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Abstract

We employ a free energy lattice Boltzmann method to study the dynamics of a

ternary �uid system consisting of a liquid drop driven by a body force across a regularly

textured substrate, infused by a lubricating liquid. We focus on the case of partial

wetting lubricants and observe a rich interplay between contact line pinning and viscous

dissipation at the lubricant ridge, which become dominant at large and small apparent

angles respectively. Our numerical investigations further demonstrate that the relative

importance of viscous dissipation at the lubricant ridge depends on the drop to lubricant

viscosity ratio, as well as on the shape of the wetting ridge.

Introduction

Liquid Infused Surfaces (LIS) are liquid repellent surfaces constructed by infusing a lubricant

into textured substrates,1,2 as illustrated in Fig. 1. Drops placed on LIS move very easily
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under small perturbations and will shed away at a small tilting angle, regardless of their

surface tensions.3,4 These surfaces can also be designed to withstand high pressure and self-

heal from physical damages,3 which distinguish them from other liquid repellent surfaces

such as superhydrophobic surfaces.5

LIS are relatively easy to fabricate. The primary requirements are a rough solid substrate

with strong a�nity toward the lubricant, and the drop needs to be immiscible to the lubri-

cant.6 These advantageous features have given rise to many potential industrial applications,

such as to reduce energy consumption in �uid transports,7 to simplify cleaning and mainte-

nance processes,8 to prevent damage due to fouling,9 and to annihilate product leftover for

smart liquid packaging.10 For many of these applications, e�cient and e�ective control of

the drop dynamics on LIS is required, yet to date such control remains poorly understood.

Compared to the more commonly studied cases of smooth and superhydrophobic sur-

faces,11�16 the main distinguishing feature of LIS is the presence of the infusing lubricant,

forming a ridge as shown in Fig. 1. Thus the central aim of this work is to shed light on the

role of the lubricant ridge in the dynamics of drops on LIS.

Based on thermodynamic arguments, Smith et al. showed that a liquid drop placed on

LIS may invade the corrugation and replace the infusing lubricant, or it can sit on top of the

corrugation with the lubricant present underneath the drop.17 If the lubricant is perfectly

wetting the substrate, the drop and the corrugated surface is separated by a thin �lm, and

no pinning of the contact lines take place. However, closer inspection employing confocal

microscopy revealed that this case is unlikely for a number of common lubricants, as they

form in contact to the solid with a small but �nite contact angle.17,18 As such, on one hand,

the surface roughness helps to contain the lubricant; on the other hand, it is also the source

of contact line pinning and contact angle hyeteresis.

The presence of lubricant meniscus also introduces competing dissipation mechanisms

acting on a drop as it moves across LIS. For example, Keiser et al. have highlighted that

viscous dissipation may occur predominantly in the drop or in the lubricant depending on the
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Figure 1: (a) Rendering of a quasi 3D setup of an LIS system where a drop is sitting on a
textured substrate infused with a lubricant. (b) Magni�cation of the lubricant ridge. γdg,
γlg, and γld are the drop-gas, lubricant-gas, and drop-lubricant surface tensions; θd, θg, and θl
are the Neumann angles of the drop, gas and lubricant; θCBld and θCBlg are the drop-lubricant
and lubricant-gas contact angles assuming a Cassie-Baxter approximation.

ratio between the drop and lubricant viscosities.19 However, most studies to date consider

only drops with apparent contact angles close to 90◦,17,19 and the impact of the shape of the

lubricant meniscus on drop mobility remain unexplored. To cover such gaps, here we will

investigate these variations systematically using the lattice Boltzmann simulation method.

In particular, we focus on the interplay between the contact line pinning induced by the

surface corrugation and the viscous dissipation in the lubricant and drop phases.

