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Abstract

The methodology of multivariate Granger non–causality testing at various horizons is ex-

tended to allow for inference on its directionality. Empirical manifestations of these subspaces

are presented and useful interpretations for them are provided. Simple vector autoregressive

models are used to estimate these subspaces and to find their dimensions. The methodology

is illustrated by an application to empirical monetary policy, where a conditional form of

Okun’s law is demonstrated as well as a statistical monetary policy reaction function to oil

price changes.
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1 Introduction

The concepts of Granger causality (GC) and Granger non–causality (GNC) developed by

Wiener (1956) and Granger (1969) are fundamental concepts in time series analysis (see e.g.

the surveys of Geweke (1984) or Hamilton (1994)). Many extensions have been proposed to the

basic concept throughout the years. To name some of these extensions, we have multivariate

analysis (Tjøstheim, 1981), enlarged information sets (Hsiao, 1982), variable horizons (Dufour

& Renault, 1998; Dufour et al., 2006), graphical modelling techniques (Eichler, 2007), mea-

surement under linearity (Dufour & Taamouti, 2010), GC priority (Jarociński & Maćkowiak,

2017), measurement under non–linearity (Song & Taamouti, 2017), and second order GC

(Dufour & Zhang, 2015).

Recently, Al-Sadoon (2014) has shown that some of the multivariate notions of GC pro-

posed above may not give a full characterization of the structure of dynamic dependence of

the system and proposed the extensions to subspace Granger causality (SGC) and subspace

Granger non–causality (SGNC). The basic idea is that if a vector process Y helps predict the

vector process X at horizon h, the predictive effect may be limited to a subspace in two dif-

ferent ways: (i) Y may predict comovements of X in some directions but not in all directions

(i.e. GC is limited to a subspace of X–space) or (ii) comovements of Y in certain (but not all)

directions may have a predictive effect on X (i.e. GC is limited to a subspace of Y –space).

Al-Sadoon (2014) shows that SGNC in a VAR process is equivalent to rank restrictions on

the VAR coefficients rather than the zero block restrictions typically studied in the literature.

This accords with T. W. Anderson’s seminal contribution that the proper extension of zero

univariate restrictions to the multivariate setting is rank restrictions rather than zero block

restrictions (Anderson, 1951).

Whereas Al-Sadoon (2014) provided the necessary and sufficient conditions for SGNC in

population, the objective of this paper is the statistical testing of SGNC and estimation of

subspaces of GNC. The paper employs the method of (p, h) autoregressions (also known as

direct VAR forecasting models in the forecasting literature) to estimate the relevant coefficient

matrices, just as in Dufour et al. (2006). As is well known, the residuals in such equations

are moving averages and therefore hypothesis testing requires the use of HAC estimators.

We follow Dufour et al. (2006) in using the Bartlett–Newey–West estimator (Newey & West,

1987). The rank tests are carried out using the QR test statistic of Al-Sadoon (2017b) for
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its computational expediency in bootstrapping and the subspace estimation procedure follows

Robin & Smith (2000) in utilizing the sequential procedure which tests rank 0, 1, . . . until

acceptance. The methodology is also extended to the I(d) case by employing results of Toda

& Yamamoto (1995) and Dolado & Lütkepohl (1996) of augmenting the regression equation

by redundant lags to achieve standard asymptotics.

As this paper is targeted towards practitioners, the paper takes the following steps in order

to accommodate their needs. First, it devotes substantial space to the interpretation and uses

of SGC, focusing in particular on cases where endogeneity may be present, as this is likely to

be the case in most empirical applications. Second, the Matlab code for the test (SGNC.m) and

for the data–driven evaluation of its small sample performance (SSP SGNC.m) has been made

available and as user–friendly as possible, allowing the practitioner to adjust a wide range of

parameters of the test (e.g. the dataset, lag length, horizons, trends, seasonality, etc.).

The new methodology is illustrated by an application to US macroeconomic data. The

dataset consists of monthly observations of the monetary policy variable constructed by Romer

& Romer (2004), the producer price index for finished goods, the industrial production index,

the civilian unemployment rate, and the West Texas Intermediate spot price for oil for the

period January 1966 – December 1996 and is not seasonally adjusted (see Section 4 for the data

codes and sources). We find that monetary policy predicts variations of industrial production

and unemployment growth with a trade–off of around 3% higher unemployment for every 1%

fall of industrial production over horizons 1–5. This trade–off doubles at horizons 6 but falls

gradually after that. This we interpret as a conditional form of Okun’s law. We also find a

statistical reaction function of monetary policy to oil prices. In particular, observed decreases

of the monetary policy indicator of around 0.15–0.20% in response to 1% increase in oil prices

have no predictive effects on unemployment growth.

The paper is organized as follows. Section 2 motivates and reviews the idea of SGC. Section

3 discusses estimation and inference. Section 4 is an empirical illustration of the methodology.

Section 5 concludes. Appendices A and B consist of further mathematical results. Finally, the

software package accompaniment to this paper (SGC.rar) contains all of the data and code

necessary to generate the tables, figures, and pretests of this paper and is available on the

author’s website: https://www.upf.edu/web/majid-al-sadoon/.
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2 Multivariate Granger Causality in VAR Models

In this section we discuss multivariate GC and its extension to subspace GC. This is ac-

complished primarily through empirical examples rather than mathematical formalism. The

reader desiring a more formal and general discussion is referred to Al-Sadoon (2014).

2.1 Theory of Subspace Granger Causality

In this paper we will be concerned with the n–dimensional VAR(p) process,

W (t+ 1) = µ(1)(t) +

p∑
j=1

π
(1)
j W (t+ 1− j) + a(t+ 1), t = p, . . . , T, (1)

where µ(1)(t) is a n–dimensional deterministic trend and a(t) is a martingale difference se-

quence with respect to the information set generated by W , with E(a(t)a′(t)) = Ω positive

definite. The first p observations of W are assumed given.

We will be interested in the predictability of components of W (t + h) with respect to

current and past components of W and for that we will need the following representation,

which we obtain by iterating equation (1) forwards,

W (t+ h) = µ(h)(t) +

p∑
j=1

π
(h)
j W (t+ 1− j) +

h−1∑
j=0

ψja(t+ h− j), t = p, . . . , T − h, (2)

where µ(h)(t) =
∑h−1

j=0 ψjµ
(1)(t + h − j) for h ≥ 1. It will be convenient to assume that

the deterministic trend satisfies µ(h)(t) = γ(h)D(h)(t), where D(h)(t) is an observable k–

dimensional deterministic trend and γ(h) is an n× k coefficient matrix. This is certainly the

case for polynomials and seasonal dummies. Dufour & Renault (1995) derive the following

formulae for the coefficient matrices {π(h)
j } and impulse responses {ψj},

π
(h+1)
j = π

(1)
j+h +

h∑
l=1

π
(1)
h−l+1π

(l)
j = π

(h)
j+1 + π

(h)
1 π

(1)
j , j, h ≥ 1 (3)

ψh = π
(h)
1 , h ≥ 1. (4)

The representation (2) forms the basis of the Dufour et al. (2006) (henceforth, DPR) analysis

of GC as well as this paper’s analysis. This model was proposed by Shibata (1980) and has

since found a great number of applications in the time series literature (e.g. Bhansali (2002),

Jorda (2005), and Al-Sadoon (2014)).
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Now partition W as W (t) = (X ′(t), Y ′(t), Z ′(t))′, t = 1, . . . , T , where the dimensions of

the components X, Y , and Z are nX , nY , and nZ respectively and partition the coefficient

matrices conformably with W as

π
(h)
j =


π

(h)
XXj π

(h)
XY j π

(h)
XZj

π
(h)
Y Xj π

(h)
Y Y j π

(h)
Y Zj

π
(h)
ZXj π

(h)
ZY j π

(h)
ZZj

 , j, h ≥ 1. (5)

Dufour & Renault (1998) define h–step GNC as follows: Y fails to Granger cause X at horizon

h if at every time t the prediction of X(t+ h) does not depend on current or past Y . We will

denote this by Y 9h X. Equation (2) suggests Y 9h X depends on the coefficient matrices

π
(h)
XY 1, . . . , π

(h)
XY p. This is indeed the case as we make clear in the following result.

