of θ in
neighboring cells such as θi�1;j�1;k�1, when the update in
Eq. (17) is carried out for cell ði; j; kÞ, the θ values in some
of its neighboring cells may have already been updated. It is
certainly possible to choose to not use these updated
neighbor-cell values of θ in Eq. (17), such as the Jacobi
method. In our implementation, however, we use the
Gauss-Seidel method, where the updated neighbor-cell
values of θ are used in Eq. (17) as soon as they are
available.
The process during which all cells have their θ values

updated is called a sweep. During one sweep one can in
practice choose different orders to update the cells, and in
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our code we use the so-called black-red chessboard order-
ing. It is helpful to visualize this using a chessboard where
cells which are direct neighbors of each other (i.e., they
have a common face) have different colors (black vs red),
while cells that are diagonal neighbors have the same color.
The iteration sweep is divided into two subsweeps, during
which only the red and the black cells get updated each
time, respectively. We notice that this order is not particu-
larly consistent with the way we discretize our equation:
∇2θ depends only on the direct (i.e., different-color)
neighbors of cell ði; j; kÞ, while Σi;j;k depends only on
the diagonal (i.e., same-color) neighbors. As the latter is
used as the source of the equation, this means that within a
given subsweep the cells whose θ values are used to
calculate the sources are constantly updated—this is differ-
ent from the standard Poisson equation, for which the
source does not depend on the θ value of any cell and so
stays unchanged for a full sweep: this is why solving our
nonlinear PDE is less efficient than solving the Poisson
equation.3 One possible way to improve is to use more
complex ordering schemes to do the sweep, for example, by
separating the sweep across the simulation mesh into four
(rather than two) subsweeps. We do not pursue those
possibilities in this work because the black-red scheme
works reasonably well for our reconstruction problems.
To check if the trial solution after an iteration step has

become sufficiently close to the true solution, we use the
residual ϵ defined as

ϵ≡
�
1

N3

X
i;j;k

ðLh½θi;j;k�Þ2
�
1=2

;

where the summation is over N3 cells in the mesh.
Evidently, if the trial solution is exactly equal to the true
solution for all cells, then ϵ ¼ 0. In general, there is always
numerical error so that Lh½θi;j;k� ≠ 0 [which is why Eq. (17)
makes sense], but if the algorithm is stable then ϵ decreases
with more iterations. In our code we set a criterion that if
ϵ < 10−8 the relaxtion is deemed to be converged and the
iteration stops.

3. Multigrid V-cycles

The purpose of relaxation iterations is to reduce the error
of the trial solution. For the error wave modes that are
similar in size to the cell spacing, h, this is usually achieved
relatively quickly, after a small number of iterations
(depending on the nonlinearity of the PDE being solved).
Qualitatively, this is as expected since each iteration uses

only the nearest neighbors to update the trial solution
of cell ði; j; kÞ. Decreasing the long error wave modes
generally takes many more iterations, and hence much
longer computational time, posing a challenge to the
efficiency of the relaxation method.
In practical implementations, a speed-up of the con-

vergence rate is often achieved using the so-called
multigrid method. Here, after a few iterations on level h
(we use the cell size h to label the level of the mesh because
multigrid methods use more than one mesh as we describe
now), when the error wave modes comparable to h have
been reduced and the convergence starts to slow down due
to the inefficient reduction of long wave modes of the error,
one moves the equation to a coarser mesh with cell size
H ¼ 2h (labeled as level H). The idea is that by using a
second mesh with larger cell size, the wave modes
comparable to H will be reduced more quickly, therefore
improving the convergence rate.
The coarsification of the discrete PDE from level h to

level H is done using the so-called restriction operator R.
Suppose that the solution at level h is θ̂h before moving to
level H, and that numerically θ̂h satisfies

