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Abstract11

The structure and organization of river networks has been used for decades to investi-12

gate the influence of climate and tectonics on landscapes. The majority of these stud-13

ies either analyze rivers in profile view by extracting channel steepness, or calculate plan-14

form metrics such as drainage density. However, these techniques rely on the assump-15

tion of homogeneity: that intrinsic and external factors are spatially or temporally in-16

variant over the measured profile. This assumption is violated for the majority of Earth’s17

landscapes, where variations in uplift rate, rock strength, climate, and geomorphic pro-18

cess are almost ubiquitous.19

We propose a method for classifying river profiles to identify landscape regions with20

similar characteristics by adapting hierarchical clustering algorithms developed for time21

series data. We firstly test our clustering on two landscape evolution scenarios and find22

we can successfully cluster regions with different erodibility, and detect the transient re-23

sponse to sudden base level fall. We then test our method in two real landscapes: firstly24

in Bitterroot National Forest, Idaho, where we demonstrate that our method can detect25

transient incision waves and the topographic signature of fluvial and debris flow process26

regimes; and secondly on Santa Cruz Island, California, where our technique identifies27

spatial patterns in lithology not detectable through normalized channel steepness anal-28

ysis. By calculating channel steepness separately for each cluster, our method allows the29

extraction of more reliable steepness metrics than if calculated for the landscape as a whole.30

These examples demonstrate the method’s ability to disentangle fluvial morphology in31

complex lithological and tectonic settings.32

1 Introduction33

For many decades, the study of river networks has been a core concept in geomor-34

phic theory and research. Both the planforms and profiles of fluvial channels have been35

used to answer diverse problems, such as constraining changes in uplift rates (e.g. Kirby36

& Whipple, 2001; Kirby, Whipple, Tang, & Chen, 2003; Lavé & Avouac, 2001; Nennewitz,37

Thiede, & Bookhagen, 2018); deducing throw rates from faulting (e.g. Whittaker, At-38

tal, Cowie, Tucker, & Roberts, 2008); isolating patterns of drainage capture (e.g. Gia-39

chetta & Willett, 2018; Willett, McCoy, Perron, Goren, & Chen, 2014); detecting sig-40

natures of climate (e.g. Hobley, Sinclair, & Mudd, 2012; Ranjbar, Hooshyar, Singh, &41

Wang, 2018; Roe, Montgomery, & Hallet, 2002; Seybold, Rothman, & Kirchner, 2017);42

and quantifying the impact of different erosional processes on drainage networks (e.g.43

Bookhagen & Strecker, 2012; Clubb, Mudd, Attal, Milodowski, & Grieve, 2016; DiBi-44

ase, Whipple, Heimsath, & Ouimet, 2010; Hooshyar, Singh, & Wang, 2017; Neely, Bookha-45

gen, & Burbank, 2017; Olen, Bookhagen, & Strecker, 2016; Stock & Dietrich, 2003).46

The majority of studies which use the morphology of longitudinal river profiles most47

commonly derive a metric representing channel gradient, S. The earliest work on river48

long profiles by Gilbert (1877) deduced qualitatively that, when uplift is equal to ero-49

sion, plotting elevation against distance upstream along a river profile should result in50

a concave-up curve. This relationship means that the headwaters of a channel will in-51

evitably have a steeper gradient than subsequent reaches downstream. Following on from52

this, channel gradient has been shown through many empirical studies to decrease as a53

function of drainage area, A (Flint, 1974; Morisawa, 1962; Tarboton, Bras, & Rodriguez-54

Iturbe, 1989). This empirical relationship is commonly referred to as Flint’s law:55

S = ksA
−θ, (1)

where θ is referred to as the concavity index, and ks as the steepness index. If we56

plot S and A at every point along a channel profile on a logarithmic scale, we can per-57

form a least-squares fit of the power law in equation (1) to estimate ks and θ. The ex-58

–2–



manuscript submitted to JGR: Earth Surface

ponent of the fit represents the concavity index, which dictates how rapidly the gradi-59

ent of the channel will decline with increasing area. The amplitude of the fit represents60

the steepness index, which is determined by the gradient of the channel. As ks and θ are61

strongly correlated when determined from this fitting, ks is commonly normalized by a62

reference concavity index (θref ) and referred to as ksn. Wobus et al. (2006) suggest that63

θref should be selected as the mean θ of channel segments determined to be in steady64

state, although recent work has shown that θ can vary significantly over small spatial65

scales, meaning that this is in practice challenging to determine (Mudd, Clubb, Gailleton,66

& Hurst, 2018). Normalized channel steepness can be calculated for each point along a67

channel network as:68

ksn,i = A
θref
i Si, (2)

where the subscript i refers to a data point. This normalized channel steepness is69

often used in tectonic geomorphology to infer variations in uplift rate across different catch-70

ments or orogens (e.g. Kirby & Whipple, 2001, 2012; Snyder, Whipple, Tucker, & Mer-71

ritts, 2000; Wobus et al., 2006). Recently, additional techniques have been developed to72

extract channel steepness by plotting an upstream integral of drainage area, referred to73

as χ, against elevation along the channel, to try and avoid common problems with noise74

inherent in deriving slope data from digital elevation models (e.g. Harkins, Kirby, Heim-75

sath, Robinson, & Reiser, 2007; Hergarten, Robl, & Stüwe, 2016; Mudd, Attal, Milodowski,76

Grieve, & Valters, 2014; Mudd et al., 2018; Perron & Royden, 2013; Whipple, DiBiase,77

Ouimet, & Forte, 2017).78

The planform geometry of river networks has also been used to deduce informa-79

tion about the driving factors controlling landscape morphology. In a seminal paper, Hor-80

ton (1945) defined the fundamental network property of drainage density (Dd), which81

quantifies landscape dissection. Many authors have attempted to link drainage density82

to external factors such as landscape erosion rate (Clubb et al., 2016), precipitation (Abra-83

hams, 1984; Melton, 1957; Sangireddy, Carothers, Stark, & Passalacqua, 2016), vegeta-84

tion cover (Collins & Bras, 2010; Istanbulluoglu & Bras, 2005), and lithology (Oguchi,85

1997). Others have focused on analyzing the angle between tributary junctions (e.g. Hoosh-86

yar et al., 2017; Horton, 1945; Howard, 1971a, 1971b; Seybold et al., 2017). Distinct pop-87

ulations of junction angles have been found from the analysis of millions of tributary junc-88

tions, which have been linked to both climate (Seybold et al., 2017) and the relative im-89

portance of colluvial and fluvial incision processes (Hooshyar et al., 2017).90

These properties of fluvial networks, both in profile and plan view, compose a set91

of diagnostic tools for examining fluvial response to external forcing, such as climate, tec-92

tonics, or base-level change, as well as the influence of internal processes such as lithol-93

ogy or geomorphic processes. However, extracting these metrics generally requires some94

assumption of spatial homogeneity. For example, when extracting channel steepness es-95

timates, if the data are taken together from the catchment as a whole, we must assume96

that the landscape is in ‘steady state’: that the uplift rate U is balanced by the fluvial97

incision rate, E. In the majority of Earth’s landscapes, this assumption breaks down,98

especially in mountainous regions where geomorphic research tends to be focused. Hor-99

izontal and vertical plate motions frequently lead to landscape readjustment, propagat-100

ing transient signals through river networks in the form of steepened channel reaches or101

knickpoints (e.g. Kirby & Whipple, 2012). Over the Quaternary, variations in climate102

have led to the frequent advance and retreat of ice sheets which raise and lower sea level,103

resulting in the transmission of base level change signals into the fluvial system (e.g. An-104

thony & Granger, 2007; Gran et al., 2013). Alongside these temporal forcings, spatial105

heterogeneity is almost ubiquitous within upland landscapes: uplift rates may vary both106

along and with distance away from fault zones (e.g. Peacock & Sanderson, 1991), lead-107

ing to morphological adjustment in channel profiles (Roda-Boluda & Whittaker, 2016;108
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Whittaker et al., 2008). Changes in rock strength across lithological boundaries have shown109

to fundamentally affect the steepness of river channels (e.g. Duvall, Kirby, & Burbank,110