The manuscript is organised as follows. In the Numerical Method section, we introduce

the computational model employed and the simulation setup. In Results and Discussion we

simulate drops on LIS in mechanical equilibrium and characterise their apparent angles in

the �rst subsection. In the second subsection we study the motion of drop moving across

LIS, comparing our results with the experimental data available in literature. We further

elucidate the role of the lubricant ridge on drop motion for a large range of wetting and

apparent angles. Finally, we summarise and discuss our results in the Conclusion section.
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Numerical Method

Ternary free-energy lattice-Boltzmann method

To simulate liquid drops on LIS, we employ a ternary �uid model able to account for three

bulk �uids (drop, gas and lubricant), their �uid-�uid interfacial tensions, and the �uid in-

teractions with a solid substrate. The free energy is given by20�22

F =
3∑

m=1

∫
Ω

[
κm
2
C2
m(1− Cm)2 +

α2κ′m
2

(∇Cm)2

]
dV

−
3∑

m=1

∫
∂Ω
hmCm dS. (1)

By construction the �rst term in Eq. 1 corresponds to a double well potential. Taken

separately, each double well potential has minima at concentrations Cm = 0 (�uid component

m is absent) and Cm = 1 (�uid component m is present). In our simulations, we initialise

the system such that
∑3
m=1Cm = 1 at any point in the simulation box, with three physically

meaningful bulk states corresponding to the drop (C = [1, 0, 0]), the gas (C = [0, 1, 0]) and

the lubricant (C = [0, 0, 1]) phases.

The second term in Eq. 1 is related to the energy penalty at an interface between two

�uid phases. The interfacial tension between �uid phases m and n, γmn (m,n = 1, 2, 3 and

m 6= n), can be tuned by the κm parameters via21

γmn =
α

6
(κm + κn), (2)

where α =
√

(κ′m + κ′n)/(κm + κn) is a parameter we can tune to vary the interface width.

Typically we choose α = 1 in our simulations.

The hm parameters in the last term of Eq. 1 allow us to quantify the �uid-solid surface

energies and correspondingly the contact angle of �uid m on a solid surface in the presence
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of �uid n, θmn. The contact angle θmn is given by21

cos θmn =
γsn − γsm
γmn

, (3)

where each solid-liquid tension γsm include contribution from both majority and minority

phases, expressed by the integrals I and J respectively

γsm = Im +
∑
n 6=m

Jn,

Im =
αkm
12
− hm

2
− 4hm + kmα

12

√
1 +

4hm
αkm

,

Jn =
αkn
12
− hn

2
+

4hn − knα
12

√
1− 4hn

αkn
.

For ternary �uid systems in contact with an ideal �at substrate only two out of the three

contact angles are independent. For example, if θ12 and θ32 are speci�ed, the remaining

contact angle, θ31, is determined by the Girifalco-Good relation23

cos θ31 =
γ32 cos θ32 − γ12 cos θ12

γ31

. (4)

Any choice of the hm parameters ful�lls Eq. 4.

In our approach, we apply variable transformations from C1, C2 and C3 to three equivalent

order parameters, ρ = C1 + C2 + C3, φ = C1 − C2, and ψ = C3. For simplicity, here we

have set the density ρ = 1 everywhere. This �equal density" approximation is suitable for

small Reynolds number (Re), which is the case in this work. At large Re, inertia becomes

important, and the density ratios between the �uid components must be taken into account.24

In terms of these order parameters, the equations of motion of the system are described by

the continuity, Navier-Stokes and two Cahn-Hilliard equations

∂tρ+ ~∇ · (ρ~v) = 0, (5)
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∂t(ρ~v) + ~∇ · (ρ~v ⊗ ~v) = −~∇ ·P + ~∇ ·
[
η( ~∇v + ~∇vT)

]
, (6)

∂tφ+ ~∇ · (φ~v) = Mφ∇2µφ, (7)

∂tψ + ~∇ · (ψ~v) = Mψ∇2µψ, (8)

where ~v is the �uid velocity, and η is the �uid viscosity that generally depends on the local

order parameters φ and ψ. The latter allows us to set di�erent viscosities for the drop,

lubricant, and gas components. The thermodynamic properties of the system, described in

the free energy model in Eq. 1, enter the equations of motion via the chemical potentials, µq =

δF/δq, (q = φ and ψ), and the pressure tensor, P, de�ned by ∂βPαβ = φ∂αµφ + ψ∂αµψ. To

solve the equations of motion, Eq. 5 - 8, we employ the ternary lattice Boltzmann algorithm

described in Ref. 21. More general details on the lattice Boltzmann method, including how

it recovers the continuum equations of motion, can be found in Ref. 25�27.