Result 2.1 (Dufour & Renault (1998)). Y 9h X if and only if π
(h)
XY j = 0 for j = 1, . . . , p.

Note that Y 9h X does not preclude GC at horizon h+ j for some j ≥ 1 because Y may

Granger cause Z at horizon h, while Z Granger causes X at horizon j. This chain of GC

from Y to X through Z explains why h-step GC is so important for understanding predictive

effects as Dufour & Renault (1998) have made clear.

Now Al-Sadoon (2014) has argued that the form of GC proposed by Dufour & Renault

(1998) does not capture the full structure of dynamic dependence in multivariate time series.

In particular, if we fail to reject GNC, it may still be the case that GC is limited to a particular

subspace. This is illustrated empirically in the following two examples.

Example 2.1 (Target Subspace GNC). Consider US monthly data on the industrial produc-

tion index and civilian unemployment from January 1966 to December 1996. We are interested

in looking at the predictability of these variables in terms of the monetary policy variable de-

rived in Romer & Romer (2004). Figure 1 plots the log of the industrial production index

against the log of civilian unemployment. The negative comovements of unemployment and

output visible in the figure gave rise to Okun’s eponymous law (Okun, 1962).
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Figure 1: Index of Industrial Production vs. Unemployment

The structure evident in the left panel disappears entirely once we look at the differenced

series. Thus, the unconditional form of Okun’s law for the differenced series, “growth rates of

industrial production and unemployment exhibit negative comovements,” is evidently false. We

may, however, consider formulating a conditional form of Okun’s law, “monetary policy predicts

negative comovements of the growth rates of industrial production and unemployment.” Here,

the comovements that we consider are conditional on monetary policy. The conditional form

of Okun’s law is motivated by the same macroeconomic considerations as the unconditional

form of Okun’s law: monetary policy, as a driver of aggregate demand, will tend to push

industrial production and unemployment in opposite directions.

How can we check whether the conditional form of Okun’s law is consistent with the data?

One solution would be to form linear combinations of the differenced industrial production

index and the unemployment rate series and see which linear combinations are Granger caused

by monetary policy. Let r stand for the Romer & Romer (2004) monetary policy measure.

Let y and u stand for the differenced logs of the industrial production index and the un-

employment rate respectively; these are our targets in this exercise. We will also take into

account differenced inflation, π, and the differenced log of oil prices, o, as they are important
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Figure 2: Naive SGNC Tests for the Predictive Effect of r on cos(θ)y + sin(θ)u

determinants of the dynamics in our sample. We then transform the data as

r

π

y

u

o


7→



r

π

I1(θ)

I2(θ)

o


=



1 0 0 0 0

0 1 0 0 0

0 0 cos(θ) sin(θ) 0

0 0 − sin(θ) cos(θ) 0

0 0 0 0 1





r

π

y

u

o


(6)

and test the hypothesis r 9h I1(θ) for each θ in the range [−90◦, 90◦) for h = 1, . . . , 6, using the

DPR method with 12 lags and including a constant and seasonal dummies (Section 4 provides

much more detail on our modelling choices). When GC is detected for 0 ≤ θ < 90◦, this

implies that monetary policy predicts variations of (y, u) along positive directions. Instead,

we expect that any GC should be confined to θ in the range [−90◦, 0). Figure 2 performs just

such an exercise for horizons from 1 to 6. The horizontal line represents the critical value at

5% significance of the GC tests. It is evident that although r helps predict each of y and u, it

has a stronger predictive effect for some linear combinations than others. For horizons 1 and

6, in particular, there are directions along which the variation of y and u cannot be attributed

to r. Thus a conditional form of Okun’s law persists in the differenced data.

Example 2.2 (Predictor Subspace GNC). Suppose we are interested in the joint predictive

effect (over the same period and forecast horizons) of monetary policy and oil price growth

on the one hand and unemployment growth on the other hand. Individually, both variables
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Figure 3: Naive SGNC Tests for the Predictive Effect of cos(θ)r + sin(θ)o on u

Granger cause unemployment growth (see Section 4). However, one may naturally ask: do

all comovements of the monetary policy indicator and oil price growth predict variations in

unemployment growth? Just as we answered the question in Example 2.1 by rotating the

target space, here we will rotate the predictor space to form the following linear combinations

r

π

y

u

o


7→



I1(θ)

π

y

u

I2(θ)


=



cos(θ) 0 0 0 sin(θ)

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

− sin(θ) 0 0 0 cos(θ)





r

π

y

u

o


(7)

and measure the predictive effect of I1(θ) for u. When GC is found for θ ∈ [0, 90◦), then u is

predicted by positive comovements r and o, the predictors. We expect GNC for θ ∈ [−90◦, 0)

as negative comovements of r and o should have predictive effects on u that cancel each other

out. This is precisely what we find in Figure 3 using the DPR test as in Example 2.1. Again,

the horizontal line represents the critical value at 5% significance. Thus certain negative

comovements of monetary policy and oil price growth fail to predict unemployment growth.

In other words, what we obtain is a statistical policy reaction function that relates observed

variations in oil price growth to observed variations in monetary policy that neutralize the

effect on expected unemployment growth.

Although the peaks in Figures 2 and 2 can be interpreted as directions that maximize
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conditional predictability, the purpose of the exercise is to illustrate empirical instances of what

Al-Sadoon (2014) has termed subspace GNC, or SGNC for short (SGC is defined similarly

relative to GC); namely, there are certain directions along which there is no GC. Readers

interested in estimating the directions of the peaks may pursue the partial canonical correlation

approach provided in Appendix A. We say that Y along subspace V ⊆ RnY fails to Granger

cause X along subspace U ⊆ RnX at horizon h if the components of Y along V do not help

predict X along U at horizon h. We denote it by Y |V 9h X|U . Al-Sadoon (2014) shows that

Y |V 9h X|U if and only if V ′Y 9h U
′X for any matrices V and U whose columns form bases

of V and U respectively. The requisite restrictions for this sort of GNC are as follows.

Result 2.2 (Al-Sadoon (2014)). Y |V 9h X|U if and only if, U ′π
(h)
XY jV = 0 for all 1 ≤ j ≤ p,

where V and U span V and U respectively.

Since SGNC is GNC of a linear combination of Y for a linear combination of X, all of the

insights in Dufour & Renault (1998) continue to hold. In particular, if Y |V 9h X|U , it may

still be the case that Y along V Granger causes X along U at a horizon h + j with j ≥ 1,

either through Z, V ′⊥Y , or U ′⊥X, where V⊥ and U⊥ are orthogonal complements to V and U

respectively. Thus, there may be chains of GC that run not only through Z but also through

the subspaces orthogonal to V and U .

Now if U and V are known then testing for SGNC is easily done by employing a Wald test

as in DPR. However, as we saw in the examples above, we will typically not know a priori

along which subspaces GNC occurs. We are then lead to the following notions of SGNC.

Define the Subspace of Target GNC at horizon h to be the maximal subspace U along which

Y 9h X|U and denote it by UXYh . Its orthogonal complement UXYh⊥ is defined as the Subspace

of Target GC at horizon h. In Example 2.1, UXYh corresponds to the positively sloped lines

along which comovements of the growth rates of industrial production and unemployment

were not predictable by monetary policy, while UXYh⊥ corresponds to the negatively sloped line

along which monetary policy does have predictive effects (see the left panel in Figure 4).

Result 2.2, implies that UXYh is exactly the left null space of

Ctarget =
[
π

(h)
XY 1 · · · π

(h)
XY p

]
. (8)

On the other hand, the column space of Ctarget is UXYh⊥ .
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Figure 4: Subspaces of Granger Non–Causality in Examples 2.1 and 2.2.

