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Abstract 16 

 17 

Long run-out rock avalanches are one of the most hazardous geomorphic processes, and risk 18 

assessments of the potential threat they pose are often reliant on numerical modelling of their potential 19 

run-out distance. The development of such models requires a thorough understanding of past flow 20 

behaviour inferred from deposits emplaced by previous events. Despite this, few records exist of multiple 21 

rock avalanches that occurred in conditions sufficiently consistent to develop a set of more generalised, 22 

and hence transferrable, rules. We conduct field and imagery-based mapping and use numerical 23 

modelling to investigate the emplacement of 20 adjacent rock avalanches on the southern flanks of the 24 

Nuussuaq peninsula, West Greenland. The rock avalanches run out towards the Vaigat Strait, and are 25 

sourced from a range of coastal mountains of relatively uniform geology. We calibrate a three-26 

dimensional continuum dynamic flow code, VolcFlow, with data from a modern, well-constrained event 27 

that occurred at Paatuut (AD 2000). The best-fit model assumes a constant retarding stress with a 28 

collisional stress coefficient, simulating run-out to within ±0.3% of that observed. This calibration was then 29 

used to model the emplacement of deposits from five other neighbouring rock avalanches before 30 

simulating the general characteristics of a further 14 rock avalanche deposits on simplified topography. 31 

Our findings illustrate that a single calibration of VolcFlow can account for the observed deposit 32 

morphology of a uniquely large collection of rock avalanche deposits, emplaced by a series of events 33 

spanning a large volume range. Although the prevailing approach of tuning models to a specific case may 34 

be useful for detailed back-analysis of that event, we show that more generally applied models, even 35 

using a single pair of rheological parameters, can be used to model potential rock avalanches of varied 36 

volumes in a region and, therefore, to assess the risks that they pose. 37 
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1 Introduction 38 

 39 

Rock avalanches are large volume (> 106 m3), long run-out mass movements that exert a major and long-40 

lasting influence on landscapes by virtue of their ability to mobilise large volumes of material (Fischer et 41 

al., 2012), thereby limiting topographic relief and modulating sediment flux (Fort and Peulvast, 1995; 42 

Korup, 2006). The secondary consequences of rock avalanches can often be more far-reaching and 43 

severe than the events themselves. Far-field hazards can result from landslide dam breach (Korup, 2002) 44 

and, where landslides run out into water, the direct impact and/or subsequent sub-aqueous slumping of 45 

deposits can result in tsunami (Løvholt et al., 2015; Gauthier et al., 2017). The displacement waves 46 

generated by rock avalanches that enter water bodies represent a major natural hazard for coastal 47 

communities in the fjord regions of New Zealand (Dykstra, 2013), Norway (Olesen et al., 2004; Böhme et 48 

al., 2015), British Columbia (Murty, 1979; Bornhold et al., 2007), Alaska (Miller, 1960; Dufresne et al., 49 

2018), Chile (Sepúlveda and Serey, 2009), and, as seen recently, the deglaciated western margin of 50 

Greenland (Dahl-Jensen et al., 2004; Gauthier et al., 2017). As well as pre-failure deformation 51 

(Jaboyedoff et al., 2011), seismic precursors have also been observed prior to large, tsunamigenic events 52 

(for example, at Nuugaatsiaq, Greenland; Poli, 2017). Considerable emphasis has therefore been placed 53 

on quantifying both the hazards and risks associated with actively deforming rock-slopes based on the 54 

identification and monitoring of potential failures, estimation of rockslide properties, and modelling slope 55 

stability and potential run-out using a combination of laboratory models and mathematical simulations 56 

(Blikra et al., 2005; Willenberg et al., 2009; Gigli et al., 2011). 57 

 58 

The successful simulation of rock avalanche dynamics, potential run-out distance and tsunami generation 59 

in fjord environments is contingent upon a thorough understanding of the flow dynamics inferred from 60 

deposits left by previous events (Rickenmann, 2005). However, the poor preservation of deposits and the 61 

need to map both terrestrial and subaqueous environments often confutes the validation of models 62 

(Korup et al., 2007). This is compounded by difficulties in simulating the complex behaviour of the rock 63 

avalanche mass during both subaerial and subaqueous propagation, where successful modelling relies 64 

upon selecting an appropriate approximation of the emplacement dynamics and rheology (Pirulli and 65 
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Mangeney, 2008). Recent modelling advances are progressing towards the simulation of complex two-66 

phase flows (Pudasaini and Krautblatter, 2014), with emphasis being placed on modelling the transition 67 

from a terrestrial to subaqueous environment, and the displacement of water that results (Mergili et al., 68 

2017). These efforts are in their infancy and require extensive validation against well-constrained 69 

prototypes rather than conceptual models of events (Mergili et al., 2017). Single phase models have been 70 

successfully used to model the terrestrial portion of rock avalanche run-out (Schleier et al., 2017), and 71 

can be used to provide the key characteristics for tsunami modelling. However, few records exist of 72 

multiple rock avalanche events with boundary conditions sufficiently consistent to permit sensitivity 73 

analysis to changes in key variables, such as volume. Most research involving numerical modelling of 74 

rock avalanche run-out to date has therefore focussed on back analysing individual events, or events 75 

defined by some larger grouping variable such as those that have occurred in a ‘glacial environment’ 76 

(Sosio et al., 2012). Models often need to be run with several differing rheologies in order to adequately 77 

describe each of the key output variables such as velocity, run-out, flow width and depth. This approach 78 

provides a broad envelope of rheological properties (Sosio et al., 2008; 2012) that are usually unsuited to 79 

predictive scenario modelling with acceptable errors, thereby precluding the development of a set of more 80 

generalised rules for behaviour across rock avalanches in different settings (Evans et al., 2006). 81 

 82 

Here, we apply a single-phase modelling approach to a cluster of 20 rock avalanche deposits along the 83 

Vaigat Strait, West Greenland. This presents the unique opportunity to model a large sample of adjacent 84 

rock avalanches with well-preserved morphological and sedimentological records, and that are sourced 85 

from a stretch of mountains of relatively uniform geology and (post-) glacial history. The rock avalanche 86 

and corresponding tsunami at Paatuut (AD 2000) is well-documented (Pedersen et al., 2002; Dahl-87 

Jensen et al., 2004), and represents an important opportunity for calibration of a numerical model by 88 

back-analysis. As the geomorphological and geological conditions are relatively uniform across this 89 

region, we first use  a case-specific calibration to investigate the ability of several commonly invoked 90 

rheologies to reproduce the kinematics and deposit geometry of the Paatuut event. The best-fit 91 

rheological model is then used to simulate a wider set of event deposits in Vaigat to establish its ability to 92 

be used for predictive modelling.  93 
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2 Study site 94 

 95 

Located in the Disko Bugt region of central West Greenland, the northern coast of the Vaigat Strait offers 96 

a unique geological setting that has generated a cluster of 20 rock avalanche deposits (Figure 1; 97 

Pedersen et al., 2002). The stratigraphic succession comprises a series of hyaloclastite breccias and 98 

subaerial lava flows of the Palaeocene Vaigat and Maligât formations that overlie sedimentary rocks, 99 

including sandstones, mudstones and coal seams, of the Cretaceous Atane and the Danian Quikavsak 100 

formations (Pedersen and Pulvertaft, 1992; Dam and Sønderholm, 1998). These conditions are thought 101 

to be particularly favourable for the generation of rock avalanches along Vaigat’s coastal slopes, 102 

especially where erosion exposes the underlying soft units (Strom, 2004). Given that active faulting in 103 

Vaigat is minimal (Voss et al., 2007), the rock avalanches are thought to have been triggered by 104 

progressive deformation of the valley side-walls in response to glacial over-steepening (Pedersen et al., 105 

