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Abstract 

Aerogels are the least dense and most porous materials known to man, with potential 

applications from lightweight super-insulators to smart energy materials. To date their 

use has been seriously hampered by synthesis methods which are laborious and expensive. 

Taking inspiration from the life-cycle of the damselfly, we demonstrate a novel ambient 

pressure drying approach in which, instead of employing low surface tension organic 

solvents to prevent pore collapse during drying, sodium bicarbonate solution is used to 

generate pore-supporting carbon dioxide in-situ, significantly reducing energy, time and 
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cost in aerogel production. The generic applicability of this readily scalable new approach 

is demonstrated through the production of granules, monoliths and layered solids with a 

number of precursor materials.  

 

Lightweight and porous materials occur in many natural systems and their formation 

mechanism provides inspiration for the fabrication of man-made structures by energy efficient 

and ‘green’ synthesis routes. A major feature that distinguishes biomaterials from synthetic 

materials are mild synthesis conditions, employing ambient temperature and pressure, often in 

an aqueous environment. Aerogels are the lightest and the most porous materials known to 

man[1,2], however their production is limited due to materials costs and laborious drying 

methods. Inspired by the life cycle of damselfly, particularly how their wings are produced 

rapidly in aqueous environments, we report replacement of surface tension reducing organic 

solvents in ambient pressure drying (APD) of aerogels by sodium bicarbonate solution, 

generating pore-supporting carbon dioxide in-situ, significantly reducing energy, time and cost 

in aerogel production. We anticipate that this new approach will prompt research into 

preparation of other porous materials, with potential for widespread application. 

 

Aerogels are porous materials, with low bulk density and high specific surface area, prepared 

by using air to replace the liquid component of a wet gel.[1, 2] Their insulating properties and 

robustness against ageing, moisture and perforation make them ideal materials for insulation in 

buildings,[3] oil/gas wells and pipes.[1] Moreover, the potential to introduce functionality 

through compositional changes means that aerogel architectures can be developed beyond 

passive materials and exploited in many ‘smart’ applications such as CO2 sorbents,[4] catalyst 

supports,[1] platforms for drug delivery,[5] perfect black materials for solar harvesting[6] etc.   

However, practical applications are still extremely limited owing to costly and laborious 

production methods.[1, 7]  
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The most common synthesis approach for aerogels involves extraction of liquid from a gel by 

critical point drying (CPD) with CO2, CH4 etc. due to the low surface tension of supercritical 

fluids.[1] However, CPD requires expensive equipment and can be hazardous and time-

consuming.[1, 8] Alternate methods include freeze drying[1] and sublimation of organic 

solvents[9] which are difficult to scale up due to the energy intensive requirements of vacuum 

for solvent sublimation and low temperature in the case of freeze drying. Ambient pressure 

drying (APD) is a less energy intensive alternative[10] and usually relies on replacing the original 

solvent used for gel preparation with organic low-surface-tension (LST) solvents, such as 

hexane, heptane, octane etc.  In most APD approaches, surface modification is also introduced 

to replace hydroxyl groups by methyl groups at the gel surface for additional reduction of 

capillarity.[11] A common organic used for surface modification of silica gels is 

trimethylchlorosilane (TMCS), (CH3)3SiCl.[12] Surface modification by TMCS used in 

conventional APD always leads to the generation of hydrochloric acid requiring further organic 

solvents to remove. The result is that, although less energy intensive, current APD methods are 

nonetheless still time consuming and costly due to use of large quantities of organic solvents. 

These issues of scalability are primary limits to the large scale use of aerogels, for example in 

building insulation. 