-

6

����

�
��

�
��

�
��

��*

A
A
A
A
A
A
A
A
A
AAU

A
A
A
A
AAK

Variations not

predicted by r

UXY
h

Variations predicted

by r

UXY
h⊥

y

u

-

6

XXX
Xy

XXXXXXXXXXXz

�
�
�
�
�
�
�
�
�
���

�
�
�
���

Variations having a

predictive effect on u

VXY
h

Variations having no predictive

effect on u

VXY
h⊥

o

r

Define similarly the Subspace of Predictor GNC at horizon h to be the maximal subspace V

along which Y |V 9h X and denote it by VXYh . Its orthogonal complement VXYh⊥ is defined as

the Subspace of Predictor GC at horizon h. In Example 2.2, VXYh corresponds to the negatively

sloped lines along which comovements of monetary policy and the growth rate of oil prices

have no predictive effect on the growth rate of industrial production, while VXYh⊥ corresponds

to the positively sloped line along which comovements of monetary policy and the growth rate

of oil prices do have predictive effects (see the right panel in Figure 4).

Result 2.2, implies that VXYh is exactly the right null space of

Cpredictor =


π

(h)
XY 1

...

π
(h)
XY p

 . (9)

On the other hand, the row space of Cpredictor is VXYh⊥ .

Note that UXYh⊥ and VXYh⊥ do not necessarily point in the directions indicated by the peaks

in Figures 2 and 3. They simply indicate directions orthogonal to UXYh and VXYh in which

GC is present. The objective here is to decompose the target space or the predictor space

into non-predictive and predictive directions. Of course, as we have seen in Examples 2.1 and

2.2, the angles between the most predictive and least predictive directions are not necessarily

90◦; however, the ranking of directions according to predictive ability is not the objective

here. That is the objective of the partial canonical correlations perspective that we detail in

Appendix A.
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Because they are null spaces, subspaces of GNC are obtainable only under a rank restric-

tion. Thus we are lead naturally to reduced–rank regression. Our procedure for estimating

these subspaces exactly mirrors cointegration analysis. To estimate UXYh (resp. VXYh ), we

will first estimate the rank of Ctarget (resp. Cpredictor) then, based on this estimated rank,

obtain an estimate of the left (resp. right) null space. Identifying restrictions may then be

imposed to interpret the estimated relationships, just like the identifying restrictions imposed

in cointegration analysis (see e.g. Juselius (2006) or Garratt et al. (2006)). In particular, one

may either treat these relationships as directionless trade–offs (e.g. y and u in Example 2.1)

or may normalize the relationships so that a certain subset of variables is seen as responding

to the other variables (e.g. r responding to o in Example 2.2).

2.2 Interpretation and Utility of Subspace Granger Causality

Before we move on to estimation and inference, it is important to consider the correct inter-

pretation of GC and its extension, SGC, especially as problems of interpretation have dogged

GC since its inception (see e.g. Hoover (2001) and Hamilton (1994)).

Recent work by White & Lu (2010), White et al. (2011), and White & Pettenuzzo (2014)

has emphasized that, under a form of conditional exogeneity of the predictors, GC implies

causality. However, these conditions are not likely to hold in many empirical applications. For

example, while many researchers may be comfortable considering the Romer & Romer (2004)

series to be conditionally exogenous, its strong similarity to the federal funds rate series raises

endogeneity flags for others. How are we to interpret GC and its extension SGC in these

cases? The answer is best understood by recalling the difference between a causal effect and a

predictive effect. A causal effect tells us what to expect due to a manipulation of the predictor,

while a predictive effect tell us what to expect due to an observed change in the predictor.

The difference is illustrated in the following basic example.

Example 2.3. Let x = β′y+δ′z+u be a linear structural equation that determines the causal

dependence of x on y, z, and u. Let E(u|y, z) = γ′y+ θ′z with γ 6= 0 so that y is endogenous.

To complete the analogy to (1), the regression residual is given by a = u − E(u|y, z) =

x− (β + γ)y − (γ + θ)z. Then the causal effect of a change in y from y0 to y1 is β′(y1 − y0),

whereas the predictive effect of that change is (β + γ)′(y1 − y0). In the language of Pearl’s

causal framework, the causal effect is E(x|do(y = y1, z = z0)) − E(x|do(y = y0, z = z0)),
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whereas the predictive effect is E(x|y = y1, z = z0) − E(x|y = y0, z = z0) (Pearl, 2000).

The two coincide when γ = 0 or, more generally, when conditional exogeneity holds (i.e.

E(u|y, z) = E(u|z)).

GC is a manifestations of a predictive effect and SGC goes a step further in determining the

directions in target space and/or predictor space along which the predictive effect is present.

Neither GC nor SGC has any causal meaning without conditional exogeneity. So why bother

with GC in empirical practice?

It is certainly the case that causal effects are often the centre of attention in empirical

research. However, this is often due to the fact that the objective of the exercise is to pre-

scribe policy. On the other hand, for an outsider who observes and does not manipulate the

instruments of policy, the predictive effect is the more relevant quantity because it tells them

what to expect after the observed change in policy. In Example 2.3, knowledge of β does not

help us obtain the predictive effect, we need β + γ in order to obtain the predictive effect.

For a more concrete example, a market participant may be interested in knowing whether

recent variations in monetary policy should lead them to adjust their predictions for GDP.

The causal effect is of no use to such a person because (on its own) it does not allow the

observer to revise their prediction. Similarly, the manifestations of SGC we have seen in Ex-

amples 2.1 and 2.2 are to be interpreted as effects of observations (predictive effects) rather

than effects of manipulations (causal effects). This distinction is important to bear in mind

whenever conditional exogeneity is suspect in a regression-based study. It is, incidentally, the

very same distinction that exists between generalized impulse responses (Koop et al., 1996)

and structural impulse responses (Sims, 1980).

Note finally that SGC provides a natural way of interpreting VAR estimates of the pre-

dictive effect of Y on X. The idea is best illustrated in analogy to the 2–dimensional VAR(1)

model where the GC of X relative to Y is assessed based on a single coefficient. Based on

that coefficient’s magnitude we can assess the strength of GC and based on its sign we can

assess the direction of GC. For higher dimensional VAR(p) models, we can still assess the

strength of GC but its direction cannot be read directly from the signs of the individual ele-

ments of {π(h)
XY j : j = 1, . . . , p} because usually the signs are not uniformly either positive or

negative. SGC allows the researcher to retrieve the directional information that was visible in

the simpler model.
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3 Estimation and Inference

Except for the empirical manifestations of SGNC and the interpretation of SGNC, we have so

far only reviewed the basic theory of SGNC put forth by Al-Sadoon (2014). The rest of this

paper is dedicated to statistical estimation and inference.

We have already conducted simplistic tests for SGNC in Examples 2.1 and 2.2. The exercise

can be seen as a special case of the test for common features proposed by Engle & Kozicki

(1993); here the common feature is predictability by Y . However, it is well known that this

procedure controls the level but not the size of the test. Moreover, it is well known that tests

based on asymptotic critical values lead to over–rejection in small–samples (Dufour & Khalaf,

2003). Thus, the procedure employed in Examples 2.1 and 2.2 can be improved substantially.

This section proposes tests of SGNC for both stationary and non–stationary data.

3.1 Estimation and Inference for Stationary VARs

One approach to estimating Ctarget or Cpredictor is to regress W (t) on W (t− 1), . . . ,W (t− p)

in (1) to obtain estimates of {π(1)
XY j}, then iterate using (3) to obtain estimates of {π(h)

XY j}.

However, as is well known, these estimates may have a singular asymptotic covariance matrix

(see the example in section 3.6.4 of Lütkepohl (2006)). Lutkepohl & Burda (1997) and Du-

four & Valery (2016) have suggested regularizing the covariance matrix. On the other hand,

Duplinskiy (2014) proposed bootstrapping the non–standardized non–pivotal statistic. Fi-

nally, Lütkepohl (2006) p. 108 has suggested imposing the zero restrictions on the coefficients

directly.

In this paper we will opt for simplicity and for a procedure that yields an asymptotically

pivotal statistic. This is to avoid the difficulty of implementation and/or power loss known to

occur in the procedures above. The discussion below is informal. Readers interested in the

technical details are referred to Appendix B.

First, we follow DPR in estimating the coefficients in (2) by regressing W (t+h) on D(h)(t),

W (t),. . . , W (t− p+ 1), obtaining an estimator B̂h for

Bh =
[
γ(h) π

(h)
1 · · · π

(h)
p

]
, (10)

which is
√
T–consistent and asymptotically normal under fairly general regularity conditions.