2004), while density changes can result in spatial variations in uplift rates through iso-111

static rebound (Braun, Simon-Labric, Murray, & Reiners, 2014). Integrating these ef-112

fects means that virtually no landscape on Earth truly meets the criteria for ‘steady-state’.113

Along with these difficulties caused by spatial and temporal landscape heterogene-114

ity, we also face new challenges caused by the exponential increase in the availability of115

topographic data in recent decades. We can now capture the Earth’s surface at unprece-116

dented spatial resolutions, which, although generally beneficial, can result in increasing117

noise due to local effects such as vegetation, bedrock outcrops, or anthropogenic features.118

This noise can obscure potential signals, and often means that significant smoothing must119

be performed on the data before any analysis can take place (e.g. Aiken & Brierley, 2013;120

Schwanghart & Scherler, 2017). Furthermore, the collection of high-resolution data over121

large spatial scales means that datasets are often computationally intensive to analyze.122

Traditional techniques for analyzing river networks often struggle to deal with the sheer123

volume of data that is now available. Therefore, there is a real need to develop new meth-124

ods of analyzing topographic data that can best extract potential signals from datasets125

with both large computational sizes and higher noise levels.126

In this contribution we suggest a potential solution for tackling the problem of an-127

alyzing river networks in heterogeneous landscapes, by developing techniques for sepa-128

rating river profiles into groups with similar morphologies prior to the extraction of net-129

work geometry. We draw inspiration from the well-developed field of time series anal-130

ysis, and adapt one dimensional time series clustering algorithms for use with geomor-131

phic data. These algorithms are often used in an exploratory sense on large datasets, in132

order to reduce the volume of data and distinguish between signal and noise, making them133

ideal for use with high-resolution topography datasets. We suggest that these techniques134

can be used in geomorphic research to differentiate parts of the fluvial network with dif-135

ferent tectonic, climatic, or lithological histories. Firstly, we detail our methodology for136

adapting these clustering techniques for use with geomorphic data, and then test our method137

using simple numerical modeling scenarios. This allows us to demonstrate the ability of138

the method to correctly identify similar regions within synthetic landscapes where the139

uplift and erosion histories are constrained. We then provide two example applications140

from Bitterroot National Forest, Idaho, and from Santa Cruz Island, California, to demon-141

strate the potential that these techniques hold for disentangling fluvial morphology in142

complex lithological and tectonic settings.143

2 Clustering of one-dimensional data144

Any analysis of river profiles from gridded digital elevation data involves taking a145

two-dimensional representation of the land surface and reducing it to one dimension: we146

start with a digital elevation model (DEM), or a regular array of elevation values, and147

we reduce this to a series of either elevations (z) or channel gradients (∂z/∂x) which vary148

with some distance, x. Our goal is therefore to take a series of lines, where each line is149

the elevation or gradient profile of one river, and identify groupings which have similar150

characteristics. This grouping in one dimension allows us to compare the morphology151

of river profiles separately from their spatial location.152

Clustering algorithms have been used to group one dimensional data in many di-153

verse fields, including economics (e.g. Abido, 2003), computational science (e.g. March,154

1983), biological science (e.g. Eisen, Spellman, Brown, & Botstein, 1998; Girvan & New-155

man, 2002), and environmental science (e.g. Maschler, Geier, Bookhagen, & Müller, 2018;156

Rheinwalt et al., 2015; Smith, Bookhagen, & Rheinwalt, 2017). Many applications of one-157

dimensional clustering algorithms deal with the analysis of time series data, for exam-158

ple where a metric such as air temperature is measured at the same time intervals at a159
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series of different spatial locations. The goal of the algorithms is to identify which pro-160

files show a similar change in the chosen metric through time (Aghabozorgi, Seyed Shirkhor-161

shidi, & Ying Wah, 2015). This problem is analogous to that of river profile analysis,162

except we wish to analyze channel gradient as the chosen metric, and we look at differ-163

ences downstream along each profile rather than through time.164

Classification via clustering techniques has a number of key advantages. Firstly,165

these algorithms are unsupervised: groups are created purely based on how similar ob-166

jects are within a group, rather than using any pre-defined classification labels (Jain, 2010;167

Jain, Murty, & Flynn, 1999). In terms of geomorphological research, this is an advan-168

tage, as it means we do not need to make any a priori assumptions about the impact169

of external forcing such as the influence of climate, tectonics, or lithology, which are of-170

ten difficult to constrain on a landscape scale. Furthermore, if one has a large number171

of data points, or measurement locations, clustering allows a reduction in data volume172

and can aid in distinguishing signal from noise (Aghabozorgi et al., 2015). Here we specif-173

ically employ agglomerative hierarchical clustering for the classification of river profiles.174

These algorithms work on the basis that each data point starts in its own cluster, which175

are then iteratively merged until only one cluster remains. This merging is done based176

on a similarity (or dissimilarity) metric, which describes how similar each profile is to177

every other one, where the most similar profiles are merged first. A key advantage of this178

technique is that we preserve information on how each cluster is related to the others,179

or a hierarchy, which is often shown in the form of a dendrogram. Dendrograms can pro-180

vide useful information on the appropriate number of clusters in a dataset (e.g. Murtagh181

& Contreras, 2012).182

3 Methodology183

Here we set out our methodology for applying agglomerative hierarchical cluster-184

ing algorithms to river profile analysis. We cluster the profiles based on the pattern of185

channel gradient as a function of distance downstream from the channel head, with the186

aim of distinguishing profiles with similar climatic, tectonic, or lithological forcing.187

3.1 Selection of river profiles188

Firstly, we identify a starting point of each river profile using a curvature-based ap-189

proach to identifying channel heads following Pelletier (2013), Clubb, Mudd, Milodowski,190

Hurst, and Slater (2014), and S. W. D. Grieve, Mudd, Milodowski, Clubb, and Furbish191

(2016). This algorithm has been shown to perform well on high-resolution topographic192

data (S. W. Grieve, Mudd, & Hurst, 2016), but we provide alternative methods, such193

as drainage area thresholds, within the clustering algorithm. From every channel head,194

we route flow using a steepest descent algorithm (O’Callaghan & Mark, 1984) to the out-195

let. Every pixel in the profile, which we refer to hereafter as channel node, is assigned196

an elevation [m], distance from the channel head [m], and drainage area [m2]. We cal-197

culate the channel gradient at each node using a moving window of a defined size Ws,198

which we keep constant at 25 nodes for 1 m resolution topographic data. This should199

be adjusted based on the DEM resolution (see section 6). For Ws = 25, we fit a line through200

12 nodes upstream and downstream of the node of interest, plus the node itself, and de-201

fine the gradient of the node of interest as the slope of the line (Figure 1). For the first202

and last 12 nodes of the profile, we calculate the slope only over the radius that is avail-203

able (e.g. for the first node, over the 12 nodes downslope from this point). Although this204

approach assumes a linear fit to the channel profile, this error is negligible at the window-205

size scale. However, Ws should be adjusted based on the DEM resolution to avoid over-206

smoothing the channel profiles.207

After extracting the profiles, we then separate the channel network by stream or-208

der following Strahler (1957). This allows us to ensure we are comparing profiles with209
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a similar discharge and drainage area. The user may select the stream order of interest210

(So) within our implementation of the algorithm. If a stream order greater than 1 is se-211

lected, the longest channel in each basin of that order will be extracted (for example if212

So = 3, then the longest channel in each third order basin). Clustering over higher stream213

orders will result in the extraction of relatively longer but fewer profiles compared to the214

selection of first order channels. Although there may be some variation in discharge and215

drainage area between profiles of the same stream order, separating the network by drainage216

area leads to breaks in the profiles at tributary junctions as well as overlap of the pro-217

files in the downstream direction, which must be avoided in order to perform the clus-218

tering successfully. We note here that other types of stream ordering, such as Shreve or-219

dering (Shreve, 1966), could also be used to perform the clustering in future applications220

of the method.221

Figure 1. Method for calculating gradient along the channel profile, where the example chan-

nel nodes are shown as open circles with the node of interest highlighted in red. At each point, n

nodes are selected upstream and downstream of the node of interest, where n = (Ws − 1)/2. The

example here shows Ws = 25, meaning that 12 additional nodes are selected on either side of the

node. In this case a linear fit through those 25 nodes would result in a gradient of 0.0694.