Lh½θ̂hi;j;k� ¼ dhi;j;k; ð18Þ

where dh is the remaining error on level h (it should be 0 or
nearly 0 if the solution is accurate); then the PDE to be
solved on level H is

LH½θHi;j;k� ¼ Lh½Rθ̂hi;j;k� −Rdhi;j;k; ð19Þ

which is a coarsified version of

Lh½θhi;j;k� − Lh½θ̂hi;j;k� ¼ −dhi;j;k;

which itself is the difference between Eqs. (15) and (18).
Equation (19) is then solved using a similar Gauss-Seidel
relaxation on levelH to find the (approximate) solution θ̂H,
and the old approximate solution on level h, θ̂h, can be
corrected as

θ̂h;new ¼ θ̂h þ Pðθ̂H −Rθ̂hÞ; ð20Þ

where P is the so-called prolongation operator. R and P
are responsible for the forward and backward interpolations
between the fine (h) and coarse (H) levels, and they can be
defined in different ways in practice. As an example, in
three dimensions each coarse cell covers eight fine (son)
cells, and in the R operation the value of a quantity in a
coarse cell can be taken as the average of its values in the
eight son cells.
It should be clear that the principle can be applied to use

further coarser meshes to speed up the reduction of longer
wave modes of the error, and this use of multiple grids is

3Naively, one would expect that, if the source keeps changing
after updating every cell, then it is more difficult for the relaxation
to converge, because the equation itself keeps changing. This is
why, even though our equation has been rewritten in the form of a
standard Poisson equation, ∇2θ ¼ � � �, the relaxation converges
more slowly than it does for the standard Poisson equation.
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why the method is called multigrid relaxation. In our
implementation, we use a hierarchy of meshes with the
coarsest one having 43 cells. The code does restrictions
consecutively from the finest mesh to the coarsest one,
solving for θh on all levels, and then does prolongations all
the way back to the finest level to correct the solution there
using Eq. (20). Such an arrangement of going forward and
backward across the meshes is intuitively called a V-cycle.

B. Initial density reconstruction

Once θ and hence Θ has been obtained on the whole
computational mesh, it is straightforward to reconstruct the
initial density field from that. In practice this consists of the
following steps:

(i) Step B1: Finding iso-q lines: the code outputs θðxÞ
and its gradient∇xθðxÞ on a regular x grid; from this
we compute lines of equal qx, qy, qz coordinates
(called iso-q lines).

(ii) Step B2: Identifying the displacement field χðqÞ:
we want the displacement field χ ðqÞ given by
χ ¼ q − x, as a function of q, which can be done
once we have the iso-q lines equally spaced in q
(from the process to find the iso-q lines, we know the
x coordinates of the q grids).

(iii) Step B3: Calculating the reconstructed density field:
this can be obtained by taking the divergence wrt q,

δr ¼ ∇q · χ : ð21Þ

This is calculated by the publicly available DTFE

code [53], which is based on Delaunay tessellation.
The recovered density field is, to leading order approxi-

mation, the initial density linearly extrapolated to the
redshift of the reconstruction. To see this, we write the
reconstructed displacement field as χ ≡ χZ þ χcorr, where
χZ is the first-order contribution (the Zel’dovich approxi-
mation) and χcorr denotes higher-order and methodological
corrections. Inserting this into Eq. (21), which defines the
reconstructed density, results in

δr ¼ Dþδini þ∇q · χcorr; ð22Þ

whereDþ is the linear growth factor at the redshift at which
the reconstruction is done and δini the initial density field.
The second term represents corrections due to the fact that
on the scale corresponding to the reconstruction grid cell
size the growth of structures might have progressed past the
first-order Zel’dovich approximation, and that we are
treating a realistic, shell-crossed, particle distribution as
if shell crossing had not happened. Choosing a coarser
reconstruction grid decreases the amount of nonlinear
evolution and thus reduces this correction term, but only
at the expense of recovering the density at fewer locations
(as there are fewer cells) and so potentially losing some
useful information.