Ω can be estimated as the variance of the OLS residuals in (1), call this estimator Ω̂. The
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impulse responses are then consistently estimated by iterating (3) and (4).

Now the asymptotic variance of B̂h, call it Ξh, requires some care in estimating it because

the residuals of the model (2) are autocorrelated for h > 1. We follow DPR in utilizing the

Bartlett–Newey–West estimator, which requires a bandwidth m(T ) to be specified and we

will consider two choices for this bandwidth. (i) In the small–b case, m(T ) → ∞ as T → ∞

but a slower rate than T . This makes the estimator consistent for the asymptotic variance of

B̂h. This is the common approach found in the literature (Hall, 2005; Cushing & McGravey,

1999; den Haan & Levin, 1997). (ii) In the fixed–b case, we fix m(T ) = bT for b ∈ (0, 1].

This makes the estimator inconsistent for the asymptotic variance of B̂h, although Wald test

statistics using this estimator remain asymptotically pivotal in our context. This approach

is more recent (Kiefer et al., 2000; Kiefer & Vogelsang, 2002a,b, 2005) and has found great

success in controlling for over–rejection in small samples, a serious problem in GC testing. We

will compare the performance of small–b and fixed–b statistics and also employ the bootstrap

in the next section.

Now depending on what test we are interested in conducting, we may obtain estimates of

Ctarget or Cpredictor from B̂h using the correspondences in (8) or (9) respectively. To simplify

the notation in the subsequent analysis, we will simply write C and Ĉ and denote their

dimensions by m (numbers of rows) and l (number of columns) respectively. We may also

extract an estimator for the asymptotic variance of Ĉ from the estimator of the asymptotic

variance of B̂h, call it Θ̂.

We have argued in the previous section that target and predictor SGNC restrictions amount

to rank restriction hypotheses of the form

H0(r) : rank(C) = r, (11)

where r < min{m, l}. Just as in cointegration analysis, we will test this hypothesis against

the alternative

H1(r) : rank(C) > r. (12)

Various options are available for this test. The original analysis of Anderson (1951) can be

applied to our regression model but because Ξh is not of the Kronecker product form for

h > 1, Anderson’s test statistic may not be asymptotically pivotal (Robin & Smith, 2000).

Robin and Smith show that, under H0(r), it converges in distribution to a weighted sum
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of independent χ2(1) random variables with weights that depend on nuisance parameters.

They show that when the weights are estimated consistently, the test has the correct size

asymptotically. However, the presence of nuisance parameters in the asymptotic distribution

makes this option less attractive than available alternatives. Cragg & Donald (1996), Cragg

& Donald (1997), and Kleibergen & Paap (2006) propose alternative consistent tests based

on statistics that are asymptotically pivotal. However, these statistics utilize computationally

costly algorithms that may slow down performance as we bootstrap (see the on-line appendix

to Al-Sadoon (2017b)), so we opt for the least computationally costly test statistic that is also

asymptotically pivotal in our setting, the QR statistic proposed in Al-Sadoon (2017b).

We will sketch the intuitive idea of the QR test, leaving the formal details to Al-Sadoon

(2017b). Let Ĉ = Û ŜV̂ ′ be the QR decomposition with pivoting (Golub & Van Loan, 1996,

Algorithm 5.4.1). This decomposition is obtained by permuting the columns of Ĉ (V̂ is

a permutation matrix) so that it can be factorized by the Gram–Schmidt algorithm into a

product of an orthogonal matrix (typically denoted by Q, here Û) and a block upper triangular

matrix (typically denoted by R, here Ŝ). Now partition Ŝ as
[
Ŝ11 Ŝ12

0 Ŝ22

]
so that Ŝ11 ∈ Rr×r. The

basic idea behind the test is that Ŝ22 is small when Ĉ approaches a rank–r matrix and bounded

away from zero when Ĉ approaches a matrix of rank higher than r. Setting, N̂r = Û
[

0
Im−r

]
and M̂r = V̂

[
−Ŝ−1

11 Ŝ12

Il−r

]
, we have that N̂ ′rĈM̂r = Ŝ22 and we may base our inference on the

statistic

F = Tvec′(Ŝ22){(M̂r ⊗ N̂r)
′Θ̂(M̂r ⊗ N̂r)}−1vec(Ŝ22). (13)

The plug-in principle of Al-Sadoon (2017b) implies that, under H0(r), F has the same asymp-

totic behaviour as the infeasible statistic

Tvec′(N ′rĈMr){(Mr ⊗Nr)
′Θ̂(Mr ⊗Nr)}−1vec(N ′rĈMr), (14)

where Nr and Mr span the left and right null spaces of the population matrix C. The

advantage of the plug-in principle is that the asymptotics of (14) are very simple since it is

only a Wald statistic. It immediately follows that when the small–b covariance estimator is

utilized, F
d→ χ2((m−r)(l−r)) under H0(r). When the fixed–b covariance estimator is utilized

and b = 1, F
d→W ′(1)

(
2
∫ 1

0 (W (s)− sW (1))(W (s)− sW (1))′ds
)−1

W (1) under H0(r), where

W is a standard Brownian motion of dimension (m − r)(l − r). Limiting distributions for

b ∈ (0, 1) can be found in Kiefer & Vogelsang (2005); here we will limit our discussion to
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b = 1 as this yields the least size distortions (Kiefer & Vogelsang, 2005). Al-Sadoon (2017b)

proves that both statistics have an asymptotic power of 1 under H1(r) and their local power

is identical to the Cragg & Donald (1996), Cragg & Donald (1997), and Kleibergen & Paap

(2006) counterparts, so there is no loss in efficiency when using the QR statistic.

Of course, it is well known that hypothesis tests based on classical asymptotic theory give

poor results in small samples (see e.g. Dufour & Khalaf (2002) and Camba-Mendez et al.

(2003)). This is also the case in our setting as we show later on. Therefore, we will use a

bootstrap or Monte Carlo testing method, which gives better size control in finite samples.

The general form of the testing algorithm follows Dufour et al. (2006) and its asymptotic

validity can be established by standard methods (see e.g. Dufour (2006)).

Algorithm 3.1. For a given rank r and horizon h,

1. Compute B̂1 and Ω̂.

2. Substituting B̂1 into (3) and (4) to compute estimates of the first h−1 impulse responses,

ψ̂j for j = 0, . . . , h− 1.

3. If h > 1, compute B̂h and Ξ̂h.

4. Compute Ĉ and Θ̂.

5. Compute the rank statistic (13) and denote it by F0.

6. Compute a rank restricted estimator Bh (see the discussion below).

7. For i = 1, . . . , N ,

(a) Construct a sample of T observations using Bh, {ψ̂j}h−1
j=0 , and Ω̂ in equation (2) (see

the discussion below).

(b) Compute the statistic (13) for the bootstrapped sample and denote it by Fi.

8. Compute the bootstraped p–value, p̂N = 1
N+1

∑N
i=0 1(Fi ≥ F0), where 1(·) is the indica-

tor function.

Two points in the algorithm need further elaboration. First, the bootstrap sample can

be generated from either simulated or resampled residuals. In the first case, one obtains the

bootstrap shocks by drawing from a multivariate distribution of mean zero and variance Ω̂

then generates the samples from equation (2) using Bh and {ψ̂j} in place of the population

parameters (Dufour & Khalaf (2003) refer to this type of test as a Local Monte Carlo test).
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We may also generate the bootstrap shocks non–parametrically by drawing with replacement

from the residuals of the regression in step (1). The researcher may also choose to simulate

more than T data point to allow for “burn–in” and ensure the data’s stationarity. All of these

options are available to the researcher in the accompanying Matlab code to this paper.

The second point is that the construction of Bh can be carried out in a number of ways.

One possibility is to replace Ĉ with Û
[
Ŝ11 Ŝ12
0 0

]
V̂ ′ in B̂h. In our work, however, we have

chosen to use the restricted OLS estimator imposing the restriction N̂ ′rC = 0 for target SGNC

testing and the restriction CM̂r = 0 when testing for predictor SGNC (see equation (40)).

The advantage of using the restricted OLS estimator is that it helps avoid generating models

with explosive roots. Indeed, these were not encountered in any of our simulations.

