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An adaptive cracking particle method providing explicit and
accurate description of 3D crack surfaces
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SUMMARY

Cracks in 3D have arbitrary shapes and therefore present difficulties for numerical modelling. A novel
adaptive cracking particle method with explicit and accurate description of 3D cracks is described in this
paper. In this meshless method, crack surfaces are described by a set of discontinuous segments which are
associated with particles. This group of particles are assumed all to be “cracked” and split into two sub-
particles with modified support domains. Compared to the original method where the spherical supports at
particles are equally divided, the proposed method makes use of non-planar segments to account for changes
in crack face direction. The orientations of those segments and the angular changes of cracks during crack
propagation steps are recorded using triangular meshes. Supports of weight functions are modified according
to those changes so that quasi-continuous crack surfaces can be obtained, avoiding the spurious cracking
seen in earlier CPMs. An adaptive approach in 3D is then introduced to capture stress gradients around
crack fronts. Several 3D crack problems with reference results have been tested to validate the proposed
method with good agreement being achieved using the new method, showing it to be potentially a significant
advance for 3D fracture predictions problems. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION.

Crack modelling in 3D is a challenging problem in computational fracture mechanics. The majority
of the literature, as reviewed in [1, 2], to date on computational fracture mechanics focuses on 2D
problems with assumptions of plane strain or plane stress to reduce complexity and for ease of
comparison with analytical solutions. However, for any of these methods to be of real industrial use,
robust 3D formulations are needed.

The standard finite element method (FEM), being the most popular numerical method for solid
mechanics, has the longest history of being applied to 3D crack modelling [3], where crack surfaces
are described by element interfaces. Cracks are forced to propagate along element faces and
elements are remeshed to align element shapes to crack patterns. The dependence of crack modelling
on remeshing is removed by adding enrichment functions in the polynomial approximation space,
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as in the extended finite element method (XFEM) [4, 5, 6, 7], where cracks can be arbitrary shapes
and remeshing is not required. Various authors have developed the XFEM where crack surfaces in
3D are represented by a set of triangles [8] or by level set functions [9]. The former can provide
explicit descriptions of crack geometries but crack surfaces are not smooth. Crack modelling by the
latter can be more accurate, but updating those level set functions is not computationally cheap, as
mentioned in [10, 11]. A hybrid of the two is given in [12] to make use of the advantages of both
methods. Another approach is the numerical manifold method (NMM) [13, 14], which originates
from the differential manifold approach [15]. Cracks are introduced by dividing physical covers,
used to define weight functions into small elements, and interpolation approximations based on
those elements are discontinuous. This approach has also been applied to 3D crack propagation
simulation in [16] but is challenging for cover generation for complex cracks as mentioned in [17].

Mesh-based methods for computational fracture often bring problems of remeshing, mesh
distortion and volumetric locking [18]. Meshless methods use only node data to discretize a problem
domain and those issues are usually avoided. Meshless methods usually have high order continuous
shape functions rather than the C0 continuous shape functions in the standard FEM, which can help
to capture the stress gradients around crack tips. In meshless methods, the element free Galerkin
method (EFGM) has shown its ability to handle problems involving static cracks [19, 20, 21]
and dynamic fracture [22, 23, 24], and the extension to 3D problems has been demonstrated to
be straightforward [25, 26, 27]. Crack discontinuities are introduced by modifying basis functions
[28] or weight functions [29, 30]. An advantage over the XFEM is that high stress gradients can
be obtained without asymptotic enrichments [28], or by using special weight functions at crack
fronts [27]. However, tracking the crack geometries in 3D fracture modelling remains challenging
for meshless methods and approaches have included using a triangular mesh [26, 27, 30], or
level set functions [29]. An alternative to methods like the EFGM is peridynamics, where crack
discontinuities are obtained by removing “bonds” between nodes [31]. It is not difficult for this
method to handle multiple cracks and crack branching [32] as compared with the XFEM using
enrichment functions, and an application to 3D cracks is in [33], although much work is needed
to bring this method to maturity for a useful range of materials. Another alternative meshless
approach is the cracking particle method (CPM) [34], where crack paths/faces are described by
a set of discontinuous segments centred at cracking particles. Since the locations and orientations
of these segments are arbitrary, it is suitable for complex fracture problems [35, 36, 37, 38], and
applications for 3D crack problems can already be found in [39, 40], although some of the early
CPMs [40, 41] were shown to predict spurious cracking patterns, which have been relieved by
employing modifications [42]. In the modified 2D CPM in [42], supports of weight functions are
modified through bilinear segments with consideration of cracking angle changes at particles rather
than straight segments as in [34]. This allows crack kinks and branches inside a particle and removes
issues with spurious cracking. This idea is extended here to 3D crack problems where a framework
including explicit crack description has now been developed. Triangular meshes are introduced
in this CPM and the supports of cracking particles are modified accordingly to prevent spurious
cracking, leading to more accurate simulation of continuous crack surfaces in 3D. Only linear
elastic fracture mechanics (LEFM) is considered in this paper since the key contribution lies in
the description of crack geometries in 3D and the adaptive approach, but the extension to cohesive
models is not difficult as in [34, 39] and is a topic of ongoing research [43].

