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ABSTRACT: 16 

Detailed study of subsurface deposits in the Polish Sudeten Foreland, particularly with reference to 17 

provenance data, has revealed that an extensive pre-glacial drainage system developed there in the 18 

Pliocene – Early Pleistocene, with both similarities and differences in comparison with the present-19 

day Odra (Oder) system.  This foreland is at the northern edge of an intensely deformed upland, 20 

metamorphosed during the Variscan orogeny, with faulted horsts and grabens reactivated in the 21 

Late Cenozoic.  The main arm of pre-glacial drainage of this area, at least until the early Middle 22 

Pleistocene, was the palaeo-Nysa Kłodzka, precursor of the Odra left-bank tributary of that name.  23 

Significant pre-glacial evolution of this drainage system can be demonstrated, including incision into 24 

the landscape, prior to its disruption by glaciation in the Elsterian (Sanian) and again in the early 25 

Saalian (Odranian), which resulted in burial of the pre-glacial fluvial archives by glacial and fluvio-26 

glacial deposits.  No later ice sheets reached the area, in which the modern drainage pattern became 27 

established, the rivers incising afresh into the landscape and forming post-Saalian terrace systems.  28 

Issues of compatibility of this record with the progressive uplift implicit in the formation of 29 

conventional terrace systems are discussed, with particular reference to crustal properties, which 30 

are shown to have had an important influence on landscape and drainage evolution in the region. 31 
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INTRODUCTION 35 

The Sudeten (Sudety) Mountains, or Sudetes, form a NW–SE-trending range with its western end in 36 

Germany and separating SW Poland from the Czech Republic (Czechia).  With its highest peak 37 

reaching 1603 m, this represents an uplifted block of rocks metamorphosed during the Variscan 38 

orogeny, in the late Devonian to early Carboniferous (Don and Zelaźniewicz, 1990).  The Variscan 39 

involved complex faulting and thrusting, forming horsts and graben-basins, the latter infilled during 40 

later tectonically quiescent geological episodes, prior to significant reactivation of these structures in 41 

the Neogene–Quaternary (Oberc 1977; Dyjor, 1986, Mignoń, 1997).  The foreland region north of 42 

these mountains, into which these structures extend, is drained by the Odra (Oder) and several of its 43 

left-bank tributaries, the main river flowing NW and then northwards, forming the western 44 

boundary of Poland, towards the Baltic (Fig. 1).  An earlier, somewhat different drainage pattern in 45 

the Sudeten Foreland is evident from the subsurface preservation of buried valley fragments, 46 

recognized from boreholes and quarries and now largely buried by glacigenic and later fluvial 47 

sediments (Krzyszkowski et al., 1998; Michniewicz, 1998; Przybylski et al., 1998).  It is apparent, 48 

therefore, that this drainage system was disrupted by glacial advances of Scandinavian ice from the 49 

north and NW (Krzyszkowski, 1996; Krzyszkowski and Ibek, 1996; Michniewicz, 1998; Salamon, 2008; 50 

Salamon et al., 2013; Fig. 1).  The drainage has also been disrupted during the Quaternary by slip on 51 

the Sudeten Marginal Fault, the effects of which are readily visible in terms of vertical offset in 52 

terrace heights either side of the faultline (e.g., Krzyszkowski et al., 1995, 1998, 2000; Krzyszkowski 53 

and Bowman, 1997; Krzyszkowski and Biernat, 1998; Krzyszkowski and Stachura, 1998; Migoń et al., 54 

1998; Štěpančíková et al., 2008; cf. Novakova, L., 2015).  To these glacial and tectonic influences can 55 

now be added the effects on Quaternary landscape evolution of a complex history of crustal 56 

behaviour, potentially related to the characteristics of the Proterozoic to Palaeozoic crust in the 57 

region, as will be discussed in this paper.   58 

The repeated glaciation of this region has been well researched and is documented by the glacigenic 59 

deposits that form much of the surface cover, burying the evidence for the aforementioned pre-60 

glacial drainage.  The most extensive glaciation was that during the Elsterian, the ‘Sanian glaciation’ 61 

of Polish nomenclature (Marks, 2011).  This glaciation, assumed to have occurred during Marine 62 

Isotope Stage (MIS) 12 (Krzyszkowski et al., 2015), may not have been the first within the study area, 63 

as there are well-developed cold-stage minima within the marine oxygen isotope record in the latest 64 

Early Pleistocene, in MIS 22, and the early Middle Pleistocene: especially MIS 16, represented by the 65 

Don glaciation in the northern Black Sea region (e.g., Turner, 1996; Matoshko et al., 2004).  No pre-66 

MIS 12 glacigenic deposits have been recognized in the Sudetic marginal region, however, and it is 67 

clear that any such glaciation was less extensive than that in the Elsterian.  The next most extensive 68 

glaciation was the Early Saalian (Odranian), with a limit typically 0–18 km short of the Elsterian 69 

(Sanian) ice front (Fig. 1, inset); it is generally attributed to MIS 6 (Marks, 2011).  Then followed the 70 

Late Saalian glaciation, termed the Middle Polish Complex or Wartanian, and the Weichselian (last) 71 

glaciation, the North Polish Complex or the Vistulian.  The highest massifs within the Sudetes 72 

supported small-scale local Weichselian glaciers (Migoń, 1999; Traczyk, 2009) and such glaciers 73 

would also have existed during earlier major glaciations, albeit with little effect on foreland drainage 74 

evolution.  75 



The study area coincides with the southern edge of the northern European glaciated zone in which 76 

fluvial drainage courses have been strongly influenced by repeated glaciation from the north.  That 77 

zone, from the western Baltic states through Poland and into Germany, is characterized by broadly 78 

west–east aligned valleys that were formed when drainage from the south was deflected towards 79 

the Atlantic by ice sheets blocking the lower courses of the various Baltic rivers: the urströmtäler of 80 

Germany and pradolina of Poland (e.g., Kozarski, 1988; Marks, 2004).  Deflection of drainage by the 81 

Elsterian and, later, by the Odranian ice is likely to have influenced the modern position of the river 82 

valleys in the lowland north of the Sudetic margin (Krzyszkowski,2001). 83 

The major existing rivers of the Sudeten foreland have well-developed terrace systems that record 84 

valley incision since the most recent glaciation of the region, which was during the Odranian, given 85 

that the later Late Saalian (Wartanian) and Weichselian (Last Glacial Maximum: LGM) ice sheets 86 

failed to reach the mountain front (Fig. 1, inset).  Terrace systems are well documented in the two 87 

largest Sudetic tributaries of the Odra, the Bystrzyca (Berg, 1909; Krzyszkowski and Biernat, 1998) 88 

and the Nysa Kłodzka (Zeuner, 1928; Krzyszkowski et al., 1998), as well as in several of the smaller 89 

systems.  The Quaternary record in this area was thoroughly reviewed in a 1998 special issue of 90 

Geologia Sudetica (Krzyszkowski, 1998) that was dedicated to Frederick E. Zeuner, who conducted 91 

his doctoral research in the region (Zeuner, 1928; see online supplement, Fig. S1), from which he 92 

formulated many of his influential views on river-terrace formation (Zeuner, 1945, 1946, 1958, 93 

1959).  Since the formation of the Fluvial Archives Group (Add citation of the FLAG editorial paper), 94 

debate about the genesis of river terraces has led to a consensus that they are generally a result of 95 

uplift, with strong climatic and isostatic influences (e.g., Maddy, 1997; Antoine et al., 2000; 96 

Bridgland, 2000), the latter seen to vary in relation to crustal type (Westaway et al., 2003, 2006, 97 

2009; Bridgland and Westaway, 2008a, b, 2012, 2014; Bridgland et al., 2012, 2017). 98 

Landscape evolution in the study area has been complex, with combined influences from glaciation, 99 

active faulting and regional crustal processes.  The present-day topography is almost entirely the 100 

result of post-glacial fluvial erosion, in combination with the various processes that modify valley-101 

side slopes and convey sediment into valley bottoms.  ‘Post-glacial’ in this region means post-Sanian 102 

(Elsterian) or post-Odranian (Early Saalian), these being the only Pleistocene glacials during which ice 103 

sheets are known to have reached the Sudetic Foreland (see above; Fig. 1, inset).  The modern 104 

valleys have thus formed since these ice sheets encroached upon the region and their flanks 105 

preserve latest Middle Pleistocene–Late Pleistocene river-terrace sequences (Fig. 2).  These valleys 106 

are incised into a landscape substantially formed in late Middle Pleistocene glacigenic deposits, 107 

including diamictons, outwash sands and gravels and lacustrine sediments (Krzyszkowski, 1998, 108 

2013).  Evidence from boreholes and quarry exposures has shown that this glacigenic sedimentation 109 

was overprinted onto a pre-glacial drainage system, recognizable as a complex pattern of palaeo-110 

valleys now entirely buried beneath the modern land surface.  Thus pre-glacial fluvial sediments, 111 

which have been attributed to the Pliocene, Lower Pleistocene and lower Middle Pleistocene, are 112 

generally buried beneath later Pleistocene deposits and occupy a relatively low position with the 113 

landscape, especially in basin situations (see above).  This is in apparent conflict with the 114 

expectations of standard river-terrace stratigraphy, in which progressively older deposits would be 115 

anticipated in positions progressively higher above the modern valley floor.  This standard terrace 116 

stratigraphy has, however, been shown to occur only in association with certain, albeit widespread 117 

and common, crustal types, as will be explained in the next section.  118 



 119 

Relation of fluvial archives to crustal type 120 

Westaway et al. (2003) made the important observation that classic river terrace staircases do not 121 

occur in regions of cold, ancient and densely crystallized crust, particularly the cratons that 122 

represent fragments of the earliest continental lithosphere.  They attributed this phenomenon to 123 

the absence of mobile lower crust in such regions, which they realised was essential to provide a 124 

positive-feedback response to erosional isostatic uplift, the same uplift that has caused terrace 125 

staircases to form on younger crust, including in areas remote from tectonic influence (see 126 

Westaway, 2001, 2002, a, b; Westaway et al., 2002, Bridgland and Westaway, 2008a, b, 2014).  127 

Subsequent reviews of fluvial archives from different crustal provinces showed distribution patterns 128 

that can be related to crustal type; in this the northern Black Sea hinterland, ~1000 km to the ESE of 129 

the present research area, represents a valuable case-study region, where the range of dating 130 

proxies is exemplary (Bridgland and Westaway, 2008a, b, 2014; Bridgland et al., 2017; cf. Matoshko 131 

et al., 2004; Fig. 3).  The significant differences in preservation patterns of fluvial archives between 132 

crustal provinces with different characteristics point to important contrasts in landscape evolution, 133 

in particular relating to the extent of valley incision (Westaway et al., 2003, 2009), as well as the 134 

propensity for loss of fluvial archives to erosional processes, which will be greater in areas of 135 

dynamic and rapidly uplifting crust.  Investigations have led to the concept that these geomorphic 136 

effects are controlled by a combination of crustal properties, namely heat flow (see Fig. 4C) and the 137 

depth of the base of the felsic crustal layer, since these properties govern the thickness of the plastic 138 

crustal layer beneath the brittle upper part of the crust, the base of which corresponds to a 139 

temperature of ~350 °C.  Thus, if this plastic layer is absent, as in cratonic regions, the crust is 140 

extremely stiff and thus ultra-stable.  If the mobile layer is thick (thickness >~6 km), it plays a major 141 

role in isostatic adjustment, and continuous uplift occurs, at rates that vary in response to rates of 142 

erosional forcing and thus to climate change (see Fig. 3).  On the other hand, if this layer has an 143 

intermediate thickness (~4–6 km), a more complex isostatic response occurs, characterized by 144 

alternations of uplift and subsidence, possibly because under such conditions the isostatic responses 145 

in the mobile lower crust and in the asthenospheric mantle occur at comparable rates but on 146 

different timescales (Westaway and Bridgland, 2014).  147 

 148 

Different patterns of fluvial sediment preservation are indeed evident in Poland, and can be 149 

interpreted according to the different crustal regions within which they occur (see Fig. 4).  The 150 

occurrence of buried Pliocene and Lower Pleistocene fluvial deposits, as reported in the present 151 

study region, has also been observed in the middle reaches of the Vistula river system (Mojski, 1982; 152 

Bridgland and Westaway, 2014; Fig. 5), the catchment of which accounts for 56% of Poland.  The 153 

Middle Vistula flows across the East European Platform (EEP), a crustal province consolidated during 154 

the Early or Middle Proterozoic that is relatively stable in comparison with the younger crust to the 155 

west, including that beneath the Sudeten Mountains, which is part of the Variscan province, 156 

stretching from SW Poland to western Europe (southern England–Iberia; Fig 4).  Further SE within 157 

the EEP, patterns of fluvial-archive preservation in which older deposits are buried by younger 158 

terraced sequences have again been observed, for example in the valley of the River Don, one of the 159 

northern Black Sea rivers, near Voronezh (Matoshko et al., 2004; Bridgland and Westaway, 2008a, b, 160 

2014; Fig. 3). The alternation between uplift and subsidence implicit in these preservation patterns 161 



has been ascribed to the properties of the crust of the EEP; such crust is highly consolidated and 162 

relatively cold, with a lower mobile layer of limited thickness (probably a few kilometres at most), 163 

making it very much less dynamic than younger crustal types (Westaway and Bridgland, 2014; 164 

Bridgland and Westaway, 2017; cf. Kutas et al., 1979).  165 

 166 

Further north, the Lower Vistula, in its course towards the Baltic, flows across a region that would 167 

appear to have experienced continuous subsidence during the late Middle and Late Pleistocene, as 168 

indicated by the stacking of younger Pleistocene deposits, including fluvial, glacial and even marine 169 

sediments, above older (cf. Marks, 2004).  This could reflect the wider influence of isostatically 170 

induced subsidence of the long-standing depocentre of the Baltic basin, where the crust has been 171 

progressively depressed beneath the sedimentary load.  In marked contrast there are areas in the 172 

extreme SE of Poland, in the uppermost Vistula catchment, which display the only extensive 173 

staircases of river terraces in the country, similar to those on the younger, more dynamic crust of 174 

NW Europe.  These terrace staircases (Fig. 5) can be found in the catchments of the Rivers Dunajec 175 

(Zuchiewicz, 1992; Olszak, 2011) and San (Starkel, 2003), as well as in other tributaries of the Vistula 176 

that drain the continental crust forming the Western Carpathian Mountains (e.g., Zuchiewicz, 2011; 177 

Pliszczyńska, 2012).  These archives generally occur on crust bordering the Western Carpathians that 178 

was affected by the Caledonian orogeny and is thus more dynamic than that of the EEP.  (For a 179 

description of the Late Cenozoic palaeogeographical evolution of this area see Brud, 2004.)  As 180 

Bridgland and Westaway (2014) noted, the headwaters of the San are close to those of the Dniester, 181 

a river flowing southwards to the Black Sea that has an impressive and well-dated terrace staircase 182 

(Matoshko et al., 2004; Fig. 3B).  Thus, despite their flowing in opposite directions, the San and the 183 

Dniester have similar styles of fluvial archive preservation, attributable to the nature of the crust in 184 

that region rather than hydrological or base-level influences (cf. Bridgland and Westaway, 2014).  185 

Elsewhere in Poland there is localized downwarping as a result of salt diapirism, particularly at 186 

Bełchatów, near Łódź (Krzyszkowski, 1995; Krzyszkowski and Szuchnik, 1995; Wieczorek et al., 2015).   187 

Bridgland and Westaway (2014) suggested that, although the prevalence of stacked sequences in 188 

northern Poland might reflect proximity to the Baltic Basin, aspects of the fluvial archive 189 

preservation pattern in Central Poland that have traditionally been attributed to the effects of 190 

glaciation, or glaciation interspersed with marine transgression (e.g., Marks, 2004), might instead 191 

result from the characteristics of the crust.  They envisaged three provinces within the Vistula: (1) an 192 

upstream, uplifting province, with well-developed terraces, (2) a central province in which the 193 

comparative stability of the EEP is dominant and (3) a downstream (northern) province with 194 

increasing influence of subsidence around the Baltic Basin and the effects of repeated glaciation. 195 

The fluvial sedimentary archives in parts of the Sudetic foreland suggest inversion in vertical crustal 196 

movement, with alternation of subsidence and uplift, as surmised previously in systems such as the 197 

Don (Westaway and Bridgland, 2014; Bridgland et al., 2017; Fig. 3D).  In previous reviews of the 198 

preservation patterns shown by fluvial archives, in which causal linkages have been observed with 199 

crustal type, such archives indicative of alternating subsidence and uplift were found to be 200 

associated commonly with Early or Middle Proterozoic crustal provinces with thick ‘roots’ of mafic 201 

material at the base of the crust, restricting the thickness of the mobile lower crustal layer 202 

(Westaway and Bridgland, 2014; Bridgland et al., 2017).  In the Sudetes this phenomenon is 203 



apparent in basinal areas, which are separated by structural ridges (horsts) of older, generally 204 

crystalline rocks (Dyjor, 1986; see above). 205 

EVIDENCE FOR PRE-GLACIAL RIVER SYSTEMS IN THE SUDETEN 206 

FORELAND 207 

Quarrying and boreholes have allowed the reconstruction of considerable detail with regard to river 208 

sytems that existed in the Sudetic Foreland in pre-glacial times (i.e., prior to the Elsterian ice 209 

advance, which is the meaning of pre-glacial in this region).  It should be noted, however, that this 210 

reconstruction is based on small ‘windows’ of subsurface evidence, providing limited scope for 211 

detailed reconstruction of areal three-dimensional form.  Beneath the Sanian and Odranian glacial 212 

deposits, fluvial sediments of several different types have been recorded, much work having been 213 

done in order to characterize and distinguish these, in particular clast-lithological analysis of their 214 

gravel components and heavy-mineral analysis of sand grains (Czerwonka et al., 1994; Krzyszkowski 215 

and Bowman, 1997; Krzyszkowski et al., 1998; Przybylski et al. 1998; Krzyszkowski, 2001; 216 

Krzyszkowski and Karanter, 2001; Krzyszkowski, 2013).  Many of these early fluvial deposits are 217 

kaolinitic, from the weathering of gneiss, gabbro, serpentinite, schist and other feldspathic rocks, 218 

which, in company with a dominance of rudaceous quartz, gave rise to the term ‘white gravels’; they 219 

have also been referred to as the ‘preglacial series’ (Dyjor 1983, 1986, 1987a, b, 1993; Jahn et al. 220 

1984; Dyjor et al. 1992).  The matching of these components to source areas is illustrated in Fig. 6.  221 

They lie above the Upper Miocene – Lower Pliocene Poznań (Clay) Formation , sometimes with 222 

channel or palaeo-valley geometries apparent from the subsurface data (Ciuk and Piwocki, 1979; 223 

Ciuk and Pożaryska, 1982; Peryt and Piwocki, 2004).  Indeed, there is some evidence of incision and 224 

even terrace formation within the preglacial sequence (see online supplement, Figs S2 and S3), much 225 

of which is however a continuation of the stacked basin-fill represented by the Neogene Poznań 226 

Formation.  The pre-glacial fluvial deposits can be collectively described under the name Ziębice 227 