2002). Climatic controls are considered to have acted as a direct trigger of the 21 November 2000 106 

Paatuut rock avalanche, where a particularly deep active layer of permafrost was present (Buchwał et al., 107 

2015) and fluctuations in air temperature in the days prior to the event drove the repeated melting and 108 

refreezing of water in surface cracks (Dahl-Jensen et al., 2004). 109 

 110 

The 20 onshore rock avalanche deposits are clearly identifiable from their geomorphological expression 111 

(Figures 2 and 3). Source areas range from conspicuous, structurally-controlled hollows above deposits 112 

(Figure 2a), to near-vertical faces with source areas that are more difficult to define. The deposits are 113 

characterised by variable volumes  (2 × 106 – 90 × 106 m3), run-out (1,270 – 4,383 m) and stalling 114 

characteristics, with some halting on or above a topographic bench or an alluvial fan (RA 2 – 5; Figure 115 

2b), some running out to sea level (RA 8 and RA 9) and some emplaced into the fjord, generating 116 

tsunami (RA 1 and RA 16; Figure 2c). The deposits are distinct from the well-studied rock glaciers on 117 

Disko Island, which lies on the opposite side of the strait (Humlum, 2000). Some deposits are relatively 118 

younger with sharper, more well-defined morphologies, steep termini (Figure 2d) and a carapace of 119 

coarse clastic material (Figure 2e; as observed in Crosta et al., 2007; Dufresne et al., 2016; Dufresne and 120 

Dunning, 2017). Many of them tend to consist of a complex of partially overlapping and anastomosing 121 
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lobes, with extensive fields of small, conical mounds (‘molards’; Figure 2f) and longitudinal pressure 122 

ridges. These form (sub-) parallel to the flow direction, often standing up to tens of metres high, and have 123 

been observed on the surfaces of many rock avalanche deposits. These observations, as well as the 124 

results of laboratory experiments, have been used to suggest that emplacement velocity, bulk/material 125 

density, and frictional behaviour combine to control the degree to which prominent longitudinal features 126 

form (Dufresne and Davies, 2009). Their occurrence has also been attributed to the incorporation of ice 127 

into the flow (Huggel et al., 2005). Notably, given the proximity of many of the deposits to alluvial fans that 128 

undergo periodic debris-flow activity, it is possible that older rock avalanche deposits exist in the area that 129 

have not been recognised due to reworking. 130 

 131 

The deposits are younger than 10 ka, and are likely to have been emplaced since ca. 3 ka based on their 132 

relationship with various local Holocene sea level markers (Long et al., 2011). They contain a total of > 133 

350 × 106 m3 of material along some 25 km of coastline, equivalent to a ca. 2 m drape of sediment across 134 

the entire landscape when a 5 km wide slope is assumed. Assuming an age of < 3 ka, the volume of 135 

material contained in these deposits is equivalent to ca. 4 mm yr-1 of average horizontal rockwall retreat. 136 

They are well preserved but weathered to varying degrees, suggesting either variable ages or 137 

significantly different weathering rates, although we consider this unlikely given the similarity of source 138 

lithology and near horizontal bedding along the coast. The surface morphologies of the deposits support a 139 

rapid rock avalanche emplacement process (Dufresne and Davies, 2009); the margins are steep, 140 

longitudinal boulder ridges and lobate flow units are present, and distal margins show bulldozing of 141 

underlying sediments (Figures 2 and 3).  142 

 143 

3 Methods  144 

 145 

We have modelled the onshore portion of 20 rock avalanche deposits (Figure 1) that have previously 146 

been documented by Pedersen et al. (2002). The geometric characteristics of the deposits are 147 

summarised in Table S1, and details of the mapping and GIS-based analysis undertaken are given in 148 

Text S1. 149 
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3.1 Numerical flow code 150 

 151 

The rock avalanche motion is modelled using the geophysical mass flow code VolcFlow (Kelfoun and 152 

Druitt, 2005). VolcFlow has been tested on a number of debris avalanches and pyroclastic flow events, 153 

successfully simulating avalanche run-out and emplacement dynamics in a number of settings (Kelfoun 154 

and Druitt, 2005; Kelfoun et al., 2008; 2009; 2010; Giachetti et al., 2011; Kelfoun, 2011; Paris et al., 2011; 155 

Charbonnier and Gertisser, 2012; Dondin et al., 2012; Giachetti et al., 2012; 2013; Manzella et al., 2016; 156 

Kelfoun, 2017; Kelfoun et al., 2017). As with many other continuum dynamic models used for simulating 157 

rock avalanche propagation (Savage and Hutter, 1989; Iverson et al., 1997; McDougall and Hungr, 2004), 158 

VolcFlow is governed by a continuity and momentum equation based on the Saint-Venant equations of 159 

shallow flow. These are derived by integrating the Navier-Stokes equations with respect to flow depth in a 160 

procedure known as depth-averaging (Hungr, 1995). The model therefore constitutes a 2.5D 161 

representation and assumes that stresses increase linearly with depth, neglecting shear stresses in the 162 

depth direction. It is also assumed that the depth of the flowing mass varies gradually and is small in 163 

relation to its overall extent, which is a classical shallow flow assumption of hydrodynamics (Chow, 1959). 164 

 165 

The governing equations in VolcFlow are solved using a shock-capturing, finite difference numerical 166 

method based on a single upwind Eulerian scheme (Kelfoun and Druitt, 2005). With reference to a 167 

topography-linked coordinate system, where the flow depth, h (m) over time, t (s) is measured normal to 168 

the sliding surface and x and y are parallel to it, the depth-averaged equations of mass (Eq. 1) and 169 

momentum (Eq. 2 and Eq. 3) conservation are:	 170 

 171 
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where vx and vy are the x and y components of the flow velocity (m s-1); α is the local ground slope (°); τ is 176 

the basal shear stress (kg m-1 s-2); ρ is the bulk density of both the landslide and the path material (kg m-3); 177 

g is the acceleration due to gravity (9.81 m s-2); and kact/pass is the earth pressure coefficient, which is the 178 

ratio of ground-parallel to ground-normal stress. 179 

 180 

The motion of rock avalanches in models is often governed by simple rheological laws that can vary 181 

internally and/or along the path of motion (McDougall, 2006). Depth-averaging allows the rheology to be 182 

represented as a single term that expresses the frictional forces occurring at the base of the flow (Luna et 183 

al., 2010). A number of rheological laws have been invoked for the simulation of rock avalanches, the 184 

mathematical expressions for which solve for the basal shear stress as a function of flow depth, density, 185 

mean flow velocity and the relevant rheological parameters. In VolcFlow, we define the basal rheology 186 

using a frictional (one or two angle), Voellmy or a plastic rheology, each of which are well-established for 187 

simulating rock avalanche propagation (Evans et al., 1989; Chen and Lee, 2000; Crosta et al., 2004; 188 

Hungr and Evans, 2004; McDougall and Hungr, 2004; Sosio et al., 2008; 2012). The choice of rheology is 189 

often dictated by the output variable of interest, such as the overall runout extent or velocity. No single 190 

rheological model has proven to model definitively all output variables of interest, partially due to the 191 

issues of tuned back analyses versus generality, which we address here. We present the mathematical 192 

expressions of τ in depth-averaged form, as derived by Kelfoun (2011), where the terms in bold are to be 193 

defined in VolcFlow depending on the chosen rheology. 194 

 195 

Frictional basal resistance assumes that the basal shear stress is a function of the effective bed normal 196 

stress at the flow base and the friction angle, φbed, between the flow and the underlying topography. The 197 

equation defining the basal shear stress for a frictional flow is: 198 

 199 

																																																											𝜏 = 𝜌ℎF𝑔 𝑐𝑜𝑠 ⍺ +
𝑢0

𝑟 L 𝑡𝑎𝑛𝝋𝒃𝒆𝒅
𝑢
‖𝑢‖																																																									(4) 201 