222

223

224

225

226

Typically, the input data for clustering algorithms are regularly spaced, such as in227

time series analysis (where data may be daily or yearly, for example). Therefore, we sam-228

ple the gradient at a regular flow distance step along each profile, such that each pro-229

file can be compared to every other. However, as we calculate flow distance from the DEM230

using a steepest descent algorithm, the flow distance between pixels can vary depend-231

ing on whether the flow is directed along one of the cardinal flow directions (in which232

case the flow distance D will be equal to the grid resolution, Gr), or whether it is directed233

along a diagonal (D =
√

2Gr). Therefore, in order to compare and cluster different pro-234

files, we must first reassign the flow distances along each profile so that they are regu-235

larly spaced. To do this, we assign the channel head in each profile a distance of 0, and236

then create an array of flow distances with an even spacing to the end of the profile. The237

distance spacing can be determined by the user, but in our implementation must be greater238

than
√

2Gr. After this array is created, we iterate through each element in this array,239

find the nearest flow distance to it from the original profile, and assign the node its new240

flow distance from the regularly spaced array. This means that no interpolation of the241

flow distance data is required. We recommend that this distance spacing should be the242
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minimum integer distance above
√

2Gr: for 1 m resolution data, for example, the min-243

imum spacing would be 2 m. After assigning the profiles to a regularly spaced array, we244

then remove profiles which are shorter than a defined threshold length, or LT . This is245

to ensure that there are enough nodes in each profile to perform a meaningful cluster-246

ing. This selection of profiles therefore requires four user-defined parameters in total: de-247

tails and recommendations for these parameters are set out in Table 1.248

Table 1. Notation and details of user-defined parameters required by the method. The sug-

gested values have been tested on 1 m resolution topographic data.

249

250

∗Gr : spatial resolution of the DEM251

Parameter Details Suggested value

Ws Window size for calculation of channel slope 25 nodes

ST Regular step spacing along profiles ST >
√

2Gr
∗

LT Minimum length of each profile 5 nodes
So Stream order of profiles 1

3.2 Clustering252

Following the extraction of the river profiles, we then use clustering techniques to253

perform a classification. The first step to perform the clustering analysis is to determine254

how similar each profile is to every other one. Many different approaches have been taken255

in time series clustering analysis to determine a metric describing the similarity, or dis-256

similarity, between time series, such as Euclidean-based metrics, Pearson correlations,257

dynamic time warping, or probability-based distances (e.g. Liao, 2005). Here we calcu-258

late a Euclidean-based dissimilarity measure (dR) between each pair of profiles in chan-259

nel gradient space (Figure 2a). If we let X and Y each represent an array of length n260

of channel gradients, then the dissimilarity (d) between them can be computed by:261

d =

√√√√ n∑
i=1

(Xi − Yi)2, (3)

where i represents an element in the array. We then divide d by n, the number of262

points in the profile, to obtain dR:263

dR = d/n. (4)

This division by n means that comparisons between longer profiles will result in264

a lower dissimilarity than shorter profiles, such that our method gives more weight to265

longer channel tributaries where we have more data to use for comparison. Equations266

(3) and (4) require that the profiles in each pair are the same length. We therefore com-267

pare the lengths of the profiles, starting at the channel head, and only perform the clus-268

tering over the length of the shortest of the two profiles in each pair. This means we re-269

move part of the profile at the downstream end of the longer profile in each pair.270

The calculation of this dissimilarity between every pair of profiles gives us a sym-271

metric n x n matrix (Figure 2b) which we use as the basis for agglomerative hierarchi-272

cal clustering. We cluster the data based on Ward’s method (Ward, 1963), also referred273

to as the minimum variance method. This algorithm iteratively merges clusters based274

on minimizing the distance (d) in profile dissimilarity space between a new cluster u, formed275
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from two previous clusters s and t, and any other cluster v. The distance d(u, v) is com-276

puted by:277

d(u, v) =

√
nv + ns
T

d(v, s)2 +
nv + nt
T

d(v, t)2 − nv
T
d(s, t)2 (5)

where ns, nt and nv are the number of profiles in clusters s, t, and v respectively,278

and T = nv+ns+nt. Readers are referred to Müllner (2011), Murtagh and Contreras279

(2012), and the SciPy hierarchy linkage documentation for more information. We note280

that Ward’s algorithm used here is the standard SciPy implementation which is O(n2).281

This results in a dendrogram (Figure 2c) showing how each of the profiles is related to282

every other one. This clustering is performed between the river profiles in profile dissim-283

ilarity space (dR), and is not related to the geographic location of the channel networks284

(Figure 2d).285

After the clustering is complete, we must then determine a dissimilarity threshold298

which will select the final number of clusters, or the ‘level’ at which to cut the dendro-299

gram. In order to do this, we plot the dissimilarity (dR) between clusters against the num-300

ber of clusters at each iteration, and then pick the number of clusters where the change301

in distance between two iterations is greatest (Figure 3). This allows us to select the it-302

eration with the most distinctive clusters. This criteria often tends to result in a small303

number of clusters, and therefore we also provide the results with the second greatest304

change in distance between two iterations as default within our algorithm. When apply-305

ing the algorithm, users should combine the results of the clustering with knowledge of306

the geomorphology of a site, such as lithological variations, knickpoint locations, or field307

information about channel profile morphology, to determine the most appropriate num-308

ber of clusters.309

3.3 Extraction of channel steepness estimates317

We demonstrate one potential application of our technique by extracting channel318

steepness estimates using logarithmic plots of slope against drainage area following the319

clustering. Although many other techniques for estimating channel steepness exist, such320

as integral profile analysis, we choose here to focus on slope–area analysis as it is still321

very widely used within the literature, and the concavity index can be directly calculated322

from the data based on equation (1). However, we note that users of our clustering tech-323

nique could choose any method of extracting channel steepness after clustering.324

We extract channel steepness from each cluster by performing slope–area analy-325

sis separately on the channels in each cluster. When running the clustering algorithm,326

we use only first order channels in order to ensure we compare a similar range of drainage327

areas (section 3.1 and Table 1). However, slope–area analysis requires a large range of328

drainage areas (i.e. several orders of magnitude) in order to fit an appropriate power law329

following equation (1). Therefore, we tag each higher order channel node according to330

the cluster of every source which drains into it (i.e. a second order channel with two trib-331

utaries would have two cluster identifiers). Higher order channels are then only included332

in the slope–area analysis if all first-order tributaries were within the same cluster. We333

remove any channel nodes with a drainage area less than 1000 m2 in order to ensure that334

we are only considering the purely fluvial portion of the network. We then logarithmi-335

cally bin the data following the approach of Wobus et al. (2006) and fit a power law through336

the median of each bin based on equation (1), in order to extract the concavity index337

θ and the channel steepness index ks. We can then use this calculated value of θ as a338

reference to calculate the normalized channel steepness (ksn) for every point along the339

channel network using equation (2).340
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Figure 2. Schematic example of the clustering methodology. (a) We determine a dissimilarity

between each pair of profiles following equation (4). This is shown schematically here for one

pair of channel profiles. (b) We perform this calculation for every pair of profiles: for example,

if we have six schematic river profiles labeled A to F, we calculate a six by six matrix where the

values represent the dissimilarity (dR) between each pair. We then use this dissimilarity matrix

as an input to the clustering. Colors represent the dR values resulting in the eventual clusters in

following panels. (c) Hierarchical clustering is then performed on the dissimilarity matrix, leading

to a dendrogram showing each profile is related to every other one, where the distance of each

link on the Y axis represents the dissimilarity (dR) between the profiles. In this schematic exam-

ple we find three distinct clusters colored red, purple, and blue. Dashed gray line corresponds to

cutting of the dendrogram explained in Figure 3. (d) We then use the dendrogram to assign our

six original channel profiles to the corresponding cluster.