Group, this being the amalgam of several formations, representing different pre-glacial river 228 

systems, defined by their heavy mineral content and non-quartz gravel-clast petrography 229 

(Czerwonka and Krzyszkowski, 2001; Table 1; Figs 7 and 8).  The Ziębice locality in central Poland, 230 

formerly called Münsterberg, was where fluvial ‘white gravel’ sediments, lacking Scandinavian 231 

material, were first described (Jentzsch and Berg, 1913; Frech, 1915; Lewiński, 1928, 1929; Zeuner, 232 

1928; Krzyszkowski et al., 1998; Przybylski et al., 1998;Czerwonka and Krzyszkowski, 2001; online 233 

supplement Fig. S1).  234 

Emplacement of the Ziębice Group as a whole can probably be attributed in part to increased 235 

mountain uplift and active faulting in the Sudetes and their foreland, perhaps resultant from the 236 

global climatic cooling that characterized the mid-Pliocene (e.g., Westaway et al., 2009); 237 

downthrown fault basins would have guided the main drainage lines.  Each component formation 238 

represents sequences deposited by a specific fluvial system originating in the Sudeten Mountains.  239 

Within the group as a whole, four informal members (I–IV) have been recognized (Czerwonka and 240 

Krzyszkowski, 2001), their distinction being broadly age dependent, which is why they have not been 241 

formally defined, although there are no means for precise dating.  These members are variously 242 

represented within the different formations, only two of which have all four members (Table 1; Fig. 243 

9), with each numbered member believed to have been formed approximately synchronously in the 244 

different rivers across the region.  The supposed ages of the members are relative and rely on 245 



superposition (see online supplement) and sporadic but rare preservation of biostratigrahical 246 

evidence (Czerwonka and Krzyszkowski, 2001; see below).  Supplementary evidence for 247 

distinguishing between the members comes from erosional hiatuses at the bases of Members 1, III 248 

and IV and for the distinct widening of the valley systems between Members I and III (Czerwonka 249 

and Krzyszkowski, 2001; compare Figs 9 and 10).  The sedimentology and range and type of facies 250 

suggests a meandering fluvial regime for Members I – III, especially away from the mountain front, 251 

and a braided river envrionment for member IV (Czerwonka and Krzyszkowski, 2001).  Systematic 252 

analyses have been undertaken from exposures and boreholes, including sand heavy mineralogy and 253 

gravel clast lithology, arguably the most valuable, combined with particle-size analysis, quartz (sand) 254 

grain angularity–roundness analysis and palaeocurrent measurements (Czerwonka et al., 1994; 255 

Krzyszkowski and Bowman, 1997; Przybylski et al. 1998; Krzyszkowski et al., 1998; Krzyszkowski and 256 

Karanter, 2001; Krzyszkowski, 2001; Table 1; see online supplement). 257 

As summarized in Table 1, six main pre-glacial river systems have been recognized, each with 258 

characteristic heavy-mineral signatures and some with distinctive clast-lithological assemblages. 259 

These are (1) the Palaeo-Odra, characterized by a zircon–rutile heavy-mineral assemblage and gravel 260 

clasts of Carpathian origin, represented by the Chrząszczyce Formation, (2) the Palaeo-Biała 261 

Głuchołaska (staurolite-amphibole mineralogy), represented by the Dębina Formation, (3) the 262 

Palaeo-Nysa Kłodzka (staurolite–garnet/amphibole–garnet), represented by the Kłodzko–Stankowo 263 

Formation, (4) the Palaeo-Bystrzyca (zircon, sillimanite and various) , represented by the Bojanice 264 

Formation (as well, potentially, as the Pogalewo and Wichrów formations), (5) the Palaeo-265 

Strzegomka (sillimanite–garnet), represented by the Mielęcin–Wołów Formation, and (6) the Palaeo-266 

upper Bóbr/Kaczawa (andalusite), as represented by the Rokitki–Bielany Formation. Of these the 267 

Palaeo-Nysa Kłodzka appears to have been the trunk river throughout the ‘pre-glacial’ period (see 268 

Figs 9–12).  Evidence for four additional systems has been recognized but is more localized; these 269 

are the Palaeo-Wierzbiak, represented by the Snowidza Formation, the Palaeo-Budzówka, 270 

represented by the Ząbkowice Formation, and two other local rivers, near Bardo/Potworów and 271 

Szydłów, identified only by gravel-clast analysis (Przybylski et al., 1998) and impossible to match with 272 

existing rivers. 273 

These drainage systems probably originated during the Early Miocene, since the Miocene–Lower 274 

Pliocene Poznań Formation is thought to represent the low-energy sediments of anastomosing river 275 

or inland-delta environments (Peryt and Piwocki, 2004), which, from the available evidence, 276 

persisted with relatively little change until disrupted by glaciation in the Middle Pleistocene.  It 277 

should be noted that those formations with ‘double-barrelled’ names (Kłodzko–Stankowo, Mielęcin–278 

Wołów and Rokitki–Bielany) are traced for significant distances from the mountain front and have 279 

‘proximal’ type locailties (giving the first part of the name) near the Sudetes and ‘distal’ type 280 

localities further downstream.  The lack of Scandinavian clasts in these various pre-glacial fluviatile 281 

sediments distinguishes them from the glacial deposits (Elsterian and Lower Saalian) and from the 282 

terrace deposits of the post-glacial rivers, in which reworked glacially-derived material occurs 283 

(Schwarzbach, 1955; Jahn, 1960, 1980; Czerwonka and Krzyszkowski, 1992; Krzyszkowski 1995, 2013; 284 

Czerwonka et al. 1997). 285 

Turning to the informal members, I–III have generally been attributed to the Pliocene–lowermost 286 

Pleistocene and IV to the lower Middle Pleistocene (Cromerian Complex). This seemingly points to a 287 

hiatus spanning much of the first half of the Pleistocene, although there may well be unrecognized 288 



representation of this interval amongst sequences that are notoriously difficult to date and which 289 

include components that have yet to be defined and characterized fully.  Alluvial-fan sediments 290 

occur within all members at localities near the mountain front.  The Pliocene members can be 291 

presumed to represent rivers draining northwards to join the erstwhile Baltic River, which existed as 292 

a major east–west flowing system at that time (e.g., Gibbard, 1988).  The drainage represented by 293 

members I–III was sinuous, as indicated by sediment geometry (Figs 9–11) as well as sedimentology 294 

(see above), in contrast to the braided-river deposits of member IV.  This perhaps indicates 295 

sedimentation of members I–III during periods of temperate and relatively moist climate, whereas 296 

member IV records more variable conditions, with evidence of both temperate (interglacial) and cold 297 

(periglacial) climates.  This contrast could, indeed, be a reflection of climatic cooling in the Early 298 

Pleistocene, a trend that would culminate in the glaciations of the Baltic region in the Middle 299 

Pleistocene.   300 

The evidence for different pre-glacial rivers, precursors of the modern drainage of the Polish Sudetic 301 

margin, will be described in east to west sequence, starting with the Palaeo-Odra, the post-glacial 302 

successor of which forms the principle arm of the modern regional drainage. 303 

 304 

The Palaeo-Odra (Chrząszczyce Formation) 305 

Within the research area the Chrząszczyce Formation, which is thought to represent the main 306 

palaeo-Odra river, is restricted to locations >20 km from the Sudetic mountain front, entering the 307 

region from the south-east in the area south of Opole (Figs 7 and 9–11).  It has been studied at 308 

relatively few localities at and to the west of Opole and west of Wrocław, with representation only 309 

of Members I–III (Table 1; Figs 9–11).  Only at Chrząszczyce, the type locality ~5 km SSW of Opole 310 

(Figs 7 and 8; online supplement, Fig. S4), have all three of these members been observed.  Gravel 311 

analysis has only been possible from the Member III sediments at Ose (Figs 7 and 8), where the 312 

occurrence of Carpathian siliceous rocks (silicified limestones and sandstones, radiolarites, etc.) 313 

amongst a quartz-dominated assemblage provides important support for origin within the Odra 314 

catchment (Czerwonka and Krzyszkowski, 1992).  There are subtle changes in heavy mineralogy 315 

between members I–III (Table 1): all have assemblages dominated by zircon, with staurolite and 316 

tourmaline, plus garnet in members I and III and rutile in II and III. Member III at Tulowice has 317 

yielded plant macrofossils (leaves and fruit) with close affinity to those of the underlying uppermost 318 

Poznań Formation: i.e. not older than late Pliocene (Przybylski et al., 1998). 319 

 320 

The Palaeo-Biała Głuchołaska (Dębina Formation)  321 

This is a relatively minor formation, representative of a subordinate river, the most south-easterly 322 

that drained the Sudetes Mountains within the study area.  Only Member I has been recognized, 323 

made up of quartzose gravels with a staurolite–amphibole heavy-mineral suite (Table 1).  It has been 324 

recognized at a small number of sites from Strybowice to the type locality at Dębina, ~30 km SSW of 325 

Opole (Fig. 7). Although its occurrences trace a course from SSW to NNE, the petrography of the 326 

Ziębice Group as a whole, plus knowledge of the bedrock surface, suggests that the palaeo-river 327 

turned sharply to the NW in the vicinity of Dębina to a confluence with the Palaeo-Nysa Kłodzka, 328 



rather than continuing NNE-wards to join the palaeo-Odra (Fig. 9).  It uncertain whether any of the 329 

Dębina Formation sequences continue upwards into Member II but the existence of a Palaeo-Biała 330 

Głuchołaska flowing NE from the Sudetes has been reconstructed for that time-span, joining a 331 

considerably wider Palaeo Nysa Kłodzka (Fig. 10) in comparison with that reconstructed for Member 332 

I.  The continued existence of such a river during later times can only be speculative (Krzyszkowski et 333 

al., 1998). 334 

 335 

The Palaeo-Nysa Kłodzka (Kłodzko–Stankowo Formation)  336 

This formation accounts for the vast majority of the pre-glacial series, being represented at sites 337 

over an area of considerable width from its proximal type locality (see above) at Kłodzko, in the 338 

south (in the Kłodzko [intermontane] basin) eastwards towards (but not reaching) Opole and then 339 

northwards to Wrocław and beyond (Fig. 7).  This distribution demonstrates the dominance of the 340 

Palaeo-Nysa Kłodzka during pre-glacial times (Figs 9–12).  Its distal type locality, at Stankowo (Fig. 7, 341 

site [1]), is at the northern periphery of the study area, ~20 km NE of Leszno (Fig. 1; supplement, Fig. 342 

S5). The recognition of this formation is based on a gravel clast lithology reflecting the characteristic 343 

geology of the Kłodzko Basin, including gneisses and other cystalline rocks, notably porphyries, 344 

together with Mesozoic sandstones and ‘flint’ (Table 1; Figs 6 and 7).  The heavy mineralogy is 345 

complex and regionally variable, also changing from staurolite–garnet dominance in Members I–III 346 

to garnet and amphibole in Member IV (Table 1). 347 

With the formation represented at >50 sites (Figs 7 and 8), the comparative distribution of the 348 

different members reveals significant changes in the course of this trunk river, with Member I tracing 349 

a relatively confined WSW–ENE reach from Kłodzko to Gnojna (Fig. 7 [35]), diverging northwards 350 

from the modern Nysa Kłodzka course, and then a wider but still confined reach (in comparison with 351 

younger members) from here to Wrocław and Taborek (Fig. 7 [3]), by which point the Palaeo-Odra 352 

was converging from the east (Fig. 9).  At the time of Member II emplacement, both reaches were 353 

considerably wider, that east of Kłodzko spreading southwards to envelop the course of the modern 354 

river, whereas in its northward-flowing reach it extended eastwards to meet the Palaeo-Odra ~10 355 

km west of Opole and spread out north-eastwards across the foreland to encompass an area from 356 

that of its earlier course across to that around Ostrów Wielkolpolski and beyond (Fig. 10).   357 

By Member III times the palaeo-river had been diverted from near Ziębice into a more confined 358 

northerly course towards Wrocław, sweeping across the area south and east of this city towards 359 

Ostrów Wielkolpolski, turning northwards as it met the palaeo-Odra, by this time of almost equal 360 

size, and other drainage from the east, possible the ‘Bełchatów River’, as recognized in central 361 

Poland at the large lignite quarry by the same name (Krzyszkowski, 1995; Krzyszkowski et al., 2015; 362 

Fig. 11). 363 

By member IV times there is little evidence that the Palaeo-Nysa Kłodzka extended north-eastwards 364 

of the modern Odra course, except in the area NW of Wrocław.  This suggests that a Palaeo-Odra 365 

closely following its modern valley had come into existence by this time, perhaps as a result of early 366 

Middle Pleistocene glaciation (Zeuner, 1928; Fig. 12), otherwise poorly documented because its 367 

extent was less than the ice sheets of the Elsterian, the suggestion being that the line of the Odra 368 



across the northern edge of the Sudetic foreland might be of early ice-marginal (‘pradolina’) origin 369 

(see above).  370 

 371 

The Palaeo-Budzówka (Ząbkowice Formation) 372 

The Budzówka is a minor left-bank tributary of the Nysa Kłodzka, joining the latter ~20 km 373 

downstream of Kłodzko.  Its pre-glacial forebear is represented by probable Member IV deposits that 374 

occur at two sites, the Ząbkowice type locality [73] and Albertów [107] (Figs 7, 8 and 12).  These 375 

deposits are characterized by gravel in which the dominant clast type is Sowie Góry gneiss, with 376 

subordinate quartz and other siliceous rocks; there is a garnet–amphibole heavy mineral suite (Table 377 

1).  378 

 379 

The Palaeo-Bystrzyca (Bojanice, Wichrów and Pogalewo formations) 380 

The River Bystrzyca, which is the next important Odra tributary moving to the NW along the Sudetes 381 

margin, flows through the town of Świdnica on its SW–NE course towards a confluence with the 382 

trunk river ~7 km NW of Wrocław; ~15 km upstream of that confluence it receives a substantial left-383 

bank tributary, the Strzegomka (Fig. 7).  Pre-glacial versions of both these rivers are represented 384 

amongst the Ziębice Group sediments, although with courses that appear to have been entirely 385 

separate until the trunk river was reached; at that time the latter was the Palaeo-Nysa Kłodzka (Figs 386 

9–12. 387 

Three different pre-glacial formations are potential products of deposition by the palaeo-Bystrzyca. 388 

First is the Bojanice Formation, of which Members II, III and possibly IV occur in the vicinity of 389 

Świdnica, in the form of porphyry-rich quartz gravels, also containing melaphyre, Sowie Góry gneiss 390 

and quartzite, although the uppermost (potentially Member IV) deposits lack rudaceous 391 

components (Table 1).  The heavy minerology of these upper deposits is dominated by sillimanite, 392 

whereas that of the gravelly facies is dominated by zircon and garnet (Table 1). 393 

The Wichrów Formation is represented by a small group of sites, of which the Wichrów type locality 394 

is one, ~20–30 NNE of Świdnica, in the modern catchment of the Strzegomka tributary (Figs 7 and 395 

8[45]).  Only the basal part of the sequence is present, with Member I and a possible extension into 396 

Member II, sharing the zircon-rich mineralogy of the lower members within the Bojanice Formation 397 

(Table 1).  Despite its modern location within the tributary catchment, the Wichrów Formation sites 398 

seem likely to represent a downstream continuation of the palaeo-Bystrzyca from the Świdnica area 399 

(Fig. 9). 400 

The Pogalewo Formation is identified in the area much further from the mountain front, to the north 401 

of the modern River Odra downstream of Wrocław.  Members I, II and III are all recognized, albeit at 402 

different sites (Figs 7 and 8).  Member I is identified only at the Pogalewo type locality [31], on the 403 

northern side of the Odra valley ~30 km downstream of Wrocław (Fig. 9; online supplement Fig. S3).  404 

It is the only member of this formation to have yielded rudaceous material, this being quartz gravel 405 

with local flint and a trace of porphyry; it has a zircon–tourmaline-rutile heavy mineralogy (Table 1).  406 



Further upstream (both within the modern Odra system and the pre-glacial palaeovalley), ~5–10 km 407 

east from Pogalewo, is a small cluster of sites that represent Member III, which have the same 408 

dominant mineralogy but with additional epidote, kyanite, amphibole and staurolite (Table 1).  The 409 

intervening Member II, although perhaps represented by the uppermost deposits at Pogalewo, is 410 

optimally recorded much further downstream, at Chałupki [51], ~30 km SW of Głogów (Fig. 7).  The 411 

mineralogy of this member is different again, with kyanite in addition to the zircon–tourmaline–412 

rutile suite but lacking epidote, amphibole and staurolite (Table 1).  Although given a separate name, 413 

the deposits of the Pogalewo Formation are most readily interpreted as more distal (downstream) 414 

palaeo-Bystrzyca sediments, implying a separate northward course far from the mountain front, 415 

especially during emplacement of Member II (Fig. 10). 416 

 417 

The Palaeo-Strzegomka (Mielęcin–Wołów Formation) 418 

As noted above, the modern River Strzegomka joins the Bystrzyca ~15 km upstream of the 419 

confluence between the combined river and the Odra.  Prior to the Middle Pleistocene, however, it 420 

seems likely that the precursors of these rivers maintained separate courses to the trunk palaeo- 421 

Nysa Kłodzka (Figs 9–11).  The palaeo-Strzegomka is represented by the Mielęcin–Wołów Formation, 422 

as is apparent from the preservation of that formation at sites close to the mountain front within the 423 

modern Strzegomka catchment, including the Mielęcin (proximal) type locality (Fig. 7 [47]; online 424 

supplement Fig. S6).  The deposits here comprise quartzose–porphyry-rich gravels representing 425 

Members I–III, also containing local siliceous rocks (flint), conglomerate, spilite, diabase, greenschist 426 

and quartzite from the Wałbrzych Upland, Strzegom granite and local schist (phyllite), as well as a 427 

sillimanite–garnet heavy-mineral suite (Table 1; Fig. 6).  The distal type locality, at Wołów, where 428 

only Member I is represented, is located north of the modern Odra, approximately equidistant 429 

between Wrocław and Głogów (Fig. 8 [32]).  Member IV of the Mielęcin–Wołów Formation is 430 

recognized at two sites, Sośnica [43], in the modern Bystrzyca valley upstream of its confluence with 431 

the Strzegomka, and Brzeg Dolny 3 [108], north of the modern Odra, where it overlies Member I of 432 

the Kłodzko–Stankowo Formation (Figs 8 and 12; online supplement Fig. S2).  This upper member 433 

lacks gravel but is characterized by a sillimanite-dominated heavy mineralogy (Table 1). 434 

 435 

The Palaeo-upper Bóbr/Kaczawa (Rokitki–Bielany Formation) 436 

The next Odra tributary north-westwards along the mountain front is the River Kaczawa, which has a 437 

confluence with the trunk river ~20 km downstream from Legnica.  Its pre-glacial forebear, however, 438 

had a catchment that penetrated deeper into the mountain zone, including areas now drained by 439 

the headwaters of the Bóbr, a yet more westerly Odra tributary that flows NW from the Sudetes to 440 

join the trunk river well to the west of the study area (Fig. 7).  This is indicated by the characteristic 441 

clast lithology of the Rokitki–Bielany Formation, which has rudaceous sediments representing all 442 

four members with contents that show drainage from the Bóbr catchment: these are quartzose 443 

gravels with porphyry, Karkonosze granite, crystalline rocks, schist, quartzite, with the addition, in 444 