 200 

where u is the depth-averaged flow velocity (m s-1) and r the slope curvature (-). In a one angle frictional 202 
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model, the internal angle of friction of the flowing material, φint, is equal to φbed and the internal stresses 203 

are considered to be isotropic. In VolcFlow, the earth pressure coefficient, kact/pass, is therefore equal to 1. 204 

In a two-equation frictional law, φint can differ from φbed, thereby acting on the earth pressure coefficient 205 

and modifying the stresses induced by the pressure gradient. This allows for strain-dependent, 206 

anisotropic internal stresses that arise due to the 3D deformation of material during topographically 207 

steered or restricted flow (McDougall and Hungr, 2004). If the internal behaviour of the sliding mass is 208 

frictional, then: 209 

 210 

																																										𝑘;<=/?;@@ = 2F
1 ±V1 − cos0𝝋𝒊𝒏𝒕(1 + tan0𝝋𝒃𝒆𝒅)

cos0𝝋𝒊𝒏𝒕
L − 1																																							(5)	211 

 212 

The minimum and maximum values of the stress coefficients occur when the flow is extensional (active) 213 

and compressional (passive), respectively.  214 

 215 

A number of rheological models invoke a velocity-dependent term (Wadge et al., 1998).  For example, the 216 

Voellmy rheology describes the total resistance as the sum of a frictional term, φbed, and a collisional 217 

stress coefficient, ξ (dimensionless), such that:  218 

 219 

																																														𝜏 = 𝜌ℎF𝑔 𝑐𝑜𝑠 ⍺ +
𝑢0

𝑟 L 𝑡𝑎𝑛𝝋𝒃𝒆𝒅
𝑢
‖𝑢‖ + 𝝃𝜌

‖𝑢‖ × 𝑢																																													(6) 221 

                          	220 

The turbulence parameter thereby accounts for all possible sources of velocity-dependent resistance, 222 

representing the effect of turbulence and/or collisions during motion (Hutter and Nohguchi, 1990; Evans 223 

et al., 2001).  224 

 225 

A plastic rheology is often used to describe the pseudo-static motion of liquefied soils, which remain at 226 

rest while the applied shear stress is below a threshold yield stress. Once movement begins, the shear 227 

stress exerted by the material is constant, irrespective of its thickness and/or its velocity (Dade and 228 

Huppert, 1998). The basal shear stress is assumed to be equal to a constant shear strength, τ0: 229 
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																																																																																			𝜏 = 𝝉𝟎
𝑢
‖𝑢‖																																																																																		(7) 231 

               			      				                                            	230 

The velocity and run-out of a flow modelled using the plastic rheology can also be moderated by adding a 232 

collisional stress coefficient, ξ. 233 

 234 

																																																																								𝜏 = 𝝉𝟎
𝑢
‖𝑢‖ + 𝝃𝜌

‖𝑢‖ × 𝑢																																																																				(8) 236 

              	                                       	235 

Following deposition, deposits formed using a plastic rheology remain plastic at rest, even when 237 

deposited on steep slopes. 238 

 239 

3.2 Model calibration 240 

 241 

The model was first calibrated by back analysis of the rock avalanche at Paatuut (RA 1), shown in Figure 242 

4a. The rock avalanche initiated at ca. 1,400 m above sea level, detaching > 90 × 106 m3 of basalt from 243 

two steep (ca. 60°) release surfaces. Both the initial collapse and the propagation of the rock avalanche 244 

were captured at three broadband seismic stations, providing constraints on flow velocity and event 245 

duration (Pedersen et al., 2002). The rock avalanche ran out into the Vaigat Strait at 140 – 200 km h-1, 246 

where part of the submerged deposit toe then slumped into the sea. The collapse generated a tsunami 247 

with a run-up of ca. 50 m on the coast adjacent to Paatuut (Dahl-Jensen et al., 2004) and over 10 m on 248 

the opposite shoreline, 20 km away (Szczuciński et al., 2012). We model the rock avalanche on available 249 

25 m topography, the details of which are provided in Section 3.4. 250 

 251 

In total, 41 models were run with the aim of reproducing: (i) the maximum run-out distance, (ii) the 252 

kinematics of the event (maximum flow velocity and duration of emplacement), and (iii) the first-order 253 

morphology of the subaerial rock avalanche deposit (Table 1). The rheological parameters, φbed, φint, ξ 254 

and τ0, were selected using a systematic approach and iteratively adjusted in fixed intervals for each 255 

rheology until the model outputs converged as closely as possible with the chosen criteria, which were 256 
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used as a means of evaluating the empirical adequacy of the model (Oreskes et al., 1994). For the 257 

Voellmy rheology, φbed was selected first as to reach the observed distal end of deposition, followed by 258 

the adjustment of ξ, which controls the proximal end limit of deposition and the flow velocity. For the 259 

plastic rheology with a collisional stress, τ0 was selected first as to reach the observed distal end of 260 

deposition, followed by the adjustment of ξ. Where possible, the calibration procedure was undertaken in 261 

keeping with the range of values commonly found in the literature on natural subaerial rock avalanches 262 

(Sosio et al., 2008; Giachetti et al., 2011; Kelfoun, 2011). 263 

 264 

The assumptions required to run and evaluate the Paatuut case are supported by information available 265 

from the literature (Pedersen et al., 2002; Dahl-Jensen et al., 2004), as well as measurements made 266 

during a GIS-based analysis of the deposit (Table 1). These include a number of commonly recorded 267 

characteristics, as well as the hypsometric integral of the deposit. The hypsometric integral is a non-268 

dimensional measure of the proportion of a landform above a given elevation and here constitutes an 269 

important criterion for assessing model performance (Willgoose and Hancock, 1998). The increase in 270 

volume due to bulking or fragmentation processes is not simulated by the code. We therefore increased 271 

the source volume by 25%, replicating the approach of Sosio et al. (2012) and Moore et al. (2017), in 272 

order to include the volume increase during rock avalanche propagation due to generation of void spaces 273 

and dilatation (Voight et al., 1983). All simulations assumed a single collapse of ca. 90 × 106 m3 of basalt 274 

(r = 2,150 kg m-3) that propagated across dry topography and were ended when the velocity of the flow 275 

reached 0 m s-1. The mass was initially forced to slide over the plateau (ca. 750 m in length) as a block 276 

before cohesion of the failed mass decreased as it began to flow down-valley. This capability was 277 

enabled to simulate the early sliding phase of the rock avalanche (Voight and Faust, 1982; Kelfoun, 278 

2014), which is thought to have initiated as an intact rockfall/slide (Dahl-Jensen et al., 2004). This initially 279 

coherent stage has greatly improved back-analyses of similar rock avalanches, with little parameter 280 

sensitivity (Aaron and Hungr, 2016; Aaron et al., 2017). Measures of entrainment, such as spatial 281 

patterns of eroded depths and the downslope lag rate, have not been made for the Paatuut event. These 282 

processes were not simulated as they could not be adequately parametrised, nor reasonably generalised 283 

across all events in our database of rock avalanches.  284 
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3.3 Application to other rock avalanches 285 

 286 

Numerical simulations using VolcFlow were performed for the remaining 19 rock avalanches using the 287 

best-fit rheological parameters obtained by back-analysis of the Paatuut event (Figures 4 and 5). A 288 

detailed description of these events is given in Text S2. Five rock avalanches were also simulated across 289 