Algorithm 3.1 specializes to the one proposed in DPR in the case where H0(0) is being

tested. The author has verified that the algorithm replicates the empirical results of DPR.

Finally, the rank of C can be estimated in a variety of ways. One approach tests sequentially

the hypotheses H0(0), H0(1), . . . ,H0(min{m, l}−1) at a particular level of significance α until

acceptance. This produces an estimate of the rank that asymptotically never underestimates

the true rank but has an asymptotic probability of α of over-estimating. Thus, it is not

consistent. It can be made consistent by testing at significance levels that decrease to zero

at an appropriate rate with T (Robin & Smith, 2000). However, this and other consistent

model selectors (e.g. index minimization in Al-Sadoon (2015)) have the tendency to choose

models that are too restricted in small samples. Practitioners usually find it more appealing

to exercise judgement in this context, especially when empirically interpretable relationships

exist in the data, such as the relationships we found in Examples 2.1 and 2.2. Thus, we

opt for the simpler approach of sequential testing proposed by Robin & Smith (2000), which

seems to be the preferred approach in empirical cointegration analysis as well (Juselius, 2006;

Garratt et al., 2006). Once the rank is estimated as r̂, we can estimate UXYh as span(N̂r̂) in

the case of target SGNC and we can estimate VXYh as span(M̂r̂) in the case predictor SGNC.

See Al-Sadoon (2017b) for more on the estimation of null spaces.

3.2 Estimation and Inference for Non–Stationary VARs

Suppose now that W is allowed to be I(1). In that case, Ξh will no longer be invertible and

therefore we will not be able to ensure the non–singularity of Θ. Toda & Phillips (1993) give
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a detailed analysis of the problem and Lütkepohl (2006) provides a text–book analysis. As a

result, the SGNC test may be invalid.

One solution that authors such as Toda & Yamamoto (1995) and Dolado & Lütkepohl

(1996) have proposed is to use a lag augmented VAR. These papers have shown that in

estimating the model,

W (t+ 1) = µ(1)(t) +

p+1∑
j=1

π
(1)
j W (t+ 1− j) + a(t+ 1), t = p+ 1, . . . , T, (15)

instead of (1) then the estimates of the coefficient matrices π
(1)
j , 1 ≤ j ≤ p are

√
T–consistent

and have non–singular asymptotic covariance matrix. Thus Wald tests can proceed as usual.

The same reasoning can be adapted to (2), where it is not difficult to show that in the

regression,

W (t+ h) = µ(h)(t) +

p+1∑
j=1

π
(h)
j W (t+ 1− j) +

h−1∑
j=0

ψja(t+ h− j), t = p+ 1, . . . , T − h (16)

the estimates of the coefficient matrices π
(h)
j , 1 ≤ j ≤ p are also

√
T–consistent and have

non–singular asymptotic covariance matrix. Once these are available, we can proceed as in

the previous subsection to draw inference on the rank of C.

Toda & Yamamoto (1995) show that the approach can deal with the general I(d) case just

the same, i.e. by augmenting the model with d lags.

4 Empirical Illustration

The empirical problems to which we apply SGNC were introduced in Examples 2.1 and 2.2.

Here we extend the analysis and employ the new methodology of SGC.

4.1 The Data and Model Specification

First, we elaborate on our modelling choices. The data includes three series from the Romer &

Romer (2004) study, the monetary policy variable that they construct, the log of the producer

price index for finished goods (Bureau of Labor Statistics series WPUSOP3000), and the log of

the industrial production index (Board of Governors series B50001). To this we have added the

log of the civilian unemployment rate (Federal Reserve Economic Data series UNRATENSA)

as well as the log of the West Texas Intermediate spot price (Federal Reserve Economic Data
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series ID OILPRICE). The data is monthly for the period January 1966 – December 1996 and

is not seasonally adjusted.

Next, we checked for stationarity of the individual series. An augmented Dickey–Fuller

test rejected the unit root hypothesis for the monetary policy variable. The other variables

were visibly at odds with the stationary assumption and were differenced until the augmented

Dickey–Fuller test rejected their non–stationarity. Therefore, we constructed the vector pro-

cess (r, π, y, u, o), which consists of the raw monetary policy variable, the twice differenced

log of the producer price index, the differenced log of the industrial production index, the

differenced log of the unemployment rate, and the differenced log of oil prices.

Finally, we specified the model as in (1) with a constant and seasonal dummies. The

number of lags was selected by minimizing AIC over lags 1–18 and including the seasonal

dummies as exogenous variables; this resulted in 12 lags selected. As is well known, AIC

tends to be more generous than consistent estimators of lag, which have a tendency to specify

too few lags in small samples (McQuarrie & Tsai, 1998). Indeed, the Bayesian–Schwartz and

Hannan–Quinn criteria select 1 lag and 3 lags respectively. Intuitively, including too many

lags leads to over–rejection in small samples due to there being too many degrees of freedom.

On the other hand, including too few of them would invalidate the asymptotic distribution

results. We opt, as DPR do, to err on the side of too many lags and show below that over–

rejection is not too big an issue for the objective of our study. All of the pretesting mentioned

here can be replicated using the STATA file (PRETESTING.do), which is part of the software

package accompaniment to this paper.

4.2 Size and Power

Before we employ the procedure proposed in this paper, it is important to check that appro-

priate inference can be drawn based on the sample of interest. Standard practice illustrates

size and power in a Monte Carlo experiment, which attempts to emulate the characteristics of

empirical data in terms of size, persistence, and other characteristics. However, such Monte

Carlo results may be misleading because empirical data can deviate substantially from the

Monte Carlo design. Thus, this paper follows DPR and uses the data to decide how well the

inference procedure performs. We take it for granted that the large sample approximation

holds for large enough samples, and check whether it holds for the sample under study. The
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following algorithm estimates the actual size and power of the testing procedures proposed in

this paper.

Algorithm 4.1 (Bootstrap Size and Power of a Target (resp. Predictor) SGNC Test). For a

given rank r, horizon h, and size α,

1. Compute B̂1, Ω̂, the first h− 1 impulse responses, ψ̂j for j = 0, . . . , h− 1, and B̂h.

2. Construct Ĉ and N̂r (resp. M̂r) as described in the previous section.

3. Obtain Bh subject to the restriction Y 9h M̂
′
rX (resp. N̂ ′rY 9h X).

4. For θ = 0 = θ1, . . . , θc = 1

(a) For i = 1, . . . , R,

i. Construct a sample of T observations using (1 − θ)Bh + θB̂h, {ψ̂j}h−1
j=0 , and Ω̂

in equation (2).

ii. Test H0(r) for Y 9h X|U (resp. Y |V 9h X) at significance α.

(b) Compute the rejection rate of each test for the given θ.

The rejection rate at θ = 0 is the empirical size of the test and gives us an indication of

how well the test performs under the null. The rejection rate for θ = 1 is the rejection rate at

the estimated set of parameters and gives us an idea of the small-sample power of the test.

The Monte Carlo test in Algorithm 4.1 differs from the design utilized by DPR in that

they impose GNC across a range of horizons in step 3, whereas we impose GNC only at a

single horizon. The advantage of the DPR design is that it allows us to see the ability of

the tests to be detect GC across a range of horizons under the alternative. However, the

design of Algorithm 4.1 is more representative of both the null and the alternative hypotheses

usually considered in practice and is easier to implement. Practitioners are recommended to

run the simulations above for each particular test of interest. This is easily done using the

accompanying Matlab code SSP SGNC.m.

To conserve space, we illustrate by considering a small set of null hypotheses to test:

r 91 (y, u), (r, o) 91 u, r 91 (y, u)|U , and (r, o)|V 91 u. Results for analogous hypotheses

at higher horizons paint a similar picture of the performance of the tests under consideration.

We use α = 0.05 and R = 1000 in Algorithm 4.1 to study the small–sample behaviour of the

asymptotic small–b test, asymptotic fixed–b test, bootstrapped small–b test, and bootstrapped
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Figure 5: Rejection Rates for SGNC Tests of r to (y, u) at Horizon 1.

fixed–b test. The bootstrapped tests are non–parametric, with N = 2000 and a burn–in of

100 periods. The results are plotted in Figures 5 and 6.