Member IV, of Cretaceous sandstone and Wojcieszów limestone (Table 1).  The heavy mineralogy is 445 

characterized by andalusite and tourmaline, with the addition of epidote in Member I and of kyanite, 446 



zircon, garnet, amphibole and sillimanite in Member IV (Table 1).  The proximal type locality of this 447 

formation, Rokitki [55], is situated in the Kaczawa valley, ~ 8 km upstream of its catchment with the 448 

Nysa Szalona, a right-bank tributary (Fig. 7).  Members I–III are attributed to a palaeo-Bóbr–Kaczawa 449 

that drained northwards, to the west of Legnica, towards Głogów (Figs 9–11).  Member IV of this 450 

formation is recognized only at sites in the interfluve area between the Strzegomka and the 451 

Kaczawa, at Kępy [95] and Bielany [50] (Fig. 12; online supplement Fig. S7), where it overlies older 452 

members of the Mielęcin–Wołów Formation that represent the earlier northward drainage of the 453 

palaeo- Strzegomka (see above; Figs 1 and 9).  Bielany is the distal type locality of th#e Rokitki–454 

Bielany Formation, although it lies further south than Rokikti (Fig. 7 [50]). The most northerly 455 

Mielęcin–Wołów site is Polkowice [62], <20 km south of Głogów, where only Member III occurs (Figs 456 

7, 8 and 11).  457 

 458 

Other minor rivers 459 

Fluvial tracts of more localized rivers have been traced.  The Snowidza Formation, known from a 460 

single locality (Fig. 8), represents a possible ancestral River Wierzbiak, the modern river of the same 461 

name being a right-bank Kaczawa tributary that joins the latter ~10 km downstream of Legnica (Fig. 462 

7).  The sole representation of the Snowidza Formation is probably equivalent to Member I of other 463 

Ziębice Group formations (Fig. 8).  The deposits of two other local rivers have been recognized (Fig. 464 

7) in the vicinity of Bardo [96–97], Potworów [98–99]and Szydłów [101] on the basis of gravel-clast 465 

petrography (Przybylski et al., 1998).  These occurrences are again of probable Member I affinity 466 

(Fig. 8). 467 

 468 

DATING THE ZIĘBICE GROUP 469 

Much of the dating of the individual components of the Ziębice Group is dependent on their relative 470 

stratigraphical positions within the sequence and their relation to the underlying Poznań Formation 471 

and overlying Middle Pleistocene glacial deposits.  At Gnojna (~55 km NE of Kłodzko; Fig. 7: [35]) 472 

palynological analyses of the uppermost member of the Poznań Formation, immediately below 473 

member I of the Kłodzko–Stankowo Formation, have yielded a flora indicative of the earliest 474 

Pliocene (Sadowska, 1985; Badura et al., 1998a).  A similar Early Pliocene flora has been obtained 475 

from Sośnica (Stachurska et al., 1973; Sadowska, 1985, 1992; Fig. 7 [43]), where it is overlain by 476 

member IV of the Mielęcin–Wołów Formation.  Macrofossil analysis of the Poznań Formation at 477 

Ziębice, Sośnica and Gnojna have revealed the presence of  Late Miocene to Early Pliocene leaves 478 

and fruits (Kräuzel, 1919, 1920; Łańcucka-Środoniowa et al., 1981; Krajewska, 1996). These 479 

occurrences provide a maximum (limiting) age for the Ziębice Group 480 

A very few sites have yielded palaeobotanical remains from sediments of Ziębice Group formations. 481 

At Kłodzko (Figs 7 and 8 [68]; online supplement Fig. S8) an organic deposit was recorded at the top 482 

of a sequence that potentially represented member II and/or member III of the Kłodzko–Stankowo 483 

Formation (cf. Krzyszkowski et al., 1998).  Pollen and macrofossils from this deposit have been 484 

attributed to the Reuverian Stage of the Late Pliocene (Jahn et al., 1984; Sadowska, 1995).  Poorly 485 

preserved leaf macrofossils from member III of the Chrząszczyce  Formation at Tułowice (~15km SW 486 



of Opole; Figs 7 and 8 [74]) represent a temperate-climate assemblage of trees and shrubs that 487 

cannot be dated with precision but is unlikely to be older than late Pliocene (Przybylski et al., 1998). 488 

The fossiliferous deposits here are thus attributed to the palaeo-Odra, although they overlie 489 

member II deposits that are attributed to the palaeo-Nysa Kłodzka and thus the Kłodzko–Stankowo 490 

Formation (Fig. 8).  Further west, nearer the modern Nysa Kłodzka and in sediments attributed to 491 

the Kłodzko–Stankowo Formation, organic remains and leaf impressions have been found at 492 

Niemodlin 2 [80] and Magnuszowiczki [83] in member II (Figs 7 and 8); Przybylski et al. (1998) noted 493 

that the leaf impressions occurred in laminated silty alluvial sediments. 494 

Zeuner (1928, 1929) described pre-glacial organic deposits at Jonsbach (now Janowiec) that would 495 

appear to have been part of member IV of the Kłodzko–Stankowo Formation (Figs 2, 7 [72], 8 and 496 

12): part of a pre-glacial fluvial (‘white gravel’) sequence ~11 m thick, located just downstream of the 497 

Sudeten Marginal Fault (cf. Krzyszkowski et al., 1998).  The limited pollen record (Stark and 498 

Overbeck, 1932; Badura et al., 1998b; Krzyszkowski  et al., 1998) lacks Tertiary relics and is thus 499 

suggestive of the early Middle Pleistocene (Cromerian Complex).  Attempts to relocate these 500 

deposits and provide a more detailed analysis have proved unsuccessful.  501 

This is meagre evidence upon which to base an age model for the Ziębice Group, but broad inference 502 

from these data points to Pliocene–earliest Pleistocene deposition of members I–III and to early 503 

Middle Pleistocene emplacement of member IV.  That inference concurs well enough with the 504 

sedimentological evidence for a meandering fluvial regime during deposition of members I–III and a 505 

braided gravel-bed river at the time of member IV emplacement (Czerwonka and Krzyszkowski, 506 

2001; see above), given that the change could readily be attributed to the greater severity of cold-507 

stage climatic episodes in the early Middle Pleistocene, following the Mid-Pleistocene Revolution.  508 

The latter, which saw the transition to 100 ka glacial–interglacial climatic cyclicity (e.g., Maslin and 509 

Ridgwell, 2005), has been noted to have had a profound effect on valley evolution in many parts of 510 

the world, notably causing enhanced valley deepening and concomitant isostatic uplift (e.g., 511 

Westaway et al., 2009; Bridgland and Westaway, 2014;.cf. Stange et al., 2013).  512 

 513 

POST-GLACIAL LANDSCAPE EVOLUTION OF THE SUDETIC MARGIN  514 

Following the Middle Pleistocene glaciation of the Sudetic foreland, the present-day rivers, 515 

established in the courses they still occupy, have incised their valleys by varying amounts.  In the 516 

vicinity of the Bardo Gorge (sites 96 and 97, Fig. 7), in an uplifting inter-basinal location, the Nysa 517 

Kłodzka has cut down >50 m below the level of the Odranian till, forming five terraces during the 518 

process (Krzyszkowski et al., 2000; Fig. 2A), presumably in response to post-Odranian regional uplift 519 

(Krzyszkowski and Stachura, 1997; Krzyszkowski et al., 1998, Migoń et al., 1998; Starkel 2014), 520 

perhaps with a component of glacio-isostatic rebound (cf. Bridgland and Westaway, 2014).   521 

As Krzyszkowski et al. (1995, 2000) have shown, the amount of fluvial incision (and thus of uplift) 522 

differs markedly on either side of the Sudetic Marginal Fault, the displacement suggesting ~15–25 m 523 

of additional uplift on the upthrow side (related to continued elevation of the Sudeten Mountains) 524 

since formation of the ‘Main Terrace’, the oldest post-Elsterian river terrace.  Previous authors have 525 

ascribed this main terrace to the Odranian, since it is overlain by till of that age (e.g., Krzyszkowski 526 



and Biernat, 1998; Krzyszkowski et al., 2000); it is essentially the starting point for post-glacial 527 

incision by the Sudetic marginal rivers such as the Bystrzyca and Nysa Kłodzka (Fig. 2).  If attribution 528 

of the Odranian to MIS 6 is correct then several terraces have been formed during the relatively 529 

short interval represented by the Late Pleistocene.  Dating evidence is generally lacking, however.  530 

The following is a general summary of the sequence: 531 

i. Upper  terrace (erosional /depositional) ~10–18 m above alluvial plain (MIS 6; Wartanian) 532 

ii. Middle Upper terrace (depositional) ~4–8 m above alluvial plain (MIS 3; mid-Weichselian) 533 

iii. Middle Lower  terrace (depositional) ~2–5 m above alluvial plain (MIS 2; Vistulian/ 534 

Weichselian /LGM) 535 

iv. Lower terraces of the recent alluvial plain (Holocene) - see Fig. 2. 536 

 537 

DISCUSSION: PLIOCENE–QUATERNARY LANDSCAPE EVOLUTION IN 538 

THE POLISH SUDETEN FORELAND AND THE WIDER REGION 539 

The landscape of Poland represents a mosaic of crustal provinces, as illustrated in Fig. 4A and in 540 
more detail in Fig. 4B. The boundaries between these provinces have been delineated by many 541 
studies, initially outcrop investigations, later borehole studies and, most recently, deep controlled-542 
source seismic-profiling projects (e.g., Grad et al., 2002, 2003, 2008; Hrubcová et al., 2005; 543 
Malinowski et al., 2013; Mazur et al., 2015).  NE Poland is thus known to be located within ancient 544 
(Early-Middle Proterozoic) continental crust overlying the relatively thick lithosphere of the EEP (see 545 
above).  The boundary between this region and the younger crustal province to the SW was first 546 
identified in the late 19th century in territory now in SE Poland and western Ukraine by Teisseyre 547 
(1893; Teisseyre and Teisseyre, 2002).  This boundary, nowadays known as the Teisseyre–Tornquist 548 
Zone (TTZ) or Trans-European Suture Zone, marks the suture of the Tornquist ocean, which formerly 549 
separated the ancestral continents of Baltica (to the NE) and Avalonia (to the SW), and closed during 550 
the Caledonian orogeny, when the crust SW of the TTZ experienced deformation (e.g., Grad et al., 551 
2003).  At a later stage, SW Poland, including the Sudetes, was deformed during the Variscan 552 
orogeny, the northern and eastern limits of the region thus affected being now concealed in the 553 
subsurface by younger sediments.  Figure 4B indicates one interpretation of these limits; Grad et al. 554 
(2003) provide another.  The Variscan orogeny in this part of Europe involved northward subduction 555 
of the Rheic ocean beneath the southern margin of Avalonia, followed by the continental collision 556 
between the Armorica continent (more specifically, its eastern part, Saxothüringia) and various 557 
microcontinents with Avalonia (e.g., Mazur et al., 2006).  The Sudeten massif in the extreme SW of 558 
Poland, in the core of the Variscan orogeny, experienced pervasive deformation, metamorphisim, 559 
and granitic magmatism.  This region was also affected at this time by NW–SE-oriented left-lateral 560 
strike-slip faulting (including slip on the Sudetic Boundary Fault and Intra-Sudetic Fault), creating a 561 
collage of fragmented crustal blocks of extreme complexity (e.g., Aleksandrowski et al., 1997; 562 
Aleksandrowski and Mazur, 2002; Franke and Żelaźniewicz, 2002; Gordon et al., 2005; Jeřábek et al., 563 
2016; Kozłowski et al., 2016; Fig. 1).  Much later, SE Poland was affected by Late Cenozoic plate 564 
motions, involving southward or south-westward subduction of the former Carpathian Ocean (Fig. 565 
3B); as a result, the mosaic of continental fragments affected by the Variscan orogeny in what is now 566 
Slovakia (which were formerly located further southwest) became juxtaposed against SE Poland 567 
(e.g., Plašienka et al., 1997; Szafián et al., 1997; Stampfli et al., 2001, 2002; Von Raumer et al., 2002, 568 
2003; Bielik et al., 2004; Schmid et al., 2004; Alasonati-Tašárová et al., 2009; Handy et al., 2014; 569 
Broska and Petrík, 2015).  Thus the crustal structure of Poland is highly variable, reflecting the 570 
complex tectonic history of the wider region. 571 
 572 



The ideas about different crustal types having very different landscape evolution histories presented 573 

above were developed without reference to fluvial sequences in Poland, although data from 574 

neighbouring countries, such as Ukraine, were taken into account, as exemplified by the example of 575 

the northern Black Sea rivers (Fig. 3).  Application of these ideas to Poland, and in particular to the 576 

data under consideration in this paper, thus provides a valuable test of the underlying theories.  This 577 

task has been facilitated by the aforementioned deep seismic projects, from which have been 578 

published crustal transects with the required spatial resolution; indeed, some of the transects 579 

combine crustal structure and heat flow, for example those across Poland from SW to NE presented 580 

by Grad et al. (2003).  The first such transect, likewise combining crustal structure and heat flow, was 581 

prepared in a similar location by Majorowicz and Plewa (1979); comparison between the two 582 

indicates the technical progress over the intervening decades, although the main features 583 

identifiable in the modern cross-sections can also be resolved on the older one.  One aspect of 584 

particular importance for the present investigation is identification (from its relatively high seismic 585 

velocity) of the presence of mafic underplating at the base of the crust. Such a layer remains rigid (or 586 

brittle) under the temperatures typically experienced (<~550 °C) and thus behaves mechanically as 587 

part of the mantle lithosphere, any mobile lower-crustal layer present being restricted to shallower 588 

depths in the felsic lower crust.  The phenomenon was mentioned above in connection with Early or 589 

Middle Proterozoic crustal provinces in which fluvial archives point to past alternation subsidence 590 

and uplift. 591 

 592 

The seismic transect studied by Grad et al. (2003) crosses the TTZ ~150 km NW of Warsaw with ESE–593 

WSW orientation, revealing a layer of mafic underplating at the base of the crust persisting from 594 

here to a point ~100 km NW of Wrocław.  According to Grad et al. (2003), emplacement occurred 595 

during magmatic rifting of eastern Avalonia from the Precambrian supercontinent Rodinia during the 596 

latest Proterozoic or Cambrian.  This layer is up to ~10 km thick, its top locally as shallow as ~25 km 597 

depth; it evidently extends beneath the external part of the Variscides, including the high-heat-flow 598 

region around Poznań, depicted in Fig. 4C, but no long-timescale fluvial sequences are evident in this 599 

region due to the effect of multiple glaciations.  The subparallel transect studied by Grad et al. 600 

(2008) starts just SW of the TTZ, ~170 km west of Warsaw, crosses the Czech–Polish border in the 601 

extreme SW of Poland, then through the NW extremity of the Czech Republic before entering 602 

Germany.  It again reveals up to ~10 km of mafic underplating at the base of the crust, its top locally 603 

as shallow as ~22 km, persisting WSW for ~250 km and dying out in the vicinity of the Intra-Sudetic 604 

Fault Zone.  Mafic underplating, with thickness up to ~8 km, its top locally as shallow as ~18 km, 605 

resumes in the western part of the Bohemian Massif near the Czech–German border, as the transect 606 

approaches Saxothüringia, the intervening crustal provinces (Barrandia, forming the central 607 

Bohemian Massif) being free of underplating.  The NW–SE seismic transect across the Bohemian 608 

Massif, reported by Hrubcová et al. (2005), confirms the presence of underplating beneath 609 

Saxothüringia but not beneath Moldanubia (the SE Bohemian Massif) or Barrandia.  610 

 611 

As already discussed, the structure of the Sudeten Mountains is complex; as a result of the Variscan 612 

left-lateral faulting it consists of small fragments of crustal blocks that have become juxtaposed. 613 

Jeřábek et al. (2016) have recently demonstrated that this process included transposition of 614 

Saxothüringian crust (presumably including its characteristic layer of mafic underplating) beneath 615 

fragments of Barrandia.  It would thus appear that mafic underplating persists beneath much of the 616 

Sudeten Mountains region, as Majorowicz and Plewa (1979) inferred, even though this was not 617 



resolved in the Grad et al. (2008) study.  The heat flow typically decreases southward across the 618 

Sudeten Mountains, reaching values of <70 mW m-2 in the Kłodzko area (Fig. 4C); it can thus be 619 

inferred that this effect, along with the presence of mafic underplating derived from Saxothüringian 620 

crust, constricts the mobile lower-crustal layer, resulting in the pattern of alternations of uplift and 621 

subsidence that are evident in the fluvial records, particularly in basinal areas (see above).  A 622 

noteworthy record comes from Kłodzko [site 68], which gives its name to the Kłodzko Basin and is 623 

the proximal type locality of the Kłodzko–Stankowo Formation, which represents the pre-glacial 624 

River Nysa Kłodzka.  Here in the basin the pre-glacial gravels extend to below river level, suggesting 625 

the sort of reversal in vertical crustal motion described above.  This can be compared with the 626 

situation ~12km downstream at the Bardo Gorge, on the inter-basinal ridge (see above), where it is 627 

evident that uplift has been more continuous (Compare Figs 2A and 2B).   628 

Another good example of the low level of the pre-glacial deposits in parts of the Sudetic Foreland, as 629 

well as their geomorphological inter-relationship, is the site at Brzeg Dolny in the Odra valley 630 

downstream of Wrocław [site 108], where Members I and II of the Kłodzko–Stankowo  Formation 631 

occur in superposition, their base ~10 m above the level of nearby Holocene valley-floor sediments.  632 

Member IV of the Mielęcin–Wołów Formation (representing the palaeo- Strzegomka) occurs nearby, 633 

incised to a lower level.  Given the tributary status of the palaeo- Strzegomka, this relationship 634 

implies rejuvenation between the Pliocene (Member I) and early Middle Pleistocene (Member IV), 635 

when the latter river traversed an area formerly occupied by the pre-glacial Nysa Kłodzka; this is a 636 

clear example of terrace formation within the pre-glacial sequence (see online supplement Fig. S2). 637 

In some parts of the Sudetes, thick plutons of highly radiothermal granite were emplaced during the 638 

Variscan orogeny, their radioactive heat production resulting in local heat-flow highs; for example, 639 

Bujakowski et al. (2016) inferred temperatures as high as ~390 °C at 10 km depth beneath the 640 

Karkonosze granite pluton (see Fig. 6 for location).  However, this is one locality where Jeřábek et al. 641 

(2016) inferred that the Variscan orogeny emplaced Saxothüringian crust beneath crust of 642 

Barrandian provenance, so that here it can be anticipated that the mafic underplating will constrict 643 

the mobile crustal layer, notwithstanding the high surface heat flow. 644 

 645 

South of the Sudeten Mountains, in the Bohemian Massif, rivers such as the Vltava and Labe 646 

(affluents of the Elbe) have substantial terrace staircases (e.g., Tyracek et al., 2004), with no 647 

indications of alternations in vertical crustal motion.  The heat flow in the central Bohemian Massif is 648 