2.5D terrain, while the last 14 were modelled on simplified 2.5D terrain, the generation of which is 290 

described in Section 3.4. The rock avalanches modelled in full 2.5D were chosen based on their clear 291 

morphological expression, and are representative of a range of event types occurring in Vaigat. They 292 

include, with deposit numbers in parentheses relating to Figure 1c: (i) an event that ran out to sea-level 293 

and generated a tsunami (RA 16), (ii) an event that ran out to sea-level and stalled (RA 14), (iii) an event 294 

that stalled on an alluvial fan (RA 10), (iv) and two events that stalled on and above a major topographic 295 

bench, respectively (RA 4 and RA 2). Those remaining models, run across terrain that was uniform 296 

across slope but variable downslope, provide a test-bed for assessing the ability of the model to simulate 297 

run-out on a reduced level of topographic complexity. As such, we explore the value of modelling on 298 

lower resolution topography, which may be more common when looking to assess rock avalanche hazard 299 

at larger scales, more quickly. 300 

 301 

3.4 Topographic data 302 

 303 

The Paatuut rock avalanche deposit and local topography was characterised using 10 m resolution pre- 304 

and post-event DEMs generated by the Geological Survey of Denmark and Greenland (GEUS). The 305 

DEMs were downsampled by cubic convolution to 25 m in order to remain consistent with other available 306 

topographic data for the area. Estimates of the magnitude and spatial distribution of erosion and 307 

deposition at Paatuut were derived by differencing the DEMs. The post-collapse scar elevations were 308 

then extracted from the 2001 DEM and mosaicked onto the 1985 DEM to derive the topography of the 309 

sliding surface for input into VolcFlow. Vertical erosional depths were converted into depths normal to the 310 

ground using the cosine of the local slope. A schematic diagram of this procedure is provided in Figure 311 

S1. 312 
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 313 

All other cases were modelled using the 25 m Greenland Ice Mapping Project DEM (Howat et al., 2014). 314 

For the events modelled in full 2.5D, we reconstruct pre-failure topographies by modifying the original 315 

terrain data in the source and path areas according to event descriptions and morphological evidence; 316 

this includes field observations as well as available airborne and satellite data. For the events modelled 317 

using simplified 2.5D terrain, this was generated by extruding a long single profile of each rock avalanche 318 

in a uniform manner across-contour at 25 m intervals; each value of Y (across slope distance) therefore 319 

had identical values of X (downslope distance) and Z (height). This was deemed appropriate given the 320 

open and largely consistent slope profile form on this coastal slope.  321 

 322 

4 Modelling results 323 

 324 

We first present the results of the Paatuut model calibration. Five rheologies were tested to simulate the 325 

propagation of the rock avalanche. The parameters and results of the best-fit simulation for each rheology 326 

are summarised in Table 2. In Section 4.2, we consider the ability of best-fit parameters to accurately 327 

simulate the other events in Vaigat, including 14 events simulated across simplified terrain.  328 

 329 

4.1 Rheological calibration 330 

 331 

In all simulations using a one angle frictional rheology, the velocity of the source mass following collapse 332 

was relatively slow (ca. 10 m s-1) as it flowed across a low gradient (ca. 6 – 7°) plateau at the base of the 333 

escarpment. At greater basal frictional angles (17 – 20°) the mass accumulated over a very limited 334 

distance, with much of the source mass remaining stalled on the plateau (Figure 6a). These 335 

parameterisations therefore underestimate the known average velocity of the rock avalanche. The run-out 336 

is more satisfactorily simulated using lower basal friction angles (φbed = 13 – 15°), with the best-fit model 337 

achieving within ±3% of the observed run-out (φbed = 14°; Table 2). For these cases, a higher proportion 338 

of the mass left the source area and flowed through the gullies in the Atane Formation before forming a 339 

sheet-like deposit with a rounded frontal lobe and gentle downstream slopes. Although the best-fit 340 
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frictional model is successful in reproducing the run-out at Paatuut, it is unable to sufficiently replicate the 341 

deposit morphology and the known kinematics of the event, overestimating the maximum velocity (+59%) 342 

and duration of emplacement (+130%), and underestimating the average velocity (-31%) of the flow 343 

(Table 2). 344 

 345 

Using a two angle frictional rheology, the flowing mass behaved similarly to the previous set of 346 

simulations. However, as φint > φbed, the deposits were emplaced closer to the source, with a small 347 

component forming a thickening wedge at the distal end (Figure 6b). Although the best-fit model is able to 348 

simulate the event to within ±2% of the observed run-out (φbed = 12°, φint = 30°), the simulated flows were 349 

emplaced slowly (+211%), and the run-out extent and spreading was only achieved by a fraction of the 350 

failed mass due to strong spreading of the frontal wedge by inertia. Although several of the flows are able 351 

to adequately reproduce the extent of run-out at Paatuut, combining a realistic internal friction angle (30° 352 

or 35°) with any commonly-used basal friction angle (10 – 15°) fails to reproduce the initial collapse of the 353 

source mass, the kinematics of the event, or the overall morphology of the resultant deposit. 354 

 355 

The Voellmy rheology adds a collisional stress coefficient (ξ), which depends on the square of the flow 356 

velocity, to the frictional model. The addition of ξ incorporates the effects of simulated turbulence and/or 357 

collisions within the flow, reducing its maximum velocity and providing a better fit than that simulated by 358 

either of the frictional laws (-14%; Table 2). The lower inertia allows the mass to accumulate closer to the 359 

point where the topographic slope equals φbed (Figure 6c). A greater proportion of the collapsed mass 360 

was therefore able to flow out of the source area, through the gullies in the Atane Formation, and then out 361 

onto the alluvial fan below. The deposits therefore accumulated at greater thicknesses in the medial and 362 

distal reaches, which is in agreement with field observations at Paatuut. The hypsometry of deposits 363 

modelled using a Voellmy rheology converges with the morphology of the observed deposit. Although the 364 

best-fit model fails to simulate the extent of the run-out as closely as the frictional models (-6%; φbed = 365 

13°, ξ = 0.01), it can better simulate the distribution of the resultant deposit and can more accurately 366 

reproduce the horizontal displacement of the centre of mass (-20%), maximum flow velocity (-14%) and 367 

average deposit thickness (-11%; Table 2). 368 
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 369 

The plastic rheology assumes a constant retarding stress, τ0, which is independent of the depth or 370 

velocity of the flow. In all cases the acceleration of the source mass following collapse was slow as it 371 

flowed across the plateau at the base of the escarpment. Lateral confinement by gullies caused the flow 372 

to deepen, increasing the driving stress. The flowing mass then began to accelerate rapidly, reaching a 373 

maximum flow velocity exceeding that estimated from seismic records (+29%, Table 2; Pedersen et al., 374 

2002). As the mass flowed out from the gullies it spread and thinned, lowering the driving stress to below 375 

τ0 and causing the flow to decelerate, achieving a run-out within ±1% of the observed distance (best-fit: τ0 376 