III. CODE TEST, RESULTS AND PERFORMANCE

A. Cubic test

Before applying the code to real reconstruction prob-
lems, we present a test using a simple but nontrivial
configuration following [50]. Such tests are important
because they serve as useful sanity checks of the code
and the algorithm, as well as helping us to build up intuition
from simplified problems.
As we use a cubic box with periodic boundary con-

ditions, an ideal test—to preserve the symmetry—is to have
the particles distributed in a smaller cubic volume at the
center of the simulation box. We do this by uniformly
distributing the particles in this small region, and call it the
cubic test. Should it work properly, the reconstruction is
expected to move the particles and uniformly fill the whole
box, because the initial particle distribution (in q coor-
dinate) is uniform.
In practice, we sampled 1283 static particles and put

them in a small cubic region with 10 Mpc=h per side, while
the full box size is 128 Mpc=h. Figure 1 displays a slice
through the simulation box near the center. Here we have
plotted iso-qx and iso-qy contours to represent q grids, and
as expected they are uniform inside the small cubic region
at the box center. This is because, when particles move,
they carry their Lagrangian coordinates with them. Given
that there is no shell crossing, and that the particle
distribution is uniform both in the initial state (when they
fill the whole simulation box) and in the final state (the state
on which the reconstruction is done, when the particles fill
the central cubic sub-box), particles with the same x (y or z)
coordinates in the final state should have the same qx (qy or
qz) Lagrangian coordinates, meaning that the iso-q lines
must form a uniform grid inside the central cubic region,
which our test successfully confirms.
Note that on the edges of this cubic region, the density

field has a sharp jump, causing slightly larger errors in our
numerical solutions, which is why the iso-q grid is less
uniform there. Cosmological distributions do not have such
sharp unphysical jumps; thus this limitation of the method
is unimportant when reconstructing the cosmological
density field.

B. Visual check of a real construction problem

Having verified that the code works properly, we then
applied it to reconstruction of initial conditions for a z ¼ 0
particle distribution produced using an N-body simulation.
The simulation was carried out by RAMSES and followed
1283 particles in a cubic box of length 128 h−1 Mpc from
z ¼ 49 to z ¼ 0, from an initial condition generated using
second-order Lagrangian perturbation theory (2LPTIC[54]).
We then performed the reconstruction with the z ¼ 0
snapshot.
Figure 2 displays the reconstruction result for a thin slice

through the simulation box, with the iso-qx and iso-qy grids
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shown as grey lines, where we have also overplotted the
particles in this slice (blue dots) and the θ field (the colored
map). As expected, this gives a distorted q grid, where the
grid tends to shrink for high-density regions (which also
aligns with filaments), while expanding for low-density
regions.
Again, the distortion of the iso-q grids can be understood

as the consequence of particles carrying their Lagrangian
coordinates while clustering. In the initial condition of the
simulation, the particles are on an almost uniform initial
grid of Lagrangian coordinates; when they form clusters
and filaments, the initially uniformly spaced grid lines
concentrate, leading to the distortions well aligned with the
filaments. In low density regions, particles flow apart and
lead to iso-q grids that are further apart and potentially
distorted by the large-scale tidal field.
The θ field, on the other hand, is effectively the potential of

the displacement field: x − q ¼ −∇xθðxÞ. In low-density

regions where particles evacuate from, θ reaches a local
maximum; while in high-density regions particles fall into, θ
reaches a local minimum, in an analogy to the Newtonian
potential. This is consistent with what Figs. 1 and 2 show.