~50-60 mW m-2 (e.g., Čermák, 1979), less than in the Sudeten Mountains.  However, as already 649 

noted, the crust in this region, up to ~35 km thick in Barrandia (in which the Vltava terrace staircase 650 

is located) and up to ~40 km thick in Moldanubia, is free of mafic underplating (Hrubcová et al., 651 

2005).  The felsic lower crust is thus much thicker in this region, and concomitantly much hotter near 652 

its base, than in the Sudeten Mountains. The different landscape response between these areas can 653 

thus be explained: the mafic underplating accounts, via the mechanism advocated by Westaway and 654 

Bridgland (2014), for the observed pattern of sedimentary archives in parts of the Sudetes; the 655 

importance of underplating is underlined by evidence for sustained upward vertical crustal motion, 656 

despite lower heat flow, in the central Bohemian Massif, where underplating is absent (cf. 657 

Štěpančíková et al., 2008). 658 

  659 

Wider crustal comparisons can also be made between fluvial sequences in the Sudeten Mountains 660 

and elsewhere in Poland. Comparison of Figs 4A and B indicates that the surface heat flow increases 661 



from ~70 mW m-2 at the external (northern) margin of the Carpathians to ~80 mW m-2 along the 662 

Poland-Slovakia border, for example along the upper reaches of the River San.  No modern deep 663 

seismic profile in this area is known to the authors, but by analogy with other localities further NW it 664 

can be inferred that the region consists of ~40 km thick crust with ~10 km of mafic underplating (cf. 665 

Grad et al., 2003, 2008).  However, during the Late Cenozoic plate convergence this crust became 666 

buried beneath up to ~7 km of young sediment (e.g., Oszczypko, 1997).  The ‘thermal blanketing’ 667 

effect of this sediment will significantly raise the temperature in the underlying crust, reducing the 668 

constriction effect of the underplating on the thickness of mobile lower crust; 7 km of sediment of 669 

thermal conductivity 2 W m-1 °C-1 overlying crust in which the heat flow is 80 mW m-2 will raise the 670 

temperature in this bedrock by 7 km  80 mW m-2 / 2 W m-1 °C-1 or ~280 °C.  Westaway and 671 

Bridgland (2014) suggested an analogous explanation for the disposition of the terrace deposits of 672 

the River Dniester in the Ukraine–Moldova border region further to the SE (see Fig. 3A). 673 

 674 

Comparison is also possible with the crust underlying the fluvial sequence laid down by the River 675 

Vistula in the Warsaw area.  As illustrated in Fig. 5D, Pliocene deposits here occur near the present 676 

river level, and Early Pleistocene deposits at a height ~30 m lower.  After these were laid down, the 677 

ancestral Vistula cut down to ~50 m below its present level before laying down a stack of Middle and 678 

Late Pleistocene sediments, including Holocene temperate-climate deposits overlying their Eemian 679 

and Holsteinian counterparts.  Overall, this sequence indicates a transition from uplift in the 680 

Pliocene and Early Pleistocene to subsidence thereafter.  Warsaw is ~50 km inside the EEP (Fig. 4B). 681 

From Grad et al. (2003) and Mazur et al. (2015), the crust is locally ~45 km thick with ~20 km of 682 

underplating at its base, overlain by ~19 km of basement and ~3 km of sediments, which are mainly 683 

Mesozoic (in contrast with the much thicker sequences dominated by Palaeozoic shale, closer to the 684 

TTZ).  The surface heat flow in the Warsaw area is ~60 mW m-2 (Fig. 4C); if the sediment and 685 

basement are assumed to have thermal conductivities of 2.5 and 3.5 W m-1 °C-1, respectively, the 686 

~350 °C isotherm can be expected at ~19 km depth, making the mobile lower crustal layer ~6 km 687 

thick, within the range of values where alternations of uplift and subsidence have been observed in 688 

fluvial sequences elsewhere (Westaway and Bridgland, 2014).  Other fluvial sequences within the 689 

EEP, with alternations of uplift and subsidence evident, include those of the River Dnieper in Ukraine 690 

and the Rover Don in SW Russia (e.g., Westaway and Bridgland, 2014; Fig. 3).  691 

 692 

A final point on the effect of lateral variations of crustal properties, with resultant lateral variations 693 

in uplift, on the disposition of fluvial terrace deposits concerns the occasional occurrence of back-694 

tilted fluvial deposits, in cases where rivers have flowed from regions of colder to warmer crust, with 695 

an example evident from the Sudetic margin.  It is evident that the ancestral drainage from the 696 

Sudeten Mountains was directed northward, from the Wrocław area and points further east to the 697 

Poznań area, before adjusting (probably around the start of the Early Pleistocene) to its modern 698 

configuration.  Fig. 4C indicates that the former drainage was directed across the high heat-flow 699 

region between Wrocław and Poznań, raising the possibility that the subsequent drainage 700 

adjustment was the result of faster uplift of the latter region.  As already noted, the Grad et al. 701 

(2003) seismic profile passes through this high-heat-flow region, indicating that the top of the mafic 702 

underplating is at ~25 km depth and that the sedimentary sequence in the overlying crustal column 703 

is thin.  Assuming a thermal conductivity of 3.5 W m-1 °C-1 in the basement, as before, and a typical 704 

heat flow of ~90 mW m-2, the ~350 °C isotherm can be expected at a depth of ~14 km, making the 705 

thickness of the mobile lower crust ~11 km, significantly greater than in other parts of Poland and 706 



high enough (based on comparisons with other regions) to sustain significant uplift rates.  Recorded 707 

heights of pre-glacial fluvial deposits in this region (Czerwonka and Krzyszkowski, 2001; Supplement, 708 

Table S1) indeed reveal evidence of back tilting. The best such evidence is provided by comparison of 709 

the heights of the Pliocene deposits along the ancestral River Odra, between Chrzaszczyce(Fig. 7 710 

[76/77]), Smardzow [33], 77.3 km further downstream, and Stankowo [1], 84.9 km further 711 

downstream, the latter site adjoining the confluence with the ancestral Nysa Kłodzka (Fig. 7).  The 712 

top of the deposits assigned to Member I of the Ziębice Group is 180, 72, and 99 m a.s.l. at these 713 

sites, thus indicating back-tilting over the reach between Smardzow and Stankowo, the long-profile 714 

gradients being ~1.4 and ~-0.3 m km-1 along these two reaches, respectively.  Thus, if this river had 715 

an original gradient of ~1 m km-1, the deposit at Stankowo is now 81 m higher in the landscape, and 716 

that at Smardzow 34 m lower, than would be expected if all three sites had experienced the same 717 

history of vertical crustal motion.  In the absence of detailed modelling the precise sequence of 718 

processes in this region cannot be ascertained, but this pattern is consistent with the interpretation 719 

that lower-crustal material was drawn from beneath the Smardzow area to beneath the hotter 720 

Stankowo area, as a result of the lateral pressure gradient at the base of the brittle upper crust 721 

caused by the variation in heat flow between these two regions.  An established analogue of this 722 

effect is the back-tilting of the deposits of the early Middle Pleistocene Bytham River in the East 723 

Midlands of England; this river flows eastward from the northern part of the London Platform, a 724 

region of relatively low heat flow, into the higher-heat-flow zone of crustal deformation during the 725 

Caledonian orogeny, at the NE margin of Avalonia (Fig. 4A), its sediments now being gently tilted in 726 

an upstream direction (Westaway et al., 2015).  727 

 728 

The explanation for the fluvial archives in the marginal area of the Sudeten Mountains promoted 729 

here has a more general analogue in records from SW England, in the rivers of Cornwall and west 730 

Devon (Westaway, 2010).  In that region radiothermal Variscan granites are underlain by thick mafic 731 

underplating and the crust is relatively strong, as indicated by the minimal Late Cenozoic vertical 732 

crustal motions deduced from fluvial sequences.  The principal difference is that the mafic 733 

underplating beneath SW England was emplaced after the Variscan orogeny, as a result of the 734 

Palaeocene British Tertiary Igneous Province magmatism, whereas the underplating beneath the 735 

Sudeten Mountains is evidently derived from fragments of pre-Variscan Saxothüringian crust. 736 

 737 

The different styles of fluvial archive preservation in the different parts of the European continent 738 

described above are an important consideration in the understanding of Quaternary stratigraphy in 739 

these regions, given that fluvial sequences provide valuable templates for the Late Cenozoic 740 

terrestrial record (Vandenberghe, 2002; Bridgland et al., 2004; Bridgland and Westaway, 2014).  It 741 

has been shown that the most stable regions, in which the fluvial archives suggest a complete or 742 

near absence of net uplift during the Quaternary, coincide with the most ancient cratonic crustal 743 

zones, such as parts of the EEP and in particular the Ukrainian Shield (Bridgland and Westaway, 744 

2008, 2014; Fig. 3). Such highly stable regions are the exception for the EEP, however; over much of 745 

its area there has been limited net uplift as a result of alternations of vertical crustal movements, 746 

resulting in periods of terrace generation with intervening periods of subsidence and burial.  In Fig. 747 

13 the fluvial archive from the Sudetic margin, using the optimal example of the Nysa Kłodzka at 748 

Bardo (see above), is compared with that of the River Don at Voronezh.  Despite the differences in 749 

size (catchment area and, therefore, discharge) of the fluvial systems in question and the very 750 

different glacial influences (the Don here was reached only by glaciation in MIS 16), there are 751 



significant points of comparison.  Contrastingly, the difference between the fluvial records from the 752 

EEP and those from the youngest and most dynamic European crust is quite profound, albeit that 753 

many of the comparisons made above are with crust of somewhat intermediate age, such as the 754 

Variscan and Avalonia provinces (Fig. 4).  This is because much of the youngest crust, in the Alpine 755 

and Carpathian provinces (Fig. 4), remains tectonically active (i.e., continues to be affected by active 756 

plate motions) and so has fluvial archives that are less clearly related to regional vertical crustal 757 

movements.    758 

 759 

CONCLUSIONS 760 

The rivers of the Polish Sudeten foreland have pre-glacial precursors, their courses recognized from 761 

sediments that generally underlie the Middle Pleistocene glacial deposits and which date from the 762 

Early Pliocene – Early Pleistocene, being substantially different from those of their modern 763 

successors.  The pre-glacial fluvial formations are preserved in the subsurface, in part as buried 764 

valley fills, and recorded as the Ziębice Group.  They were partly destroyed and buried by the Middle 765 

Pleistocene Scandinavian ice sheets that entered the Sudeten Foreland, covering the previously 766 

formed valleys with glacial deposits: the Elsterian (= Sanian) and the early Saalian (= Odranian).  No 767 

post-Odranian ice sheet reached the Sudeten Foreland, where renewed incision (brought about by 768 

post-Odranian uplift) led to post-glacial river-terrace formation.  In addition to glacial and tectonic 769 

influences on fluvial evolution, the overall pattern of fluvial archive preservation is commensurate 770 

with the Variscan crustal province in which they are developed.  However, the effects of mafic 771 

underplating, emplaced by the incorporation of pre-Variscan crustal material, may have been 772 

considerable, as this can explain reduced net Pleistocene uplift and reversals in vertical crustal 773 

motion, especially in basinal areas.  Differential uplift in reflection of crustal type may have led to 774 

disruption of former downstream gradients in the palaeovalleys, with an example of back-tilting 775 

identified in the case of the Palaeo-Odra.  In addition, some younger terraces can be shown to have 776 

been offset by slip on active faults of the Sudeten Marginal Fault system. 777 
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Figure captions 784 

Figure 1 Geology and location of the research area.  The inset shows the limits of the various 785 

Quaternary glaciations of Poland and the course of the River Odra.  Modified from 786 

Czerwonka and Krzyszkowski (2001). 787 

Figure 2 Cross sections through key fluvial sequences in the study area: A - the River Nysa Kłodzka 788 

in the Bardo area (sites 96 and 97 in Figs 7 and 8), where the river has cut a gorge 789 

through an inter-basinal (progressively uplifting) ridge, the inset showing the sequence 790 

a few km downstream, in the Janowiec–Ożary area (sites 72 and 71 in Figs 7 and 8); B - 791 

the sequence in the Kłodzko Basin in the Kłodzko–Leszczyna area (site 68 in Figs 7 and 792 

8), both modified from Krzyszkowski et al. (1998); C - The River Bystrzyca near 793 

Lubachów (modified from Krzyszkowski and Biernat, 1998); for location see FIg. 7. 794 

Figure 3 The Rivers of the northern Black Sea region (modified from Bridgland and Westaway, 795 

2014; after Matoshko et al., 2002; 2004). A - The locations of parts B–D in relation to 796 

the Ukrainian Shield. B - Idealized transverse profile through the Middle–Lower Dniester 797 

terrace sediments, which represent a classic river terrace staircase (with approximately 798 

one terrace per 100 ka climate cycle following the Mid-Pleistocene Revolution) inset 799 

into Miocene fluvial basin-fill deposits. This region has higher heat flow than might be 800 

expected from its location at the edge of the EEP (see A), for reasons discussed in detail 801 

by Westaway and Bridgland (2014). C. - Transect across the Middle Dnieper basin,~100 802 

km downstream of Kiev (~240 km long), showing a record typical of an area with no 803 

considerable net uplift or subsidence during the Late Cenozoic, as typifies cratonic 804 

crustal regions (cf. Westaway et al., 2003). D. - Transect through the deposits of the 805 

Upper Don near Voronezh, showing a combined stacked and terraced sequence that 806 

points to fluctuation between episodes of uplift and of subsidence during the past ~15 807 

Ma. 808 

Figure 4 Crustal characteristics.  A - Crustal provinces in the European continent and neighbouring 809 

areas. Modified from Pharaoh et al. (1997); the location of parts B and C is shown.  B - 810 

Crustal provinces in Poland. Modified from Mazur et al. (2006).  DFZ = Dolsk Fault Zone; 811 

OFZ = Odra Fault Zone.  C - Borehole heat flow measurement sites and resulting 812 

contours of surface heat flow in Poland. Modified from Bujakowski et al. (2016), using 813 

data from Szewczyk and Gientka (2009).  Plus and minus signs are used to aid 814 

interpretation in grayscale; for the colour diagram, see the online pdf version. 815 

Figure 5 Comparison of fluvial archives in different parts of the River Vistula system.  A – location; 816 

B – Transect through the valley of the River Dunajec, central Carpathians (modified from 817 

Zuchiewicz, 1992, 1998); C –. Transect through the valley of the River San (after Starkel, 818 

2003); D – Idealized transverse sequence through the deposits of the Middle Vistula, 819 

based on data from upstream (Mojski, 1982) and downstream (Zarski, 1996; Marks, 820 

2004) of Warsaw. 821 

Figure 6 Distribution of provenance indicator materials.  Modified from Czerwonka and 822 

Krzyszkowski (2001). 823 



Figure 7 Location of pre-glacial sites (identified by number, with different symbols for the various 824 

formations, which represent different river systems).  For locality names see Fig. 8.  825 

Modified from Czerwonka and Krzyszkowski (2001). 826 

Figure 8 Occurrence of the different pre-glacial fluvial formations and their constituent members, 827 

showing which are present at the various localities.  Numbers and symbols correspond 828 

with those in Figs 7 and 9–12.  Modified from Czerwonka and Krzyszkowski (2001). 829 

Figure 9 Palaeodrainage during emplacement of Member I deposits. Numbers and symbols 830 

correspond with those in Figs 7 and 8.  Modified from Czerwonka and Krzyszkowski 831 

(2001). 832 

Figure 10 Palaeodrainage during emplacement of Member II deposits. Numbers and symbols 833 

correspond with those in Figs 7 and 8.  Modified from Czerwonka and Krzyszkowski 834 

(2001).  For key see Fig. 9. 835 

Figure 11 Palaeodrainage during emplacement of Member III deposits. Numbers and symbols 836 

correspond with those in Figs 7 and 8; for key see Fig. 9. 837 

Figure 12 Palaeodrainage during emplacement of Member IV deposits. Numbers and symbols 838 

correspond with those in Figs 7 and 8; for key see Fig. 9. 839 

Figure 13 Comparison between the fluvial archives from the Sudetes, in the form of the Nysa 840 

Kłodzka (Krzyszkowski et al., 1998, 2000), and the River Don in the vicinity of Voronezh, 841 

Russia (showing suggested MIS correlations; see also Fig. 3D and Matoshko et al. (2004), 842 

who provided further stratigraphical details. 843 

 844 

 845 

Table 1  Characteristic clast data (gravel petrography and heavy mineralogy) used in 846 

differentiation of Ziębice Group formations 847 

  848 
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ABSTRACT: 16 

Detailed study of subsurface deposits in the Polish Sudeten Foreland, particularly with reference to 17 

provenance data, has revealed that an extensive pre-glacial drainage system developed there in the 18 

Pliocene – Early Pleistocene, with both similarities and differences in comparison with the present-19 

day Odra (Oder) system.  This foreland is at the northern edge of an intensely deformed upland, 20 

metamorphosed during the Variscan orogeny, with faulted horsts and grabens reactivated in the 21 

Late Cenozoic.  The main arm of pre-glacial drainage of this area, at least until the early Middle 22 

Pleistocene, was the palaeo-Nysa Kłodzka, precursor of the Odra left-bank tributary of that name.  23 

Significant pre-glacial evolution of this drainage system can be demonstrated, including incision into 24 

the landscape, prior to its disruption by glaciation in the Elsterian (Sanian) and again in the early 25 

Saalian (Odranian), which resulted in burial of the pre-glacial fluvial archives by glacial and fluvio-26 

glacial deposits.  No later ice sheets reached the area, in which the modern drainage pattern became 27 

established, the rivers incising afresh into the landscape and forming post-Saalian terrace systems.  28 

Issues of compatibility of this record with the progressive uplift implicit in the formation of 29 

conventional terrace systems are discussed, with particular reference to crustal properties, which 30 

are shown to have had an important influence on landscape and drainage evolution in the region. 31 

Keywords  Pliocene – Early Pleistocene, Ziębice Group, Elsterian glaciation, Odranian (early Saalian) 32 

glaciation, palaeodrainage, crustal properties, Polish Sudetes 33 
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INTRODUCTION 35 

The Sudeten (Sudety) Mountains, or Sudetes, form a NW–SE-trending range with its western end in 36 

Germany and separating SW Poland from the Czech Republic (Czechia).  With its highest peak 37 

reaching 1603 m, this represents an uplifted block of rocks metamorphosed during the Variscan 38 

orogeny, in the late Devonian to early Carboniferous (Don and Zelaźniewicz, 1990).  The Variscan 39 

involved complex faulting and thrusting, forming horsts and graben-basins, the latter infilled during 40 

later tectonically quiescent geological episodes, prior to significant reactivation of these structures in 41 

the Neogene–Quaternary (Oberc 1977; Dyjor, 1986, Mignoń, 1997).  The foreland region north of 42 

these mountains, into which these structures extend, is drained by the Odra (Oder) and several of its 43 

left-bank tributaries, the main river flowing NW and then northwards, forming the western 44 

boundary of Poland, towards the Baltic (Fig. 1).  An earlier, somewhat different drainage pattern in 45 

the Sudeten Foreland is evident from the subsurface preservation of buried valley fragments, 46 

recognized from boreholes and quarries and now largely buried by glacigenic and later fluvial 47 

sediments (Krzyszkowski et al., 1998; Michniewicz, 1998; Przybylski et al., 1998).  It is apparent, 48 

therefore, that this drainage system was disrupted by glacial advances of Scandinavian ice from the 49 

north and NW (Krzyszkowski, 1996; Krzyszkowski and Ibek, 1996; Michniewicz, 1998; Salamon, 2008; 50 