 

Many materials synthesis problems have been solved by biological systems and provide 

inspiration for design and production of man-made analogues.[13-16] Lightweight and porous 

materials are key elements of many biological structures: for example, the wings of Odonata – 

dragonflies and damselflies – which are among the fastest and most agile flying insects,[17, 18] 

consist of super-lightweight composites made of chitin microfibrils embedded in a protein 

matrix (resilin, an elastomeric protein) that have complex configurations at both macro and 

micro scale.[18] Typically, the wing weight is less than 2% of a dragonfly’s total body mass.[19] 
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Figure 1 (a-c) presents Scanning Electron Microscopy (SEM) images of the wing of the 

damselfly Lestes virens (Odonata, Zygoptera: Lestidae) where a porous and layered structure 

similar to an aerogel-like material is observed. Dragonflies do not have a pupal stage – instead 

adults emerge directly from the larval skin during a final moult that takes place out of water.[20] 

During this process they leave behind the larval skin, the wings are expanded and the abdomen 

hardens. This process is very short compared with the under-water stage, and can last as little 

as one hour in the case of damselflies.[20] If one assumes that during the ‘underwater lifetime’, 

gelation and ageing of gel-like materials involved in wing membrane formation takes place, 

this implies that upon emerging from water, which is not a low surface tension solvent, a fast 

drying process produces these porous aerogel-like materials under ambient conditions. 

 

Atmospheric CO2 dissolves in water over time and it is estimated that the dissolved pressure of 

CO2 normalised to lake areas (habitats of Odonata) is 800 atm.[21] CO2 dissolution in water 

establishes the following equilibrium: CO2(aq)+H2O↔H2CO3 ↔HCO3
-+H+↔CO3

2-+2H+. H2CO3 

can dissociate immediately into a proton and a bicarbonate ion, HCO3
-, reducing pH. At high 

pH, HCO3
- can further dissociate into a second H+ and carbonate CO3

2-.[22] Damselfly 

(Zygoptera) larvae pump water in and out of the hindgut to deal with hypoxic stress (lack of 

oxygen in water),[23] the rate of which is affected by the concentration of NaCl in the 

surrounding medium.[24] In particular, the principal function of the hindgut and rectum of water 

insects is to support an exchange diffusion mechanism in which sodium ions are exchanged for 

ammonium ions and chloride ions for bicarbonate.[24] Therefore, it is possible that damselflies 

use bicarbonate-based solutions in some form as a non LST solvent in wing formation during 

the final moult. Release of CO2 from bicarbonates compensates the change in environmental 

pressure when the damselfly emerges from underwater in order to balance blood pH.[25] This 

tentative hypothesis led us to use generation of CO2 from sodium bicarbonate (NaHCO3) within 

the gel prior to drying to develop a new  aerogel production process. 
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Capillarity is a key parameter dominating aerogel formation when silica gels dry[2]. If aerogel 

pores are modelled as cylinders, the capillary pressure in those pores (P) satisfies the Young-

Laplace equation (Equation 1). [26] 

 

P = 2γcosθ / R                                                                                                              (1) 

 

where γ is the solvent surface tension, θ the contact angle between solvent and surface, and R 

the pore surface radius in the wet gel. 

 

In conventional APD, solvent present in the gel pores evaporates directly from the gel surface. 

Various low-surface-tension (LST) solvents have been investigated to reduce capillary pressure 

(e.g., refs 11, 14).  Figure 2a presents a schematic of the conventional APD mechanism using 

a LST solvent. If, instead, of undertaking surface modification and solvent exchange we treat 

the wet gel with a combination of sodium bicarbonate solution and TMCS, carbon dioxide is 

generated within the bulk of the silica gel without surface modification occurring, as discussed 

in more detail below. Contact angle, Themogravimetric Analysis (TGA), Differential Thermal 

Analysis (DTA) and Fourier Transform InfraRed (FTIR) spectroscopy measurements are 

presented in the Supporting Information and demonstrate the absence of any detectable surface 

functionalisation. The carbon dioxide formed is trapped in the wet gel with the pressure in the 

resulting bubbles opposing capillary pressure, preventing pore shrinkage and collapse during 

the drying step, as illustrated schematically in figure 2b. The absence of any surface 

functionalisation from the addition of sodium bicarbonate and TMCS, a step we characterise as 

‘pre-drying’, leaves the final dried aerogel hydrophilic.   
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Figure 1(d and e) shows a typical silica aerogel produced using our novel APD approach. High 

translucency, a specific surface area of 550 m2 g-1 determined form nitrogen adsorption-

desorption isotherms using the Brunauer-Emmett-Teller (BET) method and a porosity of 87.5% 

was observed for a moderate concentration of TMCS (sample A1, see Experimental Section). 