Simulation setup

The majority of simulations are performed in a quasi three-dimensional simulation box, as

shown in Fig. 1. The dimension of the simulation box is 400×10×150 LB units with the top

surface bounded by a �at wall. The bottom solid surface is textured with a row of square

posts of height h = 10 LB units, width w = 5 LB units, and periodicity p = 10 LB units. A

periodic boundary condition is applied in the other two directions.

This quasi three-dimensional setup has the advantage of reducing the computational cost

when compared to a full 3D simulation, while capturing the key 3D features. In the case of

LIS, it preserves the essential feature of allowing the lubricant to �ow in between the surface

texture underneath the liquid drop. This setup has been successfully employed to study drop

dynamics on �at and superhydrophobic surfaces.14,25,28

The lubricant phase is initialised to �ll the space between the posts and an additional

layer of two lattice nodes on top of them, in order to allow the formation of a lubricant ridge

at the two sides of the drop. To make sure the lubricant imbibes the bottom surface, the
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lubricant-drop contact angle θld and the lubricant-gas contact angle θlg have to be smaller

than the critical angle θc for hemi-wicking. From thermodynamic considerations it can be

shown that cos θc = (1 − φs)/(r − φs), where φs and r are respectively the solid fraction

and roughness factor of the surface pattern.29,30 The texture employed in this work gives

φs = 0.25 and r = 3, which leads to θc ≈ 74◦.

A hemispherical drop with radius R = 60 LB units is placed on top of the posts and is

then allowed to reach equilibrium before a body force is introduced to mobilise the drops.

Unless stated otherwise, we set the horizontal and the vertical components of body force to

be equal, such that Gz = −Gx. This choice corresponds to an experimental setup where the

substrate is tilted at an angle of 45◦. Adding a downward body force ensures the drop to

remain attached to the substrate, especially when it has a large apparent angle. We �nd the

steady state velocity of the drops to be insensitive to the value of Gz as long as the drop size

is smaller than the capillary length, R < lc =
√
γdg/ρ|Gz|. To characterise the drop mobility,

we will take advantage of two dimensionless parameters, the Bond number Bo = R2Gx/γdg

and the capillary number Ca = ηdVx/γdg, where γdg, ηd, and Vx are the drop-gas surface

tension, drop viscosity and drop velocity parallel to the solid surface.

Results and Discussion

Drop morphologies in mechanical equilibrium

In this subsection we will demonstrate that our ternary lattice Boltzmann approach can

accurately simulate drop morphologies in mechanical equilibrium on LIS. For a liquid drop

placed on an ideal smooth surface, the material contact angle, θYdg, is given by the Young's

law, which arises from the force balance between the interfacial tensions at the three-phase

contact line:

cos θYdg =
γsg − γsd
γdg

, (9)
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where γsg, γsd, and γdg are the solid-gas, solid-drop and drop-gas interfacial tensions respec-

tively. Here we employ the superscript Y to distinguish the material contact angle from the

e�ective contact angle under the Cassie-Baxter approximation (superscript CB).

For a drop placed on LIS, the solid-gas-drop contact line does not exist, and thus Eq. 9

does not represent a physically meaningful condition. In this study we focus on the case

where the lubricant is partially wetting the solid (θlg, θld > 0) and does not cloak the drop.

As such, there are three alternative three-phase lines (see Fig. 1(b)): drop-lubricant-gas,

drop-lubricant-solid, gas-lubricant-solid. It is worth noting that there exist other wetting

states on LIS, where the lubricant may cloak the solid corrugations and/or the droplet.17

These cases are a subject for future study and will not be considered here.

To characterise how much the drop spreads on LIS, it is useful to introduce the notion

of an apparent contact angle. As illustrated in Fig. 2 (top left), the apparent angle can be

de�ned with respect to the horizontal plane at the drop-lubricant-gas triple line. In the limit

of small but �nite lubricant ridge, we have recently shown that the apparent angle need to

satisfy the following relation:31

sin θg[cos θCBld − cos(θd − θapp)]
sin θd[cos θCBlg − cos(θapp + θg)]

=
(

1− ∆Pdg
∆Plg

)
. (10)

Here θCBαβ is the averaged wettability expressed by the Cassie-Baxter contact angle,29

cos θCBαβ = φs cos θYαβ + (1− φs), (11)

which accounts for the fact that the drop and gas phases lie on top of a composite solid-

lubricant interface. The quantity ∆Pdg/∆Plg is the ratio between the Laplace pressures at

the drop-gas and lubricant-gas interfaces. Since the Laplace pressure is given by ∆Pαβ =

