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Abstract

We use 1169 Pan-STARRS supernovae (SNe) and 195 low-z (z< 0.1) SNe Ia to measure cosmological parameters.
Though most Pan-STARRS SNe lack spectroscopic classifications, in a previous paper we demonstrated that
photometrically classified SNe can be used to infer unbiased cosmological parameters by using a Bayesian
methodology that marginalizes over core-collapse (CC) SN contamination. Our sample contains nearly twice as
many SNe as the largest previous SN Ia compilation. Combining SNe with cosmic microwave background (CMB)
constraints from Planck, we measure the dark energy equation-of-state parameter w to be −0.989±0.057 (stat
+sys). If w evolves with redshift as w(a)=w0+wa(1−a), we find w0=−0.912±0.149 and wa=
−0.513±0.826. These results are consistent with cosmological parameters from the Joint Light-curve Analysis
and the Pantheon sample. We try four different photometric classification priors for Pan-STARRS SNe and two
alternate ways of modeling CC SN contamination, finding that no variant gives a w differing by more than 2% from
the baseline measurement. The systematic uncertainty on w due to marginalizing over CC SN contamination,
s = 0.012w

CC , is the third-smallest source of systematic uncertainty in this work. We find limited (1.6σ) evidence
for evolution of the SN color-luminosity relation with redshift, a possible systematic that could constitute a
significant uncertainty in future high-z analyses. Our data provide one of the best current constraints on w,
demonstrating that samples with ∼5% CC SN contamination can give competitive cosmological constraints when
the contaminating distribution is marginalized over in a Bayesian framework.
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1. Introduction

The cause of the universe’s accelerating expansion at late
times is one of the fundamental questions in astrophysics today.
Twenty years ago, distances from Type Ia supernovae (SNe Ia)
revealed that the universe was accelerating (Riess et al. 1998;
Perlmutter et al. 1999), and the most common interpretation of
this cosmic acceleration was that ∼70% of the energy in the
present-day universe must consist of a repulsive “dark energy.”
In the time since this discovery, large SN data sets have
compiled up to ∼750 spectroscopically confirmed SNe Ia and
measured the expansion history of the universe at z1 with
increasing precision (Riess et al. 2004; Hicken et al. 2009b;
Kessler et al. 2009; Conley et al. 2011; Sullivan et al. 2011;
Suzuki et al. 2012; Betoule et al. 2014; Rest et al. 2014).
Because SNe Ia are observed in the recent cosmic epochs when
dark energy is most dominant, they have more leverage to

measure dark energy than most other cosmological probes
(Weinberg et al. 2013). In conjunction with baryon acoustic
oscillation (BAO) and cosmic microwave background (CMB)
constraints (e.g., Bennett et al. 2003; Eisenstein et al. 2005;
Anderson et al. 2014; Planck Collaboration et al. 2016a),
SNe Ia can be used to infer the dark energy equation-of-state
parameter w (equal to P/ρc2, the ratio of pressure to density).
The simplest model of dark energy is a cosmological constant,

a vacuum energy that exerts a spatially and temporally constant
negative pressure (w=−1). However, if w is measured to be
greater than−1, it would be an indication of “quintessence” dark
energy, a dynamic scalar field. A w value of less than −1 would
imply so-called “phantom” dark energy, which requires
extremely exotic physics (Amendola et al. 2013).
Nearly all SN Ia analyses have measured a dark energy

equation of state consistent with w=−1. The most precise
measurement to date is that of Betoule et al. (2014, hereafter B14),
who combined 740 spectroscopically confirmed SNe Ia from
the Sloan Digital Sky Survey (SDSS; Alam et al. 2015), the
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SuperNova Legacy Survey (SNLS; Astier et al. 2006), high-z SNe
from HST (Riess et al. 2007), and low-z SNe (Hamuy et al. 1996;
Riess et al. 1999; Jha et al. 2006; Hicken et al. 2009a, 2009b;
Contreras et al. 2010; Folatelli et al. 2010) to form the Joint Light-
curve Analysis (JLA). JLA SNe Ia, when combined with CMB
data from the Planck satellite and BAO constraints from Anderson
et al. (2014) and Ross et al. (2015), yield w=−1.006±0.045
(Planck Collaboration et al. 2016a).

Statistical and systematic uncertainties on the JLA measure-
ment of w are approximately equal. Though a great deal of
recent progress has been made to lower systematic uncertain-
ties, including the leading systematic of photometric calibration
error (Scolnic et al. 2015), lower uncertainties are also possible
just by adding more SNe Ia. Although a significant reduction of
the statistical uncertainty now requires hundreds of additional
SNe Ia, thousands of SNe Ia have already been discovered by
Pan-STARRS (PS1; Kaiser et al. 2010). Thousands more are
currently being discovered by the Dark Energy Survey (DES;
Flaugher 2005), and tens or hundreds of thousands will be
discovered by the Large Synoptic Survey Telescope (LSST) in
the coming decade.

Obtaining spectroscopic classifications for thousands of SNe
is prohibitively expensive. Spectra of SNe Ia cannot be
efficiently obtained with multiobject spectroscopy, as they
have a sparse density on the sky: their rate is ∼10 yr−1 deg−2

for those with R22, and spectral classifications must be
obtained within ∼2 weeks of maximum light. At the median
PS1 redshift of z∼0.3, spectroscopic classifications also
necessitate ∼1 hr or more of 4 m class telescope time per SN.
In addition, ∼30% of these SNe Ia will fail sample-selection
requirements after their spectra have been observed and thus
cannot be placed on the Hubble diagram (Section 2.1).
Assuming poor weather on ∼30%–50% of nights, 100 nights
of 4 m class telescope time will result in a cosmologically
useful sample of just ∼400 SNe Ia. In future surveys, such as
LSST, the cost of obtaining spectroscopy for tens of thousands
of SNe Ia will far exceed the available resources.

The alternative to spectroscopic classifications is using
classifications based only on photometric SN light curves, but
this method subjects the sample to contamination by core-
collapse (CC) SNe and peculiar SNe Ia. However, if cosmo-
logical distances can be measured without bias in a sample with
CC SN contamination, photometrically classified SNe Ia could
be used to measure w without penalty. To this end, SN light-
curve classification algorithms have improved greatly in the
last few years. The advent of LSST has provided additional
motivation to develop quick, robust classification methods that
rely only on limited photometric data (e.g., Saha et al. 2016).
Machine-learning algorithms in particular have been found to
yield both efficiencies (few bona fide SNe Ia are misclassified)
and sample purities 96% in cases where the classifier can be
trained on a representative SN sample (Sako et al. 2014;
Lochner et al. 2016).

The first measurement of w with photometrically classified
SNe, Campbell et al. (2013), used 752 SDSS SNe, most
lacking spectroscopic classifications, to measure cosmological
parameters. They reduced CC SN contamination using the
PSNID Bayesian light-curve classifier (Sako et al. 2011),
among other sample cuts, and estimated that their final sample
had 3.9% CC SN contamination. However, Campbell et al.
(2013) did not include a systematic uncertainty budget in their
measurements. Because CC SNe are 1–2 mag fainter than

SNe Ia, a contamination fraction of just 2% could shift the
mean distance by 0.02–0.04 mag, equivalent to a 5%–10%
difference in w over the redshift range 0<z<0.5.
For this reason, Kunz et al. (2007) proposed the Bayesian

Estimation Applied to Multiple Species (BEAMS) method to
simultaneously determine the SN Ia and CC SN distributions.
BEAMS models photometrically selected SN samples as a
combination of SNe Ia and CC SNe, simultaneously fits for the
contributions of each, and marginalizes over nuisance parameters
to give cosmological parameter measurements. BEAMS is able
to yield cosmological parameter measurements with less bias and
nearly optimal uncertainties (Kunz et al. 2007). Hlozek et al.
(2012), the first measurement of cosmological parameters from
photometrically classified SNe, used the BEAMS method to
measure the cosmic matter density ΩM from SDSS SNe lacking
spectroscopic classifications, but again did not include a
systematic uncertainty budget in their measurements. However,
the case of systematic uncertainties in BEAMS was explored
theoretically by Knights et al. (2013), who developed a
BEAMS formalism for correlated SN data that gives a reliable
cosmological parameter estimation (see also Rubin et al. 2015
for a treatment of systematic uncertainties that includes CC SN
contamination).
We expanded on this work in Jones et al. (2017,

hereafter J17). J17 undertook a series of Monte Carlo (MC)
simulations to test the application of a BEAMS-like algorithm to
a PS1 photometrically classified SN sample and made a first
estimate of the systematic uncertainty on w due to CC SN
contamination. We found a statistically insignificant bias of
D = - 0.001 0.004w

CC and a modest systematic uncertainty
of 0.014, which we estimated using four different SN
classification methods and three different contamination models.
J17 also included SN selection effects (i.e., Malmquist bias),
which were not included in the original BEAMS analyses.
In the current work, we apply the J17 methodology to PS1

SNe to measure cosmological parameters with robust systematic
uncertainties. Previously, only 10% of PS1 SNe Ia—half of the
spectroscopically classified SN Ia sample—had been used to
measure cosmological parameters (Rest et al. 2014; Scolnic
et al. 2014). The present sample is drawn from 350 spectro-
scopically classified SNe Ia and 3261 PS1 SNe with spectro-
scopic host galaxy redshifts. We anchor our Hubble diagram
with a compilation of spectroscopically confirmed low-z SNe Ia
from the CfA1-4 and Carnegie Supernova Project (CSP) samples
(Riess et al. 1999; Jha et al. 2006; Hicken et al. 2009a, 2009b;
Contreras et al. 2010; Folatelli et al. 2010; Stritzinger et al.
2011). We exclude SDSS and SNLS SNe from this sample in
order to give cosmological constraints that are independent of
previous high-z data. After applying conventional light-curve
cuts (e.g., B14), we will show that 1364 PS1+low-z SNe
remain. Statistically, we expect ∼5% of these SNe to be CC SN
contaminants (J17).
A companion paper, Scolnic et al. (2017, hereafter S17),

compiles 1049 spectroscopically classified SNe Ia from PS1 and
other surveys to give cosmological constraints. S17 presents the
PS1 spectroscopic sample, including improvements to the PS1
photometric pipeline that are used in this work. This work also
relies heavily on the detailed analysis and simulations of the low-
z sample in S17 and their improvements to the relative and
absolute photometric calibration of all surveys.
The sample of PS1 SNe with host galaxy redshifts was

presented in J17, including a description of our campaign to
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measure host galaxy redshifts for ∼60% of all SN candidates. In
Section 2.1, we briefly discuss this sample and present the low-z
and PS1 spectroscopically classified SNe that are included in this
analysis. We also derive bias-corrected distance measurements
and estimate the probability that each SN is Type Ia. In
Section 3, we summarize our cosmological parameter estimation
methodology, and in Section 4, we discuss contributions to the
systematic uncertainty budget. In Section 5, we perform
consistency checks on the methodology. In Section 6, we give
measurements of ΩM and w from SN Ia+CMB constraints. In
Section 7, we present combined cosmological constraints after
combining SNe with CMB, BAO, and local H0 measurements
and compare our constraints to those of B14 and S17. In
Section 8, we examine the test case of measuring w from a SN
sample without any z>0.1 spectroscopic classifications. Our
conclusions are in Section 9.

2. Distances and Photometric Classifications
from the SN Data

2.1. Data

The PS1 Medium Deep Survey covers 10 7 deg2 fields in
five filters, with typical observing cadences in a given field of
six observations per 10 days. The PS1 SN discovery pipeline is
described in detail in Rest et al. (2014). Likely SNe were
flagged based on three signal-to-noise ratio (S/N)�4
observations in the grizPS1 filters and no previous detection
of a SN at that position. The PS1 survey overview is given in
Chambers et al. (2016).

Over its 4 yr of operation, PS1 flagged ∼5,200 likely SNe.
Spectroscopic follow-up was triggered for ∼10% of SNe,
typically those with r22 mag, on a wide variety of
spectroscopic instruments (see Rest et al. 2014 and S17). For
520 of these candidates, spectroscopic observations of the SN
near maximum light allowed their type to be determined, and
approximately 350 of these 520 were spectroscopically classified
as Type Ia (S17).