Salamon et al., 2013; Fig. 1).  The drainage has also been disrupted during the Quaternary by slip on 51 

the Sudeten Marginal Fault, the effects of which are readily visible in terms of vertical offset in 52 

terrace heights either side of the faultline (e.g., Krzyszkowski et al., 1995, 1998, 2000; Krzyszkowski 53 

and Bowman, 1997; Krzyszkowski and Biernat, 1998; Krzyszkowski and Stachura, 1998; Migoń et al., 54 

1998; Štěpančíková et al., 2008; cf. Novakova, L., 2015).  To these glacial and tectonic influences can 55 

now be added the effects on Quaternary landscape evolution of a complex history of crustal 56 

behaviour, potentially related to the characteristics of the Proterozoic to Palaeozoic crust in the 57 

region, as will be discussed in this paper.   58 

The repeated glaciation of this region has been well researched and is documented by the glacigenic 59 

deposits that form much of the surface cover, burying the evidence for the aforementioned pre-60 

glacial drainage.  The most extensive glaciation was that during the Elsterian, the ‘Sanian glaciation’ 61 

of Polish nomenclature (Marks, 2011).  This glaciation, assumed to have occurred during Marine 62 

Isotope Stage (MIS) 12 (Krzyszkowski et al., 2015), may not have been the first within the study area, 63 

as there are well-developed cold-stage minima within the marine oxygen isotope record in the latest 64 

Early Pleistocene, in MIS 22, and the early Middle Pleistocene: especially MIS 16, represented by the 65 

Don glaciation in the northern Black Sea region (e.g., Turner, 1996; Matoshko et al., 2004).  No pre-66 

MIS 12 glacigenic deposits have been recognized in the Sudetic marginal region, however, and it is 67 

clear that any such glaciation was less extensive than that in the Elsterian.  The next most extensive 68 

glaciation was the Early Saalian (Odranian), with a limit typically 0–18 km short of the Elsterian 69 

(Sanian) ice front (Fig. 1, inset); it is generally attributed to MIS 6 (Marks, 2011).  Then followed the 70 

Late Saalian glaciation, termed the Middle Polish Complex or Wartanian, and the Weichselian (last) 71 

glaciation, the North Polish Complex or the Vistulian.  The highest massifs within the Sudetes 72 

supported small-scale local Weichselian glaciers (Migoń, 1999; Traczyk, 2009) and such glaciers 73 

would also have existed during earlier major glaciations, albeit with little effect on foreland drainage 74 

evolution.  75 



The study area coincides with the southern edge of the northern European glaciated zone in which 76 

fluvial drainage courses have been strongly influenced by repeated glaciation from the north.  That 77 

zone, from the western Baltic states through Poland and into Germany, is characterized by broadly 78 

west–east aligned valleys that were formed when drainage from the south was deflected towards 79 

the Atlantic by ice sheets blocking the lower courses of the various Baltic rivers: the urströmtäler of 80 

Germany and pradolina of Poland (e.g., Kozarski, 1988; Marks, 2004).  Deflection of drainage by the 81 

Elsterian and, later, by the Odranian ice is likely to have influenced the modern position of the river 82 

valleys in the lowland north of the Sudetic margin (Krzyszkowski,2001). 83 

The major existing rivers of the Sudeten foreland have well-developed terrace systems that record 84 

valley incision since the most recent glaciation of the region, which was during the Odranian, given 85 

that the later Late Saalian (Wartanian) and Weichselian (Last Glacial Maximum: LGM) ice sheets 86 

failed to reach the mountain front (Fig. 1, inset).  Terrace systems are well documented in the two 87 

largest Sudetic tributaries of the Odra, the Bystrzyca (Berg, 1909; Krzyszkowski and Biernat, 1998) 88 

and the Nysa Kłodzka (Zeuner, 1928; Krzyszkowski et al., 1998), as well as in several of the smaller 89 

systems.  The Quaternary record in this area was thoroughly reviewed in a 1998 special issue of 90 

Geologia Sudetica (Krzyszkowski, 1998) that was dedicated to Frederick E. Zeuner, who conducted 91 

his doctoral research in the region (Zeuner, 1928; see online supplement, Fig. S1), from which he 92 

formulated many of his influential views on river-terrace formation (Zeuner, 1945, 1946, 1958, 93 

1959).  Since the formation of the Fluvial Archives Group (Add citation of the FLAG editorial paper), 94 

debate about the genesis of river terraces has led to a consensus that they are generally a result of 95 

uplift, with strong climatic and isostatic influences (e.g., Maddy, 1997; Antoine et al., 2000; 96 

Bridgland, 2000), the latter seen to vary in relation to crustal type (Westaway et al., 2003, 2006, 97 

2009; Bridgland and Westaway, 2008a, b, 2012, 2014; Bridgland et al., 2012, 2017). 98 

Landscape evolution in the study area has been complex, with combined influences from glaciation, 99 

active faulting and regional crustal processes.  The present-day topography is almost entirely the 100 

result of post-glacial fluvial erosion, in combination with the various processes that modify valley-101 

side slopes and convey sediment into valley bottoms.  ‘Post-glacial’ in this region means post-Sanian 102 

(Elsterian) or post-Odranian (Early Saalian), these being the only Pleistocene glacials during which ice 103 

sheets are known to have reached the Sudetic Foreland (see above; Fig. 1, inset).  The modern 104 

valleys have thus formed since these ice sheets encroached upon the region and their flanks 105 

preserve latest Middle Pleistocene–Late Pleistocene river-terrace sequences (Fig. 2).  These valleys 106 

are incised into a landscape substantially formed in late Middle Pleistocene glacigenic deposits, 107 

including diamictons, outwash sands and gravels and lacustrine sediments (Krzyszkowski, 1998, 108 

2013).  Evidence from boreholes and quarry exposures has shown that this glacigenic sedimentation 109 

was overprinted onto a pre-glacial drainage system, recognizable as a complex pattern of palaeo-110 

valleys now entirely buried beneath the modern land surface.  Thus pre-glacial fluvial sediments, 111 

which have been attributed to the Pliocene, Lower Pleistocene and lower Middle Pleistocene, are 112 

generally buried beneath later Pleistocene deposits and occupy a relatively low position with the 113 

landscape, especially in basin situations (see above).  This is in apparent conflict with the 114 

expectations of standard river-terrace stratigraphy, in which progressively older deposits would be 115 

anticipated in positions progressively higher above the modern valley floor.  This standard terrace 116 

stratigraphy has, however, been shown to occur only in association with certain, albeit widespread 117 

and common, crustal types, as will be explained in the next section.  118 



 119 

Relation of fluvial archives to crustal type 120 

Westaway et al. (2003) made the important observation that classic river terrace staircases do not 121 

occur in regions of cold, ancient and densely crystallized crust, particularly the cratons that 122 

represent fragments of the earliest continental lithosphere.  They attributed this phenomenon to 123 

the absence of mobile lower crust in such regions, which they realised was essential to provide a 124 

positive-feedback response to erosional isostatic uplift, the same uplift that has caused terrace 125 

staircases to form on younger crust, including in areas remote from tectonic influence (see 126 

Westaway, 2001, 2002, a, b; Westaway et al., 2002, Bridgland and Westaway, 2008a, b, 2014).  127 

Subsequent reviews of fluvial archives from different crustal provinces showed distribution patterns 128 

that can be related to crustal type; in this the northern Black Sea hinterland, ~1000 km to the ESE of 129 

the present research area, represents a valuable case-study region, where the range of dating 130 

proxies is exemplary (Bridgland and Westaway, 2008a, b, 2014; Bridgland et al., 2017; cf. Matoshko 131 

et al., 2004; Fig. 3).  The significant differences in preservation patterns of fluvial archives between 132 

crustal provinces with different characteristics point to important contrasts in landscape evolution, 133 

in particular relating to the extent of valley incision (Westaway et al., 2003, 2009), as well as the 134 

propensity for loss of fluvial archives to erosional processes, which will be greater in areas of 135 

dynamic and rapidly uplifting crust.  Investigations have led to the concept that these geomorphic 136 

effects are controlled by a combination of crustal properties, namely heat flow (see Fig. 4C) and the 137 

depth of the base of the felsic crustal layer, since these properties govern the thickness of the plastic 138 

crustal layer beneath the brittle upper part of the crust, the base of which corresponds to a 139 

temperature of ~350 °C.  Thus, if this plastic layer is absent, as in cratonic regions, the crust is 140 

extremely stiff and thus ultra-stable.  If the mobile layer is thick (thickness >~6 km), it plays a major 141 

role in isostatic adjustment, and continuous uplift occurs, at rates that vary in response to rates of 142 

erosional forcing and thus to climate change (see Fig. 3).  On the other hand, if this layer has an 143 

intermediate thickness (~4–6 km), a more complex isostatic response occurs, characterized by 144 

alternations of uplift and subsidence, possibly because under such conditions the isostatic responses 145 

in the mobile lower crust and in the asthenospheric mantle occur at comparable rates but on 146 

different timescales (Westaway and Bridgland, 2014).  147 

 148 

Different patterns of fluvial sediment preservation are indeed evident in Poland, and can be 149 

interpreted according to the different crustal regions within which they occur (see Fig. 4).  The 150 

occurrence of buried Pliocene and Lower Pleistocene fluvial deposits, as reported in the present 151 

study region, has also been observed in the middle reaches of the Vistula river system (Mojski, 1982; 152 

Bridgland and Westaway, 2014; Fig. 5), the catchment of which accounts for 56% of Poland.  The 153 

Middle Vistula flows across the East European Platform (EEP), a crustal province consolidated during 154 

the Early or Middle Proterozoic that is relatively stable in comparison with the younger crust to the 155 

west, including that beneath the Sudeten Mountains, which is part of the Variscan province, 156 

stretching from SW Poland to western Europe (southern England–Iberia; Fig 4).  Further SE within 157 

the EEP, patterns of fluvial-archive preservation in which older deposits are buried by younger 158 

terraced sequences have again been observed, for example in the valley of the River Don, one of the 159 

northern Black Sea rivers, near Voronezh (Matoshko et al., 2004; Bridgland and Westaway, 2008a, b, 160 

2014; Fig. 3). The alternation between uplift and subsidence implicit in these preservation patterns 161 



has been ascribed to the properties of the crust of the EEP; such crust is highly consolidated and 162 

relatively cold, with a lower mobile layer of limited thickness (probably a few kilometres at most), 163 

making it very much less dynamic than younger crustal types (Westaway and Bridgland, 2014; 164 

Bridgland and Westaway, 2017; cf. Kutas et al., 1979).  165 

 166 

Further north, the Lower Vistula, in its course towards the Baltic, flows across a region that would 167 

appear to have experienced continuous subsidence during the late Middle and Late Pleistocene, as 168 

indicated by the stacking of younger Pleistocene deposits, including fluvial, glacial and even marine 169 

sediments, above older (cf. Marks, 2004).  This could reflect the wider influence of isostatically 170 

induced subsidence of the long-standing depocentre of the Baltic basin, where the crust has been 171 

progressively depressed beneath the sedimentary load.  In marked contrast there are areas in the 172 

extreme SE of Poland, in the uppermost Vistula catchment, which display the only extensive 173 

staircases of river terraces in the country, similar to those on the younger, more dynamic crust of 174 

NW Europe.  These terrace staircases (Fig. 5) can be found in the catchments of the Rivers Dunajec 175 

(Zuchiewicz, 1992; Olszak, 2011) and San (Starkel, 2003), as well as in other tributaries of the Vistula 176 

that drain the continental crust forming the Western Carpathian Mountains (e.g., Zuchiewicz, 2011; 177 

Pliszczyńska, 2012).  These archives generally occur on crust bordering the Western Carpathians that 178 

was affected by the Caledonian orogeny and is thus more dynamic than that of the EEP.  (For a 179 

description of the Late Cenozoic palaeogeographical evolution of this area see Brud, 2004.)  As 180 

Bridgland and Westaway (2014) noted, the headwaters of the San are close to those of the Dniester, 181 

a river flowing southwards to the Black Sea that has an impressive and well-dated terrace staircase 182 

(Matoshko et al., 2004; Fig. 3B).  Thus, despite their flowing in opposite directions, the San and the 183 

Dniester have similar styles of fluvial archive preservation, attributable to the nature of the crust in 184 

that region rather than hydrological or base-level influences (cf. Bridgland and Westaway, 2014).  185 

Elsewhere in Poland there is localized downwarping as a result of salt diapirism, particularly at 186 

Bełchatów, near Łódź (Krzyszkowski, 1995; Krzyszkowski and Szuchnik, 1995; Wieczorek et al., 2015).   187 

Bridgland and Westaway (2014) suggested that, although the prevalence of stacked sequences in 188 

northern Poland might reflect proximity to the Baltic Basin, aspects of the fluvial archive 189 

preservation pattern in Central Poland that have traditionally been attributed to the effects of 190 

glaciation, or glaciation interspersed with marine transgression (e.g., Marks, 2004), might instead 191 

result from the characteristics of the crust.  They envisaged three provinces within the Vistula: (1) an 192 

upstream, uplifting province, with well-developed terraces, (2) a central province in which the 193 

comparative stability of the EEP is dominant and (3) a downstream (northern) province with 194 

increasing influence of subsidence around the Baltic Basin and the effects of repeated glaciation. 195 

The fluvial sedimentary archives in parts of the Sudetic foreland suggest inversion in vertical crustal 196 

movement, with alternation of subsidence and uplift, as surmised previously in systems such as the 197 

Don (Westaway and Bridgland, 2014; Bridgland et al., 2017; Fig. 3D).  In previous reviews of the 198 

preservation patterns shown by fluvial archives, in which causal linkages have been observed with 199 

crustal type, such archives indicative of alternating subsidence and uplift were found to be 200 

associated commonly with Early or Middle Proterozoic crustal provinces with thick ‘roots’ of mafic 201 

material at the base of the crust, restricting the thickness of the mobile lower crustal layer 202 

(Westaway and Bridgland, 2014; Bridgland et al., 2017).  In the Sudetes this phenomenon is 203 



apparent in basinal areas, which are separated by structural ridges (horsts) of older, generally 204 

crystalline rocks (Dyjor, 1986; see above). 205 

EVIDENCE FOR PRE-GLACIAL RIVER SYSTEMS IN THE SUDETEN 206 

FORELAND 207 

Quarrying and boreholes have allowed the reconstruction of considerable detail with regard to river 208 

sytems that existed in the Sudetic Foreland in pre-glacial times (i.e., prior to the Elsterian ice 209 

advance, which is the meaning of pre-glacial in this region).  It should be noted, however, that this 210 

reconstruction is based on small ‘windows’ of subsurface evidence, providing limited scope for 211 

detailed reconstruction of areal three-dimensional form.  Beneath the Sanian and Odranian glacial 212 

deposits, fluvial sediments of several different types have been recorded, much work having been 213 

done in order to characterize and distinguish these, in particular clast-lithological analysis of their 214 

gravel components and heavy-mineral analysis of sand grains (Czerwonka et al., 1994; Krzyszkowski 215 

and Bowman, 1997; Krzyszkowski et al., 1998; Przybylski et al. 1998; Krzyszkowski, 2001; 216 

Krzyszkowski and Karanter, 2001; Krzyszkowski, 2013).  Many of these early fluvial deposits are 217 

kaolinitic, from the weathering of gneiss, gabbro, serpentinite, schist and other feldspathic rocks, 218 

which, in company with a dominance of rudaceous quartz, gave rise to the term ‘white gravels’; they 219 

have also been referred to as the ‘preglacial series’ (Dyjor 1983, 1986, 1987a, b, 1993; Jahn et al. 220 

1984; Dyjor et al. 1992).  The matching of these components to source areas is illustrated in Fig. 6.  221 

They lie above the Upper Miocene – Lower Pliocene Poznań (Clay) Formation , sometimes with 222 

channel or palaeo-valley geometries apparent from the subsurface data (Ciuk and Piwocki, 1979; 223 

Ciuk and Pożaryska, 1982; Peryt and Piwocki, 2004).  Indeed, there is some evidence of incision and 224 

even terrace formation within the preglacial sequence (see online supplement, Figs S2 and S3), much 225 

of which is however a continuation of the stacked basin-fill represented by the Neogene Poznań 226 

Formation.  The pre-glacial fluvial deposits can be collectively described under the name Ziębice 227 

Group, this being the amalgam of several formations, representing different pre-glacial river 228 

systems, defined by their heavy mineral content and non-quartz gravel-clast petrography 229 

(Czerwonka and Krzyszkowski, 2001; Table 1; Figs 7 and 8).  The Ziębice locality in central Poland, 230 

formerly called Münsterberg, was where fluvial ‘white gravel’ sediments, lacking Scandinavian 231 

material, were first described (Jentzsch and Berg, 1913; Frech, 1915; Lewiński, 1928, 1929; Zeuner, 232 

1928; Krzyszkowski et al., 1998; Przybylski et al., 1998;Czerwonka and Krzyszkowski, 2001; online 233 

supplement Fig. S1).  234 

Emplacement of the Ziębice Group as a whole can probably be attributed in part to increased 235 

mountain uplift and active faulting in the Sudetes and their foreland, perhaps resultant from the 236 

global climatic cooling that characterized the mid-Pliocene (e.g., Westaway et al., 2009); 237 

downthrown fault basins would have guided the main drainage lines.  Each component formation 238 

represents sequences deposited by a specific fluvial system originating in the Sudeten Mountains.  239 

Within the group as a whole, four informal members (I–IV) have been recognized (Czerwonka and 240 

Krzyszkowski, 2001), their distinction being broadly age dependent, which is why they have not been 241 

formally defined, although there are no means for precise dating.  These members are variously 242 

represented within the different formations, only two of which have all four members (Table 1; Fig. 243 

9), with each numbered member believed to have been formed approximately synchronously in the 244 

different rivers across the region.  The supposed ages of the members are relative and rely on 245 



superposition (see online supplement) and sporadic but rare preservation of biostratigrahical 246 

evidence (Czerwonka and Krzyszkowski, 2001; see below).  Supplementary evidence for 247 

distinguishing between the members comes from erosional hiatuses at the bases of Members 1, III 248 

and IV and for the distinct widening of the valley systems between Members I and III (Czerwonka 249 

and Krzyszkowski, 2001; compare Figs 9 and 10).  The sedimentology and range and type of facies 250 

suggests a meandering fluvial regime for Members I – III, especially away from the mountain front, 251 

and a braided river envrionment for member IV (Czerwonka and Krzyszkowski, 2001).  Systematic 252 

analyses have been undertaken from exposures and boreholes, including sand heavy mineralogy and 253 

gravel clast lithology, arguably the most valuable, combined with particle-size analysis, quartz (sand) 254 

grain angularity–roundness analysis and palaeocurrent measurements (Czerwonka et al., 1994; 255 

Krzyszkowski and Bowman, 1997; Przybylski et al. 1998; Krzyszkowski et al., 1998; Krzyszkowski and 256 