2γαβ/Rαβ, where Rαβ is the mean radius of curvature for the αβ interface, ∆Pdg/∆Plg is

directly related to the size ratio between the lubricant ridge and the drop. In the strict limit

8



of vanishing lubricant ridge, ∆Pdg/∆Plg → 0, Eq. 10 can be simpli�ed to

cos θapp =
γlg
γdg

cos θCBlg −
γld
γdg

cos θCBld . (12)

The main advantage of Eq. 12 is that all variables on the right hand side are material

parameters which can be measured independently. In contrast, the value of ∆Pdg/∆Plg in

Eq. 10 is usually not known a priori. However, it can be inferred from analysing the shape

of the lubricant ridge.

Vanishing lubricant

ridge Eq. (12)

Full solution Eq. (10)

LB
 S

im
ul

at
io

n

Figure 2: Comparison between θapp obtained from our simulations against the predicted
values from both the full solution (Eq. 10) and the vanishing lubricant ridge approximation
(Eq. 12). The top left inset illustrates how θapp is calculated at the drop-lubricant-gas triple
line.

In Fig. 2, we compare the apparent angle, θapp, calculated from our LB simulations once

mechanical equilibrium is reached, against both the full solution in Eq. 10 and the vanishing

lubricant ridge approximation in Eq. 12. The range of apparent angles are obtained by

varying the surface tensions γlg, γdg and γld, as well as the lubricant's material contact angles

θYlg and θ
Y
ld. For comparison against the full solution (Eq. 10), we compute ∆Pdg/∆Plg by

measuring the radii of curvature of the drop-gas and lubricant-gas interfaces once mechanical

9



equilibrium is reached in our simulations. In cases where the lubricant over�lls the posts, we

�nd it is more appropriate to set θCBlg = 0 in Eq. 10, since there is no contact between the

gas and the solid. In all cases considered here, we have contact between the solid and the

droplet.

The calculated apparent angles in our LB simulations are in very good agreement with the

full solution. When compared against the vanishing lubricant ridge approximation (Eq. 12),

the calculated values of the apparent angle has a systematic deviation by several degrees.

This deviation is expected since the size of the lubricant ridge in our simulations is not

negligible compared to the drop size. Nonetheless, Eq. 12 remains a good �rst estimate for

predicting the apparent angle of drops on liquid infused surfaces, and the accuracy improves

the smaller the lubricant meniscus is compared to the drop size.

Translational Drop Mobility

Variation in the ratio between drop and lubricant viscosities

Recent experiment by Keiser et al. suggests that there is a crossover between bulk drop

and lubricant ridge dominated dissipation regimes, as the drop to lubricant viscosity ratio

is varied.19 Here we aim to reproduce this crossover behaviour to demonstrate that our LB

simulation can correctly capture the dynamics of drops moving across LIS.

We introduce a surface patterning, surface tensions, and a body force such that φs = 0.25,

θapp = 93◦, and Bo = 0.115 to mimic the experimental setup in19 (φs = 0.23, θapp = 90◦, and

Bo = 0.115). The time averaged velocities of the drop's centre of mass from our simulations

are reported by the blue plus symbols in Fig. 3. The viscosity of water (about 50 times

larger than the viscosity of air), ηref = 50ηg = 1 mPa.s, is taken as the reference viscosity.

We have also scaled the drop velocity by Vref , taken to be the drop velocity Vx when the

drop viscosity is ηd = ηref . For comparison, the experimental data from Keiser et al. 19 are

shown as red asterisks in Fig. 3.

For large drop viscosity, viscous dissipation lies predominantly inside the drop. In this
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Experiment (ref [19])

LB simulation

93°
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Figure 3: Comparison between our simulation results against experimental data by Keiser
et al. 19 Here the lubricant viscosity is �xed at ηl = 10 ηref , while the drop viscosity is varied.
The reference viscosity ηref in the experiment is water viscosity (1 mPa.s). To ensure correct
viscosity ratio between the drop and the air phases, we set ηref = 50 ηg in our simulations.
Vref is drop velocity when ηd = ηref .