During the last year of PS1, we began a survey to obtain
spectroscopic host galaxy redshifts for the majority of the
sample, both those with SN spectra and those without. This
survey primarily used the Hectospec multifiber instrument on the
MMT (Fabricant et al. 2005; Mink et al. 2007). We also
measured redshifts with the Apache Point Observatory (APO)
3.5 m telescope,14 the WIYN telescope,15 and, for two of the
most southern medium-deep fields, the Anglo-Australian Tele-
scope (AAT). An additional ∼600 of our redshifts came from
SDSS (Smee et al. 2013) or other public redshift surveys.16 We
chose targets independent of SN type in order to build a sample
without any color or shape selection bias. Of 3930 targets, the
host galaxies of 3261 SN candidates had strong enough spectral
features and high enough S/N to yield reliable spectroscopic
redshifts. These data are discussed in detail in J17. We estimate
that 1.4% of these redshifts are incorrect, and, as SNe with
incorrect redshifts are indistinguishable from CC SNe when
placed on the Hubble diagram, the incorrect-redshift fraction will

contribute to the “contamination” systematic uncertainty for this
sample (also discussed in J17).
Though our sample contains a mix of galaxy types (and

∼25% of hosts are absorption-line galaxies), we are unable to
obtain redshifts for SNe in low surface brightness hosts.
Previous high-z SN searches favored SNe in low surface
brightness hosts, which allow SN spectra with less host galaxy
contamination to be obtained. In the photometrically classified
sample, however, including hostless SNe is impossible, and the
hosts with spectroscopic redshifts have a median r magnitude
of 20.3. Therefore, the preponderance of bright, massive host
galaxies gives our sample significantly different SN and host
demographics compared to previous high-z data but makes it
more similar to the nature of the current low-z sample, which
primarily consists of SNe Ia found by targeting bright galaxies.
After SN discovery and redshift follow-up, the PS1 light

curves were reprocessed with an enhanced version of the
discovery pipeline that included a more realistic (non-
Gaussian) point spread function (PSF) model. The PS1
photometric pipeline has been improved further for this
analysis and the complementary analysis of S17. The
improvements include deeper templates, more accurate astro-
metric alignment, and better PSF modeling. The zero-point
calibration has also been improved by using the Ubercal
process (Padmanabhan et al. 2008; Schlafly et al. 2012).
Ubercal uses repeat observations of stars in PS1 to solve for the
system throughput, atmospheric transparency, and detector flat
field in the grizPS1 filters. It has a photometric accuracy of
better than 1% over the entire PS1 3π survey area. Pipeline
improvements are discussed in detail in S17.
We use a compilation of low-z SNe observed over the last ∼20

yr to anchor the Hubble diagram. Nearly all of these SNe are all
included in the JLA analysis, including the CfA1-3 SN samples
(Riess et al. 1999; Jha et al. 2006; Hicken et al. 2009a, 2009b) and
CSP SNe from the first data release (Contreras et al. 2010; Folatelli
et al. 2010).17 We exclude Calan/Tololo SNe (Hamuy et al. 1996),
as most lie below the PS1 3π survey area and therefore cannot take
advantage of the PS1-based photometric calibration system we use
in this paper (Supercal; Scolnic et al. 2015). We also include the
most recent CfA SN compilation (CfA4; Hicken et al. 2012) and
the second CSP data release (Stritzinger et al. 2011), which were
not included in the JLA analysis but are used in the Rest et al.
(2014) and S17 PS1 cosmological analyses.

2.2. SALT2 Model

To derive distances from PS1 and low-z SNe, we use the
SALT2 light-curve model (Guy et al. 2010, hereafter G10) to
measure the light-curve parameters of SNe Ia. We apply the
most recent version of SALT2 (SALT2.4), which was retrained
by B14 to include additional high-z SNe and improve the
photometric calibration.
We then use the measured SALT2 light-curve parameters to

restrict our sample to SNe with shapes and colors consistent with
normal SNe Ia (−0.3< c< 0.3, −3< x1< 3) and well-mea-
sured shapes (s < 1x1 ) and times of maximum light. Although
the SALT2 shape and color cuts are slightly asymmetric with
respect to the mean of the SN Ia populations (Scolnic &
Kessler 2016), they are chosen primarily because they are the
range within which the SALT2 model is valid. As measuring

14 http://www.apo.nmsu.edu/arc35m/
15 The WIYN Observatory is a joint facility of the University of Wisconsin–
Madison, Indiana University, the National Optical Astronomy Observatory,
and the University of Missouri.
16 Public redshifts are from 2dFGRS (Colless et al. 2003), 6dFGS (Jones et al.
2009), DEEP2 (Newman et al. 2013), VIPERS (Scodeggio et al. 2018), VVDS
(Le Fèvre et al. 2005), WiggleZ (Blake et al. 2008), and zCOSMOS (Lilly
et al. 2007).

17 See B14 for a detailed description of these data and their respective
photometric systems.
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cosmological parameters from SNe without spectroscopic
classifications adds the potential for new biases to this work,
we also strive for consistency with previous cosmological
analyses whenever possible. For this reason, our cuts are nearly
identical to those of B14, with two exceptions. The first is that
we add a cut on the χ2 and degrees of freedom of the SALT2
light-curve fit (SALT2 fit probability >0.001) that was applied
by Rest et al. (2014). This cut serves to remove CC SNe, as well
as SNe Ia with poor light-curve fits. The second is that we
require light curves to have at least one observation >5 days and
<45 days after maximum, a cut that removes a total of 22 SNe.
Without this cut, it is possible that some light-curve fits would
have a multi-peaked probability distribution function for several
SALT2 light-curve parameters (an issue raised by Dai &
Wang 2016). The cuts on x1 uncertainty and time of maximum
light uncertainty also serve to remove the biases that could arise
from multi-peaked probability density functions (PDFs). We
have not made a similar cut on the color uncertainty; although
this uncertainty is often high, it should not bias the SN distances
(and any bias would be removed by our bias-correction
procedure; Section 2.3.2).

After fitting, we also remove a maximum of two light-curve
epochs that lie >3σ from the best-fit SALT2 model. Of the light-
curve epochs between −15days <tmax<45 days, 1.3% are 3σ
outliers. We then rerun SALT2 with these data removed. The
purpose of this procedure is to remove photometric data affected
by unflagged image or subtraction defects without removing so
many data points that CC SN light curves begin to resemble those
of SNe Ia. Light-curve outlier removal increases the number of
SNe passing the SALT2 fit probability cut by ∼10% (giving a
slightly larger sample size than the one presented in J17) but does
not noticeably increase the CC SN contamination.

The SALT2 cuts (Table 1) reduce the PS1 spectroscopically
confirmed SN Ia sample by ∼30%. They reduce the number of
PS1 SNe Ia without spectroscopic classifications by 60%, as
these SNe have lower average S/N18 and a lower fraction with
SN Ia–like shapes and colors. Once shape, color, and sx1

cuts
have been applied, the time of maximum uncertainty cut and
the fit probability cut remove similar fractions of SNe for both

photometric and spectroscopic samples. The Milky Way
extinction cut removes no PS1 SNe, as the medium-deep fields
were chosen to be in regions of the sky with low Milky Way E
(B–V ). The number of SNe remaining after each sample cut is
shown in Table 1.
Table 1 also includes selection criteria that apply only to

photometrically classified SNe. These include a requirement that
the host galaxy can be identified reliably (using the normalized
separation between the SN and a galaxy center, R; Sullivan et al.
2006). We also remove potential active galactic nuclei (AGNs)
by discarding SN candidates with both evidence for long-term
variability and positions within 0 5 of their host centers.
Once the light-curve parameters have been measured by

using the SNANA fitting program to implement the SALT2
model, we use the Tripp estimator (Tripp 1998) to infer the SN
distance modulus from these light-curve parameters:

m a b= - + ´ - ´ + D + D ( )m x c . 1B M B1

Here x1 is the light-curve stretch parameter, c is the light-curve
color parameter, and mB is the log of the light-curve amplitude
(approximately the peak SN magnitude in B). The distance to a
given SN also depends on the global nuisance parameters α, β,
and.—a combination of the absolute SN magnitude and
the Hubble constant −α, and β is typically marginalized over
when fitting to the cosmological parameters (e.g., B14; Conley
et al. 2011). The parameter ΔM is a correction based on the
mass of the SN host galaxy, discussed in Section 2.2.1, and ΔB

is the distance bias correction, caused by SN selection effects.
We use simulations to determine an initial ΔB and apply it to
the data (Section 2.3.2) before measuring α, β, and ΔM. After
α and β have been measured, we redetermine ΔB using the
measured α and β as input in the simulations. The simulated/
measured α and β are given in Section 6.
After light-curve fitting with the SALT2 model, even SNe Ia

with low photometric uncertainties have a 10% scatter in
shape- and color-corrected magnitude. This is traditionally
referred to as the intrinsic dispersion, σint (Guy et al. 2007),
which is defined as the global uncertainty that must be added in
quadrature to the distance errors σμ of each SN such that the
reduced χ2 of the Hubble residuals equals 1. This is not added
to the uncertainty but kept as a free parameter in the

Table 1
SALT2-based Data Cuts

Number of SNe Comments
PS1 Host-z PS1 SN-z Low-z

Total candidates 5235 L L L
Host Sep R<5 4461 L L Likely host galaxy can be identified
Good host redshifts 3147 L L L
Fit by SALT2 2534 L L SALT2 parameter fitting succeeds
Not an AGN 2448 174 315 Separated from center or no long-term variability
−3.0<x1<3.0 1938 168 296 SALT2 light-curve shape
−0.3<c<0.3 1523 160 258 SALT2 light-curve color
σpeakMJD<2×(1 + z) 1490 159 254 Uncertainty in time of max. light (rest-frame days)
s < 1x1 1111 147 253 x1 uncertainty

Fit prob. �0.001 1053 142 195 χ2 and Ndof-based prob. from SALT2 fitter
Obs. at t−tpk>5 days 1031 137 195 Observed after maximum at 5days <t−tpk<45 days
E(B–V )MW<0.15 1031 137 195 Milky Way reddening

Note. The host-z column includes all PS1 SNe with the spectroscopic redshift of their host galaxy. The SN-z column includes only spectroscopically classified PS1
SNe without spectroscopic host galaxy redshifts. The reasons for this distinction are due to selection biases and are discussed in Section 2.3.1.

18 These SNe more frequently fail the shape uncertainty cut. In PS1, SNe with
x1 uncertainty <1 have a mean S/N at maximum light of 15.6. SNe with x1
uncertainty >1 have a mean S/N at maximum light of 8.3.
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cosmological parameter estimation. The SN Ia uncertainties
also include redshift uncertainty and lensing uncertainty
(σlens= 0.055z; Jönsson et al. 2010).

2.2.1. Host Galaxy Masses

It has been shown that after shape and color correction,
SNe Ia are ∼0.05–0.1 mag brighter in high-mass host galaxies
(log(M*/Me)>10) than in lower-mass host galaxies at the
same redshifts (ΔM; Kelly et al. 2010; Lampeitl et al. 2010;
Sullivan et al. 2010). The ΔM parameter has recently been
measured at >3σ significance in photometrically classified SN
samples, even though such samples (including PS1) have strong
selection biases toward high-mass host galaxies (Campbell et al.
2016; Wolf et al. 2016; Uddin et al. 2017). Although the
underlying physics behind the mass step are unclear, a simple
step function appears to fit the SN data well (B14).

Computing ΔM robustly requires measuring the host galaxy
masses of every SN in a self-consistent way. We therefore
measured host masses using the spectral energy distribution-
(SED-) fitting method of Pan et al. (2014) with PS1 and low-z
host galaxy photometry. For the low-z sample, we use ugriz
BVRIJHK photometry from 2MASS (Skrutskie et al. 2006) and
SDSS. For PS1, we use SExtractor (Bertin & Arnouts 1996) to
measure the photometry from PS1 templates. The PS1
templates are comprised of ∼3 yr of co-added PS1 data,
omitting only the year in which the SN Ia occurred.

The likely host of each SN is assumed to be the galaxy with
the lowest R parameter relative to the SN position, as discussed
in J17. The R parameter defines a separation between the SN
and a galaxy center and is normalized by the size of the galaxy
in the direction of the SN.19 If the nearest host has R>5 (i.e.,
the SN spectrum gives the only redshift), we assume the true
host was undetected following Sullivan et al. (2006).

We use the low-z and PS1 host galaxy photometry to
estimate M* with the Z-PEG SED-fitting code (Le Borgne &
Rocca-Volmerange 2002), which in turn is based on spectral
synthesis models from PEGASE.2 (Fioc & Rocca-Volmerange
1997). Galaxy SED templates correspond to spectral types SB,
Im, Sd, Sc, Sbc, Sa, S0, and E. We simultaneously marginalize
over E(B–V ), which is allowed to vary from 0 to 0.2 mag.
Uncertainties are determined from the range of model
parameters that are able to fit the data with similar χ2 and
are typically ∼0.1–0.3 dex.

Undetected galaxies of spectroscopically classified SNe Ia
are placed in the log(M*/Me)<10 bin. At z0.5, we cannot
be sure that SN hosts have log(M*/Me)<10, and we
therefore add a systematic uncertainty of 0.07 mag in
quadrature to those distance uncertainties (similar to B14).

2.3. SN Selection Bias

2.3.1. Simulating PS1 and Low-z SNe

A magnitude-limited sample of SNe will have a distance
bias, caused by SN selection effects, that can be determined
from rigorous simulations of the survey (see, e.g., B14; Conley
et al. 2011; Scolnic et al. 2014). We use the SNANA software
(Kessler et al. 2010) to simulate SNe Ia based on the SALT2
model, with detection efficiencies, zero points, PSF sizes, sky

noise, and other observables from the real PS1 and low-z
surveys. We generate the simulations using the values of α and
β measured from our data as input (α= 0.161 and β= 3.060;
Section 5).
We use three survey simulations in this analysis: simulations

of the set of PS1 SNe with redshifts from their host galaxies
(the host-z sample), the set of PS1 SNe Ia without host redshifts
and with only redshifts from SN spectroscopy (the SN-z
sample; these SNe have also been spectroscopically classified),
and the compilation of low-z SNe Ia. It is important that we use
distinct simulations for SNe with and without host redshifts;
because SN spectroscopy is only attempted for bright SNe
(rpk22), a lower magnitude limit than the PS1 survey
detection limit comes into play for the SN-z sample. The SN-z
sample includes only the portion of our data without host
galaxy redshifts and thus is comprised almost entirely of
rpk<22, spectroscopically classified SNe in faint hosts
(rhost22). On the other hand, the host-z sample is nearly
an ideal, magnitude-limited SN sample, but it consists only of
SNe in brighter (r22–23) hosts. Even after shape and color
correction, SN Ia luminosity is a function of the biased host
galaxy properties in these samples, and we must correct for
these biases using the ΔM parameter (variants given in the
systematic error analysis; Section 4). All PS1 simulations
include photometric noise from the host galaxy, as discussed
in J17. Simulations of the PS1 host-z sample are presented in
J17 (including CC SN contamination, which we discuss in
detail in J17), while the SN-z and low-z samples are presented
in S17. The sizes of each of the three SN subsamples are given
in Table 1.
The host-z sample is also host galaxy magnitude-limited.

