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ABSTRACT:

Detailed study of subsurface deposits in the Polish Sudeten Foreland, particularly with reference to
provenance data, has revealed that an extensive pre-glacial drainage system developed there in the
Pliocene — Early Pleistocene, with both similarities and differences in comparison with the present-
day Odra (Oder) system. This foreland is at the northern edge of an intensely deformed upland,
metamorphosed during the Variscan orogeny, with faulted horsts and grabens reactivated in the
Late Cenozoic. The main arm of pre-glacial drainage of this area, at least until the early Middle
Pleistocene, was the palaeo-Nysa Ktodzka, precursor of the Odra left-bank tributary of that name.
Significant pre-glacial evolution of this drainage system can be demonstrated, including incision into
the landscape, prior to its disruption by glaciation in the Elsterian (Sanian) and again in the early
Saalian (Odranian), which resulted in burial of the pre-glacial fluvial archives by glacial and fluvio-
glacial deposits. No later ice sheets reached the area, in which the modern drainage pattern became
established, the rivers incising afresh into the landscape and forming post-Saalian terrace systems.
Issues of compatibility of this record with the progressive uplift implicit in the formation of
conventional terrace systems are discussed, with particular reference to crustal properties, which
are shown to have had an important influence on landscape and drainage evolution in the region.

Keywords Pliocene — Early Pleistocene, Ziebice Group, Elsterian glaciation, Odranian (early Saalian)
glaciation, palaeodrainage, crustal properties, Polish Sudetes
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INTRODUCTION

The Sudeten (Sudety) Mountains, or Sudetes, form a NW—SE-trending range with its western end in
Germany and separating SW Poland from the Czech Republic (Czechia). With its highest peak
reaching 1603 m, this represents an uplifted block of rocks metamorphosed during the Variscan
orogeny, in the late Devonian to early Carboniferous (Don and Zelazniewicz, 1990). The Variscan
involved complex faulting and thrusting, forming horsts and graben-basins, the latter infilled during
later tectonically quiescent geological episodes, prior to significant reactivation of these structures in
the Neogene—Quaternary (Oberc 1977; Dyjor, 1986, Mignon, 1997). The foreland region north of
these mountains, into which these structures extend, is drained by the Odra (Oder) and several of its
left-bank tributaries, the main river flowing NW and then northwards, forming the western
boundary of Poland, towards the Baltic (Fig. 1). An earlier, somewhat different drainage pattern in
the Sudeten Foreland is evident from the subsurface preservation of buried valley fragments,
recognized from boreholes and quarries and now largely buried by glacigenic and later fluvial
sediments (Krzyszkowski et al., 1998; Michniewicz, 1998; Przybylski et al., 1998). It is apparent,
therefore, that this drainage system was disrupted by glacial advances of Scandinavian ice from the
north and NW (Krzyszkowski, 1996; Krzyszkowski and Ibek, 1996; Michniewicz, 1998; Salamon, 2008;
Salamon et al., 2013; Fig. 1). The drainage has also been disrupted during the Quaternary by slip on
the Sudeten Marginal Fault, the effects of which are readily visible in terms of vertical offset in
terrace heights either side of the faultline (e.g., Krzyszkowski et al., 1995, 1998, 2000; Krzyszkowski
and Bowman, 1997; Krzyszkowski and Biernat, 1998; Krzyszkowski and Stachura, 1998; Migon et al.,
1998; Stépancikova et al., 2008; cf. Novakova, L., 2015). To these glacial and tectonic influences can
now be added the effects on Quaternary landscape evolution of a complex history of crustal
behaviour, potentially related to the characteristics of the Proterozoic to Palaeozoic crust in the
region, as will be discussed in this paper.

The repeated glaciation of this region has been well researched and is documented by the glacigenic
deposits that form much of the surface cover, burying the evidence for the aforementioned pre-
glacial drainage. The most extensive glaciation was that during the Elsterian, the ‘Sanian glaciation’
of Polish nomenclature (Marks, 2011). This glaciation, assumed to have occurred during Marine
Isotope Stage (MIS) 12 (Krzyszkowski et al., 2015), may not have been the first within the study area,
as there are well-developed cold-stage minima within the marine oxygen isotope record in the latest
Early Pleistocene, in MIS 22, and the early Middle Pleistocene: especially MIS 16, represented by the
Don glaciation in the northern Black Sea region (e.g., Turner, 1996; Matoshko et al., 2004). No pre-
MIS 12 glacigenic deposits have been recognized in the Sudetic marginal region, however, and it is
clear that any such glaciation was less extensive than that in the Elsterian. The next most extensive
glaciation was the Early Saalian (Odranian), with a limit typically 0—18 km short of the Elsterian
(Sanian) ice front (Fig. 1, inset); it is generally attributed to MIS 6 (Marks, 2011). Then followed the
Late Saalian glaciation, termed the Middle Polish Complex or Wartanian, and the Weichselian (last)
glaciation, the North Polish Complex or the Vistulian. The highest massifs within the Sudetes
supported small-scale local Weichselian glaciers (Migon, 1999; Traczyk, 2009) and such glaciers
would also have existed during earlier major glaciations, albeit with little effect on foreland drainage
evolution.
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The study area coincides with the southern edge of the northern European glaciated zone in which
fluvial drainage courses have been strongly influenced by repeated glaciation from the north. That
zone, from the western Baltic states through Poland and into Germany, is characterized by broadly
west—east aligned valleys that were formed when drainage from the south was deflected towards
the Atlantic by ice sheets blocking the lower courses of the various Baltic rivers: the urstromtaler of
Germany and pradolina of Poland (e.g., Kozarski, 1988; Marks, 2004). Deflection of drainage by the
Elsterian and, later, by the Odranian ice is likely to have influenced the modern position of the river
valleys in the lowland north of the Sudetic margin (Krzyszkowski,2001).

The major existing rivers of the Sudeten foreland have well-developed terrace systems that record
valley incision since the most recent glaciation of the region, which was during the Odranian, given
that the later Late Saalian (Wartanian) and Weichselian (Last Glacial Maximum: LGM) ice sheets
failed to reach the mountain front (Fig. 1, inset). Terrace systems are well documented in the two
largest Sudetic tributaries of the Odra, the Bystrzyca (Berg, 1909; Krzyszkowski and Biernat, 1998)
and the Nysa Ktodzka (Zeuner, 1928; Krzyszkowski et al., 1998), as well as in several of the smaller
systems. The Quaternary record in this area was thoroughly reviewed in a 1998 special issue of
Geologia Sudetica (Krzyszkowski, 1998) that was dedicated to Frederick E. Zeuner, who conducted
his doctoral research in the region (Zeuner, 1928; see online supplement, Fig. S1), from which he
formulated many of his influential views on river-terrace formation (Zeuner, 1945, 1946, 1958,
1959). Since the formation of the Fluvial Archives Group (Add citation of the FLAG editorial paper),
debate about the genesis of river terraces has led to a consensus that they are generally a result of
uplift, with strong climatic and isostatic influences (e.g., Maddy, 1997; Antoine et al., 2000;
Bridgland, 2000), the latter seen to vary in relation to crustal type (Westaway et al., 2003, 2006,
2009; Bridgland and Westaway, 2008a, b, 2012, 2014; Bridgland et al., 2012, 2017).

Landscape evolution in the study area has been complex, with combined influences from glaciation,
active faulting and regional crustal processes. The present-day topography is almost entirely the
result of post-glacial fluvial erosion, in combination with the various processes that modify valley-
side slopes and convey sediment into valley bottoms. ‘Post-glacial’ in this region means post-Sanian
(Elsterian) or post-Odranian (Early Saalian), these being the only Pleistocene glacials during which ice
sheets are known to have reached the Sudetic Foreland (see above; Fig. 1, inset). The modern
valleys have thus formed since these ice sheets encroached upon the region and their flanks
preserve latest Middle Pleistocene—Late Pleistocene river-terrace sequences (Fig. 2). These valleys
are incised into a landscape substantially formed in late Middle Pleistocene glacigenic deposits,
including diamictons, outwash sands and gravels and lacustrine sediments (Krzyszkowski, 1998,
2013). Evidence from boreholes and quarry exposures has shown that this glacigenic sedimentation
was overprinted onto a pre-glacial drainage system, recognizable as a complex pattern of palaeo-
valleys now entirely buried beneath the modern land surface. Thus pre-glacial fluvial sediments,
which have been attributed to the Pliocene, Lower Pleistocene and lower Middle Pleistocene, are
generally buried beneath later Pleistocene deposits and occupy a relatively low position with the
landscape, especially in basin situations (see above). This is in apparent conflict with the
expectations of standard river-terrace stratigraphy, in which progressively older deposits would be
anticipated in positions progressively higher above the modern valley floor. This standard terrace
stratigraphy has, however, been shown to occur only in association with certain, albeit widespread
and common, crustal types, as will be explained in the next section.
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Relation of fluvial archives to crustal type