The article is arranged as follows: strategies of the original and the modified CPM are described
and an adaptive approach is briefly introduced in Section 2. Then, crack modelling in 3D is
illustrated and the crack propagation criterion used is included in Section 3. A number of examples
are given in the following section to validate the proposed methodology.

2. A MODIFIED CRACKING PARTICLE METHOD FOR LEFM.

The modified and original CPMs are based on the EFGM, for which the governing equations have
been included in many papers, e.g. [18, 44] and consequently we do not repeat them here.

This article is protected by copyright. All rights reserved.
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Figure 1. Modification of supports of weight functions: (a) visibility criterion; (b) diffraction criterion

2.1. Modelling of crack discontinuities.

A key issue in computational fracture mechanics is modelling the displacement discontinuity across
a crack. In methods that do not explicitly model crack faces as domain edges, there are principally
two ways to enforce these discontinuities: extrinsic enrichment and intrinsic enrichment.

The first of these involves the addition of discontinuous terms in the expression of approximated
displacements uh(x) as in the XFEM [4, 45, 5], i.e.

uh(x) =
n∑
i

Φi(x)ui +

n1∑
i

Φi(x)H(x)bi, (1)

where x is the spatial location vector in a problem domain, Φi(x) are shape functions, H(x) are
sign functions, ui are nodal values, bi are extra unknowns, n is the number of particles with
support covering x and n1 is the number of displacement enriched particles in n, and here crack
tip enrichments are not included. One disadvantage of this approach is that extra unknowns are
introduced, therefore leading to higher computational cost, and the approach can also lead to an
ill-conditional global stiffness matrix, in that these additional unknowns are not related to physical
degrees of freedom.

In comparison, no extra unknowns are added using an intrinsic enrichment. The discontinuities in
displacement are simulated by the modification of the influence domain (also known as the support)
of weight functions for particles on or adjacent to cracks. A simple way to achieve this is via the
visibility criterion [18]. The support of an affected particle’s weight function is truncated by the
crack line as in Fig 1 (a) and discontinuities at cracks are therefore constructed. But there is a
sudden change of active shape functions on the truncation line, and oscillations can occur in the
solutions for displacement around the crack tip especially when large support sizes are used [46].
In an alternative approach, the diffraction criterion, a small zone around the crack tip is included
(Fig 1 (b)), and the input parameter of the weight function is modified accordingly as in [46]. A
comparison of the two methods is described in [47], in which the diffraction criterion shows better
accuracy around the crack tip. However, the diffraction criterion approach requires locating the
nearest crack front, which can become computationally expensive in 3D [27].

2.2. The development of the CPM.

In the original CPM described in [34], discontinuities are introduced by using extrinsic enrichments,
borrowing ideas from the XFEM, with displacement approximations similar to Eq (1). The main
difference is that here a continuous crack path is approximated by a group of discrete segments
which are centred at particles and used to define the discontinuities of those particles’ weight
functions, as shown in Fig 2. The method has been applied to brittle fracture [35], ductile fracture
[37] and dynamic cracks [36] and is extended to 3D cracks in [39].