286

287

288

289

290

291

292

293

294

295

296

297

4 Testing on synthetic landscapes341

We demonstrate the ability of our method to disentangle the effects of landscape342

heterogeneity on river profiles by firstly testing it on two numerical landscapes, created343

by a landscape evolution model based on detachment-limited stream power. This allows344

us to firstly demonstrate that the method works in a setting where the uplift and ero-345

sion history is fully constrained, and where we can explore a series of different scenar-346

ios for which we envisage the technique to be useful in future research. These scenar-347

ios are i) a steady-state model with a lithological contact; and ii) a model simulating tran-348

sient response of the fluvial network to sudden base level fall.349

We ran a detachment-limited stream power model, based on Mudd (2016) and Mudd350

et al. (2018), where the model elevation evolves through time as:351

–9–



manuscript submitted to JGR: Earth Surface

Figure 3. We select an appropriate number of clusters by plotting the number of clusters

versus the distance in dissimilarity space between the center of each cluster, and selecting the

number of clusters where there is the maximum distance increase after a cluster is created. This

allows us to ‘cut’ the dendrogram at a level with the most distinct clustering, shown by the gray

dashed line in Figure 2(c). In this schematic example the maximum distance occurs when we

go from 4 to 3 clusters, and we would therefore select 3 clusters as the most appropriate cut-off

point.

310

311

312

313

314

315

316

∂z

∂t
= U −KAmSn, (6)

where U is the uplift rate, K is channel erodibility, which is a measure of the ef-352

ficiency of the incision process, and m and n are constant exponents. We solved for flu-353

vial incision using the Fastscape algorithm of Braun and Willett (2013). In order to en-354

sure computational efficiency we did not include other processes, such as hillslope sed-355

iment transport, in the model. Firstly, we created an initial model domain with a height356

of 2 km and a width of 4 km, and initialized it with a parabolic surface. The model has357

a grid resolution of 1 m, comparable to that of the real landscapes (see section 5). The358

north and south boundaries of the domain have a fixed elevation of 0 and the east and359

west boundaries are periodic. We then used a diamond-square fractal algorithm to gen-360

erate the initial surface (Fournier, Fussell, & Carpenter, 1982), as we found that this pro-361

vides the most realistic initial drainage patterns. We then ran the model for 800,000 years362

to fully dissect the landscape with an initial uplift rate of 0.0004 m/yr, K = 0.0005 yr−1,363

m = 0.5, and n = 1.364

4.1 Spatially varying erodibility365

After the creation of this initial numerical landscape, we selected a large catchment366

from the model domain which was used as the starting topography for each of the model367

runs. This allowed us to ensure a realistic drainage network as well as long enough chan-368

nels to ensure non-spurious clustering. We ran this starting topography, including sur-369

rounding catchments to avoid edge effects on our example catchment, for a further 800,000370

years to ensure it had reached steady state, which we define as a variation in elevations371

of less than 0.01 mm between two successive time steps. Our first scenario is designed372

to simulate a very simple vertical lithological contact across a catchment. We therefore373
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then increased the erodibility of the southern half of the model domain by 5 times that374

of the northern half of the domain, and ran the model for a further 800,000 years at the375

same uplift rate (see Video S1), until another steady state was reached. This resulted376

in a total run time of 2.4 million years. We then ran the clustering algorithm on one basin377

from the domain which drains both the harder lithology to the north, and the softer lithol-378

ogy to the south (Figure 4a).379

The clustering grouped the profiles in two distinct clusters which directly corre-380

spond to the lithology variation: all of the first order profiles in the harder lithology are381

grouped together, and separately from all of the first order profiles in the softer lithol-382

ogy. The clustering dendrogram (Figure 4b) shows that this separation occurs at a large383

distance compared to the variations within each cluster, suggesting that this grouping384

is the most robust. We also plotted slope-area data separately for the profiles in each385

cluster (Figure 4c), which allows us to extract an order of magnitude difference in chan-386

nel steepness between the cluster in the softer lithology (ks = 0.63, θ = 0.5) and the harder387

lithology (ks = 9.43, θ = 0.64).388

Figure 4. Results from the clustering of the numerical modeling run with spatially varying K,

where the north half of the raster has lower erodibility (harder rocks) than the south half. (a) El-

evation of model domain where dark gray is low elevation and white is high elevation. The river

network from one catchment is shown with clustering of first order streams, where the rest of

the network is shown in white (not used for clustering). First order streams are colored by clus-

ter. (b) Hierarchical clustering dendrogram showing classification of all profiles into two distinct

clusters, a red cluster (1) and a blue cluster (2). (c) Slope-area plots for the profiles separated

by cluster. A linear regression through the log-binned data (white diamonds show the median,

error bars represent the interquartile range) allows the extraction of ks for each cluster: ks in the

blue cluster is an order of magnitude higher than in the red cluster. We report ks and θ plus and

minus the standard error on the regression coefficients.
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4.2 Base level fall400

Our second model scenario is a simple approximation of a base level fall event, such401

as a sudden drop in sea level, which causes transient response of the river network through402

knickpoint propagation. We started our model run using the same initial topography as403

from the spatially varying erodibility scenario, and ran for 800,000 years until steady state404

was reached. We then dropped the elevation of model base level nodes instantaneously405

by 10 m (simulating sudden sea level drop), and then ran with the same parameters for406

another 50,000 years. The model transiently responds by propagating a steepened reach407

up to the headwaters (see Video S2). We expected that this model scenario would be408

more challenging for our clustering algorithm than the spatially varying erodibility sce-409

nario. The channels above and below the location of the knickpoint should have simi-410

lar gradients, and the location of the perturbation will change depending on the length411

of each channel. This will lead to significant variability in the downstream gradient pro-412

file of each channel, resulting in more noise in the clustering.413

Figure 5 shows the results of our clustering algorithm on the transient run after414

10,000; 30,000; and 50,000 years. In order to ensure that the clustering results are con-415

sistent through the model time steps, we cut the dendrogram at a constant dissimilar-416

ity threshold for each time step (dR = 0.1). At 10,000 years, shortly after the base level417

fall, the vast majority of the profiles cluster together with just one profile in a separate418

cluster, as the transient signal has not yet propagated into any first order channels. The419

long profile of the trunk channel suggests that the transient signal is at a distance of around420

200 - 600 m from the outlet of the basin. The median profiles from this time step (Fig-421

ure 5b) shows that these profiles are generally low gradient, with the red cluster repre-422

senting one short outlier.423

After 30,000 years, three distinct clusters emerge, colored red, blue, and black in424

Figures 5d and e. The profiles in the red and black clusters generally occur in the lower425

to middle region of the catchment. The red cluster is characterized by elevated gradi-426

ent in the headwaters which persists until around 50 m downstream of the channel head.427

Profiles in the black cluster also have similarly elevated gradient in their headwaters, but428

are generally shorter, with a length of around 40 m (Figure 5e). The elevated gradient429

in the headwaters of both of these clusters suggest that they are transiently responding430

to the base level change. The profiles in the blue cluster, on the other hand, are mostly431

located in the headwaters of the catchment where transient adjustment has not yet oc-432

curred. Many of the shorter first order channels near the outlet of the catchment also433

fall into the blue cluster. The median gradient–distance profiles for this cluster show that434

these channels have low gradient in the headwaters, and slightly elevated gradient fur-435

ther downstream (around 120 - 160 m from the channel head) The long profile of the trunk436

channel for this time step (Figure 5f) shows that the transient perturbation is located437

around 800 - 1000 m from the outlet, and that the profile below this point has returned438

to a steady-state concave form. We may therefore conclude these small channels near439

to the outlet are fully adjusted to the transient signal, and therefore the gradient pro-440

file will be morphologically similar to those unaffected channels in the headwaters.441