Karanter, 2001; Krzyszkowski, 2001; Table 1; see online supplement). 257 

As summarized in Table 1, six main pre-glacial river systems have been recognized, each with 258 

characteristic heavy-mineral signatures and some with distinctive clast-lithological assemblages. 259 

These are (1) the Palaeo-Odra, characterized by a zircon–rutile heavy-mineral assemblage and gravel 260 

clasts of Carpathian origin, represented by the Chrząszczyce Formation, (2) the Palaeo-Biała 261 

Głuchołaska (staurolite-amphibole mineralogy), represented by the Dębina Formation, (3) the 262 

Palaeo-Nysa Kłodzka (staurolite–garnet/amphibole–garnet), represented by the Kłodzko–Stankowo 263 

Formation, (4) the Palaeo-Bystrzyca (zircon, sillimanite and various) , represented by the Bojanice 264 

Formation (as well, potentially, as the Pogalewo and Wichrów formations), (5) the Palaeo-265 

Strzegomka (sillimanite–garnet), represented by the Mielęcin–Wołów Formation, and (6) the Palaeo-266 

upper Bóbr/Kaczawa (andalusite), as represented by the Rokitki–Bielany Formation. Of these the 267 

Palaeo-Nysa Kłodzka appears to have been the trunk river throughout the ‘pre-glacial’ period (see 268 

Figs 9–12).  Evidence for four additional systems has been recognized but is more localized; these 269 

are the Palaeo-Wierzbiak, represented by the Snowidza Formation, the Palaeo-Budzówka, 270 

represented by the Ząbkowice Formation, and two other local rivers, near Bardo/Potworów and 271 

Szydłów, identified only by gravel-clast analysis (Przybylski et al., 1998) and impossible to match with 272 

existing rivers. 273 

These drainage systems probably originated during the Early Miocene, since the Miocene–Lower 274 

Pliocene Poznań Formation is thought to represent the low-energy sediments of anastomosing river 275 

or inland-delta environments (Peryt and Piwocki, 2004), which, from the available evidence, 276 

persisted with relatively little change until disrupted by glaciation in the Middle Pleistocene.  It 277 

should be noted that those formations with ‘double-barrelled’ names (Kłodzko–Stankowo, Mielęcin–278 

Wołów and Rokitki–Bielany) are traced for significant distances from the mountain front and have 279 

‘proximal’ type locailties (giving the first part of the name) near the Sudetes and ‘distal’ type 280 

localities further downstream.  The lack of Scandinavian clasts in these various pre-glacial fluviatile 281 

sediments distinguishes them from the glacial deposits (Elsterian and Lower Saalian) and from the 282 

terrace deposits of the post-glacial rivers, in which reworked glacially-derived material occurs 283 

(Schwarzbach, 1955; Jahn, 1960, 1980; Czerwonka and Krzyszkowski, 1992; Krzyszkowski 1995, 2013; 284 

Czerwonka et al. 1997). 285 

Turning to the informal members, I–III have generally been attributed to the Pliocene–lowermost 286 

Pleistocene and IV to the lower Middle Pleistocene (Cromerian Complex). This seemingly points to a 287 

hiatus spanning much of the first half of the Pleistocene, although there may well be unrecognized 288 



representation of this interval amongst sequences that are notoriously difficult to date and which 289 

include components that have yet to be defined and characterized fully.  Alluvial-fan sediments 290 

occur within all members at localities near the mountain front.  The Pliocene members can be 291 

presumed to represent rivers draining northwards to join the erstwhile Baltic River, which existed as 292 

a major east–west flowing system at that time (e.g., Gibbard, 1988).  The drainage represented by 293 

members I–III was sinuous, as indicated by sediment geometry (Figs 9–11) as well as sedimentology 294 

(see above), in contrast to the braided-river deposits of member IV.  This perhaps indicates 295 

sedimentation of members I–III during periods of temperate and relatively moist climate, whereas 296 

member IV records more variable conditions, with evidence of both temperate (interglacial) and cold 297 

(periglacial) climates.  This contrast could, indeed, be a reflection of climatic cooling in the Early 298 

Pleistocene, a trend that would culminate in the glaciations of the Baltic region in the Middle 299 

Pleistocene.   300 

The evidence for different pre-glacial rivers, precursors of the modern drainage of the Polish Sudetic 301 

margin, will be described in east to west sequence, starting with the Palaeo-Odra, the post-glacial 302 

successor of which forms the principle arm of the modern regional drainage. 303 

 304 

The Palaeo-Odra (Chrząszczyce Formation) 305 

Within the research area the Chrząszczyce Formation, which is thought to represent the main 306 

palaeo-Odra river, is restricted to locations >20 km from the Sudetic mountain front, entering the 307 

region from the south-east in the area south of Opole (Figs 7 and 9–11).  It has been studied at 308 

relatively few localities at and to the west of Opole and west of Wrocław, with representation only 309 

of Members I–III (Table 1; Figs 9–11).  Only at Chrząszczyce, the type locality ~5 km SSW of Opole 310 

(Figs 7 and 8; online supplement, Fig. S4), have all three of these members been observed.  Gravel 311 

analysis has only been possible from the Member III sediments at Ose (Figs 7 and 8), where the 312 

occurrence of Carpathian siliceous rocks (silicified limestones and sandstones, radiolarites, etc.) 313 

amongst a quartz-dominated assemblage provides important support for origin within the Odra 314 

catchment (Czerwonka and Krzyszkowski, 1992).  There are subtle changes in heavy mineralogy 315 

between members I–III (Table 1): all have assemblages dominated by zircon, with staurolite and 316 

tourmaline, plus garnet in members I and III and rutile in II and III. Member III at Tulowice has 317 

yielded plant macrofossils (leaves and fruit) with close affinity to those of the underlying uppermost 318 

Poznań Formation: i.e. not older than late Pliocene (Przybylski et al., 1998). 319 

 320 

The Palaeo-Biała Głuchołaska (Dębina Formation)  321 

This is a relatively minor formation, representative of a subordinate river, the most south-easterly 322 

that drained the Sudetes Mountains within the study area.  Only Member I has been recognized, 323 

made up of quartzose gravels with a staurolite–amphibole heavy-mineral suite (Table 1).  It has been 324 

recognized at a small number of sites from Strybowice to the type locality at Dębina, ~30 km SSW of 325 

Opole (Fig. 7). Although its occurrences trace a course from SSW to NNE, the petrography of the 326 

Ziębice Group as a whole, plus knowledge of the bedrock surface, suggests that the palaeo-river 327 

turned sharply to the NW in the vicinity of Dębina to a confluence with the Palaeo-Nysa Kłodzka, 328 



rather than continuing NNE-wards to join the palaeo-Odra (Fig. 9).  It uncertain whether any of the 329 

Dębina Formation sequences continue upwards into Member II but the existence of a Palaeo-Biała 330 

Głuchołaska flowing NE from the Sudetes has been reconstructed for that time-span, joining a 331 

considerably wider Palaeo Nysa Kłodzka (Fig. 10) in comparison with that reconstructed for Member 332 

I.  The continued existence of such a river during later times can only be speculative (Krzyszkowski et 333 

al., 1998). 334 

 335 

The Palaeo-Nysa Kłodzka (Kłodzko–Stankowo Formation)  336 

This formation accounts for the vast majority of the pre-glacial series, being represented at sites 337 

over an area of considerable width from its proximal type locality (see above) at Kłodzko, in the 338 

south (in the Kłodzko [intermontane] basin) eastwards towards (but not reaching) Opole and then 339 

northwards to Wrocław and beyond (Fig. 7).  This distribution demonstrates the dominance of the 340 

Palaeo-Nysa Kłodzka during pre-glacial times (Figs 9–12).  Its distal type locality, at Stankowo (Fig. 7, 341 

site [1]), is at the northern periphery of the study area, ~20 km NE of Leszno (Fig. 1; supplement, Fig. 342 

S5). The recognition of this formation is based on a gravel clast lithology reflecting the characteristic 343 

geology of the Kłodzko Basin, including gneisses and other cystalline rocks, notably porphyries, 344 

together with Mesozoic sandstones and ‘flint’ (Table 1; Figs 6 and 7).  The heavy mineralogy is 345 

complex and regionally variable, also changing from staurolite–garnet dominance in Members I–III 346 

to garnet and amphibole in Member IV (Table 1). 347 

With the formation represented at >50 sites (Figs 7 and 8), the comparative distribution of the 348 

different members reveals significant changes in the course of this trunk river, with Member I tracing 349 

a relatively confined WSW–ENE reach from Kłodzko to Gnojna (Fig. 7 [35]), diverging northwards 350 

from the modern Nysa Kłodzka course, and then a wider but still confined reach (in comparison with 351 

younger members) from here to Wrocław and Taborek (Fig. 7 [3]), by which point the Palaeo-Odra 352 

was converging from the east (Fig. 9).  At the time of Member II emplacement, both reaches were 353 

considerably wider, that east of Kłodzko spreading southwards to envelop the course of the modern 354 

river, whereas in its northward-flowing reach it extended eastwards to meet the Palaeo-Odra ~10 355 

km west of Opole and spread out north-eastwards across the foreland to encompass an area from 356 

that of its earlier course across to that around Ostrów Wielkolpolski and beyond (Fig. 10).   357 

By Member III times the palaeo-river had been diverted from near Ziębice into a more confined 358 

northerly course towards Wrocław, sweeping across the area south and east of this city towards 359 

Ostrów Wielkolpolski, turning northwards as it met the palaeo-Odra, by this time of almost equal 360 

size, and other drainage from the east, possible the ‘Bełchatów River’, as recognized in central 361 

Poland at the large lignite quarry by the same name (Krzyszkowski, 1995; Krzyszkowski et al., 2015; 362 

Fig. 11). 363 

By member IV times there is little evidence that the Palaeo-Nysa Kłodzka extended north-eastwards 364 

of the modern Odra course, except in the area NW of Wrocław.  This suggests that a Palaeo-Odra 365 

closely following its modern valley had come into existence by this time, perhaps as a result of early 366 

Middle Pleistocene glaciation (Zeuner, 1928; Fig. 12), otherwise poorly documented because its 367 

extent was less than the ice sheets of the Elsterian, the suggestion being that the line of the Odra 368 



across the northern edge of the Sudetic foreland might be of early ice-marginal (‘pradolina’) origin 369 

(see above).  370 

 371 

The Palaeo-Budzówka (Ząbkowice Formation) 372 

The Budzówka is a minor left-bank tributary of the Nysa Kłodzka, joining the latter ~20 km 373 

downstream of Kłodzko.  Its pre-glacial forebear is represented by probable Member IV deposits that 374 

occur at two sites, the Ząbkowice type locality [73] and Albertów [107] (Figs 7, 8 and 12).  These 375 

deposits are characterized by gravel in which the dominant clast type is Sowie Góry gneiss, with 376 

subordinate quartz and other siliceous rocks; there is a garnet–amphibole heavy mineral suite (Table 377 

1).  378 

 379 

The Palaeo-Bystrzyca (Bojanice, Wichrów and Pogalewo formations) 380 

The River Bystrzyca, which is the next important Odra tributary moving to the NW along the Sudetes 381 

margin, flows through the town of Świdnica on its SW–NE course towards a confluence with the 382 

trunk river ~7 km NW of Wrocław; ~15 km upstream of that confluence it receives a substantial left-383 

bank tributary, the Strzegomka (Fig. 7).  Pre-glacial versions of both these rivers are represented 384 

amongst the Ziębice Group sediments, although with courses that appear to have been entirely 385 

separate until the trunk river was reached; at that time the latter was the Palaeo-Nysa Kłodzka (Figs 386 

9–12. 387 

Three different pre-glacial formations are potential products of deposition by the palaeo-Bystrzyca. 388 

First is the Bojanice Formation, of which Members II, III and possibly IV occur in the vicinity of 389 

Świdnica, in the form of porphyry-rich quartz gravels, also containing melaphyre, Sowie Góry gneiss 390 

and quartzite, although the uppermost (potentially Member IV) deposits lack rudaceous 391 

components (Table 1).  The heavy minerology of these upper deposits is dominated by sillimanite, 392 

whereas that of the gravelly facies is dominated by zircon and garnet (Table 1). 393 

The Wichrów Formation is represented by a small group of sites, of which the Wichrów type locality 394 

is one, ~20–30 NNE of Świdnica, in the modern catchment of the Strzegomka tributary (Figs 7 and 395 

8[45]).  Only the basal part of the sequence is present, with Member I and a possible extension into 396 

Member II, sharing the zircon-rich mineralogy of the lower members within the Bojanice Formation 397 

(Table 1).  Despite its modern location within the tributary catchment, the Wichrów Formation sites 398 

seem likely to represent a downstream continuation of the palaeo-Bystrzyca from the Świdnica area 399 

(Fig. 9). 400 

The Pogalewo Formation is identified in the area much further from the mountain front, to the north 401 

of the modern River Odra downstream of Wrocław.  Members I, II and III are all recognized, albeit at 402 

different sites (Figs 7 and 8).  Member I is identified only at the Pogalewo type locality [31], on the 403 

northern side of the Odra valley ~30 km downstream of Wrocław (Fig. 9; online supplement Fig. S3).  404 

It is the only member of this formation to have yielded rudaceous material, this being quartz gravel 405 

with local flint and a trace of porphyry; it has a zircon–tourmaline-rutile heavy mineralogy (Table 1).  406 



Further upstream (both within the modern Odra system and the pre-glacial palaeovalley), ~5–10 km 407 

east from Pogalewo, is a small cluster of sites that represent Member III, which have the same 408 

dominant mineralogy but with additional epidote, kyanite, amphibole and staurolite (Table 1).  The 409 

intervening Member II, although perhaps represented by the uppermost deposits at Pogalewo, is 410 

optimally recorded much further downstream, at Chałupki [51], ~30 km SW of Głogów (Fig. 7).  The 411 

mineralogy of this member is different again, with kyanite in addition to the zircon–tourmaline–412 

rutile suite but lacking epidote, amphibole and staurolite (Table 1).  Although given a separate name, 413 

the deposits of the Pogalewo Formation are most readily interpreted as more distal (downstream) 414 

palaeo-Bystrzyca sediments, implying a separate northward course far from the mountain front, 415 

especially during emplacement of Member II (Fig. 10). 416 

 417 

The Palaeo-Strzegomka (Mielęcin–Wołów Formation) 418 

As noted above, the modern River Strzegomka joins the Bystrzyca ~15 km upstream of the 419 

confluence between the combined river and the Odra.  Prior to the Middle Pleistocene, however, it 420 

seems likely that the precursors of these rivers maintained separate courses to the trunk palaeo- 421 

Nysa Kłodzka (Figs 9–11).  The palaeo-Strzegomka is represented by the Mielęcin–Wołów Formation, 422 

as is apparent from the preservation of that formation at sites close to the mountain front within the 423 

modern Strzegomka catchment, including the Mielęcin (proximal) type locality (Fig. 7 [47]; online 424 

supplement Fig. S6).  The deposits here comprise quartzose–porphyry-rich gravels representing 425 

Members I–III, also containing local siliceous rocks (flint), conglomerate, spilite, diabase, greenschist 426 

and quartzite from the Wałbrzych Upland, Strzegom granite and local schist (phyllite), as well as a 427 

sillimanite–garnet heavy-mineral suite (Table 1; Fig. 6).  The distal type locality, at Wołów, where 428 

only Member I is represented, is located north of the modern Odra, approximately equidistant 429 

between Wrocław and Głogów (Fig. 8 [32]).  Member IV of the Mielęcin–Wołów Formation is 430 

recognized at two sites, Sośnica [43], in the modern Bystrzyca valley upstream of its confluence with 431 

the Strzegomka, and Brzeg Dolny 3 [108], north of the modern Odra, where it overlies Member I of 432 

the Kłodzko–Stankowo Formation (Figs 8 and 12; online supplement Fig. S2).  This upper member 433 

lacks gravel but is characterized by a sillimanite-dominated heavy mineralogy (Table 1). 434 

 435 

The Palaeo-upper Bóbr/Kaczawa (Rokitki–Bielany Formation) 436 

The next Odra tributary north-westwards along the mountain front is the River Kaczawa, which has a 437 

confluence with the trunk river ~20 km downstream from Legnica.  Its pre-glacial forebear, however, 438 

had a catchment that penetrated deeper into the mountain zone, including areas now drained by 439 

the headwaters of the Bóbr, a yet more westerly Odra tributary that flows NW from the Sudetes to 440 

join the trunk river well to the west of the study area (Fig. 7).  This is indicated by the characteristic 441 

clast lithology of the Rokitki–Bielany Formation, which has rudaceous sediments representing all 442 

four members with contents that show drainage from the Bóbr catchment: these are quartzose 443 

gravels with porphyry, Karkonosze granite, crystalline rocks, schist, quartzite, with the addition, in 444 

Member IV, of Cretaceous sandstone and Wojcieszów limestone (Table 1).  The heavy mineralogy is 445 

characterized by andalusite and tourmaline, with the addition of epidote in Member I and of kyanite, 446 



zircon, garnet, amphibole and sillimanite in Member IV (Table 1).  The proximal type locality of this 447 

formation, Rokitki [55], is situated in the Kaczawa valley, ~ 8 km upstream of its catchment with the 448 

Nysa Szalona, a right-bank tributary (Fig. 7).  Members I–III are attributed to a palaeo-Bóbr–Kaczawa 449 

that drained northwards, to the west of Legnica, towards Głogów (Figs 9–11).  Member IV of this 450 

formation is recognized only at sites in the interfluve area between the Strzegomka and the 451 

Kaczawa, at Kępy [95] and Bielany [50] (Fig. 12; online supplement Fig. S7), where it overlies older 452 

members of the Mielęcin–Wołów Formation that represent the earlier northward drainage of the 453 

palaeo- Strzegomka (see above; Figs 1 and 9).  Bielany is the distal type locality of th#e Rokitki–454 

Bielany Formation, although it lies further south than Rokikti (Fig. 7 [50]). The most northerly 455 

Mielęcin–Wołów site is Polkowice [62], <20 km south of Głogów, where only Member III occurs (Figs 456 

7, 8 and 11).  457 

 458 

Other minor rivers 459 

Fluvial tracts of more localized rivers have been traced.  The Snowidza Formation, known from a 460 

single locality (Fig. 8), represents a possible ancestral River Wierzbiak, the modern river of the same 461 

name being a right-bank Kaczawa tributary that joins the latter ~10 km downstream of Legnica (Fig. 462 

7).  The sole representation of the Snowidza Formation is probably equivalent to Member I of other 463 

Ziębice Group formations (Fig. 8).  The deposits of two other local rivers have been recognized (Fig. 464 

7) in the vicinity of Bardo [96–97], Potworów [98–99]and Szydłów [101] on the basis of gravel-clast 465 

petrography (Przybylski et al., 1998).  These occurrences are again of probable Member I affinity 466 

(Fig. 8). 467 

 468 

DATING THE ZIĘBICE GROUP 469 

Much of the dating of the individual components of the Ziębice Group is dependent on their relative 470 

stratigraphical positions within the sequence and their relation to the underlying Poznań Formation 471 

and overlying Middle Pleistocene glacial deposits.  At Gnojna (~55 km NE of Kłodzko; Fig. 7: [35]) 472 

palynological analyses of the uppermost member of the Poznań Formation, immediately below 473 

member I of the Kłodzko–Stankowo Formation, have yielded a flora indicative of the earliest 474 