At these TMCS concentrations the sample has a density of 0.3 g cm-3, which does not reflect 

the density of the aerogel scaffold itself, but is a superposition with the density of sodium 

chloride, a by-product of the pre-drying reaction, trapped within the pores of the aerogel.  A 

decrease in surface area and translucency (Figure 1f) coupled with an increase in density is 

observed for increasing quantities of TMCS (samples A2 and A3, described in the Experimental 

Section).  X-ray diffraction (XRD), High-Resolution Transmission Electron Microscopy 

(TEM) and Scanning Transmission Electron Microscopy (STEM) confirms the presence of 

NaCl crystals within the bulk of such aerogels and not simply at the surface. However, the NaCl 

can be completely removed by washing the samples either before or after the drying procedures 

whilst retaining the aerogel structure, as confirmed by XRD, BET and TEM measurements (full 

details of characterisation are provided in the Supporting Information). Samples from which 

sodium chloride has been removed display typical densities of around 0.06 g cm-3, typical of 

high quality aerogel samples.  Removal of salts through washing of wet gels prior to drying has 

been reported for other synthesis routes[27], however we find that washing prior to drying leads 

to a smaller average pore diameter and pore specific volume than washing the dried material, 

which retains the pore distribution of the original aerogel scaffold. We speculate that the change 

in pore distribution upon washing the wet gel may originate from some removal of trapped CO2 

during the washing process. A full characterisation of the two washing approaches and 

comparison with as-produced material is presented in the Supporting Information. 

 

An important aspect of the new approach reported here is that its simplicity renders it readily 

scalable, with production of large batches of material becoming straightforward, as shown in 
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Section S7 of the Supporting Information. In addition to scalability, the production of 

monolithic aerogels is of importance for the development of a range of structural materials 

including insulation panels, windows etc.[3, 28-30] However, as a result of time and cost 

associated with their production currently the only commercially competitive aerogel monolith 

applications are in highly-specialised areas, such as use in Cerenkov radiation counters.[31] By 

using sodium silicate as a precursor we have prepared small-scale monolithic aerogels (Figure 

1g) indicating the potential of our process for low-cost fabrication of larger free-standing 

aerogel materials. XRD of such aerogel monoliths demonstrates the absence of NaCl, which 

was removed before the drying procedure (Supporting Information and Methods section). The 

surface area of a typical aerogel monolith, obtained by the BET method, is 700 m2 g-1, with an 

average pore diameter of 4.2 nm and a pore volume 1.2 cm3 g-1, determined from nitrogen 

adsorption/desorption isotherms and the Barrett-Joyner-Halenda (BJH) method. The measured 

bulk density of these monoliths is 0.051 g cm-3 and the porosity was found to be 98.1%. SEM 

micrographs (Supporting Information) show high porosity and agree with the results obtained 

by the BJH method. Thermal conductivity was determined from room temperature to 425 K, 

with the value at room temperature found to be 0.016 W m-1  K-1, which is in the range of 

thermal performance of the other aerogels, substantially better than conventional insulating 

materials[28] and as good as silica aerogel monoliths produced by supercritical drying[29, 32].   

 

Layered silica aerogels can also be prepared by the same approach (Figure 3), enabling 

compositional variation through an aerogel monolith and providing a route by which large 

thickness monoliths may be built up. From nitrogen adsorption-desorption isotherms and pore 

size distribution analysis we find that the multi-layered silica aerogel films exhibit a surface 

area of 520 m2 g-1. The isotherm curves display type IV behaviour, indicating mesoporous 

structure[33] with an average pore diameter of 15.6 nm and a pore volume of 1.6 cm3 g-1. These 

layered aerogel structures display a remarkable similarity to the multilayered structure of 
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damselfly wings, as might be expected given the original inspiration for the APD approach 

presented here. Layering the aerogel structure considerably increases aerogel durability – it was 

possible to produce free-standing aerogel monoliths with typical thicknesses of ~0.3 mm, whilst 

attempts to produce non-layered samples of similar thicknesses with the same composition and 