Westaway et al. (2003) made the important observation that classic river terrace staircases do not
occur in regions of cold, ancient and densely crystallized crust, particularly the cratons that
represent fragments of the earliest continental lithosphere. They attributed this phenomenon to
the absence of mobile lower crust in such regions, which they realised was essential to provide a
positive-feedback response to erosional isostatic uplift, the same uplift that has caused terrace
staircases to form on younger crust, including in areas remote from tectonic influence (see
Westaway, 2001, 2002, a, b; Westaway et al., 2002, Bridgland and Westaway, 2008a, b, 2014).
Subsequent reviews of fluvial archives from different crustal provinces showed distribution patterns
that can be related to crustal type; in this the northern Black Sea hinterland, ~1000 km to the ESE of
the present research area, represents a valuable case-study region, where the range of dating
proxies is exemplary (Bridgland and Westaway, 2008a, b, 2014; Bridgland et al., 2017; cf. Matoshko
et al., 2004; Fig. 3). The significant differences in preservation patterns of fluvial archives between
crustal provinces with different characteristics point to important contrasts in landscape evolution,
in particular relating to the extent of valley incision (Westaway et al., 2003, 2009), as well as the
propensity for loss of fluvial archives to erosional processes, which will be greater in areas of
dynamic and rapidly uplifting crust. Investigations have led to the concept that these geomorphic
effects are controlled by a combination of crustal properties, namely heat flow (see Fig. 4C) and the
depth of the base of the felsic crustal layer, since these properties govern the thickness of the plastic
crustal layer beneath the brittle upper part of the crust, the base of which corresponds to a
temperature of ~350 °C. Thus, if this plastic layer is absent, as in cratonic regions, the crust is
extremely stiff and thus ultra-stable. If the mobile layer is thick (thickness >~6 km), it plays a major
role in isostatic adjustment, and continuous uplift occurs, at rates that vary in response to rates of
erosional forcing and thus to climate change (see Fig. 3). On the other hand, if this layer has an
intermediate thickness (~¥4—6 km), a more complex isostatic response occurs, characterized by
alternations of uplift and subsidence, possibly because under such conditions the isostatic responses
in the mobile lower crust and in the asthenospheric mantle occur at comparable rates but on
different timescales (Westaway and Bridgland, 2014).

Different patterns of fluvial sediment preservation are indeed evident in Poland, and can be
interpreted according to the different crustal regions within which they occur (see Fig. 4). The
occurrence of buried Pliocene and Lower Pleistocene fluvial deposits, as reported in the present
study region, has also been observed in the middle reaches of the Vistula river system (Mojski, 1982;
Bridgland and Westaway, 2014; Fig. 5), the catchment of which accounts for 56% of Poland. The
Middle Vistula flows across the East European Platform (EEP), a crustal province consolidated during
the Early or Middle Proterozoic that is relatively stable in comparison with the younger crust to the
west, including that beneath the Sudeten Mountains, which is part of the Variscan province,
stretching from SW Poland to western Europe (southern England-Iberia; Fig 4). Further SE within
the EEP, patterns of fluvial-archive preservation in which older deposits are buried by younger
terraced sequences have again been observed, for example in the valley of the River Don, one of the
northern Black Sea rivers, near Voronezh (Matoshko et al., 2004; Bridgland and Westaway, 20083, b,
2014; Fig. 3). The alternation between uplift and subsidence implicit in these preservation patterns



162 has been ascribed to the properties of the crust of the EEP; such crust is highly consolidated and
163 relatively cold, with a lower mobile layer of limited thickness (probably a few kilometres at most),
164  making it very much less dynamic than younger crustal types (Westaway and Bridgland, 2014;
165 Bridgland and Westaway, 2017; cf. Kutas et al., 1979).

166

167 Further north, the Lower Vistula, in its course towards the Baltic, flows across a region that would
168  appear to have experienced continuous subsidence during the late Middle and Late Pleistocene, as
169 indicated by the stacking of younger Pleistocene deposits, including fluvial, glacial and even marine
170 sediments, above older (cf. Marks, 2004). This could reflect the wider influence of isostatically

171 induced subsidence of the long-standing depocentre of the Baltic basin, where the crust has been
172 progressively depressed beneath the sedimentary load. In marked contrast there are areas in the
173  extreme SE of Poland, in the uppermost Vistula catchment, which display the only extensive

174 staircases of river terraces in the country, similar to those on the younger, more dynamic crust of
175 NW Europe. These terrace staircases (Fig. 5) can be found in the catchments of the Rivers Dunajec
176 (Zuchiewicz, 1992; Olszak, 2011) and San (Starkel, 2003), as well as in other tributaries of the Vistula
177  that drain the continental crust forming the Western Carpathian Mountains (e.g., Zuchiewicz, 2011;
178 Pliszczyniska, 2012). These archives generally occur on crust bordering the Western Carpathians that
179  was affected by the Caledonian orogeny and is thus more dynamic than that of the EEP. (For a

180 description of the Late Cenozoic palaeogeographical evolution of this area see Brud, 2004.) As

181 Bridgland and Westaway (2014) noted, the headwaters of the San are close to those of the Dniester,
182  ariver flowing southwards to the Black Sea that has an impressive and well-dated terrace staircase
183 (Matoshko et al., 2004; Fig. 3B). Thus, despite their flowing in opposite directions, the San and the
184 Dniester have similar styles of fluvial archive preservation, attributable to the nature of the crust in
185  that region rather than hydrological or base-level influences (cf. Bridgland and Westaway, 2014).
186 Elsewhere in Poland there is localized downwarping as a result of salt diapirism, particularly at

187 Betchatéw, near £odz (Krzyszkowski, 1995; Krzyszkowski and Szuchnik, 1995; Wieczorek et al., 2015).

188 Bridgland and Westaway (2014) suggested that, although the prevalence of stacked sequences in
189  northern Poland might reflect proximity to the Baltic Basin, aspects of the fluvial archive

190  preservation pattern in Central Poland that have traditionally been attributed to the effects of

191  glaciation, or glaciation interspersed with marine transgression (e.g., Marks, 2004), might instead
192 result from the characteristics of the crust. They envisaged three provinces within the Vistula: (1) an
193 upstream, uplifting province, with well-developed terraces, (2) a central province in which the

194  comparative stability of the EEP is dominant and (3) a downstream (northern) province with

195 increasing influence of subsidence around the Baltic Basin and the effects of repeated glaciation.

196  The fluvial sedimentary archives in parts of the Sudetic foreland suggest inversion in vertical crustal
197  movement, with alternation of subsidence and uplift, as surmised previously in systems such as the
198 Don (Westaway and Bridgland, 2014; Bridgland et al., 2017; Fig. 3D). In previous reviews of the
199 preservation patterns shown by fluvial archives, in which causal linkages have been observed with
200  crustal type, such archives indicative of alternating subsidence and uplift were found to be

201 associated commonly with Early or Middle Proterozoic crustal provinces with thick ‘roots’ of mafic
202 material at the base of the crust, restricting the thickness of the mobile lower crustal layer

203 (Westaway and Bridgland, 2014; Bridgland et al., 2017). In the Sudetes this phenomenon is
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apparent in basinal areas, which are separated by structural ridges (horsts) of older, generally
crystalline rocks (Dyjor, 1986; see above).

EVIDENCE FOR PRE-GLACIAL RIVER SYSTEMS IN THE SUDETEN
FORELAND

Quarrying and boreholes have allowed the reconstruction of considerable detail with regard to river
sytems that existed in the Sudetic Foreland in pre-glacial times (i.e., prior to the Elsterian ice
advance, which is the meaning of pre-glacial in this region). It should be noted, however, that this
reconstruction is based on small ‘windows’ of subsurface evidence, providing limited scope for
detailed reconstruction of areal three-dimensional form. Beneath the Sanian and Odranian glacial
deposits, fluvial sediments of several different types have been recorded, much work having been
done in order to characterize and distinguish these, in particular clast-lithological analysis of their
gravel components and heavy-mineral analysis of sand grains (Czerwonka et al., 1994; Krzyszkowski
and Bowman, 1997; Krzyszkowski et al., 1998; Przybylski et al. 1998; Krzyszkowski, 2001;
Krzyszkowski and Karanter, 2001; Krzyszkowski, 2013). Many of these early fluvial deposits are
kaolinitic, from the weathering of gneiss, gabbro, serpentinite, schist and other feldspathic rocks,
which, in company with a dominance of rudaceous quartz, gave rise to the term ‘white gravels’; they
have also been referred to as the ‘preglacial series’ (Dyjor 1983, 1986, 1987a, b, 1993; Jahn et al.
1984; Dyjor et al. 1992). The matching of these components to source areas is illustrated in Fig. 6.
They lie above the Upper Miocene — Lower Pliocene Poznan (Clay) Formation , sometimes with
channel or palaeo-valley geometries apparent from the subsurface data (Ciuk and Piwocki, 1979;
Ciuk and Pozaryska, 1982; Peryt and Piwocki, 2004). Indeed, there is some evidence of incision and
even terrace formation within the preglacial sequence (see online supplement, Figs S2 and S3), much
of which is however a continuation of the stacked basin-fill represented by the Neogene Poznan
Formation. The pre-glacial fluvial deposits can be collectively described under the name Ziebice
Group, this being the amalgam of several formations, representing different pre-glacial river
systems, defined by their heavy mineral content and non-quartz gravel-clast petrography
(Czerwonka and Krzyszkowski, 2001; Table 1; Figs 7 and 8). The Ziebice locality in central Poland,
formerly called Miinsterberg, was where fluvial ‘white gravel’ sediments, lacking Scandinavian
material, were first described (Jentzsch and Berg, 1913; Frech, 1915; Lewinski, 1928, 1929; Zeuner,
1928; Krzyszkowski et al., 1998; Przybylski et al., 1998;Czerwonka and Krzyszkowski, 2001; online
supplement Fig. S1).