The extra unknowns associated with the enrichment are removed as a development of the original
CPM in [40] with the use of intrinsic enrichment. Cracking particles are split into two parts and
supports of weight functions are divided equally. The crack opening magnitudes are evaluated by

This article is protected by copyright. All rights reserved.
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Figure 2. Crack path described by the cracking particle method: (a) practical path; (b) approximation.

(a) (b)

Figure 3. Comparison between the original and the modified CPM: (a) original CPM; (b) modified CPM.

tracking relative displacements of pairs of cracking particles,

[[u(x)]] =
∑
i∈S+

Φi(xS+

)ui −
∑
i∈S−

Φi(xS−
)ui, (2)

where S+ and S− indicate the two sides of the crack.
In the original 2D CPM, cracking particles are defined as each carrying a straight discontinuous

segment of the crack face, splitting the supports as in Fig 3 (a). If there is a “bad” overlap between
segments, spurious cracking occurs. The current authors have presented a modified strategy for 2D
in [42] to solve this problem by using bilinear segments where the crack path can change direction
at each cracked particle. All discontinuous segments are aligned and “good” overlaps are obtained,
as in Fig 3 (b).

2.3. Adaptivity.

Using any discretised approach, capturing the high stress gradients around crack fronts usually
requires a high degree of refinement, and the computational cost can therefore be high for the
required accuracy. An adaptive approach allows modelling to start from a coarse discretization
which is iteratively refined automatically based on an error indicator or estimator. Error estimators
used in adaptive approach for solid mechanics are either recovery [48, 49, 50] or residual-based
[51, 52]. An a posteriori adaptive approach with an recovery-based error estimator has been
developed by the authors for the 2D modified CPM in [42]. The error terms are the difference
between calculated stresses σh and exact stresses σe using the energy norm [47].

‖e‖ =

{
1

2

∫
Ω

(σe − σh)TD−1(σe − σh)dΩ

}1/2

, (3)

This article is protected by copyright. All rights reserved.
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where D is the elastic constitutive matrix, σh and σe are vectors of stresses and integration is
carried out over a problem domain Ω. Exact stresses σe are generally unknown and are instead
approximated by the “projected” stresses σp [47],

σe(x) ≈ σp(x) =
m∑

k=1

Ψk(x)σh(xk), (4)

where m is the number of surrounding particles with locations xk and stresses σh(xk), and Ψk(x)
are shape functions calculated by the standard moving-least square process where smaller supports
are used. The global relative error η is calculated as

η =
‖e‖
‖U‖ , (5)

where the normalising term

‖U‖ =

{
1

2

∫
Ω

(σh)TD−1(σh)dΩ

}1/2

. (6)

The local error ‖ei‖ in a background cell i (as needed in the EFGM for numerical integration) is
estimated using Eq (3) with the problem domain Ω replaced by the area of the cell Ωi, and the local
relative error follows as ηi =

‖ei‖
‖U‖/√n

where n is the total number of background cells. Background
cells with large errors are divided following a quad-tree structure in 2D [50, 42] and an octree
structure in 3D [53]. New particles are added at the vertices of the divided cells in the same way
as a recent adaptivity approach for peridynamics [54, 55], but a difference lies in the triggers for
adaptive refinement. In the proposed method, refinement is applied to background cells with large
errors estimated by Eq (3), while the refinement in the peridynamics approach [54, 55] is activated
when the density of potential energy exceeds a predefined threshold value. The difference is because
the proposed CPM is based on the weak form of governing equations, while peridynamics makes
use of the strong form.

3. CRACK MODELLING IN 3D.

Moving from 2D to 3D is challenging, both because it leads to a heavier calculation burden but also
brings difficulties due to more complex crack patterns. A contribution to the former arises from the
larger matrix requiring inversion for calculation of shape functions at every integration point. For a
linear basis in 2D the size of the moment matrix A−1, required in the moving least square process,
is 3× 3, but in 3D becomes 4× 4, as mentioned in [18].