= 270 kPa; Table 2). The duration of the event is best simulated with a plastic flow (+9%; Table 2), while 377 

all non-plastic rheologies overestimate event duration considerably. The deposits emplaced using a 378 

plastic rheology are sheet-like on all slopes and form a rounded frontal lobe with a well-defined flow front, 379 

in keeping with field observations (Figure 6d). The plastic rheology therefore replicates the kinematics of 380 

the event and the morphology of the resultant deposit well, with close fits obtained for the horizontal 381 

displacement of the centre of mass (-28%), average and maximum deposit thickness (+6% and +18%) 382 

and depositional area (+10%, Table 2).  383 

 384 

The effect of the addition of a collisional stress coefficient (ξ) to the plastic rheology is principally to 385 

reduce the velocity of the flow. With this additional velocity-dependent stress, the best-fit value of the 386 

constant retarding stress obtained in the previous section must be lowered to achieve the observed run-387 

out. The maximum velocity of a flow simulated with this rheology is therefore reduced and is a closer fit to 388 

that derived using seismic records (+18%; Pedersen et al., 2002). In all cases the flowing mass behaved 389 

in a similar manner to the previous set of simulations, and the morphology of the modelled deposits 390 

shares the characteristics modelled with a purely plastic flow (Figure 6e). A number of combinations of τ0 391 

and ξ were tested, with the best-fit model simulating the event to within ±0.3% of the observed run-out, 392 

which corresponds to: τ0 = 250 kPa, ξ = 0.01 (Table 2).  393 

 394 

The kinematics of the Paatuut rock avalanche and the morphology of the resultant deposit are most 395 

empirically adequate when a collisional stress coefficient (ξ = 0.01) is added to the plastic model (τ0 = 250 396 
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kPa). This rheology is most successful in reproducing the event kinematics, deposit mass distribution and 397 

deposit morphology to justify the assumption that it represents, to the first order, the dominant features of 398 

the emplacement dynamics. The simulated emplacement of the event is presented in Figure S2.  399 

 400 

4.2 Results from other simulations 401 

 402 

Five other rock avalanches in Vaigat were simulated using the best-fit rheological calibration obtained 403 

from back analysis of the Paatuut case (τ0 = 250 kPa, ξ = 0.01). A realistic simulation of the observed run-404 

out was obtained for all of the rock avalanches, with all but one event modelled to within ±2% of the 405 

observed run-out (Table 3). The model failed to adequately simulate the event characteristics of the 406 

smallest event, RA 10 (ca. 5 × 106 m3), which ran out and stalled above an alluvial fan at Tupaasat 407 

(Figure 5a; Table 3). A number of the deposits, particularly those emplaced by RA 1, RA 2, RA 4 and RA 408 

16, are characterised by a convex upper deposit surface, and steep fronts and sides close to the angle of 409 

repose. The distribution of deposit thickness, as observed through the centre line, is simulated well, with 410 

those emplaced by all of the modelled events closely approximating those of the observed deposits within 411 

error (Figure 7). In addition, RA 2, RA 4 and RA 10 were correctly simulated to stall at or above a major 412 

topographic bench. In all cases, deposition is simulated along the full extent of the run-out path, while the 413 

observed deposits were only emplaced in the medial and distal reaches. This may reflect post-deposition 414 

reworking of the upper reaches of these deposits, as multiple debris flows were observed transporting 415 

proximal rock avalanche sediments into the fjord. However, it may also be indicative of the simplified 416 

rheology used to simulate run-out, as deposits formed using a plastic rheology remain plastic at rest, 417 

even when deposited on steep slopes. Cross-slope transects taken through the toe of each deposit show 418 

that the lateral thickness distribution is also simulated well, with the deposits emplaced by all of the 419 

events closely approximating those of the observed deposits within error (Figure 8). The lobes of the 420 

deposits appear to have developed in response to the underlying topography, with evidence of upslope 421 

thinning, hole filling and pinching out of the deposit at topographic highs apparent (Figure 8). 422 

 423 

The ability of the model to reproduce the bulk external behaviour (run-out, lateral extent, depositional 424 
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area, and apparent coefficient of friction H/L, which is equal to the ratio of the drop height to run-out) of 425 

each of the 20 cases was assessed using reduced major axis regression (RMA; Figure 9) to compare 426 

model outputs with field measurements. The total run-out distance of > 80% of the cases was simulated 427 

within an error of ±10% using a plastic rheology and a velocity-dependent law (τ0 = 250 kPa, ξ = 0.01). 428 

Encouragingly, half of the cases were simulated within an error of ±2%. The RMA fit to the run-out data is 429 

very close, with an r2 value of 0.99 (Figure 9a). Residuals show spreading at relatively short run-out 430 

distances (ca. 1,000 – 2,000 m) and clustering around residuals equal to 0 at long run-outs (> 3,000 m). 431 

This indicates that the model simulates events that ran out over longer distances more accurately than 432 

those that ran out over a shorter distance. This is perhaps unsurprising, given that the model calibration 433 

was derived using the largest event of the inventory. 434 

 435 

The energy dissipation and subsequent run-out of rock avalanches is strongly influenced by topography, 436 

leading to a range of depositional surface morphologies (Okura et al., 2003). The H/L of > 75% of the 437 

cases was simulated within an error of ±5%. Residuals taken from the RMA fit are well distributed, 438 

although the modelled H/L for RA 3, RA 6 and RA 15 is considerably underestimated (Figure 9b). These 439 

events are characterised by shorter run-out distances and planar slopes. They stall at topographic 440 

benches or on an alluvial fan, having travelled over wetter, deformable substrates. Here, the model is not 441 

simulating the effects of rock avalanche emplacement across different substrates. In reality, the energy 442 

required to mobilise and accelerate the substrate may have been too great, causing the avalanche mass 443 

to burrow into the alluvial fan or to be bulldozed into mounds (Dufresne et al., 2010). In both cases, this 444 

would have impeded avalanche momentum/motion and caused a decrease in mobility. Recent work has 445 

also emphasised the importance of extrinsic parameters such as path materials and landslide interactions 446 

with the substrate (Aaron et al., 2017). 447 

 448 

Lateral spreading at the toe of the rock avalanches is also simulated well, with the RMA regression fit to 449 

the lateral extent data achieving an r2 value of 0.91 (Figure 9c). However, the model often fails to simulate 450 

the spreading of relatively short run-out rock avalanches at topographic benches and onto alluvial fans, 451 

thereby considerably underestimating the lateral extent of a number of deposits (Figure 9c). Lateral 452 
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spreading is overestimated where, in reality, the flow has been laterally confined somewhere along its 453 

run-out path (RA 11, RA 12 and RA 20). In these cases, the rock avalanches were simulated across 454 

simplified terrain, which does not impose the same 3D confinement effects of topography on the rock 455 

avalanche. This is also the case when considering areas of deposition, which are poorly simulated where 456 

an event was emplaced across simplified terrain and for events that were partially confined, such as RA 457 

19 and RA 20. These results attest to the importance of using realistic terrain models, as the dissipation 458 

of mechanical energy from the rock avalanche, and thereby its mobility and spreading behaviour, is more 459 

accurately simulated (Nicoletti and Sorriso-Valvo, 1991; McDougall and Hungr, 2004).  460 

 461 

5 Discussion 462 

 463 

Accurately simulating the emplacement dynamics of rock avalanches to determine parameters suited to 464 

modelling beyond back-analyses is complicated. The lack of pre-, syn- and post-failure observations of 465 

rock avalanches and the topography over which they travel has meant that many numerical modelling 466 

studies focus on replicating the dynamics of a single (well-constrained) event. These fail to consider the 467 

wider applicability and sensitivity of the rheological calibration obtained. Here, we applied a single pair of 468 

rheological parameters to back-analyse the dynamics and propagation of 20 rock avalanches. The 469 

general characteristics of the 20 events are simulated successfully in most cases, with the run-out of > 470 