Emplacement of the Ziebice Group as a whole can probably be attributed in part to increased
mountain uplift and active faulting in the Sudetes and their foreland, perhaps resultant from the
global climatic cooling that characterized the mid-Pliocene (e.g., Westaway et al., 2009);
downthrown fault basins would have guided the main drainage lines. Each component formation
represents sequences deposited by a specific fluvial system originating in the Sudeten Mountains.
Within the group as a whole, four informal members (I-I1V) have been recognized (Czerwonka and
Krzyszkowski, 2001), their distinction being broadly age dependent, which is why they have not been
formally defined, although there are no means for precise dating. These members are variously
represented within the different formations, only two of which have all four members (Table 1; Fig.
9), with each numbered member believed to have been formed approximately synchronously in the
different rivers across the region. The supposed ages of the members are relative and rely on
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superposition (see online supplement) and sporadic but rare preservation of biostratigrahical
evidence (Czerwonka and Krzyszkowski, 2001; see below). Supplementary evidence for
distinguishing between the members comes from erosional hiatuses at the bases of Members 1, llI
and IV and for the distinct widening of the valley systems between Members | and 11l (Czerwonka
and Krzyszkowski, 2001; compare Figs 9 and 10). The sedimentology and range and type of facies
suggests a meandering fluvial regime for Members | — lll, especially away from the mountain front,
and a braided river envrionment for member IV (Czerwonka and Krzyszkowski, 2001). Systematic
analyses have been undertaken from exposures and boreholes, including sand heavy mineralogy and
gravel clast lithology, arguably the most valuable, combined with particle-size analysis, quartz (sand)
grain angularity—roundness analysis and palaeocurrent measurements (Czerwonka et al., 1994;
Krzyszkowski and Bowman, 1997; Przybylski et al. 1998; Krzyszkowski et al., 1998; Krzyszkowski and
Karanter, 2001; Krzyszkowski, 2001; Table 1; see online supplement).

As summarized in Table 1, six main pre-glacial river systems have been recognized, each with
characteristic heavy-mineral signatures and some with distinctive clast-lithological assemblages.
These are (1) the Palaeo-Odra, characterized by a zircon—rutile heavy-mineral assemblage and gravel
clasts of Carpathian origin, represented by the Chrzgszczyce Formation, (2) the Palaeo-Biata
Gtuchotaska (staurolite-amphibole mineralogy), represented by the Debina Formation, (3) the
Palaeo-Nysa Ktodzka (staurolite—garnet/amphibole—garnet), represented by the Ktodzko—Stankowo
Formation, (4) the Palaeo-Bystrzyca (zircon, sillimanite and various) , represented by the Bojanice
Formation (as well, potentially, as the Pogalewo and Wichréw formations), (5) the Palaeo-
Strzegomka (sillimanite—garnet), represented by the Mielecin—-Wotéw Formation, and (6) the Palaeo-
upper Bobr/Kaczawa (andalusite), as represented by the Rokitki—Bielany Formation. Of these the
Palaeo-Nysa Ktodzka appears to have been the trunk river throughout the ‘pre-glacial’ period (see
Figs 9-12). Evidence for four additional systems has been recognized but is more localized; these
are the Palaeo-Wierzbiak, represented by the Snowidza Formation, the Palaeo-Budzdwka,
represented by the Zgbkowice Formation, and two other local rivers, near Bardo/Potworéw and
Szydtdw, identified only by gravel-clast analysis (Przybylski et al., 1998) and impossible to match with
existing rivers.

These drainage systems probably originated during the Early Miocene, since the Miocene—Lower
Pliocene Poznan Formation is thought to represent the low-energy sediments of anastomosing river
or inland-delta environments (Peryt and Piwocki, 2004), which, from the available evidence,
persisted with relatively little change until disrupted by glaciation in the Middle Pleistocene. It
should be noted that those formations with ‘double-barrelled’ names (Ktodzko—Stankowo, Mielecin—
Wotdéw and Rokitki—Bielany) are traced for significant distances from the mountain front and have
‘proximal’ type locailties (giving the first part of the name) near the Sudetes and ‘distal’ type
localities further downstream. The lack of Scandinavian clasts in these various pre-glacial fluviatile
sediments distinguishes them from the glacial deposits (Elsterian and Lower Saalian) and from the
terrace deposits of the post-glacial rivers, in which reworked glacially-derived material occurs
(Schwarzbach, 1955; Jahn, 1960, 1980; Czerwonka and Krzyszkowski, 1992; Krzyszkowski 1995, 2013;
Czerwonka et al. 1997).

Turning to the informal members, |-lll have generally been attributed to the Pliocene—lowermost
Pleistocene and IV to the lower Middle Pleistocene (Cromerian Complex). This seemingly points to a
hiatus spanning much of the first half of the Pleistocene, although there may well be unrecognized
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representation of this interval amongst sequences that are notoriously difficult to date and which
include components that have yet to be defined and characterized fully. Alluvial-fan sediments
occur within all members at localities near the mountain front. The Pliocene members can be
presumed to represent rivers draining northwards to join the erstwhile Baltic River, which existed as
a major east—west flowing system at that time (e.g., Gibbard, 1988). The drainage represented by
members I-lll was sinuous, as indicated by sediment geometry (Figs 9—11) as well as sedimentology
(see above), in contrast to the braided-river deposits of member IV. This perhaps indicates
sedimentation of members |-lll during periods of temperate and relatively moist climate, whereas
member |V records more variable conditions, with evidence of both temperate (interglacial) and cold
(periglacial) climates. This contrast could, indeed, be a reflection of climatic cooling in the Early
Pleistocene, a trend that would culminate in the glaciations of the Baltic region in the Middle
Pleistocene.

The evidence for different pre-glacial rivers, precursors of the modern drainage of the Polish Sudetic
margin, will be described in east to west sequence, starting with the Palaeo-Odra, the post-glacial
successor of which forms the principle arm of the modern regional drainage.

The Palaeo-Odra (Chrzaszczyce Formation)

Within the research area the Chrzgszczyce Formation, which is thought to represent the main
palaeo-Odra river, is restricted to locations >20 km from the Sudetic mountain front, entering the
region from the south-east in the area south of Opole (Figs 7 and 9—11). It has been studied at
relatively few localities at and to the west of Opole and west of Wroctaw, with representation only
of Members I-lll (Table 1; Figs 9-11). Only at Chrzaszczyce, the type locality ~5 km SSW of Opole
(Figs 7 and 8; online supplement, Fig. S4), have all three of these members been observed. Gravel
analysis has only been possible from the Member Ill sediments at Ose (Figs 7 and 8), where the
occurrence of Carpathian siliceous rocks (silicified limestones and sandstones, radiolarites, etc.)
amongst a quartz-dominated assemblage provides important support for origin within the Odra
catchment (Czerwonka and Krzyszkowski, 1992). There are subtle changes in heavy mineralogy
between members I-lll (Table 1): all have assemblages dominated by zircon, with staurolite and
tourmaline, plus garnet in members | and Il and rutile in Il and Ill. Member Ill at Tulowice has
yielded plant macrofossils (leaves and fruit) with close affinity to those of the underlying uppermost
Poznan Formation: i.e. not older than late Pliocene (Przybylski et al., 1998).

The Palaeo-Biata Gtuchotaska (Debina Formation)

This is a relatively minor formation, representative of a subordinate river, the most south-easterly
that drained the Sudetes Mountains within the study area. Only Member | has been recognized,
made up of quartzose gravels with a staurolite—amphibole heavy-mineral suite (Table 1). It has been
recognized at a small number of sites from Strybowice to the type locality at Debina, ~30 km SSW of
Opole (Fig. 7). Although its occurrences trace a course from SSW to NNE, the petrography of the
Ziebice Group as a whole, plus knowledge of the bedrock surface, suggests that the palaeo-river
turned sharply to the NW in the vicinity of Debina to a confluence with the Palaeo-Nysa Ktodzka,
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rather than continuing NNE-wards to join the palaeo-Odra (Fig. 9). It uncertain whether any of the
Debina Formation sequences continue upwards into Member Il but the existence of a Palaeo-Biata
Gtuchotaska flowing NE from the Sudetes has been reconstructed for that time-span, joining a
considerably wider Palaeo Nysa Ktodzka (Fig. 10) in comparison with that reconstructed for Member
I. The continued existence of such a river during later times can only be speculative (Krzyszkowski et
al., 1998).

The Palaeo-Nysa Ktodzka (Ktodzko—Stankowo Formation)

This formation accounts for the vast majority of the pre-glacial series, being represented at sites
over an area of considerable width from its proximal type locality (see above) at Ktodzko, in the
south (in the Ktodzko [intermontane] basin) eastwards towards (but not reaching) Opole and then
northwards to Wroctaw and beyond (Fig. 7). This distribution demonstrates the dominance of the
Palaeo-Nysa Ktodzka during pre-glacial times (Figs 9-12). Its distal type locality, at Stankowo (Fig. 7,
site [1]), is at the northern periphery of the study area, ~20 km NE of Leszno (Fig. 1; supplement, Fig.
S5). The recognition of this formation is based on a gravel clast lithology reflecting the characteristic
geology of the Ktodzko Basin, including gneisses and other cystalline rocks, notably porphyries,
together with Mesozoic sandstones and ‘flint’ (Table 1; Figs 6 and 7). The heavy mineralogy is
complex and regionally variable, also changing from staurolite—garnet dominance in Members I-ll|
to garnet and amphibole in Member IV (Table 1).