Considering the latter source of complexity, crack paths and fronts in 2D are lines and points
respectively, but in 3D become surfaces and curves respectively, and aspects of the formulations
become considerably more complex. An example is the use of the visibility criterion. In 2D the
check involves locating the intersection point E of the connection of two particles C and D and a
crack face AB in Fig 4 (a). If E is within the line AB, then particle C must be outside the support
of particle D and therefore they are invisible to each other. For a 3D crack with a curved front, as
shown in Fig 4 (b), the line used for checking the visibility is AB which is shorter than AB′. E is
outside of the line AB, so particles C and D are visible.

3.1. Crack surfaces in 3D.

Tracking the geometries of 3D cracks is one major challenge. Description of 3D crack surfaces in
the literature to date is mostly achieved by one of two methods: triangular meshes [8, 26, 27, 30]
and level sets [9, 29], and both make use of so-called “ghost” nodes to capture crack geometries in
either the XFEM or the EFGM.

This article is protected by copyright. All rights reserved.
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Figure 4. The visibility criterion: (a) 2D crack; (b) 3D crack

Here we describe a new approach using the modified CPM which is related to previous uses of
triangular facets but which is capable of handling both static cracks and propagating cracks. At
each particle in a 3D crack problem modelled using the original CPM, there is a discontinuous
circular plane in its support and the weight function is modified as in Fig 5 (a). The idea of bilinear
segments for the 2D modified CPM in [42] is here extended to 3D crack problems and a strategy of
non-planar discontinuous segments is now proposed as in Fig 5 (b-d). Crack surfaces are described
by a group of cracking particles as before, which are connected by a triangular mesh (Fig 6). The
vertices of these triangular elements are the cracking particles. The orientations of the discontinuous
segments (the triangular facets) are defined through the locations of the cracking particles: particle
a, which is located within a triangle, has a support as in Fig 5 (a); particle b, on an edge in the mesh,
has a support as shown in Fig 5 (b); supports of particles c and d, on the vertices, are as shown
in Fig 5 (c-d). The information specifying triangular meshes connected to one cracking particle is
recorded in a matrix, so the maximum number of facets that can be connected to any one particle is
limited and set to eight for simplicity and economy. The particles in black in Fig 6 are crack front
particles and are not themselves split, in that the crack front has an influence on the two sides of
the crack. The influence domain of a cracking particle close to the crack front is fully truncated,
although the crack may not cross the entire influence domain, because this cracking particle does
not affect the other side of the crack following the visibility criterion, which is applied to check the
connectivity between particles with the triangular mesh representing the crack surface. Since a pair
of cracking particles across the crack surface share the same location during this process, cracking
particles are given tiny shifts to the two sides of the crack surfaces and then the standard algorithm to
check the connectivity between particles operates. The magnitude of the shift is 0.01 of the cracking
particle’s support size. However, the original locations of cracking particles are used to calculate
shape functions. It is notable that other types of meshes can also be used for the description of crack
surfaces, especially for cracks with simple geometries. For instance, a penny-shaped crack can be
modelled by a circular cell which is the initial crack itself, and triangular meshes are only used to
describe the crack propagation, as will be shown later.

Only single cracks in 3D are considered here for simplicity, although the CPM has been applied
to non-linear fracture problems including crack branching and crack coalescence [34, 39, 40]. While
branched cracks can be modelled with the proposed CPM as in [56], branching itself is not included
here as this is a feature of dynamic crack propagation, and an implicit quasi-static code is currently
used. An additional criterion is required to determine whether a crack branches, which is not method
dependent and obtained through considering the physics of the problem. The further application of
the proposed CPM to dynamic fracture is a future plan.

3.2. Calculation of stress intensity factors (SIFs).

After the governing equations are solved, SIFs at crack fronts need to be extracted from the solution.
The calculation of SIFs is often achieved via the J-integral [57] following a contour path in 2D or
over a volume for 3D. In the contour integral approach in 3D, symmetric and antisymmetric stresses
are used to decompose the three modes of SIFs as in [58, 29], but there are extra terms for the
energy contribution from the normal direction of the contour plane and the derivatives of stresses
are involved [25]. These derivative terms are avoided by transferring the path integral to a volume

This article is protected by copyright. All rights reserved.
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Figure 5. The support of cracking particles: (a) the original CPM; (b-d) proposed CPM with different
segment numbers: 2, 3 and 4.