The asymptotic tests have a serious over–rejection problem, with fixed–b tests significantly

improving on small–b tests but without successfully matching the nominal size. The bootstrap

versions of the tests control size much better across the four hypotheses tested. The boot-

strapped tests of r 91 (y, u) and (r, o) 91 u have good size and power properties, with the

bootstrapped small–b tests having higher power than the bootstrapped fixed–b tests. However,

the bootstrapped tests of r 91 (y, u)|U , and (r, o)|V 91 u are moderately oversized, with the

bootstrapped fixed–b tests closer to the nominal size.

To summarize, asymptotic tests are to be avoided in favour of the alternative bootstrapping

procedures. We can be confident about using the bootstrapped tests for testing r 9h (y, u) and

(r, o) 9h u but must be cautious when testing either r 9h (y, u)|U or (r, o)|V 9h u because

of the problem of over–rejection. Luckily, in our sample, none of the tests for r 9h (y, u)|U

or (r, o)|V 9h u were rejected, so we need not worry about the over–rejection problem in this

context.
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Figure 6: Rejection Rates for SGNC Tests of (r, o) to u at Horizon 1.

4.3 Results

Given the size and power results above, we employ Algorithm 3.1 to find bootstrapped p–

values based on small–b and fixed–b statistics to study target SGNC between r and (y, u) and

predictor SGNC between (r, o) and u. We will base our inference primarily on the bootstrapped

small–b test, except when the size of the test is in question, in which case we will consider

the bootstrapped fixed–b test. We will utilize a non–parametric bootstrap with N = 2000, a

burn–in of 100 periods, and test at the conventional 5% significance.

We begin by considering the univariate predictive effects (Table 1). We see that mone-

tary policy predicts the growth of industrial production over the entire range of horizons we

consider, 1–12. It predicts the growth of unemployment over horizons 4 and 5. On the other

hand, oil price growth predicts unemployment growth over horizons 1, 3, and 4.

Consider next the target SGNC results given in Table 2(a). The results confirm our graph-

ical analysis in Example 2.1. Monetary policy predicts negative comovements of industrial

production and unemployment growth across a range of horizons. The trade–off between in-

dustrial production and unemployment growths predicted by monetary policy is estimated
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Table 1: Univariate Results
Bootstrapped p–Values for Small–b SGNC Tests

h 1 2 3 4 5 6 7 8 9 10 11 12

r 9h y 0.005 0.008 0.014 0.044 0.009 0.005 0.007 0.004 0.015 0.009 0.011 0.007

r 9h u 0.062 0.093 0.096 0.008 0.036 0.106 0.052 0.076 0.117 0.056 0.631 0.873

o9h u 0.039 0.069 0.039 0.044 0.077 0.111 0.107 0.101 0.195 0.220 0.649 0.395

Bootstrapped p–Values for Fixed–b SGNC Tests

r 9h y 0.011 0.034 0.226 0.199 0.007 0.003 0.007 0.010 0.011 0.011 0.076 0.046

r 9h u 0.091 0.109 0.381 0.620 0.143 0.214 0.180 0.129 0.078 0.192 0.644 0.771

o9h u 0.156 0.271 0.136 0.106 0.124 0.348 0.075 0.037 0.042 0.158 0.416 0.297

at about 3% higher unemployment for every 1% fall of industrial production over horizons

1–5. This trade–off becomes quite severe at horizons 6 but falls gradually after that. The

significance of these trade–offs follows from the univariate tests in Table 1. In particular, the

estimated trade–off between u and y at horizon h is zero if and only if r 9h u and this is

rejected at horizons 4 and 5.

Consider next the predictor SGNC results given in Table 2(b). The results again confirm

the graphical analysis of Example 2.2. There is a statistical reaction function of monetary

policy to oil prices. Observed decreases of r of around 0.15–0.20% in response to 1% increase

in oil prices have no predictive effects on unemployment growth. From Table 1, we see that

indeed the trade–offs at horizons 1, 3, and 4 are statistically significant.

Visual inspection of the series π, y, u, and o does not yield anything too alarming about

the stationarity assumption. One may, however, have misgivings about considering r to be

stationary. In that case, we employ the methods of subsection 3.2. The results of these tests

are given in Tables 3 and 4. Clearly, the qualitative empirical conclusions under stationarity

remain intact when we employ our I(1)–robust method.

5 Conclusion

In this paper, we have presented an extension of GC that allows the researcher to estimate the

directionality or the subspaces of GC. These subspaces have been shown to admit interesting

empirical interpretations as conditional predictability trade–offs. The method was illustrated

both graphically and statistically. In the remainder, we mention some possible venues of future

research.
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Table 3: I(1)–Robust Univariate Results

Bootstrapped p–Values for Small–b SGNC Tests

h 1 2 3 4 5 6 7 8 9 10 11 12

r 9h y 0.015 0.006 0.004 0.082 0.008 0.004 0.006 0.008 0.030 0.007 0.019 0.016

r 9h u 0.084 0.155 0.021 0.027 0.044 0.051 0.052 0.264 0.023 0.050 0.715 0.922

o9h u 0.029 0.040 0.010 0.045 0.217 0.137 0.081 0.106 0.337 0.249 0.632 0.394

Bootstrapped p–Values for Fixed–b SGNC Tests

r 9h y 0.004 0.075 0.169 0.060 0.005 0.002 0.013 0.009 0.019 0.040 0.130 0.138

r 9h u 0.221 0.194 0.383 0.568 0.193 0.219 0.213 0.141 0.049 0.182 0.706 0.854

o9h u 0.246 0.124 0.060 0.127 0.326 0.261 0.043 0.024 0.103 0.123 0.417 0.314

There are many possible applications of SGNC besides the problem of finding economically

interpretable relationships in the data. We mention three:

1. Imposing GNC and SGNC restrictions can have forecasting benefits in terms of reducing

estimation error. Jarociński & Maćkowiak (2017) conducts such an exercise using GNC

restrictions. Velu et al. (1986) and Camba-Mendez et al. (2003), on the other hand, im-

pose restrictions that can be interpreted as SGNC restriction (Al-Sadoon, 2014). These

GNC or SGNC restrictions become even more attractive when they admit economic in-

terpretations (e.g. Example 2.1 and 2.2) as structural restrictions have been shown to

improve the performance of empirical models (Garratt et al., 2006).

2. Dynamic structural models such as dynamic stochastic general equilibrium models can

imply testable SGC restrictions (Al-Sadoon, 2014, 2017a). Thus, SGNC tests can be

used as specification tests for these structural models.

3. The moments describing SGC describe dynamic interdependence between time series.

Because of their dynamic nature, they may be more natural moments to match in cali-

bration exercises than the unconditional moments prevalent in the calibration literature.

Although the procedure outlined in this paper can easily be extended to test causality up

to horizon h, rather than just at a particular horizon h, there is still need for a simple long

run causality test. Bruneau & Jondeau (1999) proposed such a test for cointegrated VARs.

Unfortunately, Yamamoto & Kurozumi (2006) have found that the multivariate extension of

the statistic can suffer from the same singularity issue we have considered in subsection 3.2.

They propose a two–step procedure that estimates the rank of Θ then uses a generalized

inverse. Clearly, a simpler solution is desirable.
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A Non-Parametric Subspace Granger Causality

It is well known in the multivariate statistics literature that rank testing in a regression

context is related to testing the significance of the smallest canonical correlations (Reinsel &

Velu, 1998; Anderson, 2003). We now show that SGNC can be studied using the method of

partial canonical correlations proposed by Reinsel (2003).

Suppose we have random vectors X ∈ Rn, Z ∈ Rk, Yi ∈ Rm for i = 1, . . . , p, Y =

(Y ′1, . . . ,Y ′p)′, and let the variance matrix of (X ′,Y ′,Z ′)′ be

Σ =


ΣXX ΣXY ΣXZ

ΣYX ΣYY ΣYZ

ΣZX ΣZY ΣZZ

 =



ΣXX ΣXY1 · · · ΣXYp ΣXZ

ΣY1X ΣY1Y1 · · · ΣY1Yp ΣY1Z
...

...
. . .

...
...

ΣYpX ΣYpY1 · · · ΣYpYp ΣYpZ

ΣZX ΣZY1 · · · ΣZYp ΣZZ


.