With the formation represented at >50 sites (Figs 7 and 8), the comparative distribution of the
different members reveals significant changes in the course of this trunk river, with Member | tracing
a relatively confined WSW-ENE reach from Ktodzko to Gnojna (Fig. 7 [35]), diverging northwards
from the modern Nysa Ktodzka course, and then a wider but still confined reach (in comparison with
younger members) from here to Wroctaw and Taborek (Fig. 7 [3]), by which point the Palaeo-Odra
was converging from the east (Fig. 9). At the time of Member Il emplacement, both reaches were
considerably wider, that east of Ktodzko spreading southwards to envelop the course of the modern
river, whereas in its northward-flowing reach it extended eastwards to meet the Palaeo-Odra ~10
km west of Opole and spread out north-eastwards across the foreland to encompass an area from
that of its earlier course across to that around Ostréw Wielkolpolski and beyond (Fig. 10).

By Member Ill times the palaeo-river had been diverted from near Ziebice into a more confined
northerly course towards Wroctaw, sweeping across the area south and east of this city towards
Ostrow Wielkolpolski, turning northwards as it met the palaeo-Odra, by this time of almost equal
size, and other drainage from the east, possible the ‘Betchatéw River’, as recognized in central
Poland at the large lignite quarry by the same name (Krzyszkowski, 1995; Krzyszkowski et al., 2015;
Fig. 11).

By member IV times there is little evidence that the Palaeo-Nysa Ktodzka extended north-eastwards
of the modern Odra course, except in the area NW of Wroctaw. This suggests that a Palaeo-Odra
closely following its modern valley had come into existence by this time, perhaps as a result of early
Middle Pleistocene glaciation (Zeuner, 1928; Fig. 12), otherwise poorly documented because its
extent was less than the ice sheets of the Elsterian, the suggestion being that the line of the Odra
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across the northern edge of the Sudetic foreland might be of early ice-marginal (‘pradolina’) origin
(see above).

The Palaeo-Budzéowka (Zagbkowice Formation)

The Budzdéwka is a minor left-bank tributary of the Nysa Ktodzka, joining the latter ~20 km
downstream of Ktodzko. Its pre-glacial forebear is represented by probable Member IV deposits that
occur at two sites, the Zgbkowice type locality [73] and Albertéw [107] (Figs 7, 8 and 12). These
deposits are characterized by gravel in which the dominant clast type is Sowie Géry gneiss, with
subordinate quartz and other siliceous rocks; there is a garnet—amphibole heavy mineral suite (Table
1).

The Palaeo-Bystrzyca (Bojanice, Wichréw and Pogalewo formations)

The River Bystrzyca, which is the next important Odra tributary moving to the NW along the Sudetes
margin, flows through the town of Swidnica on its SW—NE course towards a confluence with the
trunk river ~7 km NW of Wroctaw; ~15 km upstream of that confluence it receives a substantial left-
bank tributary, the Strzegomka (Fig. 7). Pre-glacial versions of both these rivers are represented
amongst the Ziebice Group sediments, although with courses that appear to have been entirely
separate until the trunk river was reached; at that time the latter was the Palaeo-Nysa Ktodzka (Figs
9-12.

Three different pre-glacial formations are potential products of deposition by the palaeo-Bystrzyca.
First is the Bojanice Formation, of which Members II, Ill and possibly IV occur in the vicinity of
Swidnica, in the form of porphyry-rich quartz gravels, also containing melaphyre, Sowie Géry gneiss
and quartzite, although the uppermost (potentially Member 1V) deposits lack rudaceous
components (Table 1). The heavy minerology of these upper deposits is dominated by sillimanite,
whereas that of the gravelly facies is dominated by zircon and garnet (Table 1).

The Wichréw Formation is represented by a small group of sites, of which the Wichréw type locality
is one, ~20-30 NNE of Swidnica, in the modern catchment of the Strzegomka tributary (Figs 7 and

8[45]). Only the basal part of the sequence is present, with Member | and a possible extension into
Member I, sharing the zircon-rich mineralogy of the lower members within the Bojanice Formation
(Table 1). Despite its modern location within the tributary catchment, the Wichréw Formation sites
seem likely to represent a downstream continuation of the palaeo-Bystrzyca from the Swidnica area

(Fig. 9).

The Pogalewo Formation is identified in the area much further from the mountain front, to the north
of the modern River Odra downstream of Wroctaw. Members |, Il and Ill are all recognized, albeit at
different sites (Figs 7 and 8). Member | is identified only at the Pogalewo type locality [31], on the
northern side of the Odra valley ~30 km downstream of Wroctaw (Fig. 9; online supplement Fig. S3).
It is the only member of this formation to have yielded rudaceous material, this being quartz gravel
with local flint and a trace of porphyry; it has a zircon—tourmaline-rutile heavy mineralogy (Table 1).
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Further upstream (both within the modern Odra system and the pre-glacial palaeovalley), ~5-10 km
east from Pogalewo, is a small cluster of sites that represent Member Ill, which have the same
dominant mineralogy but with additional epidote, kyanite, amphibole and staurolite (Table 1). The
intervening Member I, although perhaps represented by the uppermost deposits at Pogalewo, is
optimally recorded much further downstream, at Chatupki [51], ~30 km SW of Gtogdéw (Fig. 7). The
mineralogy of this member is different again, with kyanite in addition to the zircon—tourmaline—
rutile suite but lacking epidote, amphibole and staurolite (Table 1). Although given a separate name,
the deposits of the Pogalewo Formation are most readily interpreted as more distal (downstream)
palaeo-Bystrzyca sediments, implying a separate northward course far from the mountain front,
especially during emplacement of Member Il (Fig. 10).

The Palaeo-Strzegomka (Mielecin-Wotéw Formation)

As noted above, the modern River Strzegomka joins the Bystrzyca ~15 km upstream of the
confluence between the combined river and the Odra. Prior to the Middle Pleistocene, however, it
seems likely that the precursors of these rivers maintained separate courses to the trunk palaeo-
Nysa Ktodzka (Figs 9—11). The palaeo-Strzegomka is represented by the Mielecin—Wotédw Formation,
as is apparent from the preservation of that formation at sites close to the mountain front within the
modern Strzegomka catchment, including the Mielecin (proximal) type locality (Fig. 7 [47]; online
supplement Fig. S6). The deposits here comprise quartzose—porphyry-rich gravels representing
Members |-lll, also containing local siliceous rocks (flint), conglomerate, spilite, diabase, greenschist
and quartzite from the Watbrzych Upland, Strzegom granite and local schist (phyllite), as well as a
sillimanite—garnet heavy-mineral suite (Table 1; Fig. 6). The distal type locality, at Wotdw, where
only Member | is represented, is located north of the modern Odra, approximately equidistant
between Wroctaw and Gtogéw (Fig. 8 [32]). Member IV of the Mielecin—Wotdw Formation is
recognized at two sites, Sosnica [43], in the modern Bystrzyca valley upstream of its confluence with
the Strzegomka, and Brzeg Dolny 3 [108], north of the modern Odra, where it overlies Member | of
the Ktodzko—Stankowo Formation (Figs 8 and 12; online supplement Fig. S2). This upper member
lacks gravel but is characterized by a sillimanite-dominated heavy mineralogy (Table 1).

The Palaeo-upper Bobr/Kaczawa (Rokitki-Bielany Formation)

The next Odra tributary north-westwards along the mountain front is the River Kaczawa, which has a
confluence with the trunk river ~20 km downstream from Legnica. lts pre-glacial forebear, however,
had a catchment that penetrated deeper into the mountain zone, including areas now drained by
the headwaters of the Bébr, a yet more westerly Odra tributary that flows NW from the Sudetes to
join the trunk river well to the west of the study area (Fig. 7). This is indicated by the characteristic
clast lithology of the Rokitki—Bielany Formation, which has rudaceous sediments representing all
four members with contents that show drainage from the Bobr catchment: these are quartzose
gravels with porphyry, Karkonosze granite, crystalline rocks, schist, quartzite, with the addition, in
Member IV, of Cretaceous sandstone and Wojcieszéw limestone (Table 1). The heavy mineralogy is
characterized by andalusite and tourmaline, with the addition of epidote in Member | and of kyanite,
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zircon, garnet, amphibole and sillimanite in Member IV (Table 1). The proximal type locality of this
formation, Rokitki [55], is situated in the Kaczawa valley, ~ 8 km upstream of its catchment with the
Nysa Szalona, a right-bank tributary (Fig. 7). Members |-lll are attributed to a palaeo-Bébr—Kaczawa
that drained northwards, to the west of Legnica, towards Gtogéw (Figs 9-11). Member IV of this
formation is recognized only at sites in the interfluve area between the Strzegomka and the
Kaczawa, at Kepy [95] and Bielany [50] (Fig. 12; online supplement Fig. S7), where it overlies older
members of the Mielecin—-Wotdéw Formation that represent the earlier northward drainage of the
palaeo- Strzegomka (see above; Figs 1 and 9). Bielany is the distal type locality of th#e Rokitki—
Bielany Formation, although it lies further south than Rokikti (Fig. 7 [50]). The most northerly
Mielecin—Wotdw site is Polkowice [62], <20 km south of Gtogdéw, where only Member Il occurs (Figs
7,8 and 11).