particle a
particle b

particle c

particle d

Figure 6. Crack surfaces presented by triangular meshes in a cube problem domain.

crack front

integral volume

2c

2c

2lc

Figure 7. A volume for the interaction integral at a crack front particle.

integral. In this work, the interaction integral [59] is used to calculate SIFs. Two stress fields are
required, namely the real state and an auxiliary state. The interaction integral at one crack front
particle is evaluated as

I =
1

lc

∫
V

(σaux
ij uj,1 + σiju

aux
j,1 − σaux

jk εjkδ1i)q,i dV, i, j, k ∈ {1, 2, 3} , (7)

I = 2
(1− ν2)

E
(KIK

aux
I +KIIK

aux
II ) + μKIIIK

aux
III , (8)

where q = (1− |x|
c )(1− |y|

c )(1− |z|
lc
) is a weight function, c and lc are sizes of the volume as in

Fig 7 and the superscript “aux” indicates the auxiliary state. The auxiliary field is predefined to
obtain the three SIFs. For instance, if Kaux

I = 1, Kaux
II = 0 and Kaux

III = 0 then I = 2 (1−ν2)
E KI. The

This article is protected by copyright. All rights reserved.
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crack

x

y

z

Δa

θc

old front

Figure 8. Local coordinates at crack fronts.

definition of auxiliary field can be found in many papers also using the interaction integral, e.g.
[59, 60, 61]. This integration is calculated in a local coordinate system centred at the crack front
particle and over a cube as in Fig 7. In [60], a curvilinear coordinate system is used for 3D cracks
with curved and non-planar surfaces. Since flat triangular meshes are used here to model crack
surfaces, integrating over a cube with a Cartesian coordinate system is appropriate and keeps the
calculation simple [26, 9, 27, 62].

A local coordinate system as shown in Fig 8 is used,

�x =

∑n
i
�li∑n

i li
, �y =

∑n
i Ai�ni∑n
i Ai

, �z = �x× �y, (9)

where �x is the extension vector of the crack front, �y is the normal of the crack surface and �z is the
tangent of the crack front. li is the length of a line connected to the vertex and �li is the vector. Ai

is the area of a triangle connected to the vertex and �ni is the normal. Normally �x and �y are not
orthogonal in Eq (9), and in that case then the projection of �y on �x needs to be removed and �y is
renormalized.

3.3. Crack propagation.

Crack propagation in 3D is modelled by determining the new positions of the crack front and
connecting it to the old front with a triangular mesh. There are two parameters involved in advancing
the fronts, increment angle and length, within the current algorithm. The crack propagating angle
can be evaluated by a number of methods such as the maximum principal stress criterion, the
minimum strain energy density criterion and the maximum strain energy release rate criterion
(comparisons of all three are given in [63] for 2D cracks and in [64] for 3D). For simplicity, here it
is assumed that mode III does not change the propagation angle and direction is set by the maximum
principal stress criterion as in [27]. The increment angle θc in Fig 8 is determined with respect to
the x axis in the xy plane under the local coordinate system, as

θc = 2arctan

(
KI −

√
K2

I + 8K2
II

4KII

)
. (10)

The incremental magnitude of movement of the crack front is here determined by the Paris’ law
[27], which describes the relationship between the crack extension da, the load cycle dN and the
range of the stress intensity factor during the fatigue cycle ΔKeq as

da
dN

= C(ΔKeq)
m, (11)

where C and m are material constants and Keq is the “equivalent” mode I stress intensity factor
evaluated from the three stress intensity factors,

K2
eq =

(
KI cos

3 θc
2

− 3KII cos
2 θc
2
sin

θc
2

)2

+
E

(1− ν2)2μ
K2

III. (12)

This article is protected by copyright. All rights reserved.
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initial crack

step 1

step 2

Figure 9. Crack propagation steps.