Figure 4: (a) Drop mobility on smooth surface (black dots) and LIS (red triangles, green
diamonds, and blue squares) plotted against θapp. θwet is the wetting angle of the lubricant
phase (θYlg = θYld = θwet). The drop mobility is represented by the capillary number Ca.
(b) and (d) drop mobility versus time for the cases indicated in panel (a). The capillary
number Ca increases and decreases periodically due to pinning-depinning events. (c) and
(e) drop mobility for cases indicated in panel (a) as a function of Bo−Boc. Bo is the Bond
number. The insets show the critical Bond number, Boc, at which the drops start moving
under external body force.
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regime, as the drop viscosity is lowered, the drop velocity increases as V ∝ η−1
d ,19 until it

eventually plateaus to Vx ' Vref . Both in simulations and experiments, the crossover occurs

approximately at ηd ∼ 2ηl. Below this value of drop viscosity, viscous dissipation in the

lubricant ridge becomes dominant compared to dissipation in the drop. In this regime, the

drop velocity has a strong dependence on the lubricant viscosity, while the drop viscosity

has virtually no e�ect.

There are a number of di�erences between the experiments in Ref. 19 and our numerical

setup. Firstly, our simulations are in quasi 3-D, rather than full 3-D. Secondly, the size of

the lubricant ridge compared to the drop size is larger than that in experiments. Thirdly,

we have considered partial wetting lubricant, θwet = 45◦, whereas the experiments were done

using a complete wetting lubricant, θwet = 0◦. Nonetheless, it is clear from Fig. 3 that the

crossover between bulk drop and lubricant ridge dominated dissipation regimes is a robust

phenomenon, which our simulations can accurately capture.

Variation in apparent and wetting angles

Previously we numerically veri�ed the crossover between viscous friction in the bulk drop

and in the lubricant ridge. The similarity between experiments and numerical simulations

is valid despite the fact we employed partial wetting lubricants, which involve also pinning

and depinning e�ects. Here we will focus on the role of lubricant wettability on the drop

mobility, in particular on the interplay between contact line pinning and viscous friction.

As a reference case, we �rst consider a drop moving on a �at surface as illustrated in

the top-left inset of Fig. 4(a). The viscosity of the drop is set to be ηd = 50ηg to mimic

a water drop in a dry air environment. A constant body force with Bo = 0.211 is then

applied to mobilise the drop so that the drop moves and reaches a steady state velocity. The

results obtained for drops on a smooth surface are represented by black dots in Fig. 4(a) as

a function of the contact angle. For a smooth surface, we identify θapp = θYdg. In agreement

with previous studies, the steady state capillary number of the drop increases monotonically
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with θapp,
15,16 due to the decrease in wedge dissipation at the contact line.

Let us now consider the equivalent setup for drops on LIS, as illustrated in the bottom-

right inset of Fig. 4(a). The lubricant viscosity ηl is set to be the same as the drop viscosity,

ηl = ηd = 50ηg. To reduce the number of parameters to be explored in our simulations, we

will assume a symmetric wetting condition for the lubricant, where θYlg = θYld = θwet.

For a given θwet we systematically vary the drop apparent angle, θapp, by tuning the

�uid-�uid surface tensions, and consequently the Neumann angles, θl, θd and θg. In Fig. 4(a)

we compare the drop mobility, quanti�ed as the time-averaged capillary number Ca for

θwet = 30◦ (red triangles), θwet = 45◦ (green diamonds), and θwet = 60◦ (blue squares).

Similar to the smooth surface case, the drop mobility increases monotonically with the

apparent angle, but the magnitude of the Ca is generally smaller than for a smooth surface.

Interestingly, when comparing the three datasets for di�erent θwet, we observe that, while

for larger θapp drops with smaller θwet move faster than those with larger θwet, this ordering

is reversed for lower θapp. The presence of these two regimes (for lower θapp and larger θapp)

is persistent for di�erent values of Bo, ηd and ηl.