80% of the cases being simulated within an error of ±10%. The model replicates the morphology of the 471 

resultant deposits well, suggesting that approximations gained from a single back-analysis can plausibly 472 

account for the observed morphology of deposits emplaced by a range of event types. The rheological 473 

calibration obtained could therefore contain physically meaningful information about event emplacement 474 

mechanisms that have occurred in Vaigat. 475 

 476 

5.1 Implications for flow behaviour 477 

 478 

Despite being widely used to simulate the propagation of rock avalanches (McEwan and Malin, 1989; Evans 479 

et al., 2001; Crosta et al., 2004; Sheridan et al., 2005; Pirulli, 2009; Kelfoun, 2011; Sosio et al., 2012), 480 
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models assuming either a frictional or a Voellmy rheology failed to reproduce geometric and dynamic 481 

observations at Paatuut. While the best-fit calibrations of the models used here can crudely account for the 482 

observed run-out at Paatuut, the basal friction angles necessary to generate this run-out result in a long 483 

duration of simulated failure with deposition concentrated in the proximal reaches of the run-out path. This 484 

is at odds with the morphology of the observed deposit and the kinematic constraints of the event that were 485 

estimated from seismic records. The main features of the Paatuut event can instead be reproduced using 486 

a plastic rheology with a collisional stress. A number of studies have successfully simulated the run-out and 487 

emplacement dynamics of volcanic debris avalanches assuming a plastic rheology (Table 4). The limited 488 

ability of frictional models to simulate the run-out of the events in Vaigat may suggest that processes 489 

additional to those of granular flow dynamics are important here.  490 

 491 

The high constant retarding stresses required to correctly simulate the non-volcanic events in Vaigat and 492 

Potrero de Leyes (Manzella et al., 2016) may reflect: (1) differences in the intact rock strength of the 493 

materials involved in these events as compared to more altered volcanic rocks, (2) differences in the 494 

intrinsic physical processes operating within the flowing mass (Kelfoun et al., 2009) of a rock avalanche as 495 

compared to a debris avalanche, or (3) variable extrinsic substrate interactions between the settings (Aaron 496 

et al., 2017), including the role of water (Legros, 2002) and, in Vaigat, potential interactions with alluvium 497 

and areas of permafrost. Alternatively, a high constant retarding stress may be required to realistically 498 

simulate events where the failure and subsequent run-out of large volumes of material down steep slopes 499 

occurred over a relatively short period of time (Takahashi and Tsujimoto, 2000; Charbonnier and Gertisser, 500 

2012), as in fjords and semi-enclosed basins. The reasons for this behaviour are speculative, but are useful 501 

to drive further work using a plastic rheology to simulate rock avalanches and debris avalanches in other 502 

process and topographic settings, or over different substrates, to define parameter spaces for different 503 

environments. 504 

 505 

The major implication of using a plastic rheology is that flow mobility is driven by a constant stress 506 

condition. This means that the friction angle at the base of these mass movements cannot be considered 507 

constant. Instead, the ratio of driving to retarding stresses decreases as flow thickness increases, leading 508 
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to very mobile and deep flows (Charbonnier and Gertisser, 2012). Although this appears to be in keeping 509 

with a number of field observations, it is difficult to explain from a mechanical perspective as it stipulates 510 

that the shear stress at the base of the flow is independent of its thickness and/or its velocity (Dade and 511 

Huppert, 1998). Rock avalanches exhibit complex time-dependent and spatially variable mechanical 512 

behaviour, which continuum dynamic numerical models often simplify into one- or two-parameter 513 

rheological laws (Iverson and Vallance, 2001). The constant stress invoked when using a plastic rheology 514 

is most likely to represent an average value of a retarding stress at the flow base that varies with time 515 

during rock avalanche run-out (Kelfoun, 2005). To explain this behaviour mechanically, a constant stress 516 

at the base of the flow can be obtained if the basal friction angle (φbed) decreases with increasing flow 517 

depth (h), assuming that the stress of the flow is defined by Coulomb friction (Mangeney et al., 2007). For 518 

example, the basal friction angle may increase more rapidly in thin flows relative to thick flows, due to the 519 

presence of resistant blocks within the fluidised matrix, which act to increase the solid interaction with the 520 

ground as the flow thins (Kelfoun, 2011). Alternatively, an increase of the mechanical strength of the flows 521 

from their base or interior to the surface could also explain the apparent inverse relationship between flow 522 

depth and friction. This strength may vary in relation to the granulometry of the flows: for example, most 523 

deposits, including many of those in Vaigat, are composed of a fragmented and fluidised interior of 524 

matrix-supported debris covered by a passively rafted and brittle crust of angular boulders (for example, 525 

Tsergo Ri, Nepal: Heuberger et al., 1984; Köfels, Austria: Brückl et al., 2001; Flims, Switzerland: von 526 

Poschinger et al., 2006; Val Pola, Italy; Crosta et al., 2007). In deeper rock avalanches, a greater 527 

proportion of the flow would therefore be constituted of fine particles, prolonging flow-like capability 528 

(Figure 10).  529 

 530 

Although a plastic rheology fits the morphology of many rock avalanche deposits better than a frictional 531 

rheology, the reasons for its success remain unclear at a process level. The plastic-type rheology that 532 

was used here should therefore only be considered as a first order description of the rheology of the rock 533 

avalanches in Vaigat. This poses fundamental questions regarding the use of simple one- or two-534 

parameter rheological laws for simulating rock avalanches. Although these laws are straightforward to 535 

implement, their use is contentious as the parameters governing the rheology of the flows often lack any 536 
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physical meaning and remain difficult to physically quantify or validate (Schneider et al., 2010; Fischer et 537 

al., 2012). In addition, the use of single-phase mass and momentum balance equations to govern flow 538 

mobility  only passively incorporates the effects of mechanical lubrication and fluidisation of the flow. The 539 

large uncertainty associated with parameter selection for these models demands the development of 540 

more sophisticated models that use physically measurable and dynamically variable values of these 541 

parameters, which can actively take into account the presence of materials with different physical and 542 

rheological properties and shifts between different flow regimes (Pudasaini, 2012). This property is 543 

particularly important when considering the melting of snow and/or ice due to frictional heating during rock 544 

avalanche propagation, which is likely to have occurred during the Paatuut event and potentially in a 545 

number of other rock avalanches in Vaigat. The development of new rheological models marks the first 546 

attempt to address some of these issues (Pudasaini and Krautblatter, 2014). Rather than treating the 547 

effective internal and basal friction angles as constant, new models include interphase mass and 548 

momentum exchanges that correspond to spatial and temporal variations in the effective solid volume 549 

fraction, volume fraction of ice, friction coefficients, and lubrication/fluidisation factors that are a function 550 

of a number of physical parameters or mechanical variables. The development of such models, which are 551 

capable of performing dynamic strength weakening due to the effects of internal fluidisation and/or basal 552 

lubrication, represents an important direction for future research, and detailed quantitative evaluation of 553 

their performance with laboratory and field observations is required. 554 

 555 

5.2 Predictive modelling  556 

 557 

Physically-based simulations of rock avalanches using VolcFlow provide a useful tool for recognising flow 558 

patterns and for calculating potential flow magnitudes, velocities, and fluxes (Crosta et al., 2006). Here, 559 

as in Sosio et al. (2008, 2012), we used a one-at-a-time (OAT) parameter calibration approach in order to 560 

calibrate VolcFlow with data from a modern, well-constrained event. Future work will apply a multivariate 561 

parameter calibration approach for multi-parameter rheologies (for example, Fischer et al., 2015) in order 562 

to avoid the assumption of model linearity and to capture fully the sensitivities and interactions between 563 

the parameters over the full parameter space (Saltelli and Annoni, 2010). However, the model obtained 564 
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through OAT calibration here shows encouraging results in the model’s ability to simulate a series of rock 565 

avalanches using a single set of parameters obtained by back-analysis of the Paatuut event. It is 566 

therefore possible that, with widely available topography and pre-failure indications that define the 567 

potential volume of a failing mass, the generalised numerical modelling presented here could usefully 568 

predict run-out and deposit geometry a priori. Such predictions would be useful in assessing future rock 569 

avalanche risk and potential tsunamigenesis. The application of a model for predictive purposes, and its 570 

incorporation into hazard and risk assessments, requires the development of a suitable framework, the 571 

core elements of which include (i) estimation of the failure volume of the unstable rock slope in question, 572 

and (ii) probabilistic run-out assessments using numerical run-out modelling. 573 