Other minor rivers

Fluvial tracts of more localized rivers have been traced. The Snowidza Formation, known from a

single locality (Fig. 8), represents a possible ancestral River Wierzbiak, the modern river of the same
name being a right-bank Kaczawa tributary that joins the latter ~10 km downstream of Legnica (Fig.
7). The sole representation of the Snowidza Formation is probably equivalent to Member | of other
Ziebice Group formations (Fig. 8). The deposits of two other local rivers have been recognized (Fig.
7) in the vicinity of Bardo [96-97], Potwordw [98—99]and Szydtow [101] on the basis of gravel-clast
petrography (Przybylski et al., 1998). These occurrences are again of probable Member | affinity

(Fig. 8).

DATING THE ZIEBICE GROUP

Much of the dating of the individual components of the Ziebice Group is dependent on their relative
stratigraphical positions within the sequence and their relation to the underlying Poznan Formation
and overlying Middle Pleistocene glacial deposits. At Gnojna (~55 km NE of Ktodzko; Fig. 7: [35])
palynological analyses of the uppermost member of the Poznan Formation, immediately below
member | of the Ktodzko—Stankowo Formation, have yielded a flora indicative of the earliest
Pliocene (Sadowska, 1985; Badura et al., 1998a). A similar Early Pliocene flora has been obtained
from Sosnica (Stachurska et al., 1973; Sadowska, 1985, 1992; Fig. 7 [43]), where it is overlain by
member IV of the Mielecin-Wotédw Formation. Macrofossil analysis of the Poznan Formation at
Ziebice, Sosnica and Gnojna have revealed the presence of Late Miocene to Early Pliocene leaves
and fruits (Krauzel, 1919, 1920; taricucka-Srodoniowa et al., 1981; Krajewska, 1996). These
occurrences provide a maximum (limiting) age for the Ziebice Group

A very few sites have yielded palaeobotanical remains from sediments of Ziebice Group formations.
At Ktodzko (Figs 7 and 8 [68]; online supplement Fig. S8) an organic deposit was recorded at the top
of a sequence that potentially represented member Il and/or member Il of the Ktodzko—Stankowo
Formation (cf. Krzyszkowski et al., 1998). Pollen and macrofossils from this deposit have been
attributed to the Reuverian Stage of the Late Pliocene (Jahn et al., 1984; Sadowska, 1995). Poorly
preserved leaf macrofossils from member Il of the Chrzgszczyce Formation at Tutowice (~15km SW
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of Opole; Figs 7 and 8 [74]) represent a temperate-climate assemblage of trees and shrubs that
cannot be dated with precision but is unlikely to be older than late Pliocene (Przybylski et al., 1998).
The fossiliferous deposits here are thus attributed to the palaeo-Odra, although they overlie
member |l deposits that are attributed to the palaeo-Nysa Ktodzka and thus the Ktodzko—Stankowo
Formation (Fig. 8). Further west, nearer the modern Nysa Ktodzka and in sediments attributed to
the Ktodzko—Stankowo Formation, organic remains and leaf impressions have been found at
Niemodlin 2 [80] and Magnuszowiczki [83] in member Il (Figs 7 and 8); Przybylski et al. (1998) noted
that the leaf impressions occurred in laminated silty alluvial sediments.

Zeuner (1928, 1929) described pre-glacial organic deposits at Jonsbach (now Janowiec) that would
appear to have been part of member IV of the Ktodzko—Stankowo Formation (Figs 2, 7 [72], 8 and
12): part of a pre-glacial fluvial (‘white gravel’) sequence ~11 m thick, located just downstream of the
Sudeten Marginal Fault (cf. Krzyszkowski et al., 1998). The limited pollen record (Stark and
Overbeck, 1932; Badura et al., 1998b; Krzyszkowski et al., 1998) lacks Tertiary relics and is thus
suggestive of the early Middle Pleistocene (Cromerian Complex). Attempts to relocate these
deposits and provide a more detailed analysis have proved unsuccessful.

This is meagre evidence upon which to base an age model for the Ziebice Group, but broad inference
from these data points to Pliocene—earliest Pleistocene deposition of members I-lIl and to early
Middle Pleistocene emplacement of member IV. That inference concurs well enough with the
sedimentological evidence for a meandering fluvial regime during deposition of members I-lll and a
braided gravel-bed river at the time of member IV emplacement (Czerwonka and Krzyszkowski,
2001; see above), given that the change could readily be attributed to the greater severity of cold-
stage climatic episodes in the early Middle Pleistocene, following the Mid-Pleistocene Revolution.
The latter, which saw the transition to 100 ka glacial-interglacial climatic cyclicity (e.g., Maslin and
Ridgwell, 2005), has been noted to have had a profound effect on valley evolution in many parts of
the world, notably causing enhanced valley deepening and concomitant isostatic uplift (e.g.,
Westaway et al., 2009; Bridgland and Westaway, 2014;.cf. Stange et al., 2013).

POST-GLACIAL LANDSCAPE EVOLUTION OF THE SUDETIC MARGIN

Following the Middle Pleistocene glaciation of the Sudetic foreland, the present-day rivers,
established in the courses they still occupy, have incised their valleys by varying amounts. In the
vicinity of the Bardo Gorge (sites 96 and 97, Fig. 7), in an uplifting inter-basinal location, the Nysa
Ktodzka has cut down >50 m below the level of the Odranian till, forming five terraces during the
process (Krzyszkowski et al., 2000; Fig. 2A), presumably in response to post-Odranian regional uplift
(Krzyszkowski and Stachura, 1997; Krzyszkowski et al., 1998, Migon et al., 1998; Starkel 2014),
perhaps with a component of glacio-isostatic rebound (cf. Bridgland and Westaway, 2014).

As Krzyszkowski et al. (1995, 2000) have shown, the amount of fluvial incision (and thus of uplift)
differs markedly on either side of the Sudetic Marginal Fault, the displacement suggesting ~15-25 m
of additional uplift on the upthrow side (related to continued elevation of the Sudeten Mountains)
since formation of the ‘Main Terrace’, the oldest post-Elsterian river terrace. Previous authors have
ascribed this main terrace to the Odranian, since it is overlain by till of that age (e.g., Krzyszkowski
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and Biernat, 1998; Krzyszkowski et al., 2000); it is essentially the starting point for post-glacial
incision by the Sudetic marginal rivers such as the Bystrzyca and Nysa Ktodzka (Fig. 2). If attribution
of the Odranian to MIS 6 is correct then several terraces have been formed during the relatively
short interval represented by the Late Pleistocene. Dating evidence is generally lacking, however.
The following is a general summary of the sequence:

i Upper terrace (erosional /depositional) ~10-18 m above alluvial plain (MIS 6; Wartanian)
ii. Middle Upper terrace (depositional) ~4—-8 m above alluvial plain (MIS 3; mid-Weichselian)
iii. Middle Lower terrace (depositional) ~2—5 m above alluvial plain (MIS 2; Vistulian/

Weichselian /LGM)
iv. Lower terraces of the recent alluvial plain (Holocene) - see Fig. 2.

DISCUSSION: PLIOCENE-QUATERNARY LANDSCAPE EVOLUTION IN
THE POLISH SUDETEN FORELAND AND THE WIDER REGION

The landscape of Poland represents a mosaic of crustal provinces, as illustrated in Fig. 4A and in
more detail in Fig. 4B. The boundaries between these provinces have been delineated by many
studies, initially outcrop investigations, later borehole studies and, most recently, deep controlled-
source seismic-profiling projects (e.g., Grad et al., 2002, 2003, 2008; Hrubcova et al., 2005;
Malinowski et al., 2013; Mazur et al., 2015). NE Poland is thus known to be located within ancient
(Early-Middle Proterozoic) continental crust overlying the relatively thick lithosphere of the EEP (see
above). The boundary between this region and the younger crustal province to the SW was first
identified in the late 19th century in territory now in SE Poland and western Ukraine by Teisseyre
(1893; Teisseyre and Teisseyre, 2002). This boundary, nowadays known as the Teisseyre—Tornquist
Zone (TTZ) or Trans-European Suture Zone, marks the suture of the Tornquist ocean, which formerly
separated the ancestral continents of Baltica (to the NE) and Avalonia (to the SW), and closed during
the Caledonian orogeny, when the crust SW of the TTZ experienced deformation (e.g., Grad et al.,
2003). At a later stage, SW Poland, including the Sudetes, was deformed during the Variscan
orogeny, the northern and eastern limits of the region thus affected being now concealed in the
subsurface by younger sediments. Figure 4B indicates one interpretation of these limits; Grad et al.
(2003) provide another. The Variscan orogeny in this part of Europe involved northward subduction
of the Rheic ocean beneath the southern margin of Avalonia, followed by the continental collision
between the Armorica continent (more specifically, its eastern part, Saxothiringia) and various
microcontinents with Avalonia (e.g., Mazur et al., 2006). The Sudeten massif in the extreme SW of
Poland, in the core of the Variscan orogeny, experienced pervasive deformation, metamorphisim,
and granitic magmatism. This region was also affected at this time by NW—-SE-oriented left-lateral
strike-slip faulting (including slip on the Sudetic Boundary Fault and Intra-Sudetic Fault), creating a
collage of fragmented crustal blocks of extreme complexity (e.g., Aleksandrowski et al., 1997;
Aleksandrowski and Mazur, 2002; Franke and Zelazniewicz, 2002; Gordon et al., 2005; Jefabek et al.,
2016; Koztowski et al., 2016; Fig. 1). Much later, SE Poland was affected by Late Cenozoic plate
motions, involving southward or south-westward subduction of the former Carpathian Ocean (Fig.
3B); as a result, the mosaic of continental fragments affected by the Variscan orogeny in what is now
Slovakia (which were formerly located further southwest) became juxtaposed against SE Poland
(e.g., Plasienka et al., 1997; Szafian et al., 1997; Stampfli et al., 2001, 2002; Von Raumer et al., 2002,
2003; Bielik et al., 2004; Schmid et al., 2004; Alasonati-Tasarova et al., 2009; Handy et al., 2014;
Broska and Petrik, 2015). Thus the crustal structure of Poland is highly variable, reflecting the
complex tectonic history of the wider region.
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The ideas about different crustal types having very different landscape evolution histories presented
above were developed without reference to fluvial sequences in Poland, although data from
neighbouring countries, such as Ukraine, were taken into account, as exemplified by the example of
the northern Black Sea rivers (Fig. 3). Application of these ideas to Poland, and in particular to the
data under consideration in this paper, thus provides a valuable test of the underlying theories. This
task has been facilitated by the aforementioned deep seismic projects, from which have been
published crustal transects with the required spatial resolution; indeed, some of the transects
combine crustal structure and heat flow, for example those across Poland from SW to NE presented
by Grad et al. (2003). The first such transect, likewise combining crustal structure and heat flow, was
prepared in a similar location by Majorowicz and Plewa (1979); comparison between the two
indicates the technical progress over the intervening decades, although the main features
identifiable in the modern cross-sections can also be resolved on the older one. One aspect of
particular importance for the present investigation is identification (from its relatively high seismic
velocity) of the presence of mafic underplating at the base of the crust. Such a layer remains rigid (or
brittle) under the temperatures typically experienced (<~550 °C) and thus behaves mechanically as
part of the mantle lithosphere, any mobile lower-crustal layer present being restricted to shallower
depths in the felsic lower crust. The phenomenon was mentioned above in connection with Early or
Middle Proterozoic crustal provinces in which fluvial archives point to past alternation subsidence
and uplift.