Although the Paris’ law is originally for fatigue crack problems, it can provide a relationship
between the crack incremental length and the value of the equivalent stress intensity factor and
therefore can be applied here for a 3D crack under a quasi-static loading, e.g. examples [27, 29]. If
the crack front particle with the maximum Keq is set to a given length Δamax, then the other front
particles i are set incremental length following

Δai = Δamax

(
ΔKeq

ΔKmax
eq

)m

. (13)

After defining the increment length and angle, the location of the new front can be determined
easily. Looping over all crack front particles, a particle is first advanced to a new location,

xnew
i = xi +ΔaiQ

−1 · [cos(θc), sin(θc), 0]T, (14)

where xi is the location of the front particle, xnew
i is the new position after crack propagation and Q

is the rotation matrix from the global coordinates to the local coordinates. Either a new particle is
created if there is no particle at the new location or the existing particle at the new location becomes
cracked. Then the old and new crack front particles are connected by triangular meshes, and new
crack surfaces are generated as in Fig 9. The two steps are repeated to achieve successive crack
propagation steps, and the adaptivity mentioned above is carried out to handle the refinement of
particles around the new front, which is described in an algorithm below.

4. EXAMPLES.

Several challenging numerical examples are presented to demonstrate the ability of the proposed
methodology. The first is a penny-shaped crack in a cube under uniform tensile loading in one
direction, and the calculated results are compared with theoretical solutions to check the accuracy.
In the second example, the boundary conditions are the same as the first but the crack is rotated
producing a mixed mode crack problem, and in addition in this example, the crack is then
propagated. The final example is a lens-shaped crack problem which is a test of the abilities of
the method to model curved crack surfaces. All three examples are in a cube domain of side length
2w = 200mm. A regular distribution of 15× 15× 15 particles is set initially from which adaptive
refinement proceeds. Volume integration is performed using 14× 14× 14 cells with arrangements
of 4× 4× 4 Gauss points. Integration on surfaces where external loadings are applied is performed
using 14× 14 cells each with 8× 8 Gauss points. The motion and rotation of the cube are locked
by Eqs (15) and (16) respectively based on the conservation of momentum, and essential boundary

This article is protected by copyright. All rights reserved.
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Algorithm 1 Crack propagation for a 3D crack

1: Achieve SIFs of all front particles by Eqs (7, 8)
2: Determine incremental angle θc by Eq (10)
3: Calculate equivalent SIF by Eq (12)
4: Find the maximum Keq

5: for i=1:nc % loop over all crack front particles do
6: Set incremental magnitude ΔaI by Eq (13)
7: Obtain the position of the new front by Eq (14)
8: if there is no particle at the new position then
9: Create new cracking particle

10: else
11: The particle at the new position becomes cracked
12: end if
13: end for
14: Update the information of old front particles
15: Create new triangular meshes connecting old and new front particles

conditions are imposed with Lagrange multipliers.∫
V

uxdV = 0,

∫
V

uydV = 0,

∫
V

uzdV = 0. (15)

∫
V

∂ux

∂y
− ∂uy

∂x
dV = 0,

∫
V

∂ux

∂z
− ∂uz

∂x
dV = 0,

∫
V

∂uy

∂z
− ∂uz

∂y
dV = 0. (16)

The approach here to impose essential boundary conditions is uniform and applicable for both
symmetrical and asymmetrical problems. This approach can provide exactly symmetrical results for
the example 1 and makes implementation of the boundary conditions for examples 2 and 3 much
easier and more accurate than by fixing some faces of the cube as in [29]. The calculation of these
integrations is not a burden since it can be obtained in the process of assembling the system stiffness
matrix, and only six Lagrange multipliers are required. The constant in the crack propagation Eq
(13) used in all analyses is m = 3.32 from [27]. The error of SIFs along a crack front in all three
examples is given by

eFn
=

∑nc

k |F k
n − F 0

n |
ncF 0

n

, n ∈ {I, II, III} (17)

where nc is the number of crack front nodes, Fn are normalized SIFs defined later and F 0
n are the

exact values.