Neither Σ nor any of its components are assumed to have any particular rank. In this setting,

X takes the role of X(t + h), Y takes the role of (Y ′(t), Y ′(t − 1), . . . , Y ′(t + 1 − p))′, and Z

takes the role of (X ′(t), X ′(t− 1), . . . , X ′(t+ 1− p), Z ′(t), Z ′(t− 1), . . . , Z ′(t+ 1− p))′.

The Frisch–Waugh theorem implies that the best linear predictor of X in terms of Y and

Z is ΣXY·ZΣ†YY·ZY + ΣXZ·YΣ†ZZ·YZ, where Σ†YY·Z is the Moore–Penrose inverse of ΣYY·Z

and the partial covariance matrices are given by

ΣXY·Z = ΣXY − ΣXZΣ†ZZΣZY ΣXZ·Y = ΣXZ − ΣXYΣ†YYΣYZ

ΣYY·Z = ΣYY − ΣYZΣ†ZZΣZY ΣZZ·Y = ΣZZ − ΣZYΣ†YYΣYZ .

It follows that Y fails to predict X conditionally on Z along the left null space of ΣXY·Z . This

subspace corresponds directly to the subspace of target GNC. Next we will see how it may be

obtained from the partial canonical correlations point of view.

Suppose we are interested in directions along which X and Y have the strongest correlation

after conditioning on Z. Thus, we are interested in the directions of strongest correlation

between X − ΣXZΣ†ZZZ and Y − ΣYZΣ†ZZZ and we must solve for

ρ1
XY·Z = sup{|corr(U ,V)| : U = x′(X − ΣXZΣ†ZZZ),V = y′(Y − ΣYZΣ†ZZZ)}

= sup{|cov(U ,V)| : U = x′(X − ΣXZΣ†ZZZ),V = y′(Y − ΣYZΣ†ZZZ), var(U) = var(V) = 1}

= max{x′ΣXY·Zy : x ∈ Rn, y ∈ Rmp, x′ΣXX·Zx = y′ΣYY·Zy = 1}.
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This expression is identical to its counterpart in canonical correlation analysis except that

the covariance matrices are replaced by partial covariance matrices. Solutions x1 and y1 to

the above maximization problem are then used to find the canonical variates, U1 = x′1(X −

ΣXZΣ†ZZZ) and V1 = y′1(Y − ΣYZΣ†ZZZ) so that finally, ρ1
XY ·Z = cov(U1,V1).

The next set of canonical variates is found by looking for the directions of maximum corre-

lation between X −ΣXZΣ†ZZZ and Y −ΣYZΣ†ZZZ among all possible directions uncorrelated

with U1 and V1. Thus, we solve for

ρi+1
XY·Z = sup{corr(U ,V) : U = x′(X − ΣXZΣ†ZZZ), cov(U ,Uj) = 0, j = 1, . . . i,

V = y′(Y − ΣYZΣ†ZZZ), cov(V,Vj) = 0, j = 1, . . . i},

for i ≥ 1 and this similarly reduces to

ρi+1
XY·Z = max{x′ΣXY·Zy : x ∈ Rn, y ∈ Rmp, x′ΣXX·Zx = y′ΣYY·Zy = 1,

x′ΣXX·Zxj = y′ΣYY·Zyj = 0, j = 1, . . . , i}.

This procedure terminates after min{n,mp} steps and obtains as many canonical correlations

and pairs of canonical variates. Following Anderson (2003), the solution to the algorithm can

be represented as the solutions to the eigenvalue problems, −λiΣXX·Z ΣXY·Z

ΣYX·Z −λiΣYY·Z

 xi

yi

 =

 0

0

 , x′iΣXX·Zxj = δij , y′iΣYY·Zyj = δij ,

Ui = x′i(X − ΣXZΣ†ZZZ), Vi = y′i(Y − ΣYZΣ†ZZZ), ρiXY·Z = λi = cov(Ui,Vi), (17)

for i, j = 1, . . . ,min{n,mp}. The existence of the canonical variates in this case follows from

standard linear algebra techniques.

Clearly the canonical variates associated with canonical correlations of zero define direc-

tions of uncorrelated conditional variation between X and Y. That is, {xi : ρiXY·Z = 0, i =

1, . . . ,min{n,mp}} are the directions along which variations in X are not attributable to

variations in Y after controlling for Z. This can easily be seen from equation (17) where if

ρiXY·Z = λi = 0 then x′iΣXY·Z = 0. Thus, along the subspace, span{xi : ρiXY ·Z = 0, i =

1, . . . ,min{n,mp}}, Y cannot help predict X over and above the predictive ability of Z. The

space spanned by these vectors is UXYh in the context of target SGNC.

Suppose that instead we are interested in the components of Yi that best predict X after

conditioning on Z. In order to study this correlation, we need a device that allows us to
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look at the correlation of X with the individual components of Y. Thus we will consider

canonical correlations between X̃ = (φ⊗ In)X and Ỹ = (φ⊗ Im)′Y, where the random vector

φ = (φ1, . . . , φp)
′ is independent of, X , Y, and Z, and satisfies E(φφ′) = Ip. We will also need

Z̃ = (φ⊗ Ik)Z. This construction makes sense because the covariance between X̃ and Ỹ is,

ΣX̃ Ỹ =


ΣXY1

...

ΣXYp

 ,
which is the matrix that describes the joint covariation of the components of Y with X .

The matrix that describes this covariation after factoring out the effect of Z is ΣX̃ Ỹ·Z̃ =

ΣX̃ Ỹ − ΣX̃ Z̃Σ†
Z̃Z̃

ΣZ̃Ỹ and it is easy to check that it simplifies to,

ΣX̃ Ỹ·Z̃ =


ΣXY1·Z

...

ΣXYp·Z

 =


ΣXY1 − ΣXZΣ†ZZΣZY1

...

ΣXYp − ΣXZΣ†ZZΣZYp


Similarly, we find that ΣX̃ X̃ ·Z̃ = (Ip ⊗ ΣXX·Z), while ΣỸỸ·Z̃ =

∑p
i=1 ΣYiYi·Z .

Now define the first canonical correlation analogously to the above as,

θ1
XY·Z = ρ1

X̃ Ỹ·Z̃ = max{x̃′ΣX̃ Ỹ·Z̃ ỹ : x̃ ∈ Rnp, ỹ ∈ Rm, x̃′ΣX̃ X̃ ·Z̃ x̃ = ỹ′ΣỸỸ·Z̃ ỹ = 1}.

Having found the first canonical correlation, θ1
XY·Z , the optimal vectors x̃1 and ỹ1, and the

associated canonical variates Ũ1 = x̃′1(X̃ − ΣX̃ Z̃Σ†
Z̃Z̃
Z̃) and Ṽ1 = ỹ′1(Ỹ − ΣỸZ̃Σ†

Z̃Z̃
Z̃), we

proceed recursively for i ≥ 1 as,

θi+1
XY·Z = ρi+1

X̃ Ỹ·Z̃
= max{x̃′ΣX̃ Ỹ·Z̃ ỹ : x̃ ∈ Rnp, ỹ ∈ Rm, x̃′ΣX̃ X̃ ·Z̃ x̃ = ỹ′ΣỸỸ·Z̃ ỹ = 1,

x̃′ΣX̃ X̃ ·Z̃ x̃j = ỹ′ΣỸỸ·Z̃ ỹj = 0, j = 1, . . . , i}.

The problem then reduces to solving the linear set of equations, −λiΣX̃ X̃ ·Z̃ ΣX̃ Ỹ·Z̃

ΣỸX̃ ·Z̃ −λiΣỸỸ·Z̃

 x̃i

ỹi

 =

 0

0

 , x̃′iΣX̃ X̃ ·Z̃ x̃j = δij , ỹ′iΣỸỸ·Z̃ ỹj = δij ,

Ũi = x̃′i(X̃ − ΣX̃ Z̃Σ†
Z̃Z̃
Z̃), Ṽi = ỹ′i(Ỹ − ΣỸZ̃Σ†

Z̃Z̃
Z̃), θiX̃ Ỹ·Z̃ = λi = cov(Ũi, Ṽi), (18)

for i, j = 1, . . . ,min{np,m}.