Pliocene (Sadowska, 1985; Badura et al., 1998a).  A similar Early Pliocene flora has been obtained 475 

from Sośnica (Stachurska et al., 1973; Sadowska, 1985, 1992; Fig. 7 [43]), where it is overlain by 476 

member IV of the Mielęcin–Wołów Formation.  Macrofossil analysis of the Poznań Formation at 477 

Ziębice, Sośnica and Gnojna have revealed the presence of  Late Miocene to Early Pliocene leaves 478 

and fruits (Kräuzel, 1919, 1920; Łańcucka-Środoniowa et al., 1981; Krajewska, 1996). These 479 

occurrences provide a maximum (limiting) age for the Ziębice Group 480 

A very few sites have yielded palaeobotanical remains from sediments of Ziębice Group formations. 481 

At Kłodzko (Figs 7 and 8 [68]; online supplement Fig. S8) an organic deposit was recorded at the top 482 

of a sequence that potentially represented member II and/or member III of the Kłodzko–Stankowo 483 

Formation (cf. Krzyszkowski et al., 1998).  Pollen and macrofossils from this deposit have been 484 

attributed to the Reuverian Stage of the Late Pliocene (Jahn et al., 1984; Sadowska, 1995).  Poorly 485 

preserved leaf macrofossils from member III of the Chrząszczyce  Formation at Tułowice (~15km SW 486 



of Opole; Figs 7 and 8 [74]) represent a temperate-climate assemblage of trees and shrubs that 487 

cannot be dated with precision but is unlikely to be older than late Pliocene (Przybylski et al., 1998). 488 

The fossiliferous deposits here are thus attributed to the palaeo-Odra, although they overlie 489 

member II deposits that are attributed to the palaeo-Nysa Kłodzka and thus the Kłodzko–Stankowo 490 

Formation (Fig. 8).  Further west, nearer the modern Nysa Kłodzka and in sediments attributed to 491 

the Kłodzko–Stankowo Formation, organic remains and leaf impressions have been found at 492 

Niemodlin 2 [80] and Magnuszowiczki [83] in member II (Figs 7 and 8); Przybylski et al. (1998) noted 493 

that the leaf impressions occurred in laminated silty alluvial sediments. 494 

Zeuner (1928, 1929) described pre-glacial organic deposits at Jonsbach (now Janowiec) that would 495 

appear to have been part of member IV of the Kłodzko–Stankowo Formation (Figs 2, 7 [72], 8 and 496 

12): part of a pre-glacial fluvial (‘white gravel’) sequence ~11 m thick, located just downstream of the 497 

Sudeten Marginal Fault (cf. Krzyszkowski et al., 1998).  The limited pollen record (Stark and 498 

Overbeck, 1932; Badura et al., 1998b; Krzyszkowski  et al., 1998) lacks Tertiary relics and is thus 499 

suggestive of the early Middle Pleistocene (Cromerian Complex).  Attempts to relocate these 500 

deposits and provide a more detailed analysis have proved unsuccessful.  501 

This is meagre evidence upon which to base an age model for the Ziębice Group, but broad inference 502 

from these data points to Pliocene–earliest Pleistocene deposition of members I–III and to early 503 

Middle Pleistocene emplacement of member IV.  That inference concurs well enough with the 504 

sedimentological evidence for a meandering fluvial regime during deposition of members I–III and a 505 

braided gravel-bed river at the time of member IV emplacement (Czerwonka and Krzyszkowski, 506 

2001; see above), given that the change could readily be attributed to the greater severity of cold-507 

stage climatic episodes in the early Middle Pleistocene, following the Mid-Pleistocene Revolution.  508 

The latter, which saw the transition to 100 ka glacial–interglacial climatic cyclicity (e.g., Maslin and 509 

Ridgwell, 2005), has been noted to have had a profound effect on valley evolution in many parts of 510 

the world, notably causing enhanced valley deepening and concomitant isostatic uplift (e.g., 511 

Westaway et al., 2009; Bridgland and Westaway, 2014;.cf. Stange et al., 2013).  512 

 513 

POST-GLACIAL LANDSCAPE EVOLUTION OF THE SUDETIC MARGIN  514 

Following the Middle Pleistocene glaciation of the Sudetic foreland, the present-day rivers, 515 

established in the courses they still occupy, have incised their valleys by varying amounts.  In the 516 

vicinity of the Bardo Gorge (sites 96 and 97, Fig. 7), in an uplifting inter-basinal location, the Nysa 517 

Kłodzka has cut down >50 m below the level of the Odranian till, forming five terraces during the 518 

process (Krzyszkowski et al., 2000; Fig. 2A), presumably in response to post-Odranian regional uplift 519 

(Krzyszkowski and Stachura, 1997; Krzyszkowski et al., 1998, Migoń et al., 1998; Starkel 2014), 520 

perhaps with a component of glacio-isostatic rebound (cf. Bridgland and Westaway, 2014).   521 

As Krzyszkowski et al. (1995, 2000) have shown, the amount of fluvial incision (and thus of uplift) 522 

differs markedly on either side of the Sudetic Marginal Fault, the displacement suggesting ~15–25 m 523 

of additional uplift on the upthrow side (related to continued elevation of the Sudeten Mountains) 524 

since formation of the ‘Main Terrace’, the oldest post-Elsterian river terrace.  Previous authors have 525 

ascribed this main terrace to the Odranian, since it is overlain by till of that age (e.g., Krzyszkowski 526 



and Biernat, 1998; Krzyszkowski et al., 2000); it is essentially the starting point for post-glacial 527 

incision by the Sudetic marginal rivers such as the Bystrzyca and Nysa Kłodzka (Fig. 2).  If attribution 528 

of the Odranian to MIS 6 is correct then several terraces have been formed during the relatively 529 

short interval represented by the Late Pleistocene.  Dating evidence is generally lacking, however.  530 

The following is a general summary of the sequence: 531 

i. Upper  terrace (erosional /depositional) ~10–18 m above alluvial plain (MIS 6; Wartanian) 532 

ii. Middle Upper terrace (depositional) ~4–8 m above alluvial plain (MIS 3; mid-Weichselian) 533 

iii. Middle Lower  terrace (depositional) ~2–5 m above alluvial plain (MIS 2; Vistulian/ 534 

Weichselian /LGM) 535 

iv. Lower terraces of the recent alluvial plain (Holocene) - see Fig. 2. 536 

 537 

DISCUSSION: PLIOCENE–QUATERNARY LANDSCAPE EVOLUTION IN 538 

THE POLISH SUDETEN FORELAND AND THE WIDER REGION 539 

The landscape of Poland represents a mosaic of crustal provinces, as illustrated in Fig. 4A and in 540 
more detail in Fig. 4B. The boundaries between these provinces have been delineated by many 541 
studies, initially outcrop investigations, later borehole studies and, most recently, deep controlled-542 
source seismic-profiling projects (e.g., Grad et al., 2002, 2003, 2008; Hrubcová et al., 2005; 543 
Malinowski et al., 2013; Mazur et al., 2015).  NE Poland is thus known to be located within ancient 544 
(Early-Middle Proterozoic) continental crust overlying the relatively thick lithosphere of the EEP (see 545 
above).  The boundary between this region and the younger crustal province to the SW was first 546 
identified in the late 19th century in territory now in SE Poland and western Ukraine by Teisseyre 547 
(1893; Teisseyre and Teisseyre, 2002).  This boundary, nowadays known as the Teisseyre–Tornquist 548 
Zone (TTZ) or Trans-European Suture Zone, marks the suture of the Tornquist ocean, which formerly 549 
separated the ancestral continents of Baltica (to the NE) and Avalonia (to the SW), and closed during 550 
the Caledonian orogeny, when the crust SW of the TTZ experienced deformation (e.g., Grad et al., 551 
2003).  At a later stage, SW Poland, including the Sudetes, was deformed during the Variscan 552 
orogeny, the northern and eastern limits of the region thus affected being now concealed in the 553 
subsurface by younger sediments.  Figure 4B indicates one interpretation of these limits; Grad et al. 554 
(2003) provide another.  The Variscan orogeny in this part of Europe involved northward subduction 555 
of the Rheic ocean beneath the southern margin of Avalonia, followed by the continental collision 556 
between the Armorica continent (more specifically, its eastern part, Saxothüringia) and various 557 
microcontinents with Avalonia (e.g., Mazur et al., 2006).  The Sudeten massif in the extreme SW of 558 
Poland, in the core of the Variscan orogeny, experienced pervasive deformation, metamorphisim, 559 
and granitic magmatism.  This region was also affected at this time by NW–SE-oriented left-lateral 560 
strike-slip faulting (including slip on the Sudetic Boundary Fault and Intra-Sudetic Fault), creating a 561 
collage of fragmented crustal blocks of extreme complexity (e.g., Aleksandrowski et al., 1997; 562 
Aleksandrowski and Mazur, 2002; Franke and Żelaźniewicz, 2002; Gordon et al., 2005; Jeřábek et al., 563 
2016; Kozłowski et al., 2016; Fig. 1).  Much later, SE Poland was affected by Late Cenozoic plate 564 
motions, involving southward or south-westward subduction of the former Carpathian Ocean (Fig. 565 
3B); as a result, the mosaic of continental fragments affected by the Variscan orogeny in what is now 566 
Slovakia (which were formerly located further southwest) became juxtaposed against SE Poland 567 
(e.g., Plašienka et al., 1997; Szafián et al., 1997; Stampfli et al., 2001, 2002; Von Raumer et al., 2002, 568 
2003; Bielik et al., 2004; Schmid et al., 2004; Alasonati-Tašárová et al., 2009; Handy et al., 2014; 569 
Broska and Petrík, 2015).  Thus the crustal structure of Poland is highly variable, reflecting the 570 
complex tectonic history of the wider region. 571 
 572 



The ideas about different crustal types having very different landscape evolution histories presented 573 

above were developed without reference to fluvial sequences in Poland, although data from 574 

neighbouring countries, such as Ukraine, were taken into account, as exemplified by the example of 575 

the northern Black Sea rivers (Fig. 3).  Application of these ideas to Poland, and in particular to the 576 

data under consideration in this paper, thus provides a valuable test of the underlying theories.  This 577 

task has been facilitated by the aforementioned deep seismic projects, from which have been 578 

published crustal transects with the required spatial resolution; indeed, some of the transects 579 

combine crustal structure and heat flow, for example those across Poland from SW to NE presented 580 

by Grad et al. (2003).  The first such transect, likewise combining crustal structure and heat flow, was 581 

prepared in a similar location by Majorowicz and Plewa (1979); comparison between the two 582 

indicates the technical progress over the intervening decades, although the main features 583 

identifiable in the modern cross-sections can also be resolved on the older one.  One aspect of 584 

particular importance for the present investigation is identification (from its relatively high seismic 585 

velocity) of the presence of mafic underplating at the base of the crust. Such a layer remains rigid (or 586 

brittle) under the temperatures typically experienced (<~550 °C) and thus behaves mechanically as 587 

part of the mantle lithosphere, any mobile lower-crustal layer present being restricted to shallower 588 

depths in the felsic lower crust.  The phenomenon was mentioned above in connection with Early or 589 

Middle Proterozoic crustal provinces in which fluvial archives point to past alternation subsidence 590 

and uplift. 591 

 592 

The seismic transect studied by Grad et al. (2003) crosses the TTZ ~150 km NW of Warsaw with ESE–593 

WSW orientation, revealing a layer of mafic underplating at the base of the crust persisting from 594 

here to a point ~100 km NW of Wrocław.  According to Grad et al. (2003), emplacement occurred 595 

during magmatic rifting of eastern Avalonia from the Precambrian supercontinent Rodinia during the 596 

latest Proterozoic or Cambrian.  This layer is up to ~10 km thick, its top locally as shallow as ~25 km 597 

depth; it evidently extends beneath the external part of the Variscides, including the high-heat-flow 598 

region around Poznań, depicted in Fig. 4C, but no long-timescale fluvial sequences are evident in this 599 

region due to the effect of multiple glaciations.  The subparallel transect studied by Grad et al. 600 

(2008) starts just SW of the TTZ, ~170 km west of Warsaw, crosses the Czech–Polish border in the 601 

extreme SW of Poland, then through the NW extremity of the Czech Republic before entering 602 

Germany.  It again reveals up to ~10 km of mafic underplating at the base of the crust, its top locally 603 

as shallow as ~22 km, persisting WSW for ~250 km and dying out in the vicinity of the Intra-Sudetic 604 

Fault Zone.  Mafic underplating, with thickness up to ~8 km, its top locally as shallow as ~18 km, 605 

resumes in the western part of the Bohemian Massif near the Czech–German border, as the transect 606 

approaches Saxothüringia, the intervening crustal provinces (Barrandia, forming the central 607 

Bohemian Massif) being free of underplating.  The NW–SE seismic transect across the Bohemian 608 

Massif, reported by Hrubcová et al. (2005), confirms the presence of underplating beneath 609 

Saxothüringia but not beneath Moldanubia (the SE Bohemian Massif) or Barrandia.  610 

 611 

As already discussed, the structure of the Sudeten Mountains is complex; as a result of the Variscan 612 

left-lateral faulting it consists of small fragments of crustal blocks that have become juxtaposed. 613 

Jeřábek et al. (2016) have recently demonstrated that this process included transposition of 614 

Saxothüringian crust (presumably including its characteristic layer of mafic underplating) beneath 615 

fragments of Barrandia.  It would thus appear that mafic underplating persists beneath much of the 616 

Sudeten Mountains region, as Majorowicz and Plewa (1979) inferred, even though this was not 617 



resolved in the Grad et al. (2008) study.  The heat flow typically decreases southward across the 618 

Sudeten Mountains, reaching values of <70 mW m-2 in the Kłodzko area (Fig. 4C); it can thus be 619 

inferred that this effect, along with the presence of mafic underplating derived from Saxothüringian 620 

crust, constricts the mobile lower-crustal layer, resulting in the pattern of alternations of uplift and 621 

subsidence that are evident in the fluvial records, particularly in basinal areas (see above).  A 622 

noteworthy record comes from Kłodzko [site 68], which gives its name to the Kłodzko Basin and is 623 

the proximal type locality of the Kłodzko–Stankowo Formation, which represents the pre-glacial 624 

River Nysa Kłodzka.  Here in the basin the pre-glacial gravels extend to below river level, suggesting 625 

the sort of reversal in vertical crustal motion described above.  This can be compared with the 626 

situation ~12km downstream at the Bardo Gorge, on the inter-basinal ridge (see above), where it is 627 

evident that uplift has been more continuous (Compare Figs 2A and 2B).   628 

Another good example of the low level of the pre-glacial deposits in parts of the Sudetic Foreland, as 629 

well as their geomorphological inter-relationship, is the site at Brzeg Dolny in the Odra valley 630 

downstream of Wrocław [site 108], where Members I and II of the Kłodzko–Stankowo  Formation 631 

occur in superposition, their base ~10 m above the level of nearby Holocene valley-floor sediments.  632 

Member IV of the Mielęcin–Wołów Formation (representing the palaeo- Strzegomka) occurs nearby, 633 

incised to a lower level.  Given the tributary status of the palaeo- Strzegomka, this relationship 634 

implies rejuvenation between the Pliocene (Member I) and early Middle Pleistocene (Member IV), 635 

when the latter river traversed an area formerly occupied by the pre-glacial Nysa Kłodzka; this is a 636 

clear example of terrace formation within the pre-glacial sequence (see online supplement Fig. S2). 637 

In some parts of the Sudetes, thick plutons of highly radiothermal granite were emplaced during the 638 

Variscan orogeny, their radioactive heat production resulting in local heat-flow highs; for example, 639 

Bujakowski et al. (2016) inferred temperatures as high as ~390 °C at 10 km depth beneath the 640 

Karkonosze granite pluton (see Fig. 6 for location).  However, this is one locality where Jeřábek et al. 641 

(2016) inferred that the Variscan orogeny emplaced Saxothüringian crust beneath crust of 642 

Barrandian provenance, so that here it can be anticipated that the mafic underplating will constrict 643 

the mobile crustal layer, notwithstanding the high surface heat flow. 644 

 645 

South of the Sudeten Mountains, in the Bohemian Massif, rivers such as the Vltava and Labe 646 

(affluents of the Elbe) have substantial terrace staircases (e.g., Tyracek et al., 2004), with no 647 

indications of alternations in vertical crustal motion.  The heat flow in the central Bohemian Massif is 648 

~50-60 mW m-2 (e.g., Čermák, 1979), less than in the Sudeten Mountains.  However, as already 649 

noted, the crust in this region, up to ~35 km thick in Barrandia (in which the Vltava terrace staircase 650 

is located) and up to ~40 km thick in Moldanubia, is free of mafic underplating (Hrubcová et al., 651 

2005).  The felsic lower crust is thus much thicker in this region, and concomitantly much hotter near 652 

its base, than in the Sudeten Mountains. The different landscape response between these areas can 653 

thus be explained: the mafic underplating accounts, via the mechanism advocated by Westaway and 654 

Bridgland (2014), for the observed pattern of sedimentary archives in parts of the Sudetes; the 655 

importance of underplating is underlined by evidence for sustained upward vertical crustal motion, 656 

despite lower heat flow, in the central Bohemian Massif, where underplating is absent (cf. 657 

Štěpančíková et al., 2008). 658 

  659 

Wider crustal comparisons can also be made between fluvial sequences in the Sudeten Mountains 660 

and elsewhere in Poland. Comparison of Figs 4A and B indicates that the surface heat flow increases 661 



from ~70 mW m-2 at the external (northern) margin of the Carpathians to ~80 mW m-2 along the 662 

Poland-Slovakia border, for example along the upper reaches of the River San.  No modern deep 663 

seismic profile in this area is known to the authors, but by analogy with other localities further NW it 664 

can be inferred that the region consists of ~40 km thick crust with ~10 km of mafic underplating (cf. 665 

Grad et al., 2003, 2008).  However, during the Late Cenozoic plate convergence this crust became 666 

buried beneath up to ~7 km of young sediment (e.g., Oszczypko, 1997).  The ‘thermal blanketing’ 667 

effect of this sediment will significantly raise the temperature in the underlying crust, reducing the 668 

constriction effect of the underplating on the thickness of mobile lower crust; 7 km of sediment of 669 

thermal conductivity 2 W m-1 °C-1 overlying crust in which the heat flow is 80 mW m-2 will raise the 670 

temperature in this bedrock by 7 km  80 mW m-2 / 2 W m-1 °C-1 or ~280 °C.  Westaway and 671 

Bridgland (2014) suggested an analogous explanation for the disposition of the terrace deposits of 672 

the River Dniester in the Ukraine–Moldova border region further to the SE (see Fig. 3A). 673 

 674 

Comparison is also possible with the crust underlying the fluvial sequence laid down by the River 675 

Vistula in the Warsaw area.  As illustrated in Fig. 5D, Pliocene deposits here occur near the present 676 

river level, and Early Pleistocene deposits at a height ~30 m lower.  After these were laid down, the 677 

ancestral Vistula cut down to ~50 m below its present level before laying down a stack of Middle and 678 