4.1. A penny-shaped crack.

The penny-shaped crack problem is a mode I crack problem. The problem is shown in Fig 10 where
the radius of the crack is a = w/10, and elastic material is assumed with E = 100GPa and ν = 0.3.
The upper and lower faces of the cube are subject to normal stresses producing uniaxial tension
σ = 100N/m2, and the target global error is set to be η = 0.008. Since the crack face is a circle,
no triangular mesh is used here and the circle itself is employed directly for checking the visibility
among particles. The theoretical solutions for the mode I SIF and the crack opening shapes are
given by Eqs (18) and (19) [65]. For the purposes of results presentation, the KI SIF is normalized
to FI =

KI
2σ

√
π/a.

u =
4(1− ν2)

πE
σ
√

a2 − r2, (18)

KI =
2

π
σ
√
πa. (19)

This article is protected by copyright. All rights reserved.
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Figure 10. A penny-shaped crack in a cube, subjected to uniform tensile stress.

(a) (b) (c) (d)

(e) (f )

Figure 11. Node arrangements during adaptive steps of the penny-shaped crack problem: (a) xy view for
step 1; (b) xz view for step 1; (c) xy view for step 3; (d) xz view for step 3; (e) xy view for step 5; (f) xz

view for step 5.

Nodal arrangements are adjusted by the adaptive approach described above and particles are
added around the crack front as shown in Fig 11. The convergence rate of error reduction of these
adaptive steps is higher than by uniform refinement as shown in Fig 12 (a). More accurate SIFs can
be obtained using the adaptive approach with the same number of particles. From the convergence
rates, it can be seen that uniform refinement over the cube is unpractical since the crack is much
smaller than the cube. The final deformation of the crack is shown in Fig 13 and the elliptical crack
opening shape in the xz view is clear in Fig 13 (b). The crack opening shape and mode I SIF are
shown in Fig 14, where θ is the angle from a crack front to the x axis in the xy plane seen in Fig 10
and r is the distance to the circle centre. In Fig 14 (a), the displacements of cracking particles are
seen to match well with analytical solutions in four different directions. With an adaptivity approach,
the accuracy along the curved crack front is maintained even with uniformly distributed particles.
Calculated SIFs also agree with the analytical solutions as indicated in Fig 14 (b).
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Figure 12. Adaptive steps of a penny-shaped crack problem: (a) convergent rate; (b) normalized KI.

(a) (b)

Figure 13. Deformation (unit mm) multiplied by 200 times of a penny-shaped crack under uniaxial tensile
loading: (a) xy view; (b) xz view.

4.2. An inclined penny-shaped crack.

If the penny-shaped crack of the first example is rotated while the other aspects of the problem are
fixed, then the problem becomes one of mixed-mode fracture. This problem is shown in Fig 15,
where a larger crack radius a = w/5 is set and the rotation angle is given as β = π/6 in the xz plane
to the x axis. Material properties and boundary conditions are the same as the first example. Again
the circle itself is used to define connectivity between particles, while a triangular mesh is used
to describe crack geometries after crack propagation. The target global error is set a little higher
to η = 0.02, since it is hard to pursue a high accuracy after the crack propagates to a complicated
surface.

The deformation of the initial crack is in shown Fig 16, showing that the crack rotates by a small
angle relative to the original location. Stress intensity factors along the crack front are calculated
and compared (with analytical solutions in Eqs (20-22) from [65]). In Fig 17, θ is defined the same
as the first example. Although a regular distribution of nodes is used, similar results are obtained
along the curved crack front. There are, however, two points at which numerical results vary from
the analytical solutions noticeably: at θ = 0 and θ = π due to boundary effects. Similar issues can
be found in the results presented in [30]. It can be seen that KIII = 0 at θ = 0 where the deformation
is predominantly mode I and II , while KII = 0 at θ = π/2 where the deformation is predominantly
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(a) (b)

Figure 14. Verification of the current method by analytical results: (a) crack opening shape; (b) normalized
KI

Figure 15. Example problem 2: An inclined penny-shaped crack inside a cubic domain under uniaxial tensile
loading.

mode I and III. Crack propagation for this problem is shown in Fig 18 where new crack surfaces are
described by a triangular mesh, as described above. There two “kinks”, at θ = π/2 and θ = 3π/2,
which are caused by mode III fracture, which is consistent with the deformation pattern.