 574 

Geometric and kinematic models of the motion of a rockslide can be identified and potential failure 575 

volumes quantified using differential satellite interferometric synthetic aperture radar (InSAR), as has 576 

been demonstrated in Norway (for example, Lauknes et al., 2010; Blikra and Christiansen, 2014). 577 

However, the use of InSAR to estimate the potential failure volume of a rock-slope requires it to be 578 

actively deforming. Where this is not the case, it is possible to identify potential failure surfaces in rock-579 

slopes by their slope geometry (Jaboyedoff et al., 2009). This failure surface has been termed the Sloping 580 

Local Base Level (SLBL) and can be constrained by geophysical, geotechnical and/or geomorphic data 581 

derived using methods such as seismic profiling and boreholes (Travelletti et al., 2010). The sliding 582 

surface and corresponding failure volume would then be used to constrain the source conditions of a 583 

potential future event for input into numerical models of rock avalanche run-out. A caveat of this approach 584 

is that the limits of stability are unlikely to be reached everywhere simultaneously and it is therefore 585 

unlikely that a future failure would develop as a single event, as implied by the SLBL, and may instead 586 

proceed retrogressively (Jaboyedoff et al., 2009).  587 

 588 

Although continuum dynamic models are deterministic, they can incorporate probabilistic 589 

components by adopting a range of parameter values associated with different probable conditions in 590 

order to compute a corresponding range in possible outcomes (Iverson, 2014). The use of non-sampling 591 

methods for determining ranges of input parameter values has demonstrated particularly encouraging 592 
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results while preserving the simplicity and robustness of Monte Carlo-type approaches, both in simple 593 

settings and when used to simulate the 1991 block-and-ash flows at Colima Volcano, Mexico (Dalbey et 594 

al., 2008). Once a prospective failure is identified, hazard maps can be constructed for risk management 595 

practices by forward-modelling the event using a range of parameter values (Corominas et al., 2014). Our 596 

findings show that the parameter values required for scenario modelling in other settings could  be 597 

derived from the back-analysis of any other event provided that it occurred within similar boundary 598 

conditions. However, it is important to recognise that the calibration results for the rock avalanches 599 

simulated here may not be transferrable between other dynamic models, which incorporate different 600 

internal stress assumptions (Hungr, 2006). It is also important to question how definitive this calibration is, 601 

as particular aspects of the boundary conditions in Vaigat remain unknown (lubrication, fluidisation, basal 602 

scouring, entrainment and/or deposition during motion, water absorption, ice fraction, material mixing). 603 

Prior to the application of this model for predictive purposes, in-depth studies are required in order to 604 

consider the effects of these conditions and the relative importance of key factors on simulated run-out. 605 

Once these conditions are satisfied, a robust framework must be developed for the incorporation of the 606 

model into hazard and risk assessments. 607 

 608 

6 Conclusions 609 

 610 

We have presented the results of a numerical modelling study of 20 rock avalanches in the Vaigat Strait, 611 

West Greenland. Rheological calibration of the numerical flow code VolcFlow was performed using a well-612 

constrained event at Paatuut (AD 2000). The best-fit simulation assumes a constant retarding stress with 613 

a collisional stress coefficient (τ0 = 250 kPa, ξ = 0.01), and simulates run-out to within ±0.3% of that 614 

observed. Despite being widely used to simulate rock avalanche propagation, other models, that assume 615 

either a frictional or a Voellmy rheology, failed to reproduce the observed event characteristics and 616 

deposit distribution at Paatuut. The limited ability of frictional models to simulate the behaviour of rock 617 

avalanches such as these suggests that processes additional to those of granular flow dynamics are 618 

involved. Although the success of a plastic-type rheology over any other remains difficult to physically 619 

explain, it might indicate that the friction angle at the base of these mass movements cannot be 620 
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considered constant as in many commonly used rheological models. 621 

 622 

We applied this calibration to 19 further events, simulating rock avalanche motion across terrain of 623 

varying levels of complexity. We have shown that, provided their morphological and geophysical 624 

conditions are regionally consistent, a series of rock avalanches can be accurately simulated using a 625 

single set of parameters obtained by back-analysis of one well-constrained event alone. VolcFlow can 626 

plausibly account for the observed morphology of a series of deposits emplaced by events of different 627 

types, although its performance is sensitive to a range of topographic and geometric factors. These 628 

include: (i) the geometry of the source mass, (ii) the path topography and (iii) the substrate. The results 629 

also hold important implications for our process understanding of rock avalanches in confined fjord 630 

settings, where correctly modelling material flux at the point of entry into the water is critical in tsunami 631 

generation. Given that mountain ranges in polar regions such as Vaigat may be candidates for sudden 632 

regime shifts in rock-slope stability (Kargel et al., 2013), large (tsunamigenic) rock avalanches from steep, 633 

deglaciating coastlines are therefore a scenario that will need to be increasingly accommodated in risk 634 

assessments in the future. 635 
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Tables 

Table 1. Characteristics of the Paatuut rock avalanche (RA 1). 

 Observation 

Maximum run-out (m)* 4,383 

Lateral extent at toe (m)* 1,325 

Maximum flow velocity (m s-1)† 56 

Average flow velocity (m s-1)† 37 

Duration of emplacement (s)† 80 

Maximum deposit thickness (m)* 60 

Depositional area (m2)* 4,138,971 

Hypsometric integral (-)* 0.235 

Centre of mass displacement, horizontal (m)* 2,353 

* Description provided in Text S1 (Supporting Information). 
† From Pedersen et al. (2002) and Dahl-Jensen et al. (2004). 
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Table 2. Parameters and results of the best-fit simulation of the Paatuut rock avalanche (RA 1), for each rheology. 
Percentage variations relative to field data are provided in brackets. 

 
Rheology 

Frictional 
(1 angle) 

Frictional 
(2 angles) Voellmy Plastic Plastic + C 

Mechanical behaviour      

Density (kg m-3) 2,150 2,150 2,150 2,150 2,150 

Basal friction angle, φbed (°) 14 12 13 - - 

Internal friction angle, φint (°) - 30 - - - 

Collisional stress coefficient, ξ (-) - - 0.01 - 0.01 

Cohesion, τ0 (kPa) - - - 270 250 

      

Model predictions      

Max. run-out (m) 4,503 4,319 4,134 4,334 4,368 

 (+3%) (-2%) (-6%) (-1%) (-0.3%) 

Max. flow velocity (m s-1) 89 100 48 72 66 

 (+59%) (+79%) (-14%) (+29%) (+18%) 

Duration of emplacement (s) 184 249 243 87 92 

 (+130%) (+211%) (+204%) (+9%) (+15%) 

Max. deposit thickness (m) 106 111 110 71 72 

 (+77%) (+85%) (+83%) (+18%) (+20%) 

Lateral extent at toe (m) 1,353 984 1,546 821 1,101 

 (+2%) (-39%) (+17%) (-38%) (-17%) 

Depositional area (m2) 5,579,375 4,155,625 4,898,750 4,563,125 4,545,000 

 (+35%) (+0.4%) (+18%) (+10%) (+10%) 

Hypsometric integral (-) 0.138 0.100 0.150 0.272 0.269 

 (-41%) (-57%) (-36%) (+16%) (+14%) 

X-displacement of the centre of mass (m) 1,617 308 1,885 1,694 1,776 

 (-31%) (-87%) (-20%) (-28%) (-25%) 

Average flow velocity (m s-1) 25 29 7 20 29 

 (-32%) (-22%) (-81%) (-45%) (-21%) 

Average deposit thickness (m) 15 11 16 19 19 

 (-17%) (-39%) (-11%) (+6%) (+6%) 

   <25% 25-50% >50% 



41 

Table 3. Results of the simulations of five rock avalanches simulated using parameters obtained in Section 4.1. 
Percentage variations relative to field data are provided in brackets, where available. 