preparation approach failed as these more brittle samples broke up upon the most gentle of 

handling. These ultra-thin layered aerogel samples were sufficiently robust to allow for 

compression testing and were found to have a compressive elastic modulus of 

Elayered = 0.20 ± 0.07 GPa. Full details of characterisation and stress-strain measurements on the 

layered aerogels is presented in the Supporting Information. To demonstrate that the new APD 

approach is applicable to a broad range of aerogel compositions, we have also produced an 

alumina-based aerogel (dawsonite - sodium aluminium carbonate hydroxide) by the same 

method, as shown in Figure 1h. XRD and FTIR (see Supporting Information) are consistent 

with NaAlCO3(OH)2, dawsonite.[34, 35] Nitrogen adsorption-desorption isotherms show that 

these dawsonite aerogels have a mesoporous structure with a surface area of 345 m2 g-1 and 

average pore diameter of 5.7 nm.  

 

Figure 2c presents the proposed reaction mechanism underpinning the novel APD method. As 

described in the Methods section, TMCS is added to the wet gel containing sodium bicarbonate 

solution.  When TMCS reacts with water hydrogen chloride is formed which reacts with sodium 

bicarbonate to produce sodium chloride, carbon dioxide gas in the pores of the silica gel and 

water. Moreover, the water produced reacts with remaining TMCS to further produce hydrogen 

chloride. This is a self-driving process allowing carbon dioxide to be released within the silica 

gel while hydrogen chloride slowly diffuses into the bulk. The reaction of the TMCS with the 

bicarbonate solution is sufficiently vigorous that it does not react with and functionalise the 

aerogel surfaces, instead forming trimethylsilanol (TMS), (CH3)3SiOH, after reaction with 

water. In the absence of a suitable catalyst, such as ammonia, TMS does not react with the silica 
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gel [36] and it is sufficiently volatile to be removed during the drying step. Carbon dioxide 

generated by the reaction between TMCS, sodium bicarbonate and water is trapped within the 

wet gel, as demonstrated by the FTIR spectra presented in Figure 4. A clear infra-red absorption 

peak is observed at 2342 cm-1 in the wet gel, corresponding to the asymmetric CO2 stretch 

mode,[37] which is absent in the spectra from the dried gels obtained under the same conditions. 

During the drying step the CO2 trapped in the wet gel resists pore collapse due to capillary 

pressure, preventing densification. Comparison of average pore diameters and pore specific 

area with silica aerogel produced by conventional APD (Table 1), shows a reduction in pore 

size indicating that some compression may occur. However, low density and high specific area 

is maintained.  It is possible to estimate the concentration of CO2 within the wet gel using the 

appropriate form of the Beer-Lambert Law and  the absorption coefficient of CO2 at 

2340 cm-1. There are a range of different values for  in the literature, for example in aqueous 

solution Jones and McLaren[38] find   9 x 105 cm2 mol-1 and Falk and Miller[39] obtained a 

value of  1.5 x 106 cm2 mol-1, while for CO2 inclusions in rhyolitic glasses Behrens and co-

workers[40] found that the absorption coefficient was  1.2 x 106 cm2 mol-1. These values of  

give a CO2 concentration of between 1.2 x 10-5 and 1.9 x 10-5 mol cm-3, which would 

correspond to a CO2 volume fraction of between 0.26 and 0.43 at standard temperature and 

pressure (STP). Proof of the proposed mechanism is provided in the Supplementary Material, 

which details control experiments of reactions between solid sodium bicarbonate, pure TMCS 

and water vapour from ambient air and presents data demonstrating that no surface 

functionalisation of the aerogel occurs within the limits of detectability, leaving the material 

hydrophilic. Although carbonate solutions, including sodium bicarbonate, have previously been 

employed in the synthesis of organic aerogels[41-45] their role has been limited to gelation. In 

resorcinol-formaldehyde aerogels they have been used as a catalyst to promote condensation 

and cross-linking,[41-43] in production of alignate aerogels as precursor and catalyst,[37] whilst 
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carbon dioxide formed during graphene oxide reduction prevented re-stacking of reduced 

graphene platelets during gelation.[44] However, in all these cases conventional drying 

approaches, in which the carbonates played no role, were used to produce aerogels from the 

hydrogel/lyogel precursors. 