We hypothesise this ordering inversion is due to a shift in the relative importance between

viscous dissipation and contact line pinning at the lubricant ridge. To better characterise

the pinning-depinning e�ects during drop motion, we plot the instantaneous Ca associated

to the drop's centre of mass, as a function of time for three drops with θapp ∼ 110◦ and

θapp ∼ 45◦ respectively in Figs. 4(b) and 4(d). We observe that the instantaneous Ca

oscillates periodically, which is due to pinning-depinning events as the drop moves across the

periodic LIS pattern (see ESI video). For both large (Fig. 4(b)) and small (Fig. 4(d)) θapp,

the oscillations with larger amplitude are always observed for higher θwet. At the same time,

the amplitude of the oscillations is generally smaller for θapp ∼ 45◦ than for θapp ∼ 110◦,

which implies a less pronounced e�ect of pinning and depinning.

To further assess the relative importance of pinning versus viscous dissipation, we explore

the relation between the driving force and the drop velocity for both cases of θapp ∼ 110◦
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(Fig. 4(c)) and θapp ∼ 45◦ (Fig. 4(e)). Assuming a linear approximation, the relation between

Ca, Bo and Boc can be expressed as Ca = (Bo−Boc)/β.17,32,33 Boc, the largest Bond number

at which the drop remains stationary, is a measure of contact line pinning, or alternatively,

contact angle hysteresis. β is a function of the shapes of the drop and lubricant meniscus,

and it is related to their rate of viscous dissipation.

Considering Ca as a function of (Bo − Boc), our data show an important di�erence

between the large and small apparent angle drops. For large apparent angles (Fig. 4(c)), all

the curves practically overlap onto a master curve. The variations in the results for θwet = 30◦

(red triangles), 45◦ (green diamonds), and 60◦ (blue squares) can be captured by di�erences

in the value of the critical Bond number, Boc, as shown in the inset. This indicates that

the ordering observed in Fig. 4(a) for large θapp is determined by contact line pinning. The

prefactor β is the same for the three datasets in Fig. 4(c), which suggest that the rate of

viscous dissipation is on average the same once the reduction in the e�ective driving force

due to pinning forces is taken into account.

In contrast, for small apparent angles (Fig. 4(e)), the datasets do not overlap onto a

master curve. The critical Bond number, Boc, is also essentially the same � any di�erences

observed are within the error of the measurements � for the three θwet used. These two

observations suggest that, for low θapp, contact line pinning plays a minor role. The variations

in Ca vs (Bo − Boc) for the three datasets in θwet further imply that viscous dissipation is

larger for the more wetting lubricant. Inspection of the drop morphologies supports this

observation. We �nd that, for large θapp, the lubricant ridges have similar shape, regardless

of θwet. In contrast for low θapp the ridge shape is broader for lower θwet (ESI document,

SFig. 1 and SFig. 2).

To further corroborate this hypothesis, we ran three additional sets of simulations, where

pinning and depinning is inhibited by replacing the topography with a �at substrate, as

shown in Fig. 5. The three sets correspond to θwet = 30◦ (red triangles), θwet = 45◦ (green

diamonds), and θwet = 60◦ (blue squares). The amount of lubricant in both the front and
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Figure 5: (a) In the absence of contact line pinning, drops with higher θwet always move faster.
(b) Comparison of drop shapes with the same θapp but di�erent θwet and correspondingly
meniscus aspect ratio ARm. (c) De�nition of ARm. (d) Drop mobility against ARm for
di�erent θapp. The lines are the best �t results to Eq. 15. Vref is taken to be the velocity of
drop R in panel (a).

back ridge is the same for all cases. Accordingly, once pinning is removed, drops with higher

θwet always move faster irrespective of θapp, showing the same ordering that we obtain only

for low θapp in Fig. 4(a).

Fig. 5(a) compares the morphologies of drops B and D indicated in Fig. 5(c). The two

drops have an almost identical shape and θapp, but their lubricant ridge shapes and mobilities

are di�erent. For drop B, θwet is smaller, and therefore the meniscus is broader. We can

characterise the meniscus shape by its aspect ratio, de�ned as ARm = hm/lm, where hm and

lm are its height and length respectively, see Fig. 5(b).