 
Event 

RA 2 RA 4 RA 10 RA 14 RA 16 

Model predictions      

Max. run-out (m) 2,060 2,829 1,643 3,123 2,299 

 (-1%) (-0.5%) (-9%) (-2%) (-2%) 

Max. flow velocity (m s-1) 61 83 36 64 59 

 - - - - - 

Duration of emplacement (s) 52 50 59 61 54 

 - - - - - 

Max. deposit thickness (m) 22 25 72 34 27 

 (-8%) (-28%) (+41%) (-19%) (+12%) 

Lateral extent at toe (m) 241 702 716 889 1,055 

 (-23%) (+8%) (-3%) (-4%) (+3%) 

Depositional area (m2) 1,120,625 2,233,125 804,375 2,294,375 1,773,125 

 (+12%) (+16%) (+33%) (+9%) (+26%) 

Hypsometric integral (-) 0.447 0.389 0.239 0.361 0.348 

 (+7%) (+8%) (-39%) (+11%) (+3%) 

X-displacement of the centre of mass (m) 843 1,373 667 1,448 1,302 

 (-12%) (-11%) (-24%) (-2%) (-7%) 

Average flow velocity (m s-1) 24 33 9 27 24 

 - - - - - 

Average deposit thickness (m) 10 10 18 13 9 

 (0%) (-17%) (-10%) (-7%) (-11%) 

   < 25% 25 – 50% > 50% 
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Table 4. Examples of long run-out events successfully modelled using a plastic rheology (VolcFlow). 

Event Type 
Volume (× 

106 m3) 
Run-out 

(km) 
τ0, ξ 

(kPa, - ) 
Reference 

Vaigat (n = 20) Rock avalanche 2 – 90 1.2 – 4.4 250, 0.01 This study 

Fogo Debris avalanche, tsunami 115,000 40 90 – 95* Paris et al. (2011) 

Güìmar Debris avalanche, tsunami 44,000 38 145 – 
150* 

Giachetti et al. (2011) 

Socompa Debris avalanche 36,000 40 52 Kelfoun and Druitt (2005) 

Las Cañadas Debris avalanche, tsunami 12,000 46 50 Paris et al. (2017) 

Réunion Island Debris avalanche, tsunami 10,000 35 – 40 20 – 50* Kelfoun et al. (2010) 

Potrero de Leyes Rock avalanche 250 5.1 200 Manzella et al. (2016) 

*Exact value of τ0 dependent upon whether single or retrogressive failure of the rock mass is defined, as well as the value of 
the stress exerted by the water as defined in VolcFlow. 
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Figures
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Figure 1. (a) Map of the Vaigat Strait (Sullorsuaq) with coastlines prone to rock slope failure 
indicated in orange (for location within Greenland, see inset). Frames and figure numbers indicate 
coverage of detailed maps. Digital elevation data from the Greenland Mapping Project (Howat et 

al., 2014), (b) Pan-sharpened false color Landsat-8 image of the area, acquired on 22/07/2016 (15 
m), (c) Vertical aerial photographs of the south coast of Nuussuaq, West Greenland, taken in 1985 
(5 m), and (d) Geological map of area, showing 20 large rock avalanche deposits. Names are given 

in (d) and used throughout. Contours are drawn in 200 m intervals from the 25 m Greenland 
Mapping Project DEM (Howat et al., 2014). The geometric characteristics of the rock avalanches 

are summarised in Table S1 (Supporting Information). 
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Figure 2. (a) Source area of RA 4, characterised by fresh surfaces and burnt lithologies, (b) View 
onto RA 2 deposits, which stalled on a topographic bench, (c) View from ca. 100 m offshore looking 
onto the rock avalanche toe deposit at Paatuut (RA 1), (d) Steep, lobate deposits emplaced by RA 
4, (e) View onto the surface of the deposit at Paatuut, which is characterised by coarse material, 
and (f) View from offshore looking onto the deposit at Paatuut, which is characterised by a field of 

conical mounds.  
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Figure 3. A 3D perspective view of rock avalanche deposits in Vaigat, West Greenland, 
looking north from a position above the Vaigat Strait. The surface morphology of four rock 
avalanches, labelled a – d, is mapped and annotated below. 0.5 m satellite imagery was 

acquired on 19 June 2012 by WorldView-1 and orthorectified to produce a 2 m DEM (Noh 
and Howat, 2015). 
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Figure 4. Slope-aspect maps showing the surface morphology of (a) the Paatuut rock avalanche 
deposit (RA 1), (b) RA 2 – 5, and (c) RA 6 – 8. Topographic contour interval is 20 m. The Paatuut 
slide passed through two steep gullies before being deposited on slopes with a dip of 6 – 9° (A – 
A’). The lower part of the slide comprises two lobes (represented by the cross-profile B – B’) that 
merge downwards into one (C – C’). The best-fit modelling results are superposed on the post-
event topography (black dashed lines). Red line A – A’ represents transects used for modelling 

comparisons in Figure 6. Elevation data from Noh and Howat (2015). 
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Figure 5. Rock avalanche deposits in Vaigat, West Greenland. (a) Aerial photo showing the surface 
morphology of RA 9 – 16, (b) aerial photo showing the surface morphology of RA 17 – 20. 

Topographic contour interval is 20 m. The best-fit modelling result for the rock avalanches modelled 
in full 2.5D is superposed on each map where applicable (black dashed line). 
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Figure 6. Longitudinal transects through the observed 
(solid black line) and modelled deposits (coloured lines) 
of the Paatuut rock avalanche for the frictional rheology 
(1 and 2 angle), Voellmy rheology, plastic rheology and 
a plastic rheology with a collisional stress added. The 
grey shading represents the overall RMS error of the 
DEM. Transects taken along line A – A’ (Figure 4a). 
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Figure 7. Longitudinal transects through the observed (solid black line) and modelled deposits 
(dashed red lines) for the six rock avalanches simulated across full 2.5D terrain. The pale grey 

shading represents the overall RMS error of the GIMP DEM (Howat et al., 2014). The dashed grey 
line represents the elevation of the path topography. 

Figure 8. Cross-slope transects through the observed (solid black line) and modelled deposits 
(dashed red lines) for the six rock avalanches simulated across full 2.5D terrain. Profiles are taken 

through the toe of the deposit. The pale grey shading represents the overall RMS error of the GIMP 
DEM (Howat et al., 2014). The dashed grey line represents the elevation of the path topography. 
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Figure 9. Observed vs. modelled plots of (a) run-out, 
(b) apparent coefficient of friction, H/L, (c) lateral extent 
at toe, and (d) depositional area, for all 20 cases. Inset: 
residual vs. fitted plots for each regression. Markers in 

bold denote events modelled in full 2.5D. 
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Figure 10. Schematic diagram of the system described in text. Here, rock avalanches are composed 
of a fluid-like interior of matrix-supported debris (depth = hf) surrounded by a more resistant outer 
layer (depth = hl). In deep flows (1), the low-friction interior in contact with the ground would permit 
flow even on gentle slopes (small α), with the more frictional outer layer simply being rafted. This 

would act to prolong flow capability. In shallower flows (2), the influence of the resistant outer layer 
would increase, reducing the driving stress of the flow (τd). Diagrams adapted from the Louge (2003) 

schematic of steady, fully developed flows down an inclined plane. 