Because SN shape and color correlate with host galaxy
brightness (e.g., Childress et al. 2013), the SN shape and color
distribution in the host-z sample have a z dependence that is
difficult to model. Similarly, the SN-z sample consists of
spectroscopically classified SNe for which host galaxy redshifts
could not be measured, and therefore it will also have a biased,
z-dependent host galaxy distribution. Because of this, we add
one additional component to the host-z and SN-z simulations:
we allow the means of the simulated SALT2 parameters x1 and
c to evolve slightly with redshift to better match the data. We
discuss the details and impact of this method in the Appendix
and find that it changes the distance bias by up to ∼20 mmag in
the highest redshift bins but by less than 5 mmag on average.
The low-z surveys are exceptionally difficult to model due to

their heterogeneous nature, multiple photometric systems and
analysis pipelines, semi-arbitrary spectroscopic selection func-
tions, and targeting of NGC galaxies. Furthermore, the cadence
and depth of the search are often unknown. Because of this, we
simulate both a “magnitude-limited” variant and a “volume-
limited” variant of the low-z survey. We treat the magnitude-
limited variant as the baseline simulation for bias corrections.
The volume-limited variant matches the observed data with a
“host galaxy targeting” selection function—the fraction of
hosts observed as a function of redshift—instead of a
“spectroscopic follow-up” selection function (the fraction of
SNe followed as a function of magnitude). Similarly to the PS1
simulations, we use redshift-dependent x1 and c distributions
due to the redshift-dependent host galaxy properties (x1/c and
host properties are correlated; Childress et al. 2013). These
simulations are discussed in more detail in S17.

19 We predict that for ∼1% of SNe, this method will incorrectly determine the
host galaxy, but in J17, we determined that this fraction of mismatches does not
bias the cosmology.
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For each survey, the simulations are compared to the data in
Figures 1 and 2. The distributions of x1, c, and their redshift
dependences are consistent with the data, as is the distribution
of SN S/Ns at maximum light. Discrepancies on the red tail of
the c distribution could be due to small inaccuracies in the
CC SN simulations (J17). The biggest discrepancies between
the simulations and data are found in the low-z simulations due
to the difficulty of modeling those searches and follow-up
programs, as discussed above.

2.3.2. Using Simulations to Correct for Selection Bias

Due to their intrinsic dispersion, SNe Ia discovered in
magnitude-limited surveys appear increasingly luminous at
greater distance—even after shape and color correction. Even
the low-z SN Ia surveys used here may be biased toward
preferentially selecting brighter SNe Ia for spectroscopic
follow-up (see B14, their Figure5). The bias in distance is
given by the SNANA simulations discussed above and is
defined by (Mosher et al. 2014)

m mD = á - ñ( ) ( )z . 2B zfit sim

For low-z surveys, the bias can be up to ∼0.035 mag
(z> 0.05), while PS1 has distance biases of nearly 0.1 mag
at z>0.5.

Uncertainty in the intrinsic dispersion model is the dominant
uncertainty in the bias corrections. The uncertainty is
encapsulated by two primary scatter models that are both
consistent with the data. First, the G10 SALT2 model assumes

that 70% of the ∼0.1 mag intrinsic dispersion in derived SN Ia
distances is uncorrelated with the shape or color of the SN
(achromatic dispersion). An alternative model is that of
Chotard et al. (2011, hereafter C11). C11 found an equally
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Figure 2. Similar to Figure 1 (see Figure 1 legend) but showing the
dependence of x1 and c on redshift for each survey.
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good fit to SN data by assuming 75% of SN dispersion can be
attributed to chromatic variation.

The host-z and SN-z biases are very similar, which is
surprising given that SNe in the SN-z sample are much
brighter, on average, than those in the host-z sample. The
reason is that the lower average S/N of the host-z sample
exacerbates a bias caused by the x1 uncertainty cut. At a given
S/N, SNe with narrower (measured) light-curve shapes are
given lower x1 uncertainties by SALT2. This introduces a
nonintuitive bias in the case where many x1 uncertainties are
near the cutoff point (for inclusion in our sample) of s = 1x1 . As
discussed in J17 (Figure 8), a s < 1x1 sample cut biases the
recovered values of x1 by up to a - = -( )x x 0.11 1,sim at high-
z. The size of this bias is similar to the size of the mB bias of
spectroscopically confirmed SNe Ia (∼0.05 mag at z∼ 0.5).

The SALT2 nuisance parameter β is 25% higher in the C11
model than in the G10 model (Scolnic & Kessler 2016), and
these two models can give very different predictions for the
distance bias as a function of redshift (Figure 3). Due to the
chromatic nature of the C11 dispersion, the C11 bias is a strong
function of the (z-dependent) SN c distribution in a given
survey. This is especially apparent when examining the
difference between the G10/C11 biases for the different
samples. Low-z and photometrically classified SNe have a
median c between −0.01 and 0.01, giving an average
βC11c−βG10c=0.015 mag for low-z and 0.003 mag for
PS1 photometrically classified SNe. In contrast, PS1 spectro-
scopically confirmed SNe Ia have a median c of −0.04, giving
an average difference of βC11c−βG10c=−0.028 mag in
distance. Unfortunately, there are not enough spectroscopically
classified SNe Ia to distinguish between the G10/C11 scatter
models in our data, and the differences between these two

model predictions will contribute to our systematic error
budget.

2.4. Photometric Classification

In the previous sections, we made SALT2-based cuts and
distance bias corrections to our data without requiring any
knowledge as to which of the SNe in the photometrically
classified sample were SNe Ia. We now use PSNID (Sako et al.
2014) to classify each SN in this sample as Type Ia, Ib/c, or II
based on its light curve. PSNID matches observed SN light
curves to simulated SN Ia and CC SN light curves. The
comparison of data to templates gives a χ2 and prior-based
probability that a given SN is Type Ia. We use the version of
PSNID that has been implemented in SNANA.20 For SNe Ia,
we use the SALT2 model as the PSNID SN Ia template, and for
CC SNe, PSNID marginalizes over 51 CC SN templates when
classifying SNe. We include a grid of host galaxy reddening
values for each template (because templates have not been
corrected for host galaxy reddening, we allow just 0< AV< 1
of additional reddening).
Although PSNID classifications will be used for the baseline

version of our cosmological analysis (Section 3), we also use
three alternate classification methods. These include two light-
curve-based methods, nearest neighbor (NN; Sako et al. 2014;
Kessler & Scolnic 2017) and Fitprob. The NN classifier uses
the proximity of SN light-curve parameters to the SALT2 x1, c,
and redshift of simulated CC and Ia SNe to determine the likely
SN type. Fitprob is the fit probability from the SALT2 light-
curve fit multiplied by a redshift-dependent SN type prior. This
prior is based on simulations, which give the expected fractions
of CC SNe and SNe Ia at each redshift (J17, Appendix B). One
additional method, GalSNID (Foley & Mandel 2013; J17),
takes advantage of the paucity of CC SNe in low star formation
environments to estimate the SN type probability from only
host galaxy properties. Fitprob and GalSNID are less accurate
classifiers (J17) but are also less subject to the uncertainties in
CC SN simulations. In J17, we suggest that uncertainties in the
shape of CC SN luminosity functions and the dearth of CC SN
templates for several subtypes necessitate the use of methods
that are less reliant on simulations.
Figure 4 shows the classification probabilities for three PS1

SNe with ambiguous types. For SN 570024 (top panel), two of
three light-curve-based classification methods agree that this
SN is most likely a CC SN due to its poor SALT2 model fit in
the z-band. GalSNID, however, finds that this is most likely a
bona fide Ia due to the lack of strong star formation indicators
in its host galaxy spectrum. For SN 500025 (middle panel),
PSNID and Fitprob agree that the SN is of Type Ia due to the
low χ2 of its light-curve fit. However, the NN classifier finds it
most likely to be a CC SN due to its red SALT2 color. For SN
550152 (bottom panel), the shapes/colors are consistent with a
SN Ia, but the light-curve fit χ2 is too high to definitively prefer
a SN Ia. This diversity in classification methodologies and
outcomes will help our systematic uncertainty budget to
account for the possibility of cosmological bias due to
mistyped SNe.
Figure 5 illustrates the classification probabilities. We show

the PS1 Hubble residual histograms for likely SNe Ia and
CC SNe without spectroscopic classifications as determined by
each of the four classification methods considered in this work.

Figure 3. Difference in SN Ia distance bias for the G10 and C11 scatter
models. Low-z SNe have a bias of up to 0.035 mag, while PS1 SNe have a bias
of up to ∼0.1 mag at the highest survey redshifts. At the highest survey
redshifts, where few SNe Ia can be discovered, the C11 model predicts a
drastically different bias from that of the G10 model due to selection and
measurement biases in the SALT2 c parameter.

20 Version 10.52g.
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As a diagnostic, if we assume all SNe with Hubble residual
>1 are CC SNe, we find that PSNID classifies 80% of these
CC SNe correctly, while NN classifies 60% correctly. Fitprob
and GalSNID classify 70% and 20% correctly, respectively.
We note that PSNID is unable to classify all SNe, rejecting 13
as too noisy or uncertain for classification. We revisit the effect
of different classifiers on our results in Section 5.

3. Cosmological Parameter Estimation Methodology

In the previous section, we measured the SALT2 light-curve
parameters, host galaxy masses, SN type probabilities, and bias
corrections that will be used to generate distances from PS1 and
low-z SNe Ia. For each SN in our final sample, these parameters
are given in Table 2. Host galaxy coordinates and redshift
information are given in Table 3. Light curves and host galaxy
spectra are available at https://doi.org.10.17909/T95Q4X.
From this point forward, we use all PS1 and low-z data
combined—data with and without spectroscopic classifications
—to obtain the best possible measurements of cosmological
parameters. We use the PSNID classifications to generate our
baseline, statistics-only cosmological parameter measurements

and incorporate the other classification methods into our
systematic uncertainty budget. To reduce CC SN contamination,
we apply one additional cut on a classifier-by-classifier basis
before estimating cosmological parameters: we remove SNe
with P(Ia)<0.5. Therefore, 1109 likely SNe Ia will be used in
our baseline cosmological analysis, and between 1263 and 1304
SNe will be used for the alternate classification methods.
For some readers, the most interesting question might be

whether future cosmological analyses, such as those of DES or
LSST, can robustly measure w without a spectroscopically
classified SN sample as part of the data. We explore this
question in Section 8.

Figure 4. Three PS1 light curves with ambiguous classifications included in
our sample. The curves show their best-fit SALT2 light-curve fits.

Figure 5. For SNe without spectroscopic classifications, log-scaled histograms
of Hubble residuals for likely PS1 SNe Ia (P(Ia)>0.5; blue) and likely PS1
CC SNe (P(Ia) < 0.5; red) from each classifier considered in this work. Fitprob
classifies the most real SNe Ia as CC SNe, while GalSNID likely classifies the
most real CC SNe as SNe Ia. In spite of large classification differences, the
SN Ia distances given by different classifiers will be shown to be consistent
with each other and with the spectroscopically confirmed PS1 sample
(Section 5). The pie charts show the level of agreement/disagreement between
each classifier and PSNID, where P, N, G, and F indicate PSNID, NN,
GalSNID, and Fitprob classifications. In these pie charts, we label SNe with
P(Ia)>0.5 as Ia and SNe with P(Ia)<0.5 as CC.
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Table 2
PS1 Coordinates and Light-curve Parameters

SN α δ zCMB
SN zCMB

Host tpeak x1 c mB PPSNID(Ia)
a log(MHost/Me)