We now propose a scaling argument to explain how the drop mobility depends on the

lubricant ridge aspect ratio. We balance the rate of energy injected by the applied body

force with the total rate of energy dissipation in the drop and lubricant,

FVx ∼ ηd

∫
|∇v|2ddAd + ηl

∫
|∇v|2l dAl. (13)

Here F is the total force acting on the drop. We also recall that the simulations in Fig. 5 are
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two-dimensional simulations; thus the terms on the right hand side are integrated over the

drop and the lubricant ridge area. Taking |∇v|d ∼ Vx/R and |∇v|l ∼ Vx/hm as the typical

velocity gradient in the drop and lubricant meniscus, as well as ∆Ad ∼ R2 and ∆Al ∼ hmlm

as the typical scales for the cross-sectional area of the drop and the lubricant, we have

F ∼ αdηdVx + αlηlVxlm/hm, (14)

Vx ∼
F

αdηd + αlηl/ARm

. (15)

where αd and αl are positive, dimensionless �tting parameters. Eq. 15 shows that a smaller

ARm results in a larger energy dissipation in the lubricant meniscus, which in turn leads to

the lower mobility of the drop.

In Fig. 5(d), we consider drops A, B and C indicated in Fig. 5(c), and increase their

ARm by tuning θwet. We keep all other variables in the simulations the same, including the

body force, the �uid surface tensions, the lubricant and drop viscosities, and the total drop

and lubricant cross-sectional area. The data points in Fig. 5(d) correspond to simulation

results, while the lines correspond to the best �t results to Eq. 15, where we have �tted αd

and αl separately for each dataset. Consistent with our scaling argument, for all of the three

datasets in Fig. 5(d), drop mobility increases monotonically with ARm.

Taking advantage of the results in Fig. 5, we can robustly conclude that the ordering

observed in Fig. 4(a) for small θapp is due to variations in viscous dissipation at the lubricant

ridge. For the present choice of viscosities ηl = ηd = 50ηg, the crossover between pinning

and meniscus viscous friction dominated regimes in Fig. 4(a) occurs at θapp ' 70◦. In ESI

SFig. 3, we take the limit where the lubricant viscosity is very low, equal to the gas viscosity.

In this case viscous dissipation at the lubricant is weak compared to that in the drop. As

expected, for low apparent angle θapp, we then observe that the drop mobilities remain very

similar as we vary the wetting angle θwet.
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Conclusions

In this work we have employed a computational method, based on the free energy lattice

Boltzmann approach, to study drop dynamics on LIS. We show that the drop apparent angle

on LIS can be captured accurately. Despite di�erences compared to typical experiments,

namely the cylindrical geometry and the relatively larger size of the lubricant ridge, the drop

mobility computed from our simulations shows a remarkable agreement with the experiments

by Keiser et al.,19 as the drop and lubricant viscosity ratio is varied. Furthermore we have

considered the more complex case of partially wetting lubricants, and revealed a rich interplay

between contact line pinning and viscous friction. Speci�cally, we have shown that for large

apparent angles contact line pinning dominates, and drops with more wetting lubricants

move faster. In contrast, for small apparent angles viscous friction in the lubricant ridge

dominates. The magnitude of the viscous dissipation is determined by the shape of the

lubricant ridge, and as such, drops in LIS with less wetting lubricants move faster.

To our best knowledge this is the �rst simulation study of drops on LIS that accounts for

the full dynamics of the �uid �ows. The lattice Boltzmann method we have employed here is

versatile, and there are a number of avenues of future numerical work. In this work we have

assumed a LIS substrate textured with a regular periodic pattern of pillars, while many LIS

substrates are constructed experimentally using irregular topographies.3,17,18,34 The impact

of random roughness on the drop dynamics will be investigated in a forthcoming study. It

has also been pointed out that drainage of the infusing lubricant is a major source of failure

for LIS technology.35,36 As such, our approach is suitable for investigating how the surface

topographies can be designed to minimise the loss of lubricant during drop motion.

Acknowledgement

MSS is supported by an LPDP (Lembaga Pengelola Dana Pendidikan) scholarship from the

Indonesian Government. HK acknowledges funding from EPSRC (grant EP/P007139/1) and

17



Procter and Gamble. CS acknowledges support from Northumbria University through the

Vice-Chancellor's Fellowship Programme. We thank Matthew Wagner and Yonas Gizaw for

useful discussions.

Supporting Information Available
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Graphical TOC Entry

Caption:
Drop mobility on liquid infused surface is a�ected by contact line pinning
and viscous dissipation at the meniscus. The two factors dominate at
high and low drop apparent angles respectively.
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