 

In summary, a novel approach to the production of aerogels through the use of sodium 

bicarbonate in APD has been demonstrated. The use of a range of precursors and demonstration 

of direct methods for preparing monoliths and free-standing porous layers shows that our novel 

approach to aerogel production has potential for wide applicability, with the resulting aerogels 

displaying physical properties very similar to those produced by conventional approaches. 

Moreover, the low cost of reagents coupled with the absence of specialised conditions results 

in a method which is both economical, with a materials cost of $4 per kg of aerogel produced 

(costings are outlined in Section S7 of the Supporting Information) and scalable, overcoming 

the cost barrier which has prevented the widespread use of aerogels to date.[30] Moreover, the 

reduction in organic solvent use and low energy budget ensures that this aerogel production 

approach has a smaller environmental footprint compared with other methods. We believe that 

this simple method for aerogel production, and developments arising from it, can open the way 

for economical and routine application of these materials in a wide variety of functions from 

building insulation to energy storage, addressing pressing concerns in carbon emissions and 

sustainability. 

 

Experimental Section 

Silica gel preparation (TEOS precursor) 

 

All materials and solvents were purchased from Sigma-Aldrich and used without further 

purification. Silica gels were prepared by hydrolysis of tetraethoxysilane (TEOS, ≥ 98%), 

ethanol (≥ 99.5%) and de-ionised (DI) water at a molar ratio of TEOS:ethanol:H2O = 2:38:39. 
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To speed gelation, 1 ml of catalyst (ammonium hydroxide (28-30%), ammonium fluoride 

(≥98%) and DI water in a molar ratio NH4OH:NH4F:H2O = 8:1:111) was added to 34 ml of as-

prepared precursor. After 5 minutes, silica gels were removed from the casting mould, washed 

with DI water, and aged with 500 ml of ethanol for 24 hours. After 24 hours of aging ethanol 

was replaced by 500 ml DI water and 22 g sodium bicarbonate (≥ 99.7%). Silica gels were 

soaked in the bicarbonate solution while stirring for 24 hours. At the end of the solvent exchange 

step the gels were removed from the sodium bicarbonate solution and trimethylchlorosilane 

(TMCS, ≥ 97%) in quantities of 6, 8, or 10 ml was slowly poured onto them. After two minutes, 

ethanol was added as protecting solvent. The release of further CO2 was observed over the 

following 24 hours. Finally, the gels were dried at 60°C and ambient pressure with ethanol for 

24 hours to obtain aerogels. The aerogels prepared by adding 6, 8 and 10 ml of TMCS are 

referred to as A1, A2 and A3, respectively. After addition of TMCS, sodium chloride is 

generated along with TMS and CO2 inside the aerogel. Samples were washed by two 

approaches: 1) washing with DI water after drying followed by a subsequent drying step at 

60°C for 12 hours; 2) during the drying process, samples were washed with DI water between 

the completion of CO2 release and final drying. The drying procedure was then continued as 

before.  

 

Synthesis of silica aerogels (sodium silicate precursor) 

Silica hydrogels were synthesised by the sol-gel method then dried by the novel APD. Water 

glass (sodium silicate, Sigma Aldrich: Na2O   10.6%, SiO2   26.5%) was diluted with 

deionised water at different volume ratios (1:3, 1:3.5, 1:4, 1:4.5 and 1:5). Ion exchange was 

carried out with Amberlite. The silica sol had pH in the range of 2 -3 after ion exchange. The 

sol was transferred to a beaker and stirred for 5 min. For the gelation step, ammonium hydroxide 

and ammonium fluoride solution was used to modify the pH of the sol to pH 6. The silica sol 

was then transferred to a plastic mould for gelation. Gelation completed within 15 min, 
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following which the hydrogel was soaked with deionised water for 24 hours for aging. The 

water was exchanged with sodium bicarbonate solution (4.4 g for each 100 ml water). The gel 

was treated with a mixture of 6 ml TMCS and 150 ml ethanol for 24 hours, soaked in ethanol 