Late Pleistocene sediments, including Holocene temperate-climate deposits overlying their Eemian 679 

and Holsteinian counterparts.  Overall, this sequence indicates a transition from uplift in the 680 

Pliocene and Early Pleistocene to subsidence thereafter.  Warsaw is ~50 km inside the EEP (Fig. 4B). 681 

From Grad et al. (2003) and Mazur et al. (2015), the crust is locally ~45 km thick with ~20 km of 682 

underplating at its base, overlain by ~19 km of basement and ~3 km of sediments, which are mainly 683 

Mesozoic (in contrast with the much thicker sequences dominated by Palaeozoic shale, closer to the 684 

TTZ).  The surface heat flow in the Warsaw area is ~60 mW m-2 (Fig. 4C); if the sediment and 685 

basement are assumed to have thermal conductivities of 2.5 and 3.5 W m-1 °C-1, respectively, the 686 

~350 °C isotherm can be expected at ~19 km depth, making the mobile lower crustal layer ~6 km 687 

thick, within the range of values where alternations of uplift and subsidence have been observed in 688 

fluvial sequences elsewhere (Westaway and Bridgland, 2014).  Other fluvial sequences within the 689 

EEP, with alternations of uplift and subsidence evident, include those of the River Dnieper in Ukraine 690 

and the Rover Don in SW Russia (e.g., Westaway and Bridgland, 2014; Fig. 3).  691 

 692 

A final point on the effect of lateral variations of crustal properties, with resultant lateral variations 693 

in uplift, on the disposition of fluvial terrace deposits concerns the occasional occurrence of back-694 

tilted fluvial deposits, in cases where rivers have flowed from regions of colder to warmer crust, with 695 

an example evident from the Sudetic margin.  It is evident that the ancestral drainage from the 696 

Sudeten Mountains was directed northward, from the Wrocław area and points further east to the 697 

Poznań area, before adjusting (probably around the start of the Early Pleistocene) to its modern 698 

configuration.  Fig. 4C indicates that the former drainage was directed across the high heat-flow 699 

region between Wrocław and Poznań, raising the possibility that the subsequent drainage 700 

adjustment was the result of faster uplift of the latter region.  As already noted, the Grad et al. 701 

(2003) seismic profile passes through this high-heat-flow region, indicating that the top of the mafic 702 

underplating is at ~25 km depth and that the sedimentary sequence in the overlying crustal column 703 

is thin.  Assuming a thermal conductivity of 3.5 W m-1 °C-1 in the basement, as before, and a typical 704 

heat flow of ~90 mW m-2, the ~350 °C isotherm can be expected at a depth of ~14 km, making the 705 

thickness of the mobile lower crust ~11 km, significantly greater than in other parts of Poland and 706 



high enough (based on comparisons with other regions) to sustain significant uplift rates.  Recorded 707 

heights of pre-glacial fluvial deposits in this region (Czerwonka and Krzyszkowski, 2001; Supplement, 708 

Table S1) indeed reveal evidence of back tilting. The best such evidence is provided by comparison of 709 

the heights of the Pliocene deposits along the ancestral River Odra, between Chrzaszczyce(Fig. 7 710 

[76/77]), Smardzow [33], 77.3 km further downstream, and Stankowo [1], 84.9 km further 711 

downstream, the latter site adjoining the confluence with the ancestral Nysa Kłodzka (Fig. 7).  The 712 

top of the deposits assigned to Member I of the Ziębice Group is 180, 72, and 99 m a.s.l. at these 713 

sites, thus indicating back-tilting over the reach between Smardzow and Stankowo, the long-profile 714 

gradients being ~1.4 and ~-0.3 m km-1 along these two reaches, respectively.  Thus, if this river had 715 

an original gradient of ~1 m km-1, the deposit at Stankowo is now 81 m higher in the landscape, and 716 

that at Smardzow 34 m lower, than would be expected if all three sites had experienced the same 717 

history of vertical crustal motion.  In the absence of detailed modelling the precise sequence of 718 

processes in this region cannot be ascertained, but this pattern is consistent with the interpretation 719 

that lower-crustal material was drawn from beneath the Smardzow area to beneath the hotter 720 

Stankowo area, as a result of the lateral pressure gradient at the base of the brittle upper crust 721 

caused by the variation in heat flow between these two regions.  An established analogue of this 722 

effect is the back-tilting of the deposits of the early Middle Pleistocene Bytham River in the East 723 

Midlands of England; this river flows eastward from the northern part of the London Platform, a 724 

region of relatively low heat flow, into the higher-heat-flow zone of crustal deformation during the 725 

Caledonian orogeny, at the NE margin of Avalonia (Fig. 4A), its sediments now being gently tilted in 726 

an upstream direction (Westaway et al., 2015).  727 

 728 

The explanation for the fluvial archives in the marginal area of the Sudeten Mountains promoted 729 

here has a more general analogue in records from SW England, in the rivers of Cornwall and west 730 

Devon (Westaway, 2010).  In that region radiothermal Variscan granites are underlain by thick mafic 731 

underplating and the crust is relatively strong, as indicated by the minimal Late Cenozoic vertical 732 

crustal motions deduced from fluvial sequences.  The principal difference is that the mafic 733 

underplating beneath SW England was emplaced after the Variscan orogeny, as a result of the 734 

Palaeocene British Tertiary Igneous Province magmatism, whereas the underplating beneath the 735 

Sudeten Mountains is evidently derived from fragments of pre-Variscan Saxothüringian crust. 736 

 737 

The different styles of fluvial archive preservation in the different parts of the European continent 738 

described above are an important consideration in the understanding of Quaternary stratigraphy in 739 

these regions, given that fluvial sequences provide valuable templates for the Late Cenozoic 740 

terrestrial record (Vandenberghe, 2002; Bridgland et al., 2004; Bridgland and Westaway, 2014).  It 741 

has been shown that the most stable regions, in which the fluvial archives suggest a complete or 742 

near absence of net uplift during the Quaternary, coincide with the most ancient cratonic crustal 743 

zones, such as parts of the EEP and in particular the Ukrainian Shield (Bridgland and Westaway, 744 

2008, 2014; Fig. 3). Such highly stable regions are the exception for the EEP, however; over much of 745 

its area there has been limited net uplift as a result of alternations of vertical crustal movements, 746 

resulting in periods of terrace generation with intervening periods of subsidence and burial.  In Fig. 747 

13 the fluvial archive from the Sudetic margin, using the optimal example of the Nysa Kłodzka at 748 

Bardo (see above), is compared with that of the River Don at Voronezh.  Despite the differences in 749 

size (catchment area and, therefore, discharge) of the fluvial systems in question and the very 750 

different glacial influences (the Don here was reached only by glaciation in MIS 16), there are 751 



significant points of comparison.  Contrastingly, the difference between the fluvial records from the 752 

EEP and those from the youngest and most dynamic European crust is quite profound, albeit that 753 

many of the comparisons made above are with crust of somewhat intermediate age, such as the 754 

Variscan and Avalonia provinces (Fig. 4).  This is because much of the youngest crust, in the Alpine 755 

and Carpathian provinces (Fig. 4), remains tectonically active (i.e., continues to be affected by active 756 

plate motions) and so has fluvial archives that are less clearly related to regional vertical crustal 757 

movements.    758 

 759 

CONCLUSIONS 760 

The rivers of the Polish Sudeten foreland have pre-glacial precursors, their courses recognized from 761 

sediments that generally underlie the Middle Pleistocene glacial deposits and which date from the 762 

Early Pliocene – Early Pleistocene, being substantially different from those of their modern 763 

successors.  The pre-glacial fluvial formations are preserved in the subsurface, in part as buried 764 

valley fills, and recorded as the Ziębice Group.  They were partly destroyed and buried by the Middle 765 

Pleistocene Scandinavian ice sheets that entered the Sudeten Foreland, covering the previously 766 

formed valleys with glacial deposits: the Elsterian (= Sanian) and the early Saalian (= Odranian).  No 767 

post-Odranian ice sheet reached the Sudeten Foreland, where renewed incision (brought about by 768 

post-Odranian uplift) led to post-glacial river-terrace formation.  In addition to glacial and tectonic 769 

influences on fluvial evolution, the overall pattern of fluvial archive preservation is commensurate 770 

with the Variscan crustal province in which they are developed.  However, the effects of mafic 771 

underplating, emplaced by the incorporation of pre-Variscan crustal material, may have been 772 

considerable, as this can explain reduced net Pleistocene uplift and reversals in vertical crustal 773 

motion, especially in basinal areas.  Differential uplift in reflection of crustal type may have led to 774 

disruption of former downstream gradients in the palaeovalleys, with an example of back-tilting 775 

identified in the case of the Palaeo-Odra.  In addition, some younger terraces can be shown to have 776 

been offset by slip on active faults of the Sudeten Marginal Fault system. 777 
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Figure captions 784 

Figure 1 Geology and location of the research area.  The inset shows the limits of the various 785 

Quaternary glaciations of Poland and the course of the River Odra.  Modified from 786 

Czerwonka and Krzyszkowski (2001). 787 

Figure 2 Cross sections through key fluvial sequences in the study area: A - the River Nysa Kłodzka 788 

in the Bardo area (sites 96 and 97 in Figs 7 and 8), where the river has cut a gorge 789 

through an inter-basinal (progressively uplifting) ridge, the inset showing the sequence 790 

a few km downstream, in the Janowiec–Ożary area (sites 72 and 71 in Figs 7 and 8); B - 791 

the sequence in the Kłodzko Basin in the Kłodzko–Leszczyna area (site 68 in Figs 7 and 792 

8), both modified from Krzyszkowski et al. (1998); C - The River Bystrzyca near 793 

Lubachów (modified from Krzyszkowski and Biernat, 1998); for location see FIg. 7. 794 

Figure 3 The Rivers of the northern Black Sea region (modified from Bridgland and Westaway, 795 

2014; after Matoshko et al., 2002; 2004). A - The locations of parts B–D in relation to 796 

the Ukrainian Shield. B - Idealized transverse profile through the Middle–Lower Dniester 797 

terrace sediments, which represent a classic river terrace staircase (with approximately 798 

one terrace per 100 ka climate cycle following the Mid-Pleistocene Revolution) inset 799 

into Miocene fluvial basin-fill deposits. This region has higher heat flow than might be 800 

expected from its location at the edge of the EEP (see A), for reasons discussed in detail 801 

by Westaway and Bridgland (2014). C. - Transect across the Middle Dnieper basin,~100 802 

km downstream of Kiev (~240 km long), showing a record typical of an area with no 803 

considerable net uplift or subsidence during the Late Cenozoic, as typifies cratonic 804 

crustal regions (cf. Westaway et al., 2003). D. - Transect through the deposits of the 805 

Upper Don near Voronezh, showing a combined stacked and terraced sequence that 806 

points to fluctuation between episodes of uplift and of subsidence during the past ~15 807 

Ma. 808 

Figure 4 Crustal characteristics.  A - Crustal provinces in the European continent and neighbouring 809 

areas. Modified from Pharaoh et al. (1997); the location of parts B and C is shown.  B - 810 

Crustal provinces in Poland. Modified from Mazur et al. (2006).  DFZ = Dolsk Fault Zone; 811 

OFZ = Odra Fault Zone.  C - Borehole heat flow measurement sites and resulting 812 

contours of surface heat flow in Poland. Modified from Bujakowski et al. (2016), using 813 

data from Szewczyk and Gientka (2009).  Plus and minus signs are used to aid 814 

interpretation in grayscale; for the colour diagram, see the online pdf version. 815 

Figure 5 Comparison of fluvial archives in different parts of the River Vistula system.  A – location; 816 

B – Transect through the valley of the River Dunajec, central Carpathians (modified from 817 

Zuchiewicz, 1992, 1998); C –. Transect through the valley of the River San (after Starkel, 818 

2003); D – Idealized transverse sequence through the deposits of the Middle Vistula, 819 

based on data from upstream (Mojski, 1982) and downstream (Zarski, 1996; Marks, 820 

2004) of Warsaw. 821 

Figure 6 Distribution of provenance indicator materials.  Modified from Czerwonka and 822 

Krzyszkowski (2001). 823 



Figure 7 Location of pre-glacial sites (identified by number, with different symbols for the various 824 

formations, which represent different river systems).  For locality names see Fig. 8.  825 

Modified from Czerwonka and Krzyszkowski (2001). 826 

Figure 8 Occurrence of the different pre-glacial fluvial formations and their constituent members, 827 

showing which are present at the various localities.  Numbers and symbols correspond 828 

with those in Figs 7 and 9–12.  Modified from Czerwonka and Krzyszkowski (2001). 829 

Figure 9 Palaeodrainage during emplacement of Member I deposits. Numbers and symbols 830 

correspond with those in Figs 7 and 8.  Modified from Czerwonka and Krzyszkowski 831 

(2001). 832 

Figure 10 Palaeodrainage during emplacement of Member II deposits. Numbers and symbols 833 

correspond with those in Figs 7 and 8.  Modified from Czerwonka and Krzyszkowski 834 

(2001).  For key see Fig. 9. 835 

Figure 11 Palaeodrainage during emplacement of Member III deposits. Numbers and symbols 836 

correspond with those in Figs 7 and 8; for key see Fig. 9. 837 

Figure 12 Palaeodrainage during emplacement of Member IV deposits. Numbers and symbols 838 

correspond with those in Figs 7 and 8; for key see Fig. 9. 839 

Figure 13 Comparison between the fluvial archives from the Sudetes, in the form of the Nysa 840 

Kłodzka (Krzyszkowski et al., 1998, 2000), and the River Don in the vicinity of Voronezh, 841 

Russia (showing suggested MIS correlations; see also Fig. 3D and Matoshko et al. (2004), 842 

who provided further stratigraphical details. 843 

 844 

 845 

Table 1  Characteristic clast data (gravel petrography and heavy mineralogy) used in 846 

differentiation of Ziębice Group formations 847 

  848 
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Characteristic clast data (gravel petrography and heavy mineralogy) used in differentiation of Ziębice Group formations 

Formation Member(s) 

Gravel lithologies 

Heavy minerals Interpretation Primary Secondary Others 

Chrząszczyce  
 

III quartz Carpathian 
siliceous rocks  

 zircon, rutile, garnet, 
staurolite, tourmaline 

Main palaeo-
Odra 

I–II    zircon, tourmaline, 
staurolite [+ garnet in 
Mbr I; + rutile, in Mbr II] 

Dębina  I quartz quartzite  staurolite, amphibole Palaeo-Biała 
Głuchołaska 

Kłodzko–
Stankowo  

IV various 
gneiss types 
of the 
Kłodzko 
Basin 

porphyry 
quartz 

Permian (red), 
Carboniferous (grey)  
and Cretaceous (white) 
sandstone, 
Carboniferous mudstone,  
siliceous rocks (local 
flint) 

garnet, amphibole Palaeo-Nysa 
Kłodzka 

I–III quartz porphyry,  
siliceous rocks 
(local flint) 

crystalline rocks 
(including gneisses of 
the Kłodzko Basin), 
Permian (red) and 
Cretaceous (white) 
sandstone 

staurolite, garnet, 
(+ local admixtures of 
zircon + rutile, andalusite 
+ kyanite and sillimanite  

Ząbkowice  IV? Sowie Góry 
gneiss 

quartz siliceous rocks (local 
flint) 

garnet, amphibole Palaeo-
Budzówka 

Bojanice  IV    Sillimanite  
Palaeo-
Bystrzyca 
 

II–III quartz porphyry 
melaphyre 

Sowie Góry gneiss, 
quartzite 

zircon, garnet, sillimanite 

Pogalewo II–III    zircon, garnet, 
tourmaline [+,kyanite in 
Mbr II]  
(in Mbr III epidote, 
kyanite, amphibole, 
staurolite) 

Palaeo-
Bystrzyca or 
local river 

I quartz  siliceous rocks (local 
flint), porphyry 

zircon, tourmaline, rutie 

Wichrów I    zircon, tourmalline, 
epidote, kyanite 

Palaeo-
Bystrzyca or 
local river 

Mielęcin–
Wołów  

IV    Sillimanite Palaeo-
Strzegomka I–III quartz porphyry siliceous rocks (local 

flint), rocks from the 
Wałbrzych Upland 
(conglomerate, spilite, 
diabase, greenschist, 
quartzite), Strzegom 
granite, local schist 
(phyllite) 

sillimanite, garnet 

Snowidza I    andalusite, zircon Palaeo-
Wierzbiak 

Rokitki–
Bielany  

IV quartz porphyry crystalline rocks, schist, 
quartzite 
Cretaceous sandstone,  
Wojcieszów limestone 

andalusite, kyanite, 
tourmaline, zircon, 
garnet  
(amphibole, sillimanite) 

Palaeo-Bóbr 
(upper Bóbr–
Kaczawa) 

I-III quartz Karkonosze 
granite 
porphyry 

other crystalline rocks, 
quartzite 

andalusite, tourmaline 
[+ epidote in Mbr I]  

 

 

Table 1
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Supplementary material in support of the paper: 

Drainage and landscape evolution in the Polish Sudeten 

Foreland in the context of European fluvial archives

by Dariusz Krzyszkowski, David R. Bridgland, Peter Allen, Rob 

Westaway, Lucyna Wachecka-Kotkowska, Jerzy A. Czerwonka

This material constitutes detailed information on selected 

localities, including sediment logs, section drawings, results from 

petrographic analyses, palaeocurrent measurement and height 

records.

Supplemental Material (Online Only)



Fig. S1 – Ziębice [site 37], the locality in central Poland, formerly called Münsterberg,  where fluvial ‘white 

gravel’ sediments, lacking Scandinavian material, were first described (Jentzsch and Berg, 1913; Frech, 

1915; Lewiński, 1928, 1929; Zeuner, 1928).  The site gives its name to the Ziębice Group (Czerwonka and 

Krzyszkowski, 2001).  Photo by D. Krzyszkowski (1985).



Fig. S2 – Brzeg Dolny [site 108].  Members I and II of the Kłodzko–Stankowo

Formation, representing the palaeo-Nysa  Kłodzka, with Member IV of the 

Mielęcin–Wołów Formation (Palaeo-Strzegomka) incised to a lower level.   



Fig. S3 – Pogalewo [site 31], the type locality of the Pogalewo Formation, 

representative of the Palaeo-Bystrzyca river. .  



Fig. S4 – Chrząszczyce [site 77], type locality of the Chrząszczyce Formation, 

representative of the Palaeo-Odra river. 



Fig. S5 – Stankowo [site  1], distal type locality of the Kłodzko–Stankowo Formation, 

near the northern margin of the study area.  This  represents the Palaeo-Nysa  

Kłodzka river.



Fig. S6 – Mielecin [site 47], the proximal type locality of the Mielęcin–Wołów

Formation, representative of the Palaeo-Strzegomka River.  



Fig. S7 – Bielany [site 50], distal type locality of the  Rokitki–Bielany Formation, 

representing the Palaeo-Bóbr/Kaczawa .  



Fig. S8 – Kłodzko, proximal type locality of  the  Kłodzko–Stankowo Formation. 

Formation, representing the  Palaeo-Nysa  Kłodzka river. 



Table S1 – Site data from Czerwonka and Krzyszkowski (2001)



Table S1 (continued)
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