Again, the canonical variates associate with canonical correlations of zero define directions

of uncorrelated conditional variation between X and the components of Y. That is, {ỹi :
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θiXY·Z = 0, i = 1, . . . ,min{np,m}} are the directions along which variations in X are not

attributable to the variations of the components of Y after controlling for Z. This can easily be

seen from equation (18) where if λi = 0 then ΣX̃ Ỹ·Z̃ ỹi = 0, which is equivalent to ΣXYj ·Z ỹi = 0

for j = 1, . . . , p. Thus, along the subspace, span{ỹi : θiXY·Z = 0, i = 1, . . . ,min{np,m}}

variations of the p components cannot help predict X over and above the predictive ability of

Z. The space spanned by these vectors is VXYh in the context of predictor SGNC.

B Technical Appendix

This subsection provides some of the technical material omitted from Section 3. Define the

following set of matrices

Yh = BhXh + Uh, Yh =
[
W (p+ h) · · · W (T )

]
, Bh =

[
γ(h) π

(h)
1 · · · π

(h)
p

]
, (19)

Xh =
[
Xh(p) · · · Xh(T − h)

]
, Uh =

[
Uh(p) · · · Uh(T − h)

]
, (20)

Xh(t) =



D(h)(t)

W (t)

W (t− 1)

...

W (t− p+ 1)


, Uh(t) =

h−1∑
j=0

ψja(t+ h− j). (21)

Then the OLS estimator

B̂h = YhX
′
h(XhX

′
h)−1 (22)

is
√
T–consistent under fairly general regularity conditions. Ω can be estimated consistently

by

Ω̂ =
1

T
(Y1 − B̂1X1)(Y1 − B̂1X1)′. (23)

The impulse responses are also consistently estimated by iterating (3) and (4).

Now, two points need to be kept in mind: (i) if the regression contains unbounded de-

terministic trends, we will need to rescale in the asymptotic analysis and (ii) the errors in

the regression have an MA(h − 1) structure and so the asymptotic covariance of B̂h is not

of the Kroncker product form for h > 1. To address (i) we will assume the existence of a

diagonal rescaling matrix QT such that the dataset Q−1
T Xh satisfies the usual regularity con-

ditions. This is certainly true for polynomial trends, where each term of the form tν needs to
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be rescaled by T ν+1 (Hamilton, 1994, Chapter 16). To address (ii), we write

√
Tvec((B̂h −Bh)QT ) =

(Q−1
T XhX

′
hQ
−1
T

T

)−1

⊗ In

 vec

(
UhX

′
hQ
−1
T√

T

)
(24)

=

(Q−1
T XhX

′
hQ
−1
T

T

)−1

⊗ In

 1√
T

T−h∑
t=p

Q−1
T Xh(t)⊗ Uh(t). (25)

Since Uh(t) is an MA(h− 1) process, the summands Q−1
T Xh(t)⊗ Uh(t) are serially correlated

at lags 1 through h − 1 and, because a(t) is martingale difference process, there is no serial

correlation beyond that lag. Using standard results (e.g. Section 6.3 of White (2001) and

Chapter 16 of Hamilton (1994)),

1√
T

T−h∑
t=p

Q−1
T Xh(t)⊗ Uh(t)

d→ N(0,Ψh), (26)

where

Ψh = lim
T→∞

h−1∑
j=−h+1

cov(Q−1
T Xh(t)⊗ Uh(t), Q−1

T Xh(t− j)⊗ Uh(t− j)), (27)

and

Γ̂h =
Q−1
T XhX

′
hQ
−1
T

T

p→ Γh. (28)

Both Ψh and Γh are positive definite under the usual regularity assumptions. The asymptotic

distribution of our estimator is then

√
Tvec((B̂h −Bh)QT )

d→ N (0,Ξh) , (29)

where the asymptotic covariance matrix of B̂h is given by

Ξh = (Γ−1
h ⊗ In)Ψh(Γ−1

h ⊗ In). (30)

Now, as is well known, sample analogues can be substituted in for Γh but not for Ψh because the

sample analogue is not guaranteed to be positive definite (Hamilton, 1994, p. 281). Following

Dufour et al. (2006), we opt again for simplicity and convenience and utilize a Bartlett–Newey–

West estimator of the form

Ψ̂h =

m(T )−1∑
j=−m(T )+1

(
1− |j|

m(T )

)
ĉov(Q−1

T Xh(t)⊗ Ûh(t), Q−1
T Xh(t− j)⊗ Ûh(t− j)), (31)

where

Ûh(t) = W (t+ h)− B̂hXh(t) (32)
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and m(T ), commonly known as the bandwidth, satisfies m(T ) → ∞ and m(T )/T
1
4 → 0 (see

Hall (2005), Cushing & McGravey (1999), and den Haan & Levin (1997)). With this estimator

of Ψh, our estimator for the asymptotic covariance matrix of B̂h is

Ξ̂h = (Γ̂−1
h ⊗ In)Ψ̂h(Γ̂−1

h ⊗ In). (33)

The estimator above requires the bandwidth to grow infinitely large but at a slower rate

than T . A recent literature has allowed the bandwidth to behave as m(T ) = bT for b ∈ (0, 1]

(Kiefer et al., 2000; Kiefer & Vogelsang, 2002b,a, 2005). This fixed–bandwidth approach makes

Ψ̂h inconsistent although test statistics using this estimator remain asymptotically pivotal in

our context. This theory, commonly known as fixed–b theory to distinguish it from the small–

b theory above, has found great success in controlling for over–rejection in small samples, a

serious problem in GC testing.

SGNC amounts to restrictions on matrices which are linear transformations of Bh. In

particular if L ∈ Rn×nX selects the X elements of W and R ∈ Rn×nY selects the Y elements

then

Ctarget =
[
π

(h)
XY 1 · · · π

(h)
XY p

]
= L′Bh

0k×nY p

Ip ⊗R

 , (34)

while

Cpredictor =


π

(h)
XY 1

...

π
(h)
XY p

 =

p∑
i=1

(ei ⊗ L′)Bh

 0k×nY

(ei ⊗ In)R

 , (35)

where ei ∈ Rp is the i-th standard basis vector. A generic expression for both Ctarget and

Cpredictor is

C =

q∑
i=1

LiBhRi, (36)

where
∑q

i=1R
′
i ⊗ Li is of full rank. In the case of Ctarget, q = 1, L1 = L′ and R1 =

[
0k×nY p

Ip⊗R

]
in (34). In the case of Cpredictor, q = p, Li = (ei ⊗ L′) and Ri =

[
0k×nY

(ei⊗In)R

]
in (35). In each

case,
∑q

i=1R
′
i⊗Li is of full rank because the mappings Bh 7→ Ctarget and Bh 7→ Cpredictor are

surjective. Our estimator is then

Ĉ =

p∑
i=1

LiB̂hRi (37)
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and its asymptotic covariance matrix is given by

Θ =

(
p∑
i=1

R′i ⊗ Li

)
(Γ−1
h ⊗ In)Ψh(Γ−1

h ⊗ In)

(
p∑
i=1

Ri ⊗ L′i

)
. (38)

It can be estimated by plugging in any of the estimators we proposed in the previous section

Θ̂ =

(
p∑
i=1

R′i ⊗ Li

)
(Γ̂−1
h ⊗ In)Ψ̂h(Γ̂−1

h ⊗ In)

(
p∑
i=1

Ri ⊗ L′i

)
. (39)

Finally, we mention that the restricted OLS estimator of Bh is given by

vec(Bh) =
(
In(np+k) − {(XhX′h)−1 ⊗ In}Dr

h
′{Dr

h((XhX
′
h)−1 ⊗ In)Dr

h
′}−1Dr

h

)
vec(B̂h), (40)

where Dr
h =

∑q
i=1(R′i⊗N̂ ′rLi) = (InY p⊗N̂r)

′∑q
i=1(R′i⊗Li) when testing for target SGNC and

Dr
h = (M̂r ⊗ InXp)

′∑q
i=1(R′i⊗Li) when testing for predictor SGNC. Note that this restricted

estimator does not depend on the particular identification of N̂r and M̂r.
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