C. Quantitative checks of reconstruction

To go beyond the qualitative visual inspections and
check the performances of the method quantitatively, we
have measured the auto and cross matter power spectra of
the initial, final, and reconstructed density fields, and
checked that the auto power spectra of the initial and
reconstructed density fields have similar shapes down
to k ≈ 0.5 h=Mpc.
To quantify how much of the information in the initial

density field has been successfully recovered by the
reconstruction, we define the correlation coefficient of
two density fields δ1 and δ2, denoted by rδ1δ2, as

rδ1δ2 ¼
~δ1 ~δ

�
2 þ ~δ�1 ~δ2

2

ffiffiffiffiffiffiffiffiffi
~δ1 ~δ

�
1

q ffiffiffiffiffiffiffiffiffi
~δ2 ~δ

�
2

q ; ð23Þ

where ~δ is Fourier transform of δ, and � indicates the
complex conjugate.
In Fig. 3 we show the correlations among the initial (δi),

final (δf), and reconstructed (δr) density fields. While
the correlation between δi and δf starts to fade at
k ≈ 0.07 h=Mpc, the correlation between δi and δr remains
substantial even on relatively small scales: rδiδr ≥ 0.95,

FIG. 2. Similar to Fig. 1, but now the reconstruction is
performed starting from a proper N-body simulation snapshot
at z ¼ 0. The blue dots are the particles inside the slice shown at
their Eulerian coordinates at z ¼ 0. Note how the q-grid distorts
following the distribution of matter particles and becomes
concentrated (expanded) in overdense (underdense) regions.

FIG. 1. Method test using a cubic particle distribution. The final
density field is a uniform distribution of 1283 particles inside a
10 Mpc=h-per-side cubic box placed at the center of the
simulation box of size 128 Mpc=h, with the faces of the two
boxes parallel to each other. The color map is the θ field
computed by the new reconstruction method, with the color
bar on the right indicating the values of θ. The horizontal and
vertical gray lines are respectively lines with equal Lagrangian qy
and qx coordinates. Note that only gray lines within the central
blue box (which is zoomed in the lower right corner of the figure)
are meaningful—particles at the corners of this blue box are at the
corners of the simulation box in the initial (reconstructed)
distribution. As mentioned in the abstract, the reconstruction
method is based solely on mass conservation, with no informa-
tion about how the density field has evolved. Only 64 × 64 (out of
128 × 128) lines are shown here for a clear view, and the plot is a
0.64 Mpc=h-thick slice perpendicular to the z-axis at the middle
of the box. Note that the q-grid here is regularly spaced except the
region near the edge, where numerical errors occurred.
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0.85, 0.8, and 0.55, respectively, at k=ðhMpc−1Þ ≈ 0.3, 0.5,
0.6, and 1.0. Comparing to previous works, a quick on-
screen measurement shows that the values of rδiδr at these
scales are 0.95, 0.85, 0.78, and 0.52 for the Oð1Þ
reconstruction and 0.96, 0.86, 0.8, and 0.55 for the Oð2Þ
reconstruction method in [32], Fig. 4, and 0.95, 0.8, 0.7,
0.45 in [28], Fig. 3, although we remark that these
comparisons are only indicative because of the possibly
different simulation specifications, reconstruction settings,
and correlation measurements. A fairer comparison can be
made by running all these methods on the same particle
snapshot, a possibility that we leave for future. Hence, we
conclude that the performances of these methods are
broadly consistent.
In Fig. 4 we show the histograms of the density values

for δi, δf, and δr, which have been normed to unity. All
three density fields have been smoothed by a Gaussian
window function of width 2 h−1Mpc, and we have
extrapolated the initial density field by multiplying δi with
the linear growth factor Dþðz ¼ 0Þ [cf., Eq. (22), 35.82 for
our chosen cosmology].
As expected, the nonlinear density field δf is strongly

non-Gaussian with a sharp cutoff at δf ¼ −1 and a long tail
at positive δf. On the other hand, the reconstructed and
(linearly extrapolated) initial density fields have similar
distributions, both following a Gaussian shape of similar
widths and peak positions (with the one for δr slightly
skewed). The Gaussianization of the reconstructed density