In the final model time step (50,000 years), two distinct clusters are once again de-442

tected, a larger blue cluster and a smaller red cluster. The smaller red cluster exclusively443

consists of channels in the headwaters of the model catchment, whereas all channels fur-444

ther downstream cluster together in blue. The long profile of the trunk channel (Figure445

5i) shows that the transient signal has reached the upstream portion of the channel net-446

work (1100 - 1200 m from the outlet), suggesting that the red cluster represents the chan-447

nels that have not yet fully readjusted after the transient perturbation. This interpre-448

tation is supported by the median gradient–distance profiles for this time step (Figure449

5h), which shows that profiles in the red cluster are steep in their headwaters until around450

75 m from the channel head, whereas the median profile of the blue cluster is lower gra-451
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dient for the entirety of its length. Slope–area plots of the model time steps can be found452

in the Supporting Information (Figure S1).453

Figure 5. Results from the clustering of the numerical modeling run simulating instantaneous

base level fall of 10 m. The top row shows elevation of the model run at different time steps,

where the first order streams are colored by cluster and the rest of the channel network is shown

in white. The middle row shows the median channel profile for each cluster, plotted as gradient

against distance from the source (m). The shaded area represents the interquartile range. The

bottom row shows the long profile of the trunk channel at different time steps. (a) - (c): 10,000

years; (d) - (f): 30,000 years; (g) - (i): 50,000 years after base level fall event.
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5 Application to real landscapes461

Following the demonstration that our method can successfully distinguish both vari-462

ations in erodibility and transient perturbations in synthetic landscapes, we applied our463

clustering to two test sites with high resolution topographic data (1 m resolution), to464

provide examples of real-world scenarios in which landscape heterogeneity can be detected.465

5.1 Harrington Creek, Bitterroot National Forest, Idaho466

Our first test site is a region with evidence of recent fluvial incision and transience467

through the preservation of major knickpoints. Harrington Creek is a small tributary468

of the Salmon River, Idaho, where recent incision has resulted in the propagation of knick-469

points through its tributaries (Wood, 2013). This knickpoint propagation has led to a470

stark contrast between the low relief, relict landscape in the headwaters of the Harring-471

ton Creek catchment, and the steeper, more rapidly eroding downstream portion below472

the knickpoint (Figure 6). The landscape below the knickpoint displays a marked increase473

in drainage density (Clubb et al., 2016) and more frequent bedrock outcrops (Milodowski,474
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Mudd, & Mitchard, 2015) compared to the relict landscape. The lithology is relatively475

homogeneous, consisting of plutonic rocks of the Idaho Batholith with some minor Eocene476

rhyolitic-dacitic dykes (Lewis & Stanford, 2002). The lidar data for the site were collected477

by the National Center for Airborne Laser Mapping (NCALM) with an original point478

density of 4.6 pts/m2, gridded to a 1 m bare-earth DEM.479

We use this test site to demonstrate the ability of our method to i) map transient480

incision waves throughout landscapes, and ii) to distinguish the impact of different ge-481

omorphic process regimes on channel profiles. Firstly, we perform the clustering anal-482

ysis on all first order channels using the same parameter values as for the synthetic land-483

scapes (Table 1). Figure 6 shows the spatial distribution of first order channels colored484

according to their assigned cluster. We cut the dendrogram using the maximum distance485

between clusters (Figure 3), which results in two main clusters. The spatial distribution486

of the first order profiles in each cluster clearly identifies the main knickpoint in the catch-487

ment, where the majority of the profiles in the red cluster (87% of channel pixels) are488

located above the knickpoint in the relict landscape and the majority of the profiles in489

the blue cluster (89% of channel pixels) are located below the knickpoint in the incised490

landscape.491

Figure 6. Shaded relief map of Harrington Creek, Idaho, showing results of the clustering

algorithm. The first order streams are colored by their identified cluster, and the rest of the chan-

nel network is shown in white. Center of the catchment is located at 45◦31’03”N, 114◦55’32”W

(WGS84). Inset map shows location of Harrington Creek (red star).

492

493

494

495

The dendrogram of the Harrington Creek river profiles shows that the two clusters496

are distinct from each other in dissimilarity space (Figure 7a), with the threshold occur-497

ring at dR = 0.7. The median gradient of profiles in the red cluster is much lower than498

that of the blue cluster (0.35 ± 0.12 m/m compared to 0.63 ± 0.14 m/m, Figure 7b, er-499
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rors represent the interquartile range), and the median gradient–distance profiles for each500

cluster (Figure 7c) show that the channels in the blue cluster have a consistently higher501

gradient along the entirety of the first order profile.502

We demonstrate the ability of the method to disentangle the impact of different503

geomorphic processes on valley networks by plotting the slope against drainage area sep-504

arately for each cluster (Figure 8a). We find that the slope–area data for each cluster505

results in the calculation of low concavity values (θ = 0.14 ± 0.03 for the red cluster above506

the knickpoint, and θ = 0.04 ± 0.01 for the blue cluster below the knickpoint). This is507

consistent with the median slope–distance profiles for each cluster (Figure 7c), which show508

a generally invariant gradient with distance along the first order profiles for the first 300509

m downstream of the channel head. Previous work by Stock and Dietrich (2003) found510

that low concavity values can indicate valley incision by mass wasting processes, such511

as debris flows. The data included in the slope–area calculations for each cluster spans512

from drainage areas of 1,000 m2 to 1 km2 (we include data from higher order streams513

within the same cluster when performing the slope–area analysis, as outlined in section514

3.3). We then performed the clustering on the longest channel in each third order basin515

(So = 3) and again plotted the slope–area data for each cluster (Figure 8b). We find that516

profiles included in the blue cluster of third order profiles again span drainage areas up517

to 1 km2, and have a similarly low concavity to the clustering over the first order chan-518

nels (θ = 0.06 ± 0.02). The red cluster, however, includes profiles up to a drainage area519

of 10 km2, and have a higher concavity. If we calculate θ by excluding drainage areas520

lower than 1 km2, we obtain θ = 0.51 ± 0.07. We therefore suggest that the valley net-521

work with a drainage area greater than 1 km2 is fluvially-dominated, whereas lower drainage522

areas are more influenced by mass wasting processes. This highlights how the cluster-523

ing technique can be used to understand the dominant controls on valley network inci-524

sion.525

Another potential advantage of our clustering approach is the ability to segment543

the landscape into different regions depending on the similarity of the river profiles. To544

demonstrate this, Figure 9a shows the catchment area associated with each first order545

channel separated by its assigned cluster. This separation of drainage basins by the clus-546

tering of their channel profiles allows us to examine how local gradient and catchment547

relief vary in each cluster (Figure 9). We calculate the local gradient by fitting a second548

order polynomial surface with a radius of 7 m, following Hurst, Mudd, Walcott, Attal,549

and Yoo (2012). We calculate catchment relief as the maximum elevation minus the min-550

imum elevation within each catchment, normalized for the area of the basin. In our Har-551

rington Creek site we find that both the median local gradient and the normalized catch-552

ment relief are lower in the red cluster above the knickpoint (0.36 ± 0.14 m/m and 0.018553

± 0.022 m/m2 respectively, errors represent the interquartile range) compared to the blue554

cluster below the knickpoint (0.77 ± 0.26 m/m and 0.028 ± 0.031 m/m2 respectively),555

mirroring that of the channel profiles (Figure 7b). We report the Kolmogorov-Smirnov556