for 8 hours to remove unreacted TMCS and residual HCl then rinsed with water several times 

to remove the salt produced during the reaction between TMCS and sodium bicarbonate. Finally, 

the gel was soaked in ethanol for 24 hours with the ethanol refreshed every 12 hours and dried 

at 60°C for 24 hours. To obtain monolithic silica final addition of TMCS with ethanol was to a 

wet gel (the wet-gel was soaked in TMCS and ethanol mixture for 24 hours followed by soaking 

in pure ethanol). Ethanol was exchanged twice and the aerogel dried at 60°C for 24 hours and 

at 100°C for 1 hour.  

 

Synthesis of dawsonite aerogels  

 

Synthesis of dawsonite aerogels involved three main steps: preparation of the alcogel; treatment 

with sodium bicarbonate and TMCS and solvent displacement; removal of trapped solvent from 

the pores by APD. The sol was prepared by mixing aluminum sec-butoxide, deionised water, 

ethyl acetoacetate and ethanol in a molar ratio of 1:0.6:0.58:16, for 45 min at 60°C.  Hydrolysis 

and condensation was carried out by mixing the sol with a mixture of methanol, water, acetic 

acid, and N,N–dimethylformamide (DMF) in a weight ratio  Sol:MeOH:H2O:DMF of 

1:0.2:0.003:0.03. 1 mL of acetic acid was added for each 30 ml of mixture while stirring for 

30 min at room temperature.  The resulting homogeneous sol was transferred to airtight boxes 

and kept for 7 days at room temperature to complete gelation. After gelation completed the gel 

was soaked in sodium bicarbonate solution (4.4 g for each 100 ml water) while stirring for 2 h. 

CO2 was generated within the aerogel by soaking in ethanol solution containing TMCS (14 ml 

TMCS in 100ml ethanol) for 24 h at room temperature. The gel was rinsed with ethanol to 

remove the unreacted TMCS, soaked with water and stirred for 8 h. Finally, the gel was 
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immersed in ethanol for 24 h and dried at room temperature for 72 h followed by 100C for 2 h 

under ambient pressure.   

 

Synthesis of multi-layered silica aerogel films  

Multi-layered silica aerogel films were synthesised from tetraethoxysilane (TEOS) using the 

same method and molar ratios detailed in the section describing silica gel preparation with 

TEOS precursor, above. Briefly: cling film was pulled tight over a petri dish to create a flat 

surface and the silica sol dripped on the film by pipette. To prepare uniform films, 1 ml of sol 

was spread using a glass rod. Once gelation of the first layer was complete, another layer of 

silica sol was dripped on the gel surface until gelation was completed. The process was repeated 

until the required number of layers was complete. After completing gelation, the cling film was 

placed inside the petri dish and the gel soaked with ethanol for 8 hours. After ageing, ethanol 

was replaced by a mixture of deionised water and sodium bicarbonate for 8 hours. The gel was 

then soaked in a TMCS and ethanol mixture with a 16:100 volumetric ratio for 4 hours. 

Following this, the gel was rinsed with ethanol to remove unreacted TMCS. Finally, the gel 

film was dried at ambient pressure and room temperature for 12 hours, then at 100°C for 

1 hour.   Attempts to produce a single aerogel layer of the same overall thickness as the multi-

layered aerogel samples produced materials which were too brittle to successfully remove from 

the cling-film support. 

 

Materials Characterisation 

A FEI XL30 ESEM-FEG (Environmental Scanning Electron Microscope-Field Emission Gun) 

was used to image samples in high vacuum mode with a 10 kV accelerating voltage. Before 

SEM imaging, the samples were coated with gold to increase electrical conductivity. CoulterTM 

SA 3100TM Surface Area and Pore Size Analyzers were used to measure surface area of silica 

aerogels prepared by TEOS (samples A1, A2 and A3) by measuring nitrogen adsorption-
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desorption isotherms at 77 K. Specific surface area was determined by the Brunauer-Emmett-

Teller (BET) method from the adsorption curve and pore size distribution found with the 