The seismic transect studied by Grad et al. (2003) crosses the TTZ ~150 km NW of Warsaw with ESE—
WSW orientation, revealing a layer of mafic underplating at the base of the crust persisting from
here to a point ~100 km NW of Wroctaw. According to Grad et al. (2003), emplacement occurred
during magmatic rifting of eastern Avalonia from the Precambrian supercontinent Rodinia during the
latest Proterozoic or Cambrian. This layer is up to ~10 km thick, its top locally as shallow as ~25 km
depth; it evidently extends beneath the external part of the Variscides, including the high-heat-flow
region around Poznan, depicted in Fig. 4C, but no long-timescale fluvial sequences are evident in this
region due to the effect of multiple glaciations. The subparallel transect studied by Grad et al.
(2008) starts just SW of the TTZ, ~170 km west of Warsaw, crosses the Czech—Polish border in the
extreme SW of Poland, then through the NW extremity of the Czech Republic before entering
Germany. It again reveals up to ~10 km of mafic underplating at the base of the crust, its top locally
as shallow as ~22 km, persisting WSW for ~250 km and dying out in the vicinity of the Intra-Sudetic
Fault Zone. Mafic underplating, with thickness up to ~8 km, its top locally as shallow as ~18 km,
resumes in the western part of the Bohemian Massif near the Czech—German border, as the transect
approaches Saxothiringia, the intervening crustal provinces (Barrandia, forming the central
Bohemian Massif) being free of underplating. The NW-SE seismic transect across the Bohemian
Massif, reported by Hrubcova et al. (2005), confirms the presence of underplating beneath
Saxothiringia but not beneath Moldanubia (the SE Bohemian Massif) or Barrandia.

As already discussed, the structure of the Sudeten Mountains is complex; as a result of the Variscan
left-lateral faulting it consists of small fragments of crustal blocks that have become juxtaposed.
Jerabek et al. (2016) have recently demonstrated that this process included transposition of
Saxothiringian crust (presumably including its characteristic layer of mafic underplating) beneath
fragments of Barrandia. It would thus appear that mafic underplating persists beneath much of the
Sudeten Mountains region, as Majorowicz and Plewa (1979) inferred, even though this was not
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resolved in the Grad et al. (2008) study. The heat flow typically decreases southward across the
Sudeten Mountains, reaching values of <70 mW m2in the Ktodzko area (Fig. 4C); it can thus be
inferred that this effect, along with the presence of mafic underplating derived from Saxothiiringian
crust, constricts the mobile lower-crustal layer, resulting in the pattern of alternations of uplift and
subsidence that are evident in the fluvial records, particularly in basinal areas (see above). A
noteworthy record comes from Ktodzko [site 68], which gives its name to the Ktodzko Basin and is
the proximal type locality of the Ktodzko—Stankowo Formation, which represents the pre-glacial
River Nysa Ktodzka. Here in the basin the pre-glacial gravels extend to below river level, suggesting
the sort of reversal in vertical crustal motion described above. This can be compared with the
situation ~12km downstream at the Bardo Gorge, on the inter-basinal ridge (see above), where it is
evident that uplift has been more continuous (Compare Figs 2A and 2B).

Another good example of the low level of the pre-glacial deposits in parts of the Sudetic Foreland, as
well as their geomorphological inter-relationship, is the site at Brzeg Dolny in the Odra valley
downstream of Wroctaw [site 108], where Members | and Il of the Ktodzko—Stankowo Formation
occur in superposition, their base ~10 m above the level of nearby Holocene valley-floor sediments.
Member IV of the Mielecin-Wotdéw Formation (representing the palaeo- Strzegomka) occurs nearby,
incised to a lower level. Given the tributary status of the palaeo- Strzegomka, this relationship
implies rejuvenation between the Pliocene (Member |) and early Middle Pleistocene (Member V),
when the latter river traversed an area formerly occupied by the pre-glacial Nysa Ktodzka; this is a
clear example of terrace formation within the pre-glacial sequence (see online supplement Fig. S2).

In some parts of the Sudetes, thick plutons of highly radiothermal granite were emplaced during the
Variscan orogeny, their radioactive heat production resulting in local heat-flow highs; for example,
Bujakowski et al. (2016) inferred temperatures as high as ~390 °C at 10 km depth beneath the
Karkonosze granite pluton (see Fig. 6 for location). However, this is one locality where Jerabek et al.
(2016) inferred that the Variscan orogeny emplaced Saxothiringian crust beneath crust of
Barrandian provenance, so that here it can be anticipated that the mafic underplating will constrict
the mobile crustal layer, notwithstanding the high surface heat flow.

South of the Sudeten Mountains, in the Bohemian Massif, rivers such as the Vltava and Labe
(affluents of the Elbe) have substantial terrace staircases (e.g., Tyracek et al., 2004), with no
indications of alternations in vertical crustal motion. The heat flow in the central Bohemian Massif is
~50-60 mW m (e.g., Cermdk, 1979), less than in the Sudeten Mountains. However, as already
noted, the crust in this region, up to ~35 km thick in Barrandia (in which the Vltava terrace staircase
is located) and up to ~40 km thick in Moldanubia, is free of mafic underplating (Hrubcova et al.,
2005). The felsic lower crust is thus much thicker in this region, and concomitantly much hotter near
its base, than in the Sudeten Mountains. The different landscape response between these areas can
thus be explained: the mafic underplating accounts, via the mechanism advocated by Westaway and
Bridgland (2014), for the observed pattern of sedimentary archives in parts of the Sudetes; the
importance of underplating is underlined by evidence for sustained upward vertical crustal motion,
despite lower heat flow, in the central Bohemian Massif, where underplating is absent (cf.
Stépancikova et al., 2008).

Wider crustal comparisons can also be made between fluvial sequences in the Sudeten Mountains
and elsewhere in Poland. Comparison of Figs 4A and B indicates that the surface heat flow increases
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from ~70 mW m at the external (northern) margin of the Carpathians to ~80 mW m along the
Poland-Slovakia border, for example along the upper reaches of the River San. No modern deep
seismic profile in this area is known to the authors, but by analogy with other localities further NW it
can be inferred that the region consists of ~40 km thick crust with ~10 km of mafic underplating (cf.
Grad et al., 2003, 2008). However, during the Late Cenozoic plate convergence this crust became
buried beneath up to ~7 km of young sediment (e.g., Oszczypko, 1997). The ‘thermal blanketing’
effect of this sediment will significantly raise the temperature in the underlying crust, reducing the
constriction effect of the underplating on the thickness of mobile lower crust; 7 km of sediment of
thermal conductivity 2 W m™ °C? overlying crust in which the heat flow is 80 mW m will raise the
temperature in this bedrock by 7 km x 80 mW m2/2 W m™ °C? or ~280 °C. Westaway and
Bridgland (2014) suggested an analogous explanation for the disposition of the terrace deposits of
the River Dniester in the Ukraine—Moldova border region further to the SE (see Fig. 3A).