D statistic on the distributions in each cluster (see Figure 9b) to test whether they are557

significantly different, and find we can reject the null hypothesis that they come from558

the same distribution at a 99% confidence level. This example shows how the cluster-559

ing technique can be used to separate and analyze the signature of transient incision waves560

throughout the landscape.561

5.2 Pozo catchment, Santa Cruz Island, CA568

Our second test site is from a landscape with a complex tectonic history as well569

as spatial variations in lithology: the Pozo catchment, a small catchment on Santa Cruz570

Island in the California Channel Islands. The Pozo catchment is located in the south-571

west of the island (Figure 10) and has a drainage area of around 6.5 km2, with an av-572

erage basin relief of 400 m. Santa Cruz Island, and the Pozo catchment in particular,573

experienced intensive gullying, vegetation loss, and soil erosion in the late nineteenth and574
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Figure 7. Results of the clustering algorithm for Harrington Creek, Idaho. (a) Hierarchical

clustering algorithm showing distinct separation of profiles into two clusters, a red cluster and a

blue cluster. (b) Box-and-whisker plot showing the distribution of channel gradient for each clus-

ter. The solid black line represents the median, the edges of the box are the interquartile range

(IQR), and the whiskers represent 1.5 times the IQR. The colored points outside of the whiskers

are outliers. (c) Plot showing the median (solid line) and the interquartile range (shaded area)

of gradient against distance downstream from the channel head for each cluster. The red cluster

mainly consists of channels in the relict landscape above the knickpoint, whereas the blue cluster

mainly consists of channels in the steeper landscape below.

526

527

528

529

530

531

532

533

534

early twentieth century (Perroy, Bookhagen, Asner, & Chadwick, 2010). The geology of575

the Pozo catchment can be split into three main geologic units: a lower unit consisting576

of a Tertiary sedimentary succession, the main formation of which is referred to as the577

Canada shale; a middle unit consisting of the San Onofre breccia; and an upper unit con-578

sisting of the more resistant Blanca volcaniclastics (Dibblee, 2001; Perroy, 2009). The579

Canada shale is the weakest lithology in the basin, and therefore the majority of the ero-580

sion occurred within this unit (Perroy et al., 2010). Figure 11 shows the surface expres-581

sion of the shale lithology, including the development of extensive gullying. Hillslope re-582

lief is generally higher in the San Onofre breccia and Blanca volcaniclastics compared583

to the Canada formation, which mostly consists of shallow ridges and smooth hillslopes584

(Figure 11). The Pozo catchment has cosmogenic-nuclide basin wide erosion rates of 0.08585

mm yr−1 (Perroy, Bookhagen, Chadwick, & Howarth, 2012). Alongside this lithologi-586

cal variation, Santa Cruz Island is currently uplifting at around 0.1 mm yr−1, resulting587
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Figure 8. Slope–area plot for Harrington Creek when clustering over first order channels (left

column, So = 1) and third order channels (right column, So = 3). The channel steepness ks and

concavity θ are calculated by log-binning the raw data (white diamonds show the median, error

bars represent the interquartile range), and then calculating a least-squares fit through the log-

binned data. We report ks and θ plus and minus the standard error on the fitted coefficients. We

find a low concavity for both clusters when So = 1, whereas when So = 3 we find a higher con-

cavity in the red cluster (θ = 0.51 ± 0.07) at higher drainage areas (we exclude drainage areas

less than 1 km2 from the fit for the red third order cluster).
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538

539

540

541

542

in the preservation of knickpoints, hanging valleys, and marine terraces (Muhs et al., 2014;588

Neely et al., 2017; Pinter, Lueddecke, Keller, & Simmons, 1998).589

The digital elevation data for the Pozo catchment were obtained from the 2010 US601

Geological Survey Channel Islands Lidar Collection, and the original point cloud was grid-602

ded to a 1 m bare-earth DEM, with an average point density of 10 pts/m2. We extracted603

the river network and performed the clustering analysis on the first order channels us-604

ing the methodology detailed in section 3, identical to that used on the model landscapes.605

We kept the user-defined parameters identical to that of the model runs (Table 1). Fig-606

ure 12 shows the results of the method for the Pozo catchment compared to the litho-607

logical data. When we cut the dendrogram using the maximum dissimilarity approach608

(dR = 0.9), we find two main clusters, colored red and blue in Figure 12a. The vast ma-609

jority of the profiles in the red cluster fall within the weaker Canada shale unit (95% of610

channel pixels), whereas the majority of the profiles in the blue cluster are located within611

the other, more resistant lithologies (78% of channel pixels).612
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Figure 9. (a) First order catchments of Harrington Creek, Idaho, colored by the clustering

of the channel in each basin. (b) Boxplots of mean local gradient and relief for each cluster.

We report the catchment relief as the maximum minus the minimum elevation for each basin,

normalized by the area of the basin. We report the Kolmogorov-Smirnov (KS) D statistic to

compare the distributions for each metric, and find that we can reject the null hypothesis that

they come from the same distribution at a 99% confidence level.
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566
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Examining the dendrogram for the Pozo catchment (Figure 13a) shows that the613

next largest dissimilarity threshold would result in three clusters: the red cluster would614

be preserved and the blue cluster would be split into two at dR ≈ 0.7. However, the615

spatial location of the further clustering is unable to distinguish between the volcaniclas-616

tic lithologies, although the difference between the Canada shale and the volcaniclastic617

units is still preserved (Figure 12b). We find that the median gradient of the profiles in618

the red cluster primarily located in the shale is 0.28 ± 0.13 m/m, compared to a higher619

median gradient of 0.46 ± 0.17 m/m in the blue cluster in the volcaniclastics (Figure 13b,620

errors represent the interquartile range). Examining the median gradient–distance pro-621

files for the two clusters (Figure 13c) shows that in the blue cluster, the gradient is high-622

est in the headwaters and decreases as a function of distance downstream, following a623

typically fluvial profile as described by Flint’s law (equation 1). In the red cluster, how-624

ever, the channel gradient does not systematically decrease in the downstream direction,625

instead appearing relatively constant for the first 100 m downstream of the channel head.626

Invariant gradient with distance has previously been suggested to be indicative of ero-627

sion by mass wasting processes, such as debris flows (Stock & Dietrich, 2003). There-628

fore, we suggest that the constant gradient in the headwaters of the red cluster repre-629
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Figure 10. Shaded relief map of the Pozo catchment, Santa Cruz Island, CA, draped with

main lithological units from Dibblee (2001). The Canada shale (purple) is a weak, poorly con-

solidated unit with extensive gullying, compared to the San Onofre breccia and the Blanca

volcaniclastics (warm colors) which are more resistant. Center of the catchment is located at

33◦59’18.2”N, 119◦51’03.8”W (WGS84). Inset map shows location of Santa Cruz Island offshore

of California.
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Figure 11. Field photographs showing the surface expression of the different lithologies. (a)

The Canada shale unit contains extensive gullying with smooth, diffusive hillslopes; (b) Dashed

red line represents boundary between the Canada shale in the background and the San Onofre

breccia in the foreground. The San Onofre breccia and Blanca volcaniclastics result in less gully-

ing, but steeper hillslopes than the Canada shale.
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sents the signature of extensive gullying within the Canada shale (e.g. Perroy, 2009; Per-630

roy et al., 2010, 2012), which can be seen in Figure 11.631

We also demonstrate the potential of the clustering approach for segmenting the637

landscape by analyzing the first order catchments associated with each cluster, follow-638
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Figure 12. Shaded relief and lithology map of the Pozo catchment compared to the results of

the clustering algorithm. The first order streams are colored by their identified cluster, and the

rest of the channel network is shown in white. (a) Dendrogram is cut at the greatest dissimilarity

between clusters (dR = 0.9), resulting in two clusters. (b) When the second threshold is used

(second greatest dissimilarity, dR = 0.7) three clusters are selected.
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633