KI = 2σ cos2 β

√
a

π
. (20)

KII = − 4σ

2− ν
sinβ cosβ

√
a

π
cos θ. (21)

KIII = −4(1− ν)σ

2− ν
sinβ cosβ

√
a

π
sin θ. (22)

4.3. A lens-shaped crack.

In the final example, a lens-shaped crack with curved crack surfaces in a cube-shaped domain as
shown in Fig 19 is considered. The geometry of the crack is given by r = w/5, β = π/4, and
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(a) (b)

(c) (d)

Figure 16. Deformation (unit mm) multiplied by 200 times of an inclined penny-shaped crack under uniaxial
tensile loading: (a) xyz view; (b) xy view; (c) yz view; (d) xz view.

material properties used are E = 68.9GPa and ν = 0.22 the same as the values in [60]. The six
faces of the cube are under tensile loading σ = 100N/m2. The SIFs, Kn are normalized as

Fn =
Kn

2σ

√
π

r sinβ
, (23)

where n = I, II or III. The results are compared with values FI = 0.874, FII = 0.225 and FIII = 0
from [60].

A comparison between the original CPM and the proposed method is now presented. In the
following calculations, the default particle arrangements are used and some refinements of particles
around the crack are predefined. The crack is described by the overlap of planar discontinuous
segments in the original CPM in Fig 20 (a) and is also modelled by a triangular mesh in the new
method in Fig 20 (b). Checking a “slice” view at y = 100mm in Fig 20 (c), it can be seen that crack
modelling by the original CPM is discontinuous while the proposed method is continuous. In the
original CPM, there is a requirement to shift integration points which are invisible to other particles
due to the discontinuous segments, but this is not necessary for the proposed method. Fig 21 (a)
shows that the global errors using the proposed method are much lower than those calculated by the
original CPM, but the difference reduces when finer particle distributions are used. It follows that the
calculation of SIFs by the proposed method is more accurate as shown in Fig 21 (b-c). For coarse
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Figure 17. SIFs along the crack front for the inclined penny-shaped crack problem.

(a)
(b)

(c) (d)

Figure 18. Crack propagation (unit mm) of an incline penny-shaped crack under uniaxial tensile: (a) xyz
view; (b) xy view; (c) yz view; (d) xz view.

arrangements of particles, both methods provide similar results for KI, but when fine refinement
takes place and more information around crack surfaces is collected, the proposed method shows
better accuracy than the original CPM, Fig 21 (b). The deformation of the crack by the proposed
CPM is shown in Fig 22, and a slice view at y = 100mm is shown in Fig 22 (c) to illustrate the
crack opening. SIFs along the crack front by the proposed method are given in Fig 23, where good
agreement with the reference values is obtained. Both the proposed and the original CPM can reach
a good accuracy when a fine particle distribution is used. The advantage of the proposed method over
the original is the ability to align the crack segments so that a better description of crack geometries
is obtained, especially for applications to model cracks with high curvatures.
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Figure 19. Example problem 3: A lens-shaped crack in a cube under hydrostatic tensile loading.

(a) (b)

(c)

Figure 20. Comparison of crack surface description between the original CPM and the proposed CPM: (a)
original CPM; (b) proposed CPM; (c) slice view at y = 100 (unit mm).

5. SUMMARY.

A framework for 3D fracture modelling with an explicit description for 3D cracks has been
proposed. The methodology is based on the CPM, where 3D crack surfaces are represented by a set
of discontinuous segments located by cracking particles. Particles on crack surfaces are assumed ot
be split into two parts. Supports of particles are modified by those segments and then discontinuities
of cracks are introduced with the use of the visibility criterion. The geometries of crack surfaces
during crack propagation steps are recorded by triangular meshes built from original crack fronts
and the orientations of discontinuous segments are adjusted according to the angular change of crack
propagation. For those particles inside a triangular element, the supports are the same as the original
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Figure 21. Comparison of results between the original CPM and the proposed CPM: (a) global error; (b) FI
at dashed line; (c) FII at dashed line.

CPM, while for the others on the edges of triangles, the supports are adjusted by the use of non-
planar segments. An adaptive approach in 3D has been introduced to capture the stress gradients
at crack fronts. The original and proposed methodologies are compared using a lens-shaped crack
problem, and the proposed method shows a higher error convergence rate with more accurate results
for SIFs.
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