010196 12:16:49.602 46:14:06.33 L 0.369 55246.40(0.20) −1.457(0.876) 0.228(0.075) 22.970(0.076) L 11.192(0.155)
010203 08:40:02.784 43:26:32.85 0.088 0.087 55230.60(0.10) 1.234(0.163) −0.061(0.028) 18.135(0.046) L 10.384(0.009)
010204 08:41:36.065 43:24:02.18 0.477 0.477 55241.10(0.40) −1.727(0.839) −0.032(0.048) 22.841(0.015) 0.9957 10.519(0.315)
010218 09:54:32.47 01:56:37.53 L 0.577 55248.70(0.50) 0.509(0.768) −0.098(0.056) 23.212(−0.002) 0.8756 9.737(0.151)
010222 12:16:56.796 47:17:21.68 L 0.408 55241.30(0.40) 0.139(0.523) 0.028(0.036) 22.386(0.024) 0.9998 10.164(0.301)
010230 12:21:10.815 47:48:13.43 L 0.303 55246.30(0.40) −0.659(0.362) −0.042(0.035) 21.768(0.043) 1.0000 10.395(0.157)
010430 08:45:12.962 43:52:36.68 L 0.327 55258.20(0.50) −1.447(0.428) −0.029(0.068) 21.886(0.090) 0.9622 12.070(0.194)
020026 12:15:12.803 46:02:40.40 L 0.321 55276.60(0.40) 0.314(0.325) −0.127(0.031) 21.485(0.036) 1.0000 10.824(0.041)
020033 12:17:03.99 46:04:22.76 L 0.530 55268.50(1.50) −0.888(0.962) −0.065(0.074) 22.858(0.041) L 11.737(0.013)
020034 12:18:12.126 46:05:10.35 L 0.199 55272.10(0.30) −1.165(0.431) 0.085(0.034) 20.828(0.042) L 11.037(0.049)
020047 09:56:56.438 01:36:49.80 L 0.266 55260.20(0.80) −0.952(0.884) 0.111(0.151) 22.832(0.224) 0.9850 10.528(0.150)
020075 14:18:54.904 53:59:57.08 0.156 0.157 55286.80(0.40) 2.350(0.465) 0.207(0.053) 21.395(0.085) L 8.795(0.217)
020104 09:58:36.773 02:17:37.70 L 0.306 55277.10(0.60) 0.701(0.533) −0.080(0.026) 21.507(0.040) 0.9314 10.905(0.257)
020123 12:22:25.600 48:02:28.66 L 0.498 55265.30(1.40) −0.668(0.967) −0.018(0.087) 22.856(0.062) 0.9915 10.532(0.382)
020148 10:38:21.978 57:23:24.30 0.102 0.102 55259.70(0.20) −1.103(0.241) −0.023(0.036) 18.980(0.059) L 11.306(0.065)
020194 09:58:34.811 00:49:52.10 L 0.246 55277.90(0.50) −1.012(0.734) 0.079(0.058) 21.420(0.069) L 10.965(0.133)
020198 10:46:52.536 57:07:45.51 0.361 0.361 55286.20(0.70) −0.805(0.891) −0.083(0.081) 22.284(0.119) 0.5443 10.034(0.033)
020200 14:12:11.636 53:27:47.48 0.116 0.116 55291.10(0.20) 0.005(0.166) 0.110(0.037) 20.513(0.062) L 10.400(0.186)
030005 12:25:23.414 47:29:11.16 L 0.420 55284.70(0.60) −1.345(0.617) −0.002(0.076) 22.315(0.083) 0.9810 11.270(0.018)
030007 14:09:23.651 53:37:06.96 L 0.260 55293.80(0.40) −0.669(0.337) 0.067(0.050) 21.516(0.076) 1.0000 10.030(0.279)
030068 12:14:39.906 48:05:21.86 L 0.296 55294.70(0.30) −0.310(0.789) −0.012(0.076) 22.474(0.096) 0.9989 11.457(0.102)
030216 14:14:56.573 54:12:41.36 L 0.198 55304.10(0.90) −2.157(0.532) 0.010(0.041) 21.768(0.069) L 10.799(0.094)
030245 12:26:08.645 46:30:52.82 L 0.581 55290.20(0.80) −0.633(0.686) −0.188(0.076) 22.748(0.017) 1.0000 10.450(0.451)
030252 12:17:28.972 48:05:38.05 L 0.326 55319.10(0.60) 0.746(0.552) 0.094(0.055) 22.240(0.091) 1.0000 8.784(0.193)
030263 12:20:47.701 48:10:01.13 L 0.299 55312.00(0.20) 0.717(0.275) −0.049(0.030) 21.168(0.047) 1.0000 10.116(0.310)
040121 10:39:04.003 58:35:25.74 L 0.322 55309.50(0.40) 0.561(0.368) −0.030(0.038) 21.527(0.049) 1.0000 9.409(0.281)
040139 14:17:09.899 53:05:11.39 L 0.267 55324.30(0.90) −0.211(0.306) 0.146(0.036) 21.599(0.057) 1.0000 10.224(0.281)
040147 14:15:40.447 54:13:43.85 L 0.244 55317.40(0.40) −0.927(0.293) 0.100(0.043) 21.316(0.073) L 10.459(0.148)
040151 12:21:49.674 46:27:04.69 L 0.256 55326.30(0.20) −1.576(0.326) 0.014(0.032) 21.473(0.043) 1.0000 11.207(0.015)
040163 12:22:04.649 47:00:36.58 L 0.416 55321.30(0.20) −0.248(0.470) −0.070(0.051) 22.302(0.046) 1.0000 9.822(0.632)
040168 12:27:10.791 47:11:23.08 L 0.206 55325.00(0.20) −0.342(0.541) 0.106(0.047) 20.953(0.053) L 10.898(0.084)
040169 10:49:29.313 58:45:59.05 L 0.421 55332.60(0.30) 0.208(0.937) −0.009(0.064) 22.716(0.059) 0.6477 10.609(0.241)
040170 12:14:21.336 47:50:35.25 L 0.190 55330.40(0.30) −0.935(0.187) −0.009(0.028) 20.484(0.039) L 11.449(0.046)
040176 12:20:58.358 45:56:04.95 L 0.348 55327.30(1.70) 1.351(0.778) 0.025(0.042) 21.788(0.047) 1.0000 10.992(0.053)
040313 12:16:25.19 48:21:56.92 L 0.266 55335.80(0.60) −0.394(0.727) 0.235(0.056) 22.598(0.083) 0.9996 9.791(0.105)
040316 14:11:23.481 52:26:04.60 L 0.443 55324.00(0.20) 0.286(0.782) 0.216(0.075) 22.913(0.054) 0.6527 10.464(0.140)
040318 14:17:19.799 53:06:45.28 L 0.300 55334.40(0.20) 0.109(0.617) −0.013(0.050) 22.065(0.062) 0.6791 10.588(0.272)
040343 10:39:09.733 58:40:39.35 L 0.343 55334.00(0.70) −0.019(0.645) 0.107(0.055) 22.250(0.055) 0.9789 10.898(0.022)
040377 10:40:51.886 58:52:53.50 L 0.352 55302.40(1.10) 1.248(0.629) 0.125(0.067) 22.158(0.071) 0.9959 9.750(0.467)
040434 12:21:24.625 45:53:41.62 L 0.654 55315.60(0.90) −1.624(0.838) −0.059(0.089) 23.100(0.048) L 10.861(0.018)
040473 10:58:22.122 58:28:59.27 L 0.161 55302.60(1.40) 0.056(0.571) −0.007(0.130) 19.982(0.146) L 10.964(0.029)
040477 16:20:34.012 54:48:24.17 L 0.346 55332.00(0.60) 0.696(0.418) −0.023(0.032) 21.532(0.031) 1.0000 11.003(0.037)

Note.
a P(Ia) probabilities used in the likelihood model. These are set to P(Ia)=1 for spectroscopically classified SNe Ia and the probabilities given by PSNID for photometrically classified SNe. SNe without a P(Ia) were
unable to be classified by PSNID.

(This table is available in its entirety in machine-readable form.)
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With these data, we measure cosmological parameters from
1169 PS1 SNe and 195 low-z SNe Ia in two steps: (1)
marginalizing over CC SNe and reducing the data to a set of
distance measurements at 25 redshifts (log-spaced in the range
0.01<z<0.7) and (2) using those distances, redshifts,
uncertainties, and covariances to infer cosmological parameters
with the cosmological Monte Carlo software (CosmoMC;
Lewis & Bridle 2002). CosmoMC allows us to easily include
the latest CMB, BAO, and/or H0 priors in our cosmological

constraints. This two-step procedure is similar to that of B14
(see their Appendix E).

3.1. The Likelihood Model

The SN likelihood model used here is discussed and tested
comprehensively in J17 and is based on the BEAMS algorithm
presented in Kunz et al. (2007).21 We summarize the model below.

Table 3
PS1 Host Galaxies

SN Host α Host δ zCMB
Host Normalized Sep.a T&D Rb zsource

010196 12:16:49.577 46:14:06.27 0.369 0.624 7.340 MMT/Hecto
010203 08:40:02.725 43:26:33.14 0.087 1.044 23.880 MMT/Hecto
010204 08:41:36.025 43:24:02.56 0.477 1.741 8.080 MMT/Hecto
010218 09:54:32.455 01:56:38.21 0.577 2.468 4.280 MMT/Hecto
010222 12:16:56.817 47:17:22.39 0.408 1.777 7.280 MMT/Hecto
010230 12:21:10.792 47:48:13.10 0.303 1.413 9.420 MMT/Hecto
010430 08:45:12.976 43:52:38.13 0.327 1.440 L SDSS
020026 12:15:12.784 46:02:41.30 0.321 1.287 5.040 MMT/Hecto
020033 12:17:04.116 46:04:20.33 0.530 2.815 8.830 MMT/Hecto
020034 12:18:12.000 46:05:10.87 0.199 1.525 7.380 MMT/Hecto
020047 09:56:56.503 01:36:49.99 0.266 1.103 4.200 MMT/Hecto
020075 14:18:54.883 53:59:57.18 0.157 1.780 13.710 MMT/Hecto
020104 09:58:36.813 02:17:37.53 0.306 0.119 14.020 MMT/Hecto
020123 12:22:25.692 48:02:29.95 0.498 2.874 4.190 MMT/Hecto
020148 10:38:21.820 57:23:23.82 0.102 0.683 L SDSS
020194 09:58:34.812 00:49:51.78 0.246 0.393 8.830 MMT/Hecto
020198 10:46:52.540 57:07:45.40 0.361 0.448 12.460 MMT/Hecto
020200 14:12:11.216 53:27:50.95 0.116 3.171 18.190 MMT/Hecto
030005 12:25:23.424 47:29:10.85 0.420 0.523 7.480 MMT/Hecto
030007 14:09:23.635 53:37:07.06 0.260 1.275 11.920 MMT/Hecto
030068 12:14:39.72 48:05:22.10 0.296 2.365 8.320 MMT/Hecto
030216 14:14:56.627 54:12:43.21 0.198 1.582 8.360 MMT/Hecto
030245 12:26:08.666 46:30:52.84 0.581 0.785 4.610 WIYN/Hydra
030252 12:17:28.923 48:05:38.05 0.326 2.510 6.510 WIYN/Hydra
030263 12:20:47.774 48:10:00.74 0.299 0.370 4.970 MMT/Hecto
040121 10:39:03.921 58:35:27.14 0.322 1.853 4.550 MMT/Hecto
040139 14:17:09.885 53:05:11.20 0.267 0.864 23.550 MMT/Hecto
040147 14:15:40.454 54:13:43.82 0.244 0.194 8.630 MMT/Hecto
040151 12:21:49.768 46:27:06.13 0.256 2.506 16.440 MMT/Hecto
040163 12:22:04.663 47:00:37.89 0.416 2.993 5.520 MMT/Hecto
040168 12:27:10.792 47:11:22.92 0.206 0.632 16.550 MMT/Hecto
040169 10:49:29.349 58:45:59.01 0.421 0.788 8.350 MMT/Hecto
040170 12:14:21.256 47:50:39.52 0.190 3.676 21.880 MMT/Hecto
040176 12:20:58.375 45:56:04.84 0.348 0.455 11.590 MMT/Hecto
040313 12:16:25.161 48:21:56.79 0.266 1.481 7.600 MMT/Hecto
040316 14:11:23.433 52:26:04.15 0.443 1.471 11.610 MMT/Hecto
040318 14:17:19.807 53:06:45.00 0.300 0.646 12.360 MMT/Hecto
040343 10:39:09.748 58:40:39.15 0.343 0.628 5.380 MMT/Hecto
040377 10:40:51.832 58:52:53.22 0.352 0.643 15.250 MMT/Hecto
040434 12:21:24.595 45:53:41.62 0.654 1.559 4.260 MMT/Hecto
040473 10:58:22.401 58:29:00.95 0.161 2.872 17.760 MMT/Hecto
040477 16:20:33.996 54:48:24.00 0.346 0.888 11.110 MMT/Hecto

Notes.
a Separation of the SN from the center of its host galaxy, normalized by the size and orientation of the host (the R parameter; Sullivan et al. 2006). The isophotal radius
of a galaxy corresponds to R ; 3.
b The Tonry & Davis (1979) cross-correlation parameter, computed by comparing the host galaxy spectrum to a template spectrum to determine the host redshift.
Redshifts with R>4 are treated as reliable in this work, though 1.4% of all redshifts are expected to be spurious, as discussed in J17.

(This table is available in its entirety in machine-readable form.)

21 Our code is available online athttps://github.com/djones1040/BEAMS.
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To measure distances from SNe Ia, we sample a posterior
distribution q( ∣ )P D that is proportional to a set of priors P(θ)
and the product (over N SNe) of the likelihoods of the model
given the data for each individual SN. Here D is the data, while
θ is the set of free parameters in the model. The specific free
parameters comprising θ are discussed in the paragraphs below
and summarized in Table 4.