field is another indicator that the new method works well.
Note also that, because there is no shell crossing in this
reconstruction, the iso-q curves do not intersect, so
∇q · χ ¼ 3 −∇q · x < 3, which explains why the recon-
structed densities do not go beyond δr ¼ 3 [28,55]. On the
other hand, both δr and δi have a long tail at δ < −1: the
value is not bound by δ ¼ −1 because to leading order δr is
the same as Dþδi, cf., Eq. (22); though jδij ≪ 1 in general,
the multipliation by Dþ ≫ 1 can cause a negative δi to go
below −1.
We have also compared the initial and reconstructed

density maps visually, and confirmed that they resemble
each other closely. Furthermore, we have tried the one-
point Gaussianization technique [56,57] to make the
reconstructed density field perfectly Gaussian, but this
indeed slightly decreases the correlation between it and
the initial density field.

D. Application to BAO reconstruction

As mentioned in the introduction, a main motivation of
reconstruction in modern cosmology is to improve the
recovery of BAO features. This is illustrated in Fig. 5,
where we compare the BAO signal in the initial conditions,
and the one at z ¼ 0 calculated from the evolved density
distribution and from the reconstructed one.
For this test we used two simulations of the same ΛCDM

cosmology, with 5123 particles in a 1 h−1Gpc box starting

FIG. 3. The correlation coefficient rðkÞ between the initial and
final (green solid line), initial and reconstructed (red dotted), and
final and reconstructed (blue dashed) density fields, which show
that the reconstruction successfully recovers information in the
initial density field that gets lost due to structure formation.

FIG. 4. Normalized histograms of the initial (z ¼ 49; red), final
(z ¼ 0; green), and reconstructed (blue) density field values, and
δ ¼ ρ=ρ0 − 1 is the overdensity. The initial density field has been
linearly extrapolated to z ¼ 0 by multiplying with the linear
growth factor Dþ ≈ 35.8. All density fields have been smoothed
with a 2 h−1 Mpc Gaussian filter.
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from initial conditions generated using the same phases,
but one with BAO wiggles in the input linear power
spectrum and the other without. The grid size used for
the reconstruction is 5123. To illustrate the BAO feature, we
calculate the quantity, PðkÞ=PnwðkÞ − 1, where PnwðkÞ
indicates a nonwiggle template that was generated by an
initial condition without the BAO signal.
As one can see from Fig. 5, in the nonlinearly evolved

density field, the high-k peaks are both weakened and
shifted, degrading the BAO signal; the decrease of the BAO
signal starts even at k ∼ 0.07 hMpc−1 and the peaks
become invisible at k ≥ 0.2 hMpc−1. However, the recon-
structed density field has BAO features that agree very well
with the linear density field even after k ¼ 0.3 hMpc−1,
and the peaks are still visible after that, such as at
k ∼ 0.4 hMpc−1.

IV. DISCUSSION AND SUMMARY

The reconstruction of initial density fields from obser-
vational data is a long-standing problem in cosmology and
has attracted considerable interest recently. In this work we
have proposed a new efficient method to do this by solving
the PDE governing the mapping between the Lagrangian
and Eulerian coordinates of particles, and implemented it
numerically.

We have carried out a range of visual and quantitative
tests of the new method (and the code), to check that it
works well. In particular, the reconstruction removes a
large part of the non-Gaussianity in the density distribution
that has been produced by the nonlinear evolution of large-
scale structures, and successfully restores information
present in the initial density field that is not readily
available in the final evolved density field. This can be
observed by the fact that the correlation between initial and
reconstructed density fields remains≳0.8 down to scales of
k ∼ 0.6 h=Mpc. These performances are comparable to
those of some other algorithms proposed very recently
[28,32] (see Sec. III C for an explicit comparison). The
reconstruction leads to a significant improvement of BAO
signal down to scales, k ≈ 0.4 h=Mpc, as can be assessed
from Fig. 5.
The new method calculates the displacement field by