Comparison is also possible with the crust underlying the fluvial sequence laid down by the River
Vistula in the Warsaw area. As illustrated in Fig. 5D, Pliocene deposits here occur near the present
river level, and Early Pleistocene deposits at a height ~30 m lower. After these were laid down, the
ancestral Vistula cut down to ~50 m below its present level before laying down a stack of Middle and
Late Pleistocene sediments, including Holocene temperate-climate deposits overlying their Eemian
and Holsteinian counterparts. Overall, this sequence indicates a transition from uplift in the
Pliocene and Early Pleistocene to subsidence thereafter. Warsaw is ~50 km inside the EEP (Fig. 4B).
From Grad et al. (2003) and Mazur et al. (2015), the crust is locally ~45 km thick with ~20 km of
underplating at its base, overlain by ~19 km of basement and ~3 km of sediments, which are mainly
Mesozoic (in contrast with the much thicker sequences dominated by Palaeozoic shale, closer to the
TTZ). The surface heat flow in the Warsaw area is ~60 mW m (Fig. 4C); if the sediment and
basement are assumed to have thermal conductivities of 2.5 and 3.5 W m™ °C%, respectively, the
~350 °Cisotherm can be expected at ~19 km depth, making the mobile lower crustal layer ~6 km
thick, within the range of values where alternations of uplift and subsidence have been observed in
fluvial sequences elsewhere (Westaway and Bridgland, 2014). Other fluvial sequences within the
EEP, with alternations of uplift and subsidence evident, include those of the River Dnieper in Ukraine
and the Rover Don in SW Russia (e.g., Westaway and Bridgland, 2014; Fig. 3).

A final point on the effect of lateral variations of crustal properties, with resultant lateral variations
in uplift, on the disposition of fluvial terrace deposits concerns the occasional occurrence of back-
tilted fluvial deposits, in cases where rivers have flowed from regions of colder to warmer crust, with
an example evident from the Sudetic margin. It is evident that the ancestral drainage from the
Sudeten Mountains was directed northward, from the Wroctaw area and points further east to the
Poznan area, before adjusting (probably around the start of the Early Pleistocene) to its modern
configuration. Fig. 4C indicates that the former drainage was directed across the high heat-flow
region between Wroctaw and Poznan, raising the possibility that the subsequent drainage
adjustment was the result of faster uplift of the latter region. As already noted, the Grad et al.
(2003) seismic profile passes through this high-heat-flow region, indicating that the top of the mafic
underplating is at ~25 km depth and that the sedimentary sequence in the overlying crustal column
is thin. Assuming a thermal conductivity of 3.5 W m™ °C! in the basement, as before, and a typical
heat flow of ¥90 mW m, the ~350 °C isotherm can be expected at a depth of ~14 km, making the
thickness of the mobile lower crust ~11 km, significantly greater than in other parts of Poland and
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high enough (based on comparisons with other regions) to sustain significant uplift rates. Recorded
heights of pre-glacial fluvial deposits in this region (Czerwonka and Krzyszkowski, 2001; Supplement,
Table S1) indeed reveal evidence of back tilting. The best such evidence is provided by comparison of
the heights of the Pliocene deposits along the ancestral River Odra, between Chrzaszczyce(Fig. 7
[76/77]), Smardzow [33], 77.3 km further downstream, and Stankowo [1], 84.9 km further
downstream, the latter site adjoining the confluence with the ancestral Nysa Ktodzka (Fig. 7). The
top of the deposits assigned to Member | of the Ziebice Group is 180, 72, and 99 m a.s.l. at these
sites, thus indicating back-tilting over the reach between Smardzow and Stankowo, the long-profile
gradients being ~1.4 and ~-0.3 m km™ along these two reaches, respectively. Thus, if this river had
an original gradient of ~1 m km™, the deposit at Stankowo is now 81 m higher in the landscape, and
that at Smardzow 34 m lower, than would be expected if all three sites had experienced the same
history of vertical crustal motion. In the absence of detailed modelling the precise sequence of
processes in this region cannot be ascertained, but this pattern is consistent with the interpretation
that lower-crustal material was drawn from beneath the Smardzow area to beneath the hotter
Stankowo area, as a result of the lateral pressure gradient at the base of the brittle upper crust
caused by the variation in heat flow between these two regions. An established analogue of this
effect is the back-tilting of the deposits of the early Middle Pleistocene Bytham River in the East
Midlands of England; this river flows eastward from the northern part of the London Platform, a
region of relatively low heat flow, into the higher-heat-flow zone of crustal deformation during the
Caledonian orogeny, at the NE margin of Avalonia (Fig. 4A), its sediments now being gently tilted in
an upstream direction (Westaway et al., 2015).

The explanation for the fluvial archives in the marginal area of the Sudeten Mountains promoted
here has a more general analogue in records from SW England, in the rivers of Cornwall and west
Devon (Westaway, 2010). In that region radiothermal Variscan granites are underlain by thick mafic
underplating and the crust is relatively strong, as indicated by the minimal Late Cenozoic vertical
crustal motions deduced from fluvial sequences. The principal difference is that the mafic
underplating beneath SW England was emplaced after the Variscan orogeny, as a result of the
Palaeocene British Tertiary Igneous Province magmatism, whereas the underplating beneath the
Sudeten Mountains is evidently derived from fragments of pre-Variscan Saxothiiringian crust.

The different styles of fluvial archive preservation in the different parts of the European continent
described above are an important consideration in the understanding of Quaternary stratigraphy in
these regions, given that fluvial sequences provide valuable templates for the Late Cenozoic
terrestrial record (Vandenberghe, 2002; Bridgland et al., 2004; Bridgland and Westaway, 2014). It
has been shown that the most stable regions, in which the fluvial archives suggest a complete or
near absence of net uplift during the Quaternary, coincide with the most ancient cratonic crustal
zones, such as parts of the EEP and in particular the Ukrainian Shield (Bridgland and Westaway,
2008, 2014; Fig. 3). Such highly stable regions are the exception for the EEP, however; over much of
its area there has been limited net uplift as a result of alternations of vertical crustal movements,
resulting in periods of terrace generation with intervening periods of subsidence and burial. In Fig.
13 the fluvial archive from the Sudetic margin, using the optimal example of the Nysa Ktodzka at
Bardo (see above), is compared with that of the River Don at Voronezh. Despite the differences in
size (catchment area and, therefore, discharge) of the fluvial systems in question and the very
different glacial influences (the Don here was reached only by glaciation in MIS 16), there are
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significant points of comparison. Contrastingly, the difference between the fluvial records from the
EEP and those from the youngest and most dynamic European crust is quite profound, albeit that
many of the comparisons made above are with crust of somewhat intermediate age, such as the
Variscan and Avalonia provinces (Fig. 4). This is because much of the youngest crust, in the Alpine
and Carpathian provinces (Fig. 4), remains tectonically active (i.e., continues to be affected by active
plate motions) and so has fluvial archives that are less clearly related to regional vertical crustal
movements.

CONCLUSIONS

The rivers of the Polish Sudeten foreland have pre-glacial precursors, their courses recognized from
sediments that generally underlie the Middle Pleistocene glacial deposits and which date from the
Early Pliocene — Early Pleistocene, being substantially different from those of their modern
successors. The pre-glacial fluvial formations are preserved in the subsurface, in part as buried
valley fills, and recorded as the Ziebice Group. They were partly destroyed and buried by the Middle
Pleistocene Scandinavian ice sheets that entered the Sudeten Foreland, covering the previously

formed valleys with glacial deposits: the Elsterian (= Sanian) and the early Saalian (= Odranian). .

_ the Sudeten Foreland, where renewed incision (brought about by

post-Odranian uplift) led to post-glacial river-terrace formation.
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Figure captions

Geology and location of the research area. The inset shows the limits of the various
Quaternary glaciations of Poland and the course of the River Odra. Modified from
Czerwonka and Krzyszkowski (2001).

Cross sections through key fluvial sequences in the study area: A - the River Nysa Ktodzka
in the Bardo area (sites 96 and 97 in Figs 7 and 8), where the river has cut a gorge
through an inter-basinal (progressively uplifting) ridge, the inset showing the sequence
a few km downstream, in the Janowiec—Ozary area (sites 72 and 71 in Figs 7 and 8); B -
the sequence in the Ktodzko Basin in the Ktodzko—Leszczyna area (site 68 in Figs 7 and
8), both modified from Krzyszkowski et al. (1998); C - The River Bystrzyca near
Lubachdéw (modified from Krzyszkowski and Biernat, 1998); for location see Flg. 7.

The Rivers of the northern Black Sea region (modified from Bridgland and Westaway,
2014; after Matoshko et al., 2002; 2004). A - The locations of parts B-D in relation to
the Ukrainian Shield. B - Idealized transverse profile through the Middle—Lower Dniester
terrace sediments, which represent a classic river terrace staircase (with approximately
one terrace per 100 ka climate cycle following the Mid-Pleistocene Revolution) inset
into Miocene fluvial basin-fill deposits. This region has higher heat flow than might be
expected from its location at the edge of the EEP (see A), for reasons discussed in detail
by Westaway and Bridgland (2014). C. - Transect across the Middle Dnieper basin,~100
km downstream of Kiev (~240 km long), showing a record typical of an area with no
considerable net uplift or subsidence during the Late Cenozoic, as typifies cratonic
crustal regions (cf. Westaway et al., 2003). D. - Transect through the deposits of the
Upper Don near Voronezh, showing a combined stacked and terraced sequence that
points to fluctuation between episodes of uplift and of subsidence during the past ~15
Ma.

Figure 4  Crustal characteristics. A - Crustal provinces in the European continent and neighbouring

areas. Modified from Pharaoh et al. (1997); the location of parts B and Cis shown. B -
Crustal provinces in Poland. Modified from Mazur et al. (2006). DFZ = Dolsk Fault Zone;
OFZ = Odra Fault Zone. C - Borehole heat flow measurement sites and resulting
contours of surface heat flow in Poland. Modified from Bujakowski et al. (2016), using
data from Szewczyk and Gientka (2009). Plus and minus signs are used to aid
interpretation in grayscale; for the colour diagram, see the online pdf version.