We use a three-Gaussian form of the SN likelihood, . The
SNe Ia are represented by two Gaussians: one for SNe Ia in low-
mass hosts,  <

i
MIa, 10, and one for SNe Ia in high-mass hosts,

 >
i

MIa, 10. The CC SNe are represented by the third Gaussian,
i

CC (alternative CC SN models are given in Section 4.5),
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Here mi,Ia
corr and mi,CC

corr (in the exponential terms) are shape- and
color-corrected magnitudes for the ith SN that we compute
from the SALT2 parameters mB, x1, c, and ΔB using the Tripp
estimator. They are functions of nuisance parameters α and β

(Equation (1); m= +mi i,Ia
corr ). Because we only wish to

measure SALT2 nuisance parameters from SNe Ia, we allow
separate values of α and β in the Ia and CC components of the
likelihood. The mi,Ia

corr values are computed using free
parameters αIa and βIa. The mi,CC

corr values use αCC and βCC,

which are fixed to the values for SNe Ia given by B14 (allowing
these to be free parameters does not improve the cosmological
results). The parameters σi,Ia and σi,CC are the uncertainties on
the corrected magnitudes of the ith SN using (αIa, βIa) or (αCC,
βCC), respectively.
The mass step, ΔM, is a free parameter that adjusts the mi,Ia

corr

of SNe Ia in low-mass hosts to match those in high-mass hosts.
In the  <

i
MIa, 10 and  >

i
MIa, 10 terms in Equation (3), Pi(M> 10)

and Pi(M< 10)=1− Pi(M> 10) are the probabilities from
host masses and host mass measurement uncertainties that a
given SN has a host galaxy with mass >10 or <10 dex,
respectively. We treat the uncertainties as Gaussian, an
approximation that predominantly affects only the minority
(∼25%) of SNe that have host masses within 1σ of
log(M*/Me)=10. In previous cosmological analyses
(e.g., B14), the uncertainties on log(M*/Me) were neglected.
If the SN host galaxy has been misidentified, this could

contribute to the systematic uncertainties on cosmological
parameters. But for the photometrically classified sample,
misidentified host galaxies would have incorrect redshifts and
are therefore treated as part of the contaminating distribution
(i

CC). They then contribute to the “contamination” systematic,
as discussed in J17. For spectroscopically classified SNe
without host galaxy redshifts, we expect only ∼2 SNe Ia to
have misidentified host galaxies (based on the 1.2%± 0.5%
fraction of mismatched host galaxies computed in J17).
The variable of interest for cosmological parameter estima-

tion is f(zi). It is the continuous, z-dependent model for the
SN Ia corrected magnitudes—the mean of the SN Ia Gaussian
—and is allowed to vary across the redshift range of the survey
(0.01< z< 0.7). We evaluate the model at any z across this
redshift range by choosing a fixed set of 25 log-spaced redshift
“control points” (z ;b D =( )zlog 0.07710 ) at which the corrected
SN Ia magnitudes m= +( ) ( )z zf b b are free parameters.
For any redshift zi, we interpolate between the redshift control
points below (zb) and above (zb + 1),

m x m xm
x
= - +
=

+

+

( ) ( )
( ) ( ) ( )

z

z z z z

1

log log , 4
i b b

i b b b

1

1

where μb is the distance modulus at redshift zb. Interpolating
with a simple linear model instead of ΛCDM produces
differences of <1 mmag at all redshifts. The SN Ia dispersion

Table 4
Free Parameters in the Likelihood Model

Nparams Prior Comments

( )zf b,Ia 25 L z-dependent model of SN Ia corrected magnitudes

( )zg b,CC 5 2±3 + m -L( ( ) )zbCDM ,CC z-dependent model of CC SN corrected magnitudes

ΣIa 1 0.1±0.1 SN Ia dispersion
ΣCC(zb,cc) 5 2±2 CC SN dispersion
ΔM 1 0.07±0.07 Host mass step
α 1 0.155±0.05 SALT2 nuisance parameter α
β 1 2.947±0.50 SALT2 nuisance parameter β
A 1 1.0±0.2 Renormalization parameter for P(Ia)
S 1 0.0±0.2 Shift parameter for P(Ia)

Note. List of free parameters and their priors in the BEAMS likelihood model. Here zb,Ia denotes redshift control points for the SN Ia model, and zb,CC denotes redshift
control points for the CC SN model. The central values of the α and β priors are the best-fit values using PS1 spectroscopically confirmed SNe Ia alone.
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ΣIa plays the same role as the intrinsic dispersion and is kept
fixed at all redshifts.

The z-dependent mean and standard deviation of the CC SN
Gaussian model (g(zi) and ΣCC(zi)) are interpolated between
five log-spaced redshift control points. Unlike SNe Ia, the
dispersion of the heterogeneous CC SN population changes
with redshift due to strong detection biases at high z.

Each Gaussian is multiplied by the prior probability (Pi(Ia)
and Pi(CC)=1−Pi(Ia)) that a given SN is or is not of Type
Ia. We use the PSNID classifier to estimate these probabilities.
Alternative classification methods are included as part of our
systematic error budget (Section 4.5).

For SNe with photometric classifications, our method allows
the type priors to be shifted and renormalized to account for
incorrect classifications (see J17). For spectroscopically
classified SNe Ia, we set the prior probabilities, Pi(Ia), equal
to 1 and do not allow them to be adjusted. We include broad
Gaussian priors (Table 4) on all free parameters with the
exception of ( )zf b , the SN Ia corrected magnitudes. We apply
no priors (i.e., flat priors) to ( )zf b to avoid any possibility of
cosmological bias.

We estimate the free parameters by sampling the log of the
posterior with a Markov chain Monte Carlo (MCMC)
algorithm. As in J17, we use the Parallel-Tempered Ensemble
Sampler from emcee as our MCMC method (Foreman-
Mackey et al. 2013).

3.2. Constraining Cosmological Parameters

From the methods presented above, we infer the corrected
magnitudes of SNe Ia at 25 redshift control points, ( )zf b , using
the baseline SN light-curve parameters, bias corrections, and
J17 methodology. We also measure the set of ( )zf b for each
systematic uncertainty (Section 4). From these values, a
systematic error covariance matrix Csys is created (Conley
et al. 2011; Scolnic et al. 2014):
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n
is the change in

corrected magnitude after applying a single systematic Sn to the
individual light curves. Here σ(Sn) is the size of each systematic
uncertainty. The systematic covariance matrix is then combined
with the statistical covariance matrix:

= + ( )C D C . 6tot stat sys

Note that the statistics-only covariance matrix, Dstat, includes
both diagonal and off-diagonal components because the
magnitudes ( )zf b are anticorrelated with the neighboring
magnitudes +( )zf b 1 and -( )zf b 1 :
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Here NMCMC is the length of the MCMC chain that samples
free parameters ( )zf b , fk(zb,i) is the value of f at the ith control
point from the kth MCMC sample, and ( )f zb i, is the mean of f

at the ith control point from the full MCMC chain. Figure 6
shows the reduced correlation matrices from statistical
uncertainties alone (left) and statistical and systematic
uncertainties combined (right). The statistics-only correlation
matrix shows significant anticorrelations between neighboring
control points, while the systematic uncertainties add larger-
scale correlations between the control points (see Figure 7).
We then use the CosmoMC software (Lewis & Bridle 2002)

to measure cosmological parameters by minimizing the
following χ2:
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where m¢ = -( ) ( )z zfb b (we marginalize over  using
CosmoMC). The vector of model distances, μΛCDM=
5log(dL)−5, is a function of the cosmology:
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The parameter ΩM is the cosmic matter density, ΩΛ is the dark
energy density, Ωk is the curvature of space, and w is the
redshift-independent dark energy equation-of-state parameter
(z dependence will be added in Section 6).

4. Systematic Uncertainties

The SNe in this sample are affected by systematic uncertainties
that can broadly be attributed to eight sources of error: Milky Way
extinction, distance bias correction, photometric calibration,
SALT2 model calibration, sample contamination (primarily by
CC SNe), low-z peculiar-velocity corrections, the redshift depend-
ence of SN nuisance parameters, and the dependence of SN Ia
luminosities on their host galaxies. Figure 7 illustrates the redshift
dependence of each type of systematic uncertainty. We discuss
each of these uncertainties in detail below.

4.1. Milky Way Extinction

Milky Way extinctions for each SN are given by Schlafly &
Finkbeiner (2011), who used the colors of stars with spectra in
SDSS to derive a 14% correction to the reddening maps of
Schlegel et al. (1998). We assume a conservative, fully
correlated 5% uncertainty on the E(B–V ) measurements of
Schlafly & Finkbeiner (2011), which could be caused by
selection biases in the SDSS stars chosen for spectroscopic
follow-up or the use of stars that lie in front of some fraction of
the Galactic dust (Schlafly & Finkbeiner 2011).

4.2. Distance Bias Correction

Two effects lead to systematic uncertainties in distance bias
corrections. The dominant effect is the difference between the
G10 and C11 distance bias predictions. As discussed in
Section 2.3.2, the difference between the G10 and C11
dispersion models is up to Δμ(z)∼0.03 mag. As there is no
a priori reason to choose one dispersion model over the other,
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we choose to adopt the average of the two bias predictions for
our baseline distance bias correction. The systematic error then
becomes half the difference between the G10/C11 bias.

A secondary effect is that uncertainty in the survey detection
limit or spectroscopic follow-up selection function can cause the
simulated distance bias to be inaccurate. We adjust the detection
efficiency (for the PS1 host-z sample) and the spectroscopic
selection efficiency (for the PS1 SN-z sample) such that the S/N
at maximum light for simulated SNe matches the data with an
∼20% higher reduced χ2 (a 1σ difference). These efficiencies
are well-constrained by the data; the detection efficiency
adjustment for the host-z sample, for example, corresponds to
lowering the magnitude limit of the survey by ∼4 mmag.

The low-z distance bias is measured from low-z simulations
that lack reliable detection and spectroscopic selection efficien-
cies. For these simulations, we use the “volume-limited”
simulations discussed in Section 2.3.1 as the selection bias
systematic. The volume-limited variant has <0.01 mag distance
bias using the G10 scatter model (small biases due to the
correlation of Hubble residuals with x1 and c still arise; Scolnic
& Kessler 2016) and a bias of ∼0.02 mag using the C11 model
because βfit−βsim=0.7. The systematic uncertainty due to the
detection limit and spectroscopic follow-up selection function is
subdominant to the G10/C11 systematic uncertainty.

4.3. Photometric Calibration Uncertainties

In this work, the systematic uncertainties in the photometric
calibration are the same as those in the S17 analysis. They are

due to uncertainties in the survey filter functions, calibration of
HST CALSPEC standard stars, and calibration of the PS1/low-
z photometric systems relative to HST.
Uncertainties in the survey filter functions are modeled as

uncertainties in the zero points and effective wavelengths of
each filter. PS1 has a effective central wavelength uncertainty
of 7Å per filter (Scolnic et al. 2015). The low-z filter
uncertainties are typically ∼6–7Å but are survey- and filter-
dependent. They can be as high as 25–37Å (exact values are
given in Scolnic et al. 2015; see their Table1).
The relative calibration uncertainties are given by the

Supercal method. Supercal uses the excellent (sub-1%) relative
calibration of PS1 across 3π sr to compare the photometry of
tertiary standard stars in previous SN surveys to the photometry
of these same stars on the PS1 system. Typical corrections are
on the order of 1% but can be up to 2.5% for B-band low-z
data. Uncertainties in the Supercal procedure are typically 3–4
mmag per filter but can be up to 10 mmag for low-z surveys
such as CfA1.
Finally, there is uncertainty in the AB magnitude system

itself, as measured using HST CALSPEC standard stars. We
follow B14 by assuming a global 0.5% slope uncertainty for
the flux as a function of wavelength, which was determined by
comparing white dwarf models to the HST data (Betoule et al.
2013; Bohlin 2014). In total, we include 62 individual
systematic uncertainties to describe the uncertainty in the
photometric calibration. Most are due to the relative calibra-
tion: there is one systematic for the filter zero point and the
filter λeff×number of surveys×number of filters per survey.

Figure 6. Statistics-only and stat+sys correlation matrices from the PS1+low-z SN sample. The statistics-only correlation matrix shows the strong anticorrelation
between neighboring bins. The stat+sys correlation matrix shows larger-scale correlations due to systematic uncertainties and large uncertainties in the bins with
minimal data (z ∼ 0.1–0.2). The correlation matrix is equal to C C Cij ii jj for covariance matrix C.
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4.4. SALT2 Model Calibration Uncertainties

The training of the SALT2 model is subject to the same
sources of photometric calibration uncertainty discussed above.
B14 created variants of the SALT2.4 light-curve model by
applying zero-point and filter function shifts to the training data
and subsequently retraining SALT2. These account for 10
individual systematics, which are averaged to give the SALT2
model systematic error. These uncertainties are discussed in
Section 5.4 of B14.

Retraining SALT2 using the improved calibration from
Supercal will lower the SALT2 systematic uncertainty in future
analyses. However, we do not retrain the SALT2 light-curve
model for this analysis, as the SALT2 training data are not public.

4.5. CC SN Contamination

Systematic error due to marginalizing over the contamination
in our sample is a new source of uncertainty caused by our use of
photometrically classified SNe. J17 predicted that the PS1 host-z
sample contains ∼9% CCSNe. Our method of measuring
distances from SNe Ia while marginalizing over CC SNe is
subject to biases in two areas: inaccurate prior probabilities that a
given SN is of Type Ia and differences between the CC SN
model and the true distribution of CC SNe. The systematic error
estimation from CC SN contamination was presented in detail in
J17 and relies on varying these components.

We use the four methods of estimating prior probability
discussed previously (Section 2.4) and three parametric models
for the CC SN distribution. The baseline likelihood model for
CC SNe, i

CC (Equation (3)), is a Gaussian with a mean and
standard deviation—g(zi) and ΣCC(zi) for the ith SN—that are
both functions of redshift. The two alternate CC SN parametric
models are a two-Gaussian model and a skewed Gaussian
model. We demonstrated in J17 that these models typically

agree well with single-Gaussian results; all three CC SN
distributions tend to be much broader than the SN Ia
distribution, therefore encompassing most outliers regardless
of whether the functional form is an exact representation of the
CC SN data.
Because several of these variants are highly covariant with

one another, we group the different contamination variants into
two systematics: one using the results from SN classifiers
trained on simulated CC SN data and a second using
“untrained” classifiers. The trained classifiers include NN and
PSNID. The trained systematic is the average change in SN
distances when either the NN or PSNID classifier is used with
alternate CC SN models. Fitprob and GalSNID are not trained
on simulations, and so we include the average of the Fitprob
and GalSNID distances as a second systematic. The untrained
classifiers are not optimal methods but are included here as an
alternative to classifiers that depend on simulations with limited
CC SN templates and known biases. If each variant were
instead treated as an individual systematic, our final uncertainty
would only increase by 2%, and the final value of w would be
higher by just 0.003.
Finally, we found in J17 that BEAMS can yield results with

less bias if α and β are fixed to their known values from
spectroscopically classified samples. For a single-Gaussian
CC SN model with PSNID, we include this variant in our
systematic uncertainty budget by forcing α and β to be equal to
the values measured from spectroscopically confirmed PS1
+low-z SNe. The shape and color distributions in the full PS1
sample are different than those in the PS1 spectroscopically
classified sample, which could mean that α and β are in fact not
the same in the full sample as in the spectroscopically classified
sample (Scolnic & Kessler 2016). However, because it is not
possible to distinguish between true differences in α/β and
differences caused by the known α/β biases when

Figure 7. Average change in distance modulus Δμ from an example of each type of systematic uncertainty in this analysis. Deviations at z;0.01 and ;0.1 are
primarily due to low SN statistics in these bins and have little effect on the cosmological constraints.
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marginalizing over CC SNe (J17), this variant is a necessary
addition to the error budget.