634

635

636

ing the same approach as for the Harrington Creek site. We calculate the distribution639

of local gradient and normalized catchment relief in each cluster (Figure 14), and find640

that the medians of both metrics are significantly lower in the red cluster (mostly Canada641

shale, 0.36 ± 0.12 m/m and 0.013 ± 0.008 m/m2 respectively, error represents the in-642

terquartile range) compared to the blue cluster (mostly volcaniclastics, 0.58 ± 0.16 m/m643

and 0.02 ± 0.014 m/m2 respectively). We also compare the vegetation height within basins644

in each cluster using a canopy height model derived from the lidar point cloud for the645

Pozo catchment. The canopy-height model (CHM) was calculated by first classifying all646

ground points and then measuring vegetation height above ground for each vegetation647

point. These were aggregated to 1 m spatial resolution by using the maximum vegeta-648

tion height for each grid cell following methodology described in Khosravipour, Skidmore,649

Isenburg, Wang, and Hussin (2014). We find that, although the median vegetation height650

within the red and the blue cluster are similar, the range of the distribution is much nar-651

rower within the red cluster compared to the blue cluster (Figure 14). This difference652

in vegetation height may also be due to the lithological contrast: the Pozo catchment653
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was exposed to extensive anthropogenic erosion in the early twentieth century, which led654

to gullying and vegetation loss, which was more pronounced in the weaker Canada shale655

unit compared to the more resistant volcaniclastics (Perroy et al., 2010).656

Finally, we demonstrate the ability of the clustering method to provide greater in-657

sights into controls on channel morphology by comparing it to a standard approach of658

calculating normalized channel steepness (ksn) for the catchment. We plotted the slope–659

area data for the entire Pozo catchment and calculated a concavity index (θ) of 0.45 ±660

0.02 following the approach detailed in section 3.3. Figure 15a shows the slope–area data661

for the Pozo catchment, from which it is difficult to determine any meaningful segment662

breaks that may correspond to landscape heterogeneity. We then used θref = 0.45 to663

determine ksn for each point in the network, shown in Figure 15b. We find that varia-664

tions in ksn in the Pozo catchment generally correspond to transitions between the al-665

luviated trunk channel and the surrounding tributaries. We then plotted the distribu-666

tion of ksn by lithology, and found no significant variation in median ksn between the667

different rock types (Figure 15c). This demonstrates that the lithological distinction be-668

tween the channel profiles identified by the clustering algorithm is not picked up sim-669

ply by plotting ksn throughout the catchment, most likely due to noise in the slope–area670

data in Figure 15a.671

We then plotted the slope-area data for the profiles separately by cluster, in order672

to determine a representative channel steepness metric for each cluster (Figure 16). The673

channel steepness for the red cluster, primarily located in the Canada shale, is lower than674

that of the more resistant lithologies (ks = 3.59 ± 1.46, θ = 0.32 ± 0.04 compared to675

ks = 12.83 ± 1.3, θ = 0.41 ± 0.03, error represents standard error on the regression pa-676

rameters). This demonstrates the ability of our clustering approach to improve estimates677

of both channel steepness and concavity: although the data for the catchment as a whole678

suggests θ = 0.45, channels in the red cluster with the weaker lithology exhibit a lower679

concavity value of 0.32. We again suggest that this lower concavity value is due to the680

constant gradient in the headwater of these channels which are predominantly affected681

by gullying.682

6 Discussion714

6.1 Caveats and limits to hierarchical clustering715

The examples above from both real and synthetic landscapes demonstrates the abil-716

ity of the clustering method to identify groups of similar channel profiles in heterogeneous717

landscapes. However, care must be taken before applying the method to ensure that the718

results of the clustering are meaningful. For example, determining an appropriate num-719

ber of clusters is generally a challenge for any study which uses clustering techniques (e.g.720

Aghabozorgi et al., 2015). One of the advantages of the hierarchical clustering approach721

that we take here is that it does not require the number of clusters to be set as an in-722

put parameter. The structure of the dendrogram (Figure 3a) can provide useful infor-723

mation regarding the relationship between all profiles, which can aid in determining an724

appropriate number of clusters. Here we take the approach of cutting the dendrogram725

at the greatest dissimilarity dR between clusters (Figure 3b), which tends to lead to small726

numbers of clusters. Therefore, we also provide an additional level of clustering at the727

second greatest dissimilarity, shown in our example of the Pozo catchment in Figure 12.728

However, in principle there is no ‘incorrect’ level at which to cut the dendrogram: this729

should depend on the scale over which the grouping is required.730

We stress that it is essential to examine the dendrogram of the clustering along with731

a process-based understanding of the geomorphology of the region to determine the num-732

ber of clusters. For example, the Harrington Creek test site shows that a selection of two733

clusters isolates the main transient incision wave within the catchment, and is therefore734
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Figure 13. Results of the clustering algorithm for Pozo catchment, Santa Cruz Island. (a)

Hierarchical clustering algorithm showing distinct separation of profiles into two clusters, a red

cluster and a blue cluster. (b) Box-and-whisker plot showing the distribution of channel gra-

dient for each cluster. The solid black line represents the median, the edges of the box are the

interquartile range (IQR), and the whiskers represent 1.5 times the IQR. The colored points out-

side of the whiskers are outliers. (c) Plot showing the median (solid line) and the interquartile

range (shaded area) of gradient against distance downstream from the channel head for each clus-

ter. The majority of the red channels are in the Canada shale, whereas the the blue channels are

predominantly situated in the San Onofre breccia and the Blanca volcaniclastics.
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689

690

691

the most appropriate for this landscape. In fact, this is one of the key advantages of the735

clustering approach: it is an exploratory, data-driven technique which can be compared736

to independent geomorphic information or datasets. It can be used in cases where, such737

as with river profiles, we may have a large number of data points and wish to explore738

potential signals amongst the noise of typically imperfect landscapes.739

When applying the method, care must also be taken to appropriately set the four740

user-defined parameters. These parameters, along with suggested values for use with 1741

m resolution gridded topographic data, are shown in Table 1. Throughout the analysis742

in this study we kept the parameters constant using these suggested values for both the743

synthetic landscapes as well as the real test sites. However, we caution that these pa-744

rameters may need to be adjusted for other landscapes as well as for the resolution of745
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Figure 14. (a) First order catchments of the Pozo catchment, colored by the clustering of the

channel in each basin. (b) Boxplots of mean local gradient, relief normalized by basin drainage

area, and vegetation height for each cluster. We report the Kolmogorov-Smirnov (KS) D statistic

to compare the distributions for each metric, and find that we can reject the null hypothesis that

they come from the same distribution at a 99% confidence level.

692

693

694

695

696

the DEM that is used. For example, the window size Ws (Figure 1) will affect the num-746

ber of nodes over which the channel slope is calculated, and therefore the gradient–distance747

profiles used as an input for the clustering. If Ws is too small, the channel slope will likely748

be influenced either by local roughness or by noise in the DEM, and will not reflect the749

prevailing slope of the channel bed. However, if Ws is too large then real variations in750

the channel slope through features such as knickpoints may be smoothed out. Therefore751

users must carefully consider an appropriate reach length for the calculation of channel752

slope for the landscape and the resolution of the topographic data in question. We also753

set a minimum length of each profile to be included in the clustering (LT ), to ensure that754

each profile contains a sufficient number of data points to perform a meaningful cluster-755

ing. In this study we set this to a small number of nodes LT = 5, but users may wish756

to increase this value in order to filter out very short profiles and potentially reduce noise757

in the clustering results. For each example shown here we perform the clustering on first758

order channels (So = 1). We found that a small stream order is able to best identify land-759

scape heterogeneity, as it clusters over a finer spatial scale than using the entire chan-760

nel profile from channel head to outlet, for example. However, we provide the option within761

our implementation of the algorithm for users to cluster over any number of stream or-762

ders that they wish: this allows the effective segmentation of the channel network into763

sections with similar drainage area, which can all be clustered independently. We also764

performed the analysis on Harrington Creek and the Pozo catchment for second order765

channels (see Figures S2 - S5 in the Supporting Information), and found similar patterns766

of clustering to that of the first order channels.767
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Figure 15. Normalized channel steepness analysis for the Pozo catchment. (a) Log-binned

slope–area plot of the entire Pozo catchment (red diamonds show the median, error bars repre-

sent the interquartile range (IQR)). We calculate θ as the exponent of a least-squares fit through

the log binned data (0.45 ± 0.02). (b) Map of the normalized channel steepness ksn with 0.45

as the reference concavity θref . ksn values are represented on a log color scale to highlight the

relative differences. (c) Boxplots of the distribution of ksn with each lithology (spatial distribu-

tion of the lithologies can be seen in Figure 10). There is little variation in the median ksn with

lithology (median and IQR values are 17.97 ± 11.16 for the Canada shale, 27.377 ± 16.92 for the

upper Blanca volcaniclastics, 18.21 ± 9.49 for the lower Blanca volcaniclastics, and 23.76 ± 19.47

for the San Onofre breccia).
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702
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704
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6.2 Potential applications768