using multigrid relaxation, which is instrumental for fast
and efficient convergence. For the reconstruction shown
here, we achieve convergence in eight V-cycles (each
V-cycle consists of about 30 relaxation iterations), taking
less than one minute on 64 CPUs (we also tested it for a
larger reconstruction problem, using 5123 particles on a
grid of size 5123 in a simulation box of size 500 Mpc=h,
and it also converged in eight V-cycles, taking about
six minutes on 360 CPUs). Intuitively, this is understand-
able: though Eq. (8) appears local, mass conservation
is global and the algorithm needs to walk through the
entire simulation box to decide the coordinate mapping;
multigrid, by solving the equation on hierarchically coarser
grids, allows increasingly bigger steps for the walk by
which it speeds up the rate of convergence to the final
solution.
We expect to find use of this algorithm in various

applications, such as the removal of nonlinear evolution
contamination in measurements of the BAO peak, the
precision requirement of which has greatly increased with
upcoming galaxy surveys such as DESI and EUCLID.
Another potential development is to use more realistic
tracers, e.g., different populations of galaxies, of the dark
matter field for the reconstruction and include the redshift
space distortion effect in the reconstruction process, so that
the latter can be done for observed galaxy catalogues where
galaxy positions are given in redshift space. The accurate
mapping between Lagrangian and Eulerian coordinates will
also allow one to infer the initial density field from the
observed cosmic web, and therefore understand evolution
of structures such as cosmic voids. We leave the inves-
tigation of these possibilities to future work.
Finally, we note again that the method used here

was motivated by simulations of modified gravity [50], a
subject that is originally unrelated to density recon-
struction. The optimal mass transportation problem, which
is closely linked to the PDE we solve here, has applications
in various branches of physics (e.g., nonlinear diffusion),

FIG. 5. Comparison of the BAO signals from the initial
(red dashed line), final (green dot-dashed), and reconstructed
(blue solid) density fields. As we can see, for the reconstructed
field the amplitude and positions of the peaks are in good
agreement with those of the initial linear density field even after
k ≈ 0.3 h=Mpc, while in the nonlinearly evolved density field the
peak features are degraded substantially. This demonstrates that
the reconstruction can greatly improve the accuracy of BAO
measurements.
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engineering (e.g., atmosphere and ocean dynamics,
aerodynamic resistance, and shape and material design),
mathematics (e.g., geometry and nonlinear partial differential
equations), biology (e.g., leaf growth), and economics
(e.g., supply-demand equilibration, structure of cities, profit
maximization, and social welfare distribution)—we hope that
there aremore places to find applications of this newmethod.
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APPENDIX: DETAILED EXPRESSIONS OF
NUMERICAL STENCILS

In this appendix we present the more complicated
expressions for the discretized quantities used in the code.
These are for completeness only.

∇̄l∇̄mθ∇̄m∇̄lθ ¼ 1

9h4
ðθiþ1;j;k þ θi−1;j;k þ θi;jþ1;k þ θi;j−1;k − 2θi;j;kþ1 − 2θi;j;k−1Þ2

þ 1

9h4
ðθi;jþ1;k þ θi;j−1;k þ θi;j;kþ1 þ θi;j;k−1 − 2θiþ1;j;k − 2θi−1;j;kÞ2

þ 1

9h4
ðθi;j;kþ1 þ θi;j;k−1 þ θiþ1;j;k þ θi−1;j;k − 2θi;jþ1;k − 2θi;j−1;kÞ2

þ 1

8h4
ðθiþ1;jþ1;k þ θi−1;j−1;k − θiþ1;j−1;k − θi−1;jþ1;kÞ2

þ 1

8h4
ðθiþ1;j;kþ1 þ θi−1;j;k−1 − θiþ1;j;k−1 − θi−1;j;kþ1Þ2

þ 1

8h4
ðθi;jþ1;kþ1 þ θi;j−1;k−1 − θi;j−1;kþ1 − θi;jþ1;k−1Þ2 þ oðh2Þ: ðA1Þ

∇̄l∇̄mθ∇̄m∇̄nθ∇̄n∇̄lθ ¼ 1

9h6
ðθiþ1;j;k þ θi−1;j;kÞ½2ðθiþ1;j;k þ θi−1;j;kÞ2 þ ðθi;jþ1;k þ θi;j−1;kÞ2 þ ðθi;j;kþ1 þ θi;j;k−1Þ2�

þ 1

9h6
ðθi;jþ1;k þ θi;j−1;kÞ½2ðθi;jþ1;k þ θi;j−1;kÞ2 þ ðθi;j;kþ1 þ θi;j;k−1Þ2 þ ðθiþ1;j;k þ θi−1;j;kÞ2�

þ 1

9h6
ðθi;j;kþ1 þ θi;j;k−1Þ½2ðθi;j;kþ1 þ θi;j;k−1Þ2 þ ðθiþ1;j;k þ θi−1;j;kÞ2 þ ðθi;jþ1;k þ θi;j−1;kÞ2�

−
2

9h6
ðθiþ1;j;k þ θi−1;j;kÞ2ðθi;jþ1;k þ θi;j−1;k þ θi;j;kþ1 þ θi;j;k−1Þ

−
2

9h6
ðθi;jþ1;k þ θi;j−1;kÞ2ðθi;j;kþ1 þ θi;j;k−1 þ θiþ1;j;k þ θi−1;j;kÞ

−
2

9h6
ðθi;j;kþ1 þ θi;j;k−1Þ2ðθiþ1;j;k þ θi−1;j;k þ θi;jþ1;k þ θi;j−1;kÞ

−
2

9h6
ðθiþ1;j;k þ θi−1;j;kÞðθi;jþ1;k þ θi;j−1;k − θi;j;kþ1 − θi;j;k−1Þ2
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−
2

9h6
ðθi;jþ1;k þ θi;j−1;kÞðθi;j;kþ1 þ θi;j;k−1 − θiþ1;j;k − θi−1;j;kÞ2

−
2

9h6
ðθi;j;kþ1 þ θi;j;k−1Þðθiþ1;j;k þ θi−1;j;k − θi;jþ1;k − θi;j−1;kÞ2

þ 1

16h6
ðθiþ1;j;k þ θi−1;j;k þ θi;jþ1;k þ θi;j−1;k − 2θi;j;kþ1 − 2θi;j;k−1Þ

× ðθiþ1;jþ1;k þ θi−1;j−1;k − θiþ1;j−1;k − θi−1;jþ1;kÞ2

þ 1

16h6
ðθi;j;kþ1 þ θi;j;k−1 þ θiþ1;j;k þ θi−1;j;k − 2θi;jþ1;k − 2θi;j−1;kÞ

× ðθiþ1;j;kþ1 þ θi−1;j;k−1 − θiþ1;j;k−1 − θi−1;j;kþ1Þ2

þ 1

16h6
ðθi;jþ1;k þ θi;j−1;k þ θi;j;kþ1 þ θi;j;k−1 − 2θiþ1;j;k − 2θi−1;j;kÞ

× ðθiþ1;jþ1;k þ θi−1;j−1;k − θiþ1;j−1;k − θi−1;jþ1;kÞ2

þ 3

32h6
ðθiþ1;jþ1;k þ θi−1;j−1;k − θiþ1;j−1;k − θi−1;jþ1;kÞ

× ðθiþ1;j;kþ1 þ θi−1;j;k−1 − θiþ1;j;k−1 − θi−1;j;kþ1Þ
× ðθi;jþ1;kþ1 þ θi;j−1;k−1 − θi;j−1;kþ1 − θi;jþ1;k−1Þ þ oðh2Þ: (A2)
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