4.6. Peculiar-velocity Correction

The magnitude of SN peculiar velocities, due to bulk flows
and nearby superclusters, becomes 5% of the Hubble flow at
z0.03. We correct for peculiar velocities using the nearby
galaxy density field measured by the 2M++ catalog from
2MASS (Lavaux & Hudson 2011). The uncorrelated uncer-
tainty associated with each correction is±250 km s−1 (S17).
The peculiar-velocity model is parameterized by the equation
b = W bI M I

0.55 , where bI describes the light-to-matter bias. (The
parameter βI is unrelated to the SALT2 nuisance parameter.)
Carrick et al. (2015) measured βI=0.43±0.021. We adopt a
conservative 5σ (±0.1) systematic on βI for our peculiar-
velocity systematic uncertainty.

4.7. SN Ia Demographic Shifts

Though SNe Ia have been shown to be excellent standardiz-
able candles at low-z, it has been suggested that the relationship
between their luminosities, colors, and host galaxy properties
may change with redshift. We address these possibilities by
adding three systematic tests. For these tests, we add additional
parameters to our model for estimating cosmological para-
meters (Section 3). The first is to allow a linear evolution of the
mass step as a function of redshift. Mass step evolution was
proposed by Childress et al. (2014) and could be observed if
the mass step is caused by physical differences in SNe Ia with
different progenitor ages. The second is to allow a linear
evolution in the SALT2 color-standardization parameter, β, as
a function of redshift. This was suggested as a possible concern
by Conley et al. (2011). The third is evolution in SALT2 α.
Then, ΔM, α, and β in Equations (1) and (3) become

a a a
b b b

D =D + D ´
= + ´
= + ´ ( )

z
z
z

,
,
. 10

M M M,0 ,1

0 1

0 1

Here ΔM,0, ΔM,1, β0, β1, α0, and α1 are free parameters. They
are measured simultaneously with SN Ia distances in Section 5.
Because we find no hint of Mass step evolution or α evolution,
we include only β evolution as a systematic uncertainty in our
final measurement (see Section 5).

We also include a ΔM variant that shifts the divide between
“low-mass” and “high-mass” hosts by 0.15 dex relative to the
standard divide at log(M*/Me)=10, following the uncer-
tainty on the location of the step measured by S17. Finally,
because possible bias in ΔM due to marginalizing over CC SN
contamination was not estimated in J17, we add one variant
where ΔM is fixed to the value measured by B14
(0.07± 0.023 mag).

We note that because our sample preferentially contains
bright host galaxies, our results are sensitive to uncertainty in
the relation between host galaxy properties and SN luminosity.
However, because most low-z SNe originate from SN searches
that specifically targeted bright galaxies, the PS1 photometric
data are in some ways more similar to the existing low-z data
than to previous high-z data sets. In this way, our results might
be less biased by the uncertainty in the relationships between
SNe and their host galaxies than those of previous analyses.

An additional potential systematic is the relation between
SN Ia corrected magnitudes and their local host galaxy

environments. Several papers have recently asserted that SN Ia
corrected magnitudes are correlated with their local star
formation environments on a scale of ∼1–3 kpc (the LSF step;
Rigault et al. 2013, 2015). Due to the ∼1″ PSF of PS1 and the
lack of ultraviolet or u-band observations for much of our
sample, it is impossible to measure robust local star formation
rates over the PS1 redshift range. However, Jones et al. (2015)
reexamined the evidence for the LSF step, finding that the
retraining of SALT2 in B14/G10 reduced or eliminated many
of the biases in the SALT2 model. Jones et al. (2015) found no
evidence for an LSF step in the B14 low-z sample. Roman et al.
(2017) also recently measured a strong dependence of SN Ia
luminosities on local U−V color but found that this effect is
expected to change w by just 0.006 relative to the standard ΔM

correction. Though our data are not optimal for investigating
local properties, we plan to use PS1 data to more robustly
determine the relationship between SNe Ia and their global or
semi-local host galaxy properties in future work.

5. First Results and Consistency Checks

The PS1+low-z Hubble diagram is shown in Figure 8, and
the light-curve parameters for our full sample are given in
Table 2. There are ∼3.5 times as many photometrically
classified SNe as there are spectroscopically classified SNe.
The binned SN Ia distance uncertainties from the full sample
are an average of 40% lower than those from spectroscopically
classified SNe Ia alone (statistical uncertainties only). At
0.2<z<0.5, where ∼75% of the PS1 data lie, uncertainties
are ∼45% lower. This is in spite of the fact that the
photometrically classified SNe have a lower average S/N; the
median S/N at peak is 22 for all PS1 SNe, compared to 38 for
spectroscopically classified SNe. We also do not expect that
marginalizing over CC SNe has inflated the binned distance
uncertainties. In J17, we used simulated data to find that our
method of marginalizing over CC SNe increases the statistical
uncertainty on binned SN Ia distances by just 3%.
Our likelihood model (Equation (3)) is simultaneously used

to measure α, β, and the dispersion ΣIa, which are given in
Table 5. These measurements use the baseline classification
method, PSNID, and the one-Gaussian CC SN model, while the
alternate methods contribute to the systematic errors in the
middle column. We measure α=0.165±0.019 (stat+sys),
which is consistent with the value measured by S17 from low-z,
PS1, SDSS, and SNLS spectroscopically confirmed SNe
(α= 0.156± 0.006). Zhang et al. (2017) also found
α=0.165±0.010 for low-z SNe. However, we note that
this value is higher than that measured by B14 by ∼1σ (∼2.5σ
from statistical uncertainties alone), and the reason for this
difference is unclear.
The uncertainty on the SN Ia dispersion, ΣIa=0.082±

0.067, is extremely high. This is a consequence of removing
P(Ia)<0.5 SNe from the sample before cosmological para-
meter estimation and allowing SN type probabilities to be
shifted and renormalized by the likelihood model. If
P(Ia) < 0.5 SNe are included, we find that ΣIa is better
constrained, with a value of 0.106±0.032 (stat. errors only),
consistent with ΣIa=0.118 from spectroscopically classified
SNe Ia alone. We note that in spite of the large uncertainty on
ΣIa, the distance uncertainties are slightly smaller when
P(Ia)<0.5 SNe are removed. Removing P(Ia)<0.5 SNe
changes the statistics-only measurement of w by just 0.3%.
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As a test, if the sample is analyzed without BEAMS, i.e.,
treating all SNe as SNe Ia, ΣIa increases by 71% to 0.187. In
general, the systematic error on all nuisance parameters is
higher than it would be in an analysis of spectroscopically
classified SNe Ia, due to the predicted biases on those
parameters when marginalizing over CC SN contamination
(J17). Fortunately, J17 found that biases of 3%–6% on
nuisance parameters do not give similar fractional biases on
binned distances or w (0.5%±0.4% bias on w for the baseline
method).

In J17, we predicted that our method of marginalizing over
CC SNe would bias α and β by +3%. This gives a prediction
that the α and β measured here will be higher than the α and β
measured from spectroscopically confirmed SNe Ia alone.
Table 5 shows that this may indeed be the case; α is 6%

higher and β is 3% higher than the values from spectro-
scopically confirmed PS1+low-z SNe Ia (though at <1σ
significance if we neglect the partial correlations between
these two samples). However, we also expect higher measured
values of β due to the redder colors of the full PS1 sample
(Scolnic & Kessler 2016).
We also measure the mass step at 6σ significance and nearly

8σ from statistical errors alone (we report systematic
uncertainties that neglect the host mass variants). Our
measurement of ΔM=0.102±0.017 is consistent with the
B14 measurement of 0.07±0.023. It is also consistent with
the ΔM that we measure from the low-z sample alone,
ΔM=0.110±0.038. Interestingly, the host mass step ΔM is
higher in the full PS1+low-z sample than in the sample of
spectroscopically classified SNe Ia alone (1.1σ significance
from statistical uncertainties alone, though these measurements
are not independent). It is unclear if this difference could be
due to statistical fluctuation, a bias from the method, or the
presence of broader light-curve shapes and redder colors in
the full sample. Because x1 and c correlate with both the host
mass and Hubble residual (Scolnic & Kessler 2016), different
x1 and c distributions could increase the size of the step (S17).
We will use simulations to investigate whether our method of
marginalizing over CC SN contamination could bias determi-
nations of the host mass step in future work.

5.1. Impact of Different Classification Methods

Regardless of which classifier is used, uncertainties on
binned distances from the full PS1 sample are much smaller
than the uncertainties on binned distances from spectro-
scopically classified SNe Ia alone (by 40%). The binned
SN Ia distance measurements from each classifier are also
remarkably consistent (Figure 9). Nearly all distances are

Figure 8. The PS1+low-z Hubble diagram with low-z SNe Ia, spectroscopically classified SNe Ia, and photometrically classified SNe. The data that appear much
fainter than ΛCDM (black line) are likely CC SN contaminants. We use 1364 SNe to measure cosmological parameters.

Table 5
Nuisance Parameters

All SNe Spec. Class. SNe

σstat σstat+sys σstat

α 0.165 0.006 0.019 0.155 0.009
β 3.028 0.067 0.152 2.944 0.092
ΣIa 0.082 0.067 0.101 0.118 0.008
ΔM 0.102 0.013 0.017a 0.064 0.020

Note. Nuisance parameters from PS1+low-z SNe. The systematic uncertainty
on β is likely overestimated due to the biases from the GalSNID and Fitprob
classification methods discussed in J17. The exceptionally large uncertainty on
ΣIa is due to our decision to exclude SNe with P(Ia) < 0.5 and allow P(Ia) to be
shifted and renormalized, but we have verified that this choice has a minimal
effect on the final cosmological parameters.
a The systematic uncertainty excludes the analysis variants that change the
location, size, and z dependence of ΔM.
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within 1σ of distances derived from the PS1 spectroscopically
classified SN Ia sample. Additionally, binned distances from
0.2z0.5, where 75% of our data lie, show few
discrepancies between the different methods. Even the test
case of using an uninformative prior of P(Ia)=1/2 for all
photometrically classified SNe (bottom panel) yields distances
within 1σ of the spectroscopic sample in all bins but one. We
note that close agreement is predicted by J17; even in a sample
without spectroscopically confirmed SNe Ia, J17 predicted
biases of <10 mmag due to the method. We will revisit this
prediction in Section 8 to test whether our methodology
remains robust and consistent in the case of an “ideal”
photometrically classified SN sample, i.e., a sample without
spectroscopic classifications.

The nuisance parameters α and β, as measured using
different classification priors, are more consistent than expected
from J17. When using different classification priors, α and β
vary by 30%–50% less than the simulation-based predictions in
J17 (in this work, we observe differences of Δβ∼ 0.07 and
Δα∼ 0.004 between the four different classification methods).
In Figure 10, we provide a possible explanation for why our
results are more consistent than expected. J17 simulations
included no subset of spectroscopically classified PS1 SNe,
while our data consist of ∼24% spectroscopically classified
PS1 SNe. Because of this, we used simulations of the PS1 host-
z and SN-z samples (Section 2.3.1) to predict the effect of
adding spectroscopically classified subsets of SNe to the data.
We find that the predicted biases on α and β due to
marginalizing over CC SNe decrease by 30%–40% when the
PS1 data consist of 24% spectroscopically classified SNe.

Similarly, the biases on individual distance bins decrease by
∼30%–40% when 24% of PS1 SNe are spectroscopically
classified. For PSNID priors, Figure 10 shows that the
predicted (weighted) average bias in distance modulus at
z>0.1 relative to z<0.1 is just 2 mmag.

5.2. Evolution of Nuisance Parameters

Using Equation (10) to add linear Mass step (ΔM) evolution
to BEAMS, we find no evolution in ΔM as a function of
redshift (we use the baseline classifier, PSNID). However, our
uncertainties are large, ∼0.08 mag, due to a lack of low-mass
hosts at high redshift.22 In Figure 11, we estimate the redshift
dependence of the mass step with a 2.5σ clip of Hubble
residuals (−0.45HR0.45) to remove most CC SNe and
then plot the maximum-likelihood mass step in redshift bins of
0.1. This is an incomplete removal of CC SN contamination,
but it doubles as a simple sanity check on BEAMS. We find no
statistically significant evidence for Mass step evolution.