Barrett-Joyner-Halenda (BJH) method using the desorption curve. All other samples were 

characterised by a Thermo ScientificTM SURFER. Uncertainties in the measured quantities are 

± 20 m2 g-1 for BET surface area, ± 0.1 nm for average pore diameter and ± 0.02 cm3 g-1 for 

pore specific volume. A PANalytical X'Pert Pro Multipurpose Diffractometer (MPD) was used 

for X-ray powder diffraction (XRD) analysis. High resolution transmission electron microscopy 

(HRTEM) and scanning transmission electron microscopy (STEM) experiments were carried 

out using a Tecnai F30 300keV microscope at the Materials Science Centre, University of 

Manchester. Samples for HRTEM and STEM were prepared by ultrasonication of silica 

aerogels in de-ionised water until there were no large pieces of aerogel visible to the naked eye. 

Thermal conductivity measurement were carried out by the hot disk method (Hot Disk 

TPS2500S). Compression tests were carried out on layered silica aerogels with an overall 

thickness, measured by SEM, to be approximately ~0.3 mm. Five samples were tested using a 

Tinius-Olsen mechanical testing frame at a crosshead speed of 0.5 mm min-1. Compression, the 

slope of the stress-strain curves, was used to calculate the compressive elastic modulus. The 

surface area needed for determination of modulii was determined with optical microscopy. 
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Figure 1. (a-c) SEM images of the membrane of the damselfly Lestes virens (Odonata, 

Zygoptera: Lestidae): (a) base of the wing; (b) multi-layered structure (5 layers are visible) of 

the base of the wing; (c) two layer structure of the end of the wing. It is clear that the thickness 

of membrane varies across the wing and the wings are made from porous tuctile multilayers. 

(d-f) Silica aerogels produced from TEOS precursor: (d,e) using 6 ml TMCS; (f) using 10 ml 

TMCS, showing increasing opacity with TMCS and hence NaCl concentration within the 

aerogel. (g) Monolithic silica aerogel prepared with water glass (sodium silicate precursor) with 

bicarbonate solution and TMCS. (h) SEM image of Dawsonite (NaAlCO3(OH)2) aerogels 

synthesised with aluminium sec-butoxide.   
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Figure 2. A schematic comparison between ambient pressure drying methods for aerogels. (a) 

conventional APD using an organic LST solvent. (b) APD using inorganic sodium bicarbonate 

solution. When a bubble of carbon dioxide forms in a pore of the gel the gas opposes capillary 

pressure. Hence it is possible to successfully fabricate aerogels without commonly used LST 

solvents. Sodium chloride, which is the by-product of this process is more environmentally 

friendly than HCl. (c) A proposed net-chemical-reaction route in the sodium bicarbonate 

solution APD method with TMCS ((CH3)3SiCl).  
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Figure 3. Bioinspired wing-membrane-like multi-layered silica aerogels. (a-b), Photos of silica 

aerogels formed by the sodium bicarbonate solution based APD method using TEOS precursor. 

(c) SEM micrograph of bilayer aerogel material, note the similarity to the structure in Figure 1c 

from Lestes virens. (d) SEM micrograph of the interface in the bilayer aerogel: the porosity and 

excellent tuctility of the interface is clear. (e,f) nine layer porous aerogel structures.  
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Figure 4. FTIR spectra of (a) wet silica aerogel; (b) as prepared silica aerogel containing 

sodium chloride (SA); (c) silica aerogel with salt removed by a post-drying wash (SA-WAD); 

(d) silica aerogel with salt removed by a pre-drying wash (SA-WBD). A clear peak at 2342 cm-1 

is observed in the spectrum of the wet gel, corresponding to the asymmetric stretch of CO2, 

which is absent from the spectra of the aerogels. Spectra have been shifted vertically for clarity. 
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Sample Surface area  

(m2 g-1) 

Pore specific volume 

(cm³ g-1) 

 

Average pore diameter  

(nm) 

 

APD 

(hexane) 

500 1.5 10.6 

New 

approach 

580 1.0 7.0 

 

 

 

 

Table 1. Surface area and pore size analysis for silica aerogels produced by conventional 

APD and the new approach reported here. 

 

 