Our results from the synthetic landscapes (section 4) demonstrate the ability of the769

method to identify regions of landscape similarity in a setting where prior uplift and ero-770

sion histories are fully constrained. The first model example showed that our clustering771

technique was able to detect variations in erodibility in an otherwise steady state model772

set-up. Performing channel steepness analysis on each cluster separately allowed us to773

extract an order of magnitude difference in ks between the region with varying erodi-774

bility, highlighting an important potential application of the clustering technique in real775

landscapes. We then tested the technique on a synthetic landscape transiently adjust-776

ing to a sudden base level fall event, and found that clustering of the first order chan-777
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Figure 16. Slope-area plots for the Pozo catchment by cluster. The channel steepness ks

and concavity θ are calculated by log-binning the raw data (white diamonds show the median,

error bars represent the interquartile range), and then calculating a least-squares fit through the

log-binned data. We report ks and θ plus and minus the standard error on the fitted coefficients.

The fitted concavity for the red cluster (θ = 0.32 ± 0.04)) within the weaker lithology is lower

than that of the blue cluster (θ = 0.41 ± 0.03) and the Pozo catchment as a whole (θ = 0.45 ±
0.02).

707

708

709

710

711

712

713

nels allowed the spatial and temporal mapping of this transient signal through the river778

network. Our technique allows the extraction of a ‘characteristic’ profile of gradient against779

distance downstream for each cluster (Figure 5b, e, and h), which clearly show the sep-780

aration of the first order profiles into those which are steady state and those which are781

transient. These synthetic landscapes are by nature simplistic, as they only include de-782

tachment limited stream power with no hillslope diffusion or simulation of landsliding783

processes, for example. We therefore expected that clustering of river profiles in real land-784

scapes would be more challenging due to the wide variety of geomorphic processes and785

landscape heterogeneity which is not captured in these model runs. However, they are786

useful indications of potential real-world situations in which the clustering technique could787

be applied.788

Following on from these synthetic examples, we then highlight the ability of the789

clustering technique to identify landscape similarity in two real-world scenarios. We show790

that in transient landscapes, such as in Harrington Creek, our method can be used to791

identify parts of the landscape responding to different erosion rates, for example. The792

results from Harrington Creek (Figure 6) show that the channels in the relict landscape793

above the knickpoint cluster separately from those in the steeper landscape below the794

knickpoint, allowing the spatial mapping of transient signals. We find that the median795

channel gradient of the first order channels in the cluster below the knickpoint is nearly796

double that of the channels above the knickpoint (0.63 compared to 0.35 respectively).797

Furthermore, the median gradient–distance profile for each cluster shows that this dif-798

ference in gradient is maintained consistently from the headwaters to the downstream799

tributary junctions of the first order channels. These aggregated statistics of each clus-800

ter therefore provide a useful indicator of the overall difference in channel profile gra-801

dient between clusters as well as any spatial pattern within each cluster. We then plot802

slope–area data separately by cluster, as well as comparing the clustering of first order803
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to third order channels to identify the topographic signature of different geomorphic pro-804

cesses in the landscape. We found that clustering over third order channels led to the805

separation between channels with both low drainage areas and low concavity, indicative806

of valley incision by debris flows (e.g. Stock & Dietrich, 2003), and channels with higher807

drainage area and concavity indicative of fluvial incision. This highlights how cluster-808

ing can be used to objectively analyze geomorphic process domains within the valley net-809

work.810

Our method also allows potential identification of the main factors affecting chan-811

nel profile morphology. For example, in the Pozo catchment, the results of the cluster-812

ing were primarily correlated to lithological variations between a weaker, unconsolidated813

shale unit compared to more resistant volcaniclastics. This lithological impact on the river814

profiles persists despite evidence for propagation of transient signals from sea level changes815

through the catchment, such as the preservation of knickpoints, hanging valleys, and ma-816

rine terraces (Neely et al., 2017), as well as recent anthropogenic erosion (Perroy, 2009;817

Perroy et al., 2010). Although we perform the clustering based on the channel profiles,818

our analysis need not be restricted to purely river profile analysis: we also extracted the819

catchments associated with each cluster, allowing us to compare landscape relief and gra-820

dient across each cluster, as shown in Figures 9 and 14. This demonstrates the ability821

of the clustering method to spatially segment the landscape into areas with morpholog-822

ical similarity. Furthermore, we can also combine the clustering with other spatial datasets,823

such as vegetation height derived from lidar point clouds (e.g. Figure 13) or potentially824

with other satellite-derived data.825

We also compared our clustering algorithm to the standard approach within the826

literature for analyzing channel networks – normalized channel steepness analysis. We827

found that the strong lithological variations in the catchment identified by clustering were828

not detectable when analyzing the distribution of ksn between lithologies (Figure 15).829

Following on from this, we performed the extraction of channel steepness and concav-830

ity metrics (ks and θ) separately for each cluster, and found that there was a significant831

variation in θ between the weaker shale lithology and more resistant volcaniclastics that832

is not possible to determine from performing channel steepness analysis prior to cluster-833

ing. This illustrates how our technique can successfully identify heterogeneity within the834

landscape, which is not possible with current methods, as well as improving our under-835

standing of controls on river profile morphology.836

7 Conclusions837

We have presented a new technique for identifying groups of similar river profiles838

within heterogeneous landscapes. Our method is based on agglomerative hierarchical clus-839

tering algorithms commonly used to analyze time series data, and allows the classifica-840

tion of river long profiles based on their dissimilarity. With the exponential increase in841

the global availability of topographic data, particularly at high spatial resolutions, there842

is a greater need for techniques which allow the efficient analysis of large datasets to ex-843

tract meaningful geomorphic metrics. A key advantage of a clustering approach is that844

it allows a significant reduction in data density: we can combine tens to thousands of845

river profiles into groups with similar morphologies. This potentially allows the extrac-846

tion of signals from the aggregated statistics of each group which would not be possi-847

ble if each profile was analyzed in isolation.848

This approach can potentially be useful for a variety of geomorphic problems. By849

analyzing the characteristic profiles of each cluster, we can investigate both the overall850

differences in channel morphology between clusters as well as patterns of gradient within851

each cluster. We can use these spatial differences to interpret each group in terms of com-852

mon lithological, climatic, or tectonic drivers. We have demonstrated through a num-853

ber of synthetic and real-world examples that clustering can distinguish and spatially854
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map both variations in lithology and landscape transience from migrating incision waves.855

We have shown that we can use clustering to detect scaling breaks between debris-flow856

dominated and fluvial-dominated process regimes, as well as improving our ability to ex-857

tract metrics of channel steepness and concavity. Although we focus here on the use of858

clustering in tectonic geomorphology, classifying morphologically-similar river profiles859

could also be used to tackle diverse problems such as identifying hillslope-valley tran-860

sitions; exploring controls on channel initiation; and understanding the transition between861

bedrock and alluvial rivers.862
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