We do see 1.6σ evidence for evolution of the β parameter,
however (Figure 12). Fortunately, this does not constitute a large
contribution to our systematic error budget, as it predominantly
affects the highest survey redshifts where few SNe are found
(Figure 7). Evidence for β evolution was seen in SNLS data
(Conley et al. 2011), though its significance is attributed to
selection effects in B14. S17 found just 1σ evidence for β
evolution (β= (3.139± 0.099)+z×(−0.348± 0.289)), a mea-
surement that includes SNe at redshifts up to ∼2 (Riess et al.
2018). Though there are not enough SNe Ia at z>1.5 to constrain

a changing value of β, larger high-z data sets may be able to
confirm or discount β evolution. We caution that blue (c< 0)
SNe Ia have lower observed β (SNe primarily appear blue due to
noise and selection biases; Scolnic & Kessler 2016), and our high-
z data are dominated by blue SNe (Figure 1). However, our
methodology does not recover any significant evolution of β when
tested on simulated SN samples with a constant input β. In 10
simulated SN samples, five using the G10 model and five using
the C11 model, we found just a single sample showing >1σ
evidence of negative β evolution with redshift (the simulation had
a β slope with significance of 1.2σ). If β does change with z, it
could suggest an evolution in dust properties or the evolution of

Figure 9. Difference in binned distance from the full photometric sample
compared to binned distances from the subset of ∼280 spectroscopically classified
PS1 SNe Ia. Gray (large) error bars are the uncertainties on spectroscopic and
photometric distances added in quadrature, while the smaller errors are from
the photometric sample alone (small redshift offsets are added to the photometric
points for visual clarity). Binned distances are consistent between methods, with a
small bump at z∼0.35 that could be due to high CC SN contamination at this
redshift but is also consistent with statistical fluctuation. For comparison to the
predicted biases from simulations, see Figure 11 of J17.

22 S17, however, found evidence of Mass step evolution. The discrepancy
could be due to the larger SNLS redshift range and additional SNe Ia in low-
mass hosts at z>0.5.
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SN progenitors with redshift and could contribute significantly to
the systematic error budget at z>0.5.

We also checked for α evolution using the same parametric
form as Equation (10) and find α(z)=0.157±0.01+z∗
(0.018+ /−0.040). Because we find that α evolution is not
statistically significant, we have not included it in our
systematic uncertainty budget.

6. Cosmological Constraints from SN and CMB Data

We first constrain ΩM using the SN Ia data alone and assuming
a flat ΛCDM cosmology. We find ΩM=0.319±0.040,
consistent with B14 (0.295± 0.034). These results are indepen-
dent of but in good agreement with the Planck constraints on ΩM

(ΩM= 0.308± 0.012).
We combine these data with CMB constraints from the

Planck full-mission data (Planck Collaboration et al. 2016a). In
contrast to the Planck Collaboration et al. (2014) constraints
used in B14, the full-mission Planck data do not requireWMAP
polarization measurements. Planck provides the full likelihoods

for the CMB data, which can then be combined with SNe Ia
using CosmoMC. Planck data greatly improve our constraints
on w using the CMB temperature power spectrum, which gives
a precise constraint on the cosmic matter density at z∼1090.
Constraints from a matter-dominated cosmic epoch are largely
independent of an evolving or noncosmological constant dark
energy, which affects cosmic evolution only at the late times
probed by SN Ia and BAO measurements.
With Planck priors, we measure w=−0.989±0.057 (stat

+sys). Systematic uncertainties on this measurement are 14%
higher than statistical uncertainties (Table 6). Though we have
85% more SNe than B14 and 31% more SNe than S17, our
uncertainty is approximately the same as B14 and 39% higher
than S17. There are three primary reasons for this. First, we
have fewer independent surveys to reduce the photometric
calibration systematic. Second, we have estimated a more
conservative systematic uncertainty on the selection bias

Figure 10. From simulations, the bias on α, β, and distance due to marginalizing over CC SNe as a function of the fraction of spectroscopically classified SNe Ia in the
data. In this work, ∼24% of the PS1 sample is spectroscopically classified (vertical lines), giving a predicted reduction in α/β bias of ∼30%–40%. The typical
reduction in bias for a single distance bin is also ∼30%–40%, although the average distance bias at z>0.1 relative to z<0.1 is largely unchanged (within the errors)
with additional spectroscopic classifications.

Figure 11. Evolution of the host galaxy mass step with redshift after 2.5σ clipping
to remove most CC SNe. Binned points are shown with the best-fit global mass
step (black) and linear trend (green) from marginalizing over CC SNe. Figure 12. Binned evolution of the SALT2 nuisance parameter β with redshift

after 2.5σ clipping to remove most CC SNe. The best-fit β (black) and linear
trend (red) are computed by marginalizing over CC SNe with the full-
likelihood model.
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correction than B14. Lastly, PS1 photometrically classified
SNe have much lower S/Ns (for PS1, the S/N at maximum is
an average of 17 for photometrically classified SNe and 39 for
spectroscopically classified SNe Ia), and PS1 SNe, unlike
SNLS SNe, cannot be found at z∼0.7–1.

We also use these data to constrain the two-parameter redshift
evolution of w using the most common parameterization:

= + +( ) ( )w w w z z1 . 11a0

Equation (11) is a first-order Taylor series expansion of w as a
function of scale factor a (Linder 2003). We find
w0=−0.912±0.149 and wa=−0.513±0.826. These con-
straints are slightly better than those of B14, which is due to our
use of the most recent chains from Planck. We also find much
tighter constraints on wa after combining with BAO (Section 7).

6.1. Systematic Uncertainties on w

Contributions to the systematic uncertainties on w are
summarized in Table 6. The photometric calibration systematic,
the largest source of systematic uncertainty in most previous
analyses (e.g., R14, B14), remains the largest systematic
uncertainty in this work (s = 0.021w

cal ) but is now almost the
same magnitude as the selection bias. The calibration has been
significantly improved by the Supercal procedure, and
continued improvements will come from a new network of
white dwarf standards (Narayan et al. 2016).

The second-largest systematic uncertainty is due to the selection
bias (s = 0.020w

bias ). The sw
bias is dominated by the difference

between the G10 and C11 scatter models and the uncertain
spectroscopic selection function of the low-z surveys. It may be
that retraining SALT2 assuming the C11 scatter model, e.g.,
Mosher et al. (2014), will reduce this systematic in the future.

The systematic due to marginalizing over CC SNe,
s = 0.012w

CC , is the third-smallest systematic, nearly equal in
size to the Milky Way extinction systematic and smaller than
the systematics pertaining to the host mass step and β
evolution. Table 7 shows the value of w measured from each
classification prior and CC SN parameterization discussed in
Section 4. All measurements of w are within 2% of the baseline
method. We note that it is likely that the NN and PSNID
classifiers are more accurate than the other two classifiers used
in this work. However, both NN and PSNID are directly
dependent on CC SN templates and simulations for training,

neither of which are likely representative of the true CC SN
population (see J17 for more discussion). We include the
alternative Fitprob and GalSNID classifiers, as they are less
subject to the uncertainty in CC SN simulations, but we note
that excluding them would significantly reduce the systematic
uncertainty due to CC SN contamination.
The dispersion of measured w from different BEAMS

variants is nearly ∼25% lower than predicted by J17, in spite of
the fact that, unlike J17, we did not fix α and β to the values
from the spectroscopic sample (except for the final variant
listed in Table 7). This may be due to sample-to-sample
variations but is more likely explained by tighter constraints on
ΩM from the full Planck chains compared to the J17
approximation (ΩM prior of 0.30± 0.02) and the fact that a
sizable portion (∼24%) of our high-z data are spectroscopically
classified SNe Ia. With simulations, we found that a subset of
SNe with known types can greatly help the BEAMS method to
constrain distances and SN Ia nuisance parameters (Section 5).
If the amount of CC SN contamination was overestimated
in J17, that could also help to explain the lower contamination
systematic. The magnitude of the CC SN contamination
systematic can be further reduced by improved validation of
classifiers and a better understanding of the diversity of
CC SNe and their luminosity functions, as well as the inclusion
of additional CC SN templates in classifier training, as
discussed in J17. Methods for measuring robust classifications,
even in the case where the training sample is biased (e.g.,
Revsbech et al. 2018), are also important to pursue.

7. Cosmological Constraints with BAO and H0 Priors

We now combine Planck (Planck Collaboration et al. 2016a)
and PS1+low-z SNe with BAO constraints and a local prior on
the value of H0 from Riess et al. (2016). The BAO feature, the
evolving size of the imprint of acoustic waves on the
distribution of cosmic matter, serves as a standard ruler that
is independent of SN Ia measurements. The BAO scale is
proportional to a combination of the angular diameter distance
to a given redshift and the Hubble parameter H(z) at that
redshift. Following Planck Collaboration et al. (2016a), we use
BAO constraints from the SDSS Main Galaxy Sample (MGS;
Ross et al. 2015) and the combination of the Baryon Oscillation
Spectroscopic Survey (BOSS) and CMASS survey (Anderson
et al. 2014). The BAO constraints used here give measurements
of the BAO scale to z=0.15, 0.32, and 0.57.

Table 6
Summary of Systematic Uncertainties on w

Error Δwa Δσw
b

Rel. to sw
stat

All sys. 0.033 0.043 1.137
Phot. cal. 0.007 0.021 0.558
Bias corr. 0.012 0.019 0.518
Mass step 0.006 0.017 0.449
Beta evol. 0.012 0.016 0.428
MW E(B–V ) 0.009 0.015 0.390
CC SN contam. −0.001 0.012 0.332
SALT2 model 0.001 0.008 0.207
Pec. vel. 0.002 0.007 0.182

Notes.
a Difference in measured w relative to the final value of w with all systematics
included.
b The additional uncertainty added in quadrature from each source of
systematic error. The statistical uncertainty on w is 0.0375.

Table 7
w with Different Photometric Classification Priors and CC SN Models

Method Δw Δσw

PSNID L L

PSNID, skewed Gaussian CC model −0.004 0.000
PSNID, 2-Gaussian CC model 0.018 0.011
NN 0.016 0.000
GalSNID 0.008 0.000
Fitprob −0.007 0.000
Spec. α/β −0.008 0.000

Note. The w from each CC SN model and photometric classification prior,
relative to the baseline case of using PSNID classification priors and a single,
z-dependent Gaussian to model the CC SNe. The final line is the change in w
when α and β are fixed to the values measured from spectroscopically
confirmed SNe Ia.
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There is a notable internal conflict between these priors: a
3.4σ discrepancy between local and CMB-inferred values of H0

(Riess et al. 2016; see also Bonvin et al. 2017; Casertano et al.
2017; Jang & Lee 2017). The difference could be due to
systematic uncertainties in one or both data sets (e.g., Addison
et al. 2016), >3 neutrino species, non-Λ dark energy, or more
exotic phenomena. We show this discrepancy in Figure 13 for a
standard ΛCDM cosmology (reionization optical depth
τ= 0.078; Planck Collaboration et al. 2016b). PS1+low-z
SNe cannot explain the disparity and therefore limit the degree
to which exotic dark energy can explain the H0 tension.
Throughout this section, we remain agnostic as to the source of
the discrepancy and examine cosmological parameters using all
probes both individually and in combination.

Following B14, we use SN data to constrain three cosmological
models: the o-ΛCDM model removes the assumption of flatness
(Ωk= 0); the w-CDM model allows a fixed, non-cosmological
constant value of w; and the wa-CDM model allows w to evolve
with redshift. The constraints on these three models are presented
in Table 8. All measurements of w and wa are consistent with
ΛCDM (Figures 14 and 15). With SNe+Planck+BAO+H0

constraints, we find w=−1.045±0.045for the w-CDM model
and wa=−0.372±0.452 for the wa-CDM model (Figure 15).
With just SNe, Planck, and BAO data, we find w=−0.984±
0.048 for the w-CDM model and wa=−0.313±0.418for the
wa-CDM model.
Nearly all measurements ofΩk are consistent with a flat universe.

The lone exception is the combination of SNe, Planck, and H0. This

Figure 13. Discrepant constraints on H0 from CMB, BAO, and local measurements assuming ΛCDM. SNe Ia disfavor a scenario in which exotic dark energy can
resolve these conflicts.

Table 8
Cosmological Parameters from PS1, BAO, CMB, and H0

o−ΛCDM Constraints

ΩM ΩΛ Ωk H0

PS1+Planck+BAO+H0 0.303±0.007 0.694±0.008 0.003±0.002 68.682±0.694

PS1+Planck 0.330±0.045 0.674±0.035 −0.004±0.011 66.205±4.659
PS1+Planck+BAO 0.310±0.007 0.689±0.008 0.001±0.003 67.892±0.714
PS1+Planck+H0 0.272±0.014 0.718±0.012 0.009±0.003 72.522±1.748

w-CDM Constraints
ΩM w H0

PS1+Planck+BAO+H0 0.299±0.008 −1.045±0.045 69.007±0.980

PS1+Planck 0.317±0.017 −0.989±0.057 67.140±1.664
PS1+Planck+BAO 0.312±0.010 −0.984±0.048 67.364±1.091
PS1+Planck+H0 0.289±0.012 −1.067±0.046 70.042±1.263

wa-CDM Constraints
ΩM w0 wa H0

PS1+Planck+BAO+H0 0.301±0.009 −0.972±0.102 −0.372±0.452 69.011±0.994

PS1+Planck 0.308±0.026 −0.912±0.149 −0.513±0.826 68.276±2.752
PS1+Planck+BAO 0.314±0.010 −0.920±0.103 −0.313±0.418 67.371±1.117
PS1+Planck+H0 0.277±0.012 −0.812±0.104 −1.323±0.493 71.611±1.365
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choice of priors gives 3σ evidence for positive curvature, but the
result is entirely due to the local/CMB H0 discrepancy and
becomes insignificant when BAO constraints are added.

As shown from the H0 measurements in Table 8, PS1+low-z
SNe and the non-ΛCDM models considered here do not
explain the local/CMB H0 discrepancy. When H0 priors are
omitted, all measurements of H0 are inconsistent with Riess
et al. (2016) at the ∼2σ–3σ level and would also be
inconsistent with other local measurements of H0 (Bonvin
et al. 2017; Jang & Lee 2017). When only CMB and H0 priors
are included, we measure values of H0 that are consistent with
Riess et al. (2016) only when allowing for positive curvature or
evolving w. When we combine with CMB, H0, and BAO
priors, all measurements of H0 are inconsistent with Riess et al.
(2016) at the 2.6σ–2.8σ level even though H0 priors are
included. Therefore, SNe Ia and the models considered here do
not favor a non-ΛCDM universe or a scenario where the H0

discrepancy is due to non-cosmological constant dark energy.

7.1. Consistency with JLA and Pantheon Results

The binned SN Ia distances from our likelihood model are
compared to the JLA sample in Figure 16 (using the correlated
bins given by B14, Appendix F). The agreement is close; using
weighted average Hubble residuals, PS1+low-z distances are
just 4 mmag fainter at z>0.2 compared to z<0.2.
Measurements of w and ΩM in this work show excellent

agreement with B14 and the Pantheon sample (S17). For the
flat w-CDM model, Table 9 shows the drift in the values of w
we measure with respect to B14 and S17. All values are
consistent with B14 values to within 0.4σ. Though these
measurements are correlated, as B14 used ∼75% of the low-z
SNe that we do (with the exception of CfA4 and CSP2), and we
combine both SN data sets with the same CMB, BAO, and H0

data, such close agreement is encouraging.
Similarly, our measurements are consistent with those of S17

at 0.5σ. Though these samples are not entirely independent—
34% of the SNe Ia here are included in the Pantheon sample—
the samples are subject to different systematic, as well as
statistical, uncertainties. The 2% discrepancy between the S17
measurement of w and ours is well within the uncertainty
budget of our measurement. In future work, we hope to
combine our sample with the Pantheon data, as this combined
sample would likely provide the best current constraints on w
and include just under 2000 SNe.
Though the results presented here remain subject to uncertainty

in the population of CCSNe contaminating the SN data, the
agreement with other measurements is encouraging. Our cosmo-
logical parameter measurements also remain consistent when using
several variants as part of the BEAMS framework. The consistency
of these results with measurements from spectroscopically
confirmed PS1 SNe determined by S17 (w=−0.990± 0.063)
gives us additional confidence in their robustness.
In the next few years, we also expect that additional CC SN

templates and better constraints on CC SN luminosity functions
will lead to even more robust simulation-based tests for this
method and other similar methods.

Figure 14. Constraints on w and ΩM from PS1+low-z SNe in conjunction with other probes.

Figure 15. Constraints on w0 and wa from PS1+low-z SNe, Planck, BAO, and H0.

21

The Astrophysical Journal, 857:51 (27pp), 2018 April 10 Jones et al.



8. Measuring w without Spectroscopic Classifications

Throughout this analysis, we have used spectroscopically
confirmed SNe Ia to bolster our cosmological results. However,
future samples from DES and LSST may not have a large fraction
of spectroscopic classifications. Here we examine distances,
nuisance parameters, and measurements of w in the case where no
spectroscopic classifications of PS1 SNe are available; we
substitute photometric classifications for the available spectro-
scopic classifications, apply our likelihood model, and measure
the resulting bias on w. We investigate the cases of both the full
PS1 data set and the host-z sample alone (only SNe with
spectroscopic host galaxy redshifts) to determine whether our
methodology can provide consistent results when spectroscopic
classifications are lacking. The host-z sample in particular is nearly
an ideal, magnitude-limited sample, albeit with host galaxy
selection biases. Of SNe in the full PS1 data set, 24% are
spectroscopically classified SNe Ia, and 13% of SNe in the host-z
sample are spectroscopically classified.

When photometric classifications are used instead of spectro-
scopic classifications, Figure 17 shows that the binned SN Ia
distances may occasionally change by >0.05 mag where statistical
uncertainties are large. However, at 0.25z0.5, where ∼75%
of our data lie, we see median biases less than 5 mmag for all
methods. This is in agreement with predictions from J17, who
found that in 25 samples of 1000 high-z SNe, bias due to
marginalizing over CC SN contamination averaged <5 mmag
and had sample-to-sample variations of ∼15 mmag in this
redshift range. Although here we change at most 24% of the

Figure 16. The PS1+low-z Hubble residual diagram, with a comparison to the binned SN Ia distances given by B14. We see excellent agreement with B14 across the
redshift range, with slight discrepancies at low-z due to the addition of the CfA4 sample and a stronger prediction for the distance bias correction.

Table 9
Comparison to JLA and Pantheon Cosmological Constraints

This Work JLA Pantheon

w w Diff. w Diff.

SNe+Planck −0.989±0.057 −1.017±0.056 0.028±0.080 (0.35σ) −1.026±0.041 0.037±0.070 (0.52σ)
SNe+Planck+BAO −0.984±0.048 −1.003±0.047 0.019±0.068 (0.28σ) −1.014±0.040 0.030±0.063 (0.48σ)
SNe+Planck+H0 −1.067±0.046 −1.064±0.051 0.010±0.068 (0.15σ) −1.056±0.038 −0.011±0.060 (0.19σ)
SNe+Planck+BAO+H0 −1.045±0.045 −1.038±0.047 0.012±0.065 (0.18σ) −1.047±0.038 0.002±0.059 (0.03σ)

wa wa Diff. wa Diff.

SNe+Planck −0.513±0.826 −0.608±0.748 0.095±1.115 (0.09σ) −0.129±0.755 −0.384±1.119 (0.34σ)
SNe+Planck+BAO −0.313±0.418 −0.280±0.433 −0.033±0.602 (0.05σ) −0.126±0.384 −0.187±0.567 (0.33σ)
SNe+Planck+H0 −1.323±0.493 −1.055±0.586 −0.168±0.737 (0.23σ) −0.742±0.465 −0.581±0.678 (0.86σ)
SNe+Planck+BAO+H0 −0.372±0.452 −0.290±0.443 −0.073±0.648 (0.11σ) −0.222±0.407 −0.150±0.608(0.25σ)

Figure 17. Changes in binned distances when spectroscopic classifications
are ignored. Here Δμ is the bias on distance when photometric
classifications are used for the ∼13% of the sample with spectroscopic
classifications available. As we predict in J17, typical biases are <5 mmag
for all P(Ia) priors at 0.2<z<0.5 (the average is just 4 mmag for
PSNID), with occasionally larger biases in bins with higher statistical
uncertainties. PSNID classifies few PS1 SNe at z<0.25 as being likely
SNe Ia, and therefore provides no meaningful constraints on distances at
these redshifts.
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classifications in the sample, the results remain broadly
consistent with simulations.

In Figure 18, we examine the change in measured w if
spectroscopic classifications are not used. From every classifier,
in both the full and host-z samples, we measure a w consistent
with the statistical uncertainties on our best measurement of w,
σw=0.037 (and w derived from the host-z sample prefers a
value of −1.032, 1% lower than the full sample due to
statistical fluctuations alone). However, the bias in w can be
nearly ∼4% for the least informative classifiers in this analysis
(Fitprob and GalSNID), which constitutes a strong argument
for including a subset of spectroscopic classifications when
measuring w or fixing α and β to the values measured from
spectroscopic samples—in this case, from PS1 spectroscopi-
cally confirmed SNe. Fixing α and β can often improve the
reliability of a method, an effect we show in Figure 18.

It is reassuring that many of our results appear to confirm
what we predicted using simulations in J17. We see likely
negative biases on w when using the GalSNID and Fitprob
classifiers and (typically) more consistent results after fixing α
and β. We predicted distance biases at 0.2<z<0.5 of 15
mmag in a given SN sample, and our results here are consistent
with that finding. Though not statistically significant, the ∼few
percent differences in nuisance parameters between spectro-
scopically classified SNe alone and the full sample are in the
direction we would expect. With the advent of more robust
classifiers and better training samples, we expect the systematic
uncertainties to decrease and the reliability of simulations to
improve. Even with some modest discrepancies, we see that the
consistency level for nearly all methods is well within the
uncertainty budget on w, demonstrating a promising future for
SN cosmology with photometrically classified SNe.

9. Conclusions

The 1364 cosmologically useful, likely SNe Ia from the PS1
medium-deep fields and low-z surveys constitute the largest set
of SNe Ia assembled to date. Our cosmological measurement
uncertainties are almost identical to those of the JLA
compilation, due to the smaller redshift range and lower S/N
of the SNe Ia in our sample, but the measurements presented
here are independent of the JLA data at z>0.1. In the future,
these data can be used in conjunction with the Foundation low-
z SN sample (Foley et al. 2018) to give independent constraints
on w using only the well-calibrated PS1 photometric system.

The SN light curves, host galaxy spectra, and host galaxy
redshifts presented in this work are available athttps://doi.
org/10.17909/T95Q4X.
The PS1 SNe in this sample do not have spectroscopic

classifications, necessitating a Bayesian framework that
marginalizes over the CC SN population. By applying this
framework, we compute binned distances from SNe Ia that are
an average of just 4 mmag fainter at z>0.2, compared to
z<0.2, than JLA distances. From J17, we found that this
method of marginalizing over CC SNe in a PS1-like sample
will bias w by a statistically insignificant 0.001±0.004.
From these data, we find that shape- and color-corrected SNe Ia

in host galaxies with M*/Me>10 dex are 0.102±0.017 mag
(stat+sys) brighter, on average, than those in M*/Me<10 dex
hosts, consistent with previous measurements. We find no evidence
for evolution of the mass step with redshift (e.g., Childress
et al. 2014) but ∼1.6σ evidence for evolution in the SALT2 β
parameter (the correlation between SN color and luminosity).
After including CMB data, we find that PS1 SN data are fully

consistent with a flat ΛCDM cosmology, with w=−0.989±
0.057. Combining SNe with CMB and BAO constraints gives
w=−0.984±0.048, and adding H0 constraints yields w=
−1.045±0.045. If we allow w to be parameterized by a constant
component (w0) and a component that evolves with redshift (wa),
we find no evidence for a z-dependent value of w. Our constraints
differ from those of B14 by <0.4σ, regardless of whether CMB,
BAO, and/or H0 priors are included. They are also consistent with
the constraints from Scolnic et al. (2017).
CC SN contamination is the third-smallest systematic

uncertainty in this analysis and can be improved further with
new SN classification algorithms and better training samples, as
discussed in J17. In future work, our dominant systematics—
selection biases and calibration—can be reduced by combining
PS1 data with Foundation and/or SNLS and SDSS data.
In carrying out this analysis, we note that we did not blind

ourselves to the cosmological results. A blinded analysis, such as
that of S17, would remove any subconscious bias on the part of the
authors to achieve agreement (or disagreement) with ΛCDM
cosmology. We note, however, that all of the photometry and most
of the bias-correction simulations were undertaken before the
cosmological results were examined. Furthermore, we have strived
for consistency with previous analyses whenever possible, which
serves to limit the number of qualitative choices that can be tuned
to yield a preferred cosmology. Future analyses, such as DES SN Ia
cosmology, will be fully blinded. As cosmology with

Figure 18. Changes in w if photometric classifications are used instead of the available spectroscopic classifications. The final, statistics-only measurement from PS1
+Planck of w=−1.022±0.037 is shown with the dashed line and light shaded region. We also show the results if α and β remain fixed to the values measured from
spectroscopically classified PS1 SNe (points with light shading; α and β are 0.155 and 2.95, respectively). We find that biases of up to ∼4% can arise when
spectroscopic classifications are not available but are typically ameliorated by fixing α and β to the values measured from spectroscopic samples.
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photometrically classified SNe Ia becomes a more mature subject
area, the authors will feel more comfortable undertaking blinded
analyses.

In future years, SN samples from the DES and LSST will
measure w with larger, higher-S/N samples of SNe without
spectroscopic classifications. Though CC SN contamination is
the second-largest source of systematic uncertainty on w in this
analysis, we expect that the systematic uncertainty on w from
CC SN contamination will be greatly reduced in the next few
years. Improvements will be due to larger samples of CC SN
templates that can be used to train SN classification algorithms
and a better understanding of the shape of the CC SN
luminosity function. We hope that the methods presented here
will demonstrate the robustness of measuring w from
photometrically classified samples as we continue to gain a
better understanding of the nature of dark energy.
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Appendix
Simulating Evolving x1 and c Distributions

In this appendix, we discuss the improvement to the PS1
simulations by allowing the mean simulated x1 and c to evolve
with redshift. We consider the standard approach of fixed x1 and
c populations insufficient for our analysis, because the PS1 host-
z sample has redshift-dependent host galaxy properties due to
our magnitude-limited host galaxy redshift follow-up program.
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Figure 19. The z dependence of x1 and c. Allowing x1 and c to evolve with redshift allows simulations to better match the data.

Figure 20. Change in distance bias when simulating x1/c distributions that evolve with redshift (G10 model). The new simulations can affect the distance bias by
∼0.01–0.02 mag at high z.
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Similarly, the SN-z sample consists of SNe not included in the
host-z sample and therefore also has a z-dependent bias. Because
x1 and c depend on host mass, their distributions change as a
function of z in a way that is not due only to selection biases.

Using the default simulations for the host-z and SN-z
samples from J17 and S17, respectively, we fit a third-order
polynomial to the difference between the simulations and the
data after binning in redshift (Δz= 0.05). We used these
polynomials as inputs to SNANA, allowing them to define the
intrinsic evolution of x1 and c with redshift.

Figure 19 shows the redshift dependence of the x1 and c
distributions in simulations with fixed and evolving x1/c.
Though allowing x1 and c to evolve with redshift does improve
the simulations, these new simulations are only a moderately
better match to the data.

Figure 20 shows the difference in bias corrections using the
G10 scatter model with and without z-dependent x1 and c
populations. If x1 and c are redshift-dependent, the distance
bias is slightly larger for the host-z sample and smaller by up to
0.02 mag at high z for the SN-z sample.
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