Comparison of fluvial archives in different parts of the River Vistula system. A —location;
B — Transect through the valley of the River Dunajec, central Carpathians (modified from
Zuchiewicz, 1992, 1998); C —. Transect through the valley of the River San (after Starkel,
2003); D — Idealized transverse sequence through the deposits of the Middle Vistula,
based on data from upstream (Mojski, 1982) and downstream (Zarski, 1996; Marks,
2004) of Warsaw.

Distribution of provenance indicator materials. Modified from Czerwonka and
Krzyszkowski (2001).



824 Figure 7 Location of pre-glacial sites (identified by number, with different symbols for the various
825 formationsj, which represent different river systems). For locality names see Fig. 8.
826 Modified from Czerwonka and Krzyszkowski (2001).

827 Figure 8 Occurrence of the different pre-glacial fluvial formations and their constituent members,
828 showing which are present at the various localities. Numbers and symbols correspond
829 with those in Figs 7 and 9-12. Modified from Czerwonka and Krzyszkowski (2001).

830 Figure 9 Palaeodrainage during emplacement of Member | deposits. Numbers and symbols
831 correspond with those in Figs 7 and 8. Modified from Czerwonka and Krzyszkowski
832 (2001).

833 Figure 10 Palaeodrainage during emplacement of Member Il deposits. Numbers and symbols
834 correspond with those in Figs 7 and 8. Modified from Czerwonka and Krzyszkowski
835 (2001). For key see Fig. 9.

836 Figure 11 Palaeodrainage during emplacement of Member Ill deposits. Numbers and symbols
837 correspond with those in Figs 7 and 8; for key see Fig. 9.

838 Figure 12 Palaeodrainage during emplacement of Member IV deposits. Numbers and symbols
839 correspond with those in Figs 7 and 8; for key see Fig. 9.

840 Figure 13 Comparison between the fluvial archives from the Sudetes, in the form of the Nysa

841 Ktodzka (Krzyszkowski et al., 1998, 2000), and the River Don in the vicinity of Voronezh,
842 Russia (showing suggested MIS correlations; see also Fig. 3D and Matoshko et al. (2004),
843 who provided further stratigraphical details.

844

845

846 Table1l Characteristic clast data (gravel petrography and heavy mineralogy) used in
847 differentiation of Ziebice Group formations

848
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ABSTRACT:

Detailed study of subsurface deposits in the Polish Sudeten Foreland, particularly with reference to
provenance data, has revealed that an extensive pre-glacial drainage system developed there in the
Pliocene — Early Pleistocene, with both similarities and differences in comparison with the present-
day Odra (Oder) system. This foreland is at the northern edge of an intensely deformed upland,
metamorphosed during the Variscan orogeny, with faulted horsts and grabens reactivated in the
Late Cenozoic. The main arm of pre-glacial drainage of this area, at least until the early Middle
Pleistocene, was the palaeo-Nysa Ktodzka, precursor of the Odra left-bank tributary of that name.
Significant pre-glacial evolution of this drainage system can be demonstrated, including incision into
the landscape, prior to its disruption by glaciation in the Elsterian (Sanian) and again in the early
Saalian (Odranian), which resulted in burial of the pre-glacial fluvial archives by glacial and fluvio-
glacial deposits. No later ice sheets reached the area, in which the modern drainage pattern became
established, the rivers incising afresh into the landscape and forming post-Saalian terrace systems.
Issues of compatibility of this record with the progressive uplift implicit in the formation of
conventional terrace systems are discussed, with particular reference to crustal properties, which
are shown to have had an important influence on landscape and drainage evolution in the region.

Keywords Pliocene — Early Pleistocene, Ziebice Group, Elsterian glaciation, Odranian (early Saalian)
glaciation, palaeodrainage, crustal properties, Polish Sudetes
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INTRODUCTION

The Sudeten (Sudety) Mountains, or Sudetes, form a NW—SE-trending range with its western end in
Germany and separating SW Poland from the Czech Republic (Czechia). With its highest peak
reaching 1603 m, this represents an uplifted block of rocks metamorphosed during the Variscan
orogeny, in the late Devonian to early Carboniferous (Don and Zelazniewicz, 1990). The Variscan
involved complex faulting and thrusting, forming horsts and graben-basins, the latter infilled during
later tectonically quiescent geological episodes, prior to significant reactivation of these structures in
the Neogene—Quaternary (Oberc 1977; Dyjor, 1986, Mignon, 1997). The foreland region north of
these mountains, into which these structures extend, is drained by the Odra (Oder) and several of its
left-bank tributaries, the main river flowing NW and then northwards, forming the western
boundary of Poland, towards the Baltic (Fig. 1). An earlier, somewhat different drainage pattern in
the Sudeten Foreland is evident from the subsurface preservation of buried valley fragments,
recognized from boreholes and quarries and now largely buried by glacigenic and later fluvial
sediments (Krzyszkowski et al., 1998; Michniewicz, 1998; Przybylski et al., 1998). It is apparent,
therefore, that this drainage system was disrupted by glacial advances of Scandinavian ice from the
north and NW (Krzyszkowski, 1996; Krzyszkowski and Ibek, 1996; Michniewicz, 1998; Salamon, 2008;
Salamon et al., 2013; Fig. 1). The drainage has also been disrupted during the Quaternary by slip on
the Sudeten Marginal Fault, the effects of which are readily visible in terms of vertical offset in
terrace heights either side of the faultline (e.g., Krzyszkowski et al., 1995, 1998, 2000; Krzyszkowski
and Bowman, 1997; Krzyszkowski and Biernat, 1998; Krzyszkowski and Stachura, 1998; Migon et al.,
1998; Stépancikova et al., 2008; cf. Novakova, L., 2015). To these glacial and tectonic influences can
now be added the effects on Quaternary landscape evolution of a complex history of crustal
behaviour, potentially related to the characteristics of the Proterozoic to Palaeozoic crust in the
region, as will be discussed in this paper.

The repeated glaciation of this region has been well researched and is documented by the glacigenic
deposits that form much of the surface cover, burying the evidence for the aforementioned pre-
glacial drainage. The most extensive glaciation was that during the Elsterian, the ‘Sanian glaciation’
of Polish nomenclature (Marks, 2011). This glaciation, assumed to have occurred during Marine
Isotope Stage (MIS) 12 (Krzyszkowski et al., 2015), may not have been the first within the study area,
as there are well-developed cold-stage minima within the marine oxygen isotope record in the latest
Early Pleistocene, in MIS 22, and the early Middle Pleistocene: especially MIS 16, represented by the
Don glaciation in the northern Black Sea region (e.g., Turner, 1996; Matoshko et al., 2004). No pre-
MIS 12 glacigenic deposits have been recognized in the Sudetic marginal region, however, and it is
clear that any such glaciation was less extensive than that in the Elsterian. The next most extensive
glaciation was the Early Saalian (Odranian), with a limit typically 0—18 km short of the Elsterian
(Sanian) ice front (Fig. 1, inset); it is generally attributed to MIS 6 (Marks, 2011). Then followed the
Late Saalian glaciation, termed the Middle Polish Complex or Wartanian, and the Weichselian (last)
glaciation, the North Polish Complex or the Vistulian. The highest massifs within the Sudetes
supported small-scale local Weichselian glaciers (Migon, 1999; Traczyk, 2009) and such glaciers
would also have existed during earlier major glaciations, albeit with little effect on foreland drainage
evolution.
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The study area coincides with the southern edge of the northern European glaciated zone in which
fluvial drainage courses have been strongly influenced by repeated glaciation from the north. That
zone, from the western Baltic states through Poland and into Germany, is characterized by broadly
west—east aligned valleys that were formed when drainage from the south was deflected towards
the Atlantic by ice sheets blocking the lower courses of the various Baltic rivers: the urstromtaler of
Germany and pradolina of Poland (e.g., Kozarski, 1988; Marks, 2004). Deflection of drainage by the
Elsterian and, later, by the Odranian ice is likely to have influenced the modern position of the river
valleys in the lowland north of the Sudetic margin (Krzyszkowski,2001).

The major existing rivers of the Sudeten foreland have well-developed terrace systems that record
valley incision since the most recent glaciation of the region, which was during the Odranian, given
that the later Late Saalian (Wartanian) and Weichselian (Last Glacial Maximum: LGM) ice sheets
failed to reach the mountain front (Fig. 1, inset). Terrace systems are well documented in the two
largest Sudetic tributaries of the Odra, the Bystrzyca (Berg, 1909; Krzyszkowski and Biernat, 1998)
and the Nysa Ktodzka (Zeuner, 1928; Krzyszkowski et al., 1998), as well as in several of the smaller
systems. The Quaternary record in this area was thoroughly reviewed in a 1998 special issue of
Geologia Sudetica (Krzyszkowski, 1998) that was dedicated to Frederick E. Zeuner, who conducted
his doctoral research in the region (Zeuner, 1928; see online supplement, Fig. S1), from which he
formulated many of his influential views on river-terrace formation (Zeuner, 1945, 1946, 1958,
1959). Since the formation of the Fluvial Archives Group (Add citation of the FLAG editorial paper),
debate about the genesis of river terraces has led to a consensus that they are generally a result of
uplift, with strong climatic and isostatic influences (e.g., Maddy, 1997; Antoine et al., 2000;
Bridgland, 2000), the latter seen to vary in relation to crustal type (Westaway et al., 2003, 2006,
2009; Bridgland and Westaway, 2008a, b, 2012, 2014; Bridgland et al., 2012, 2017).

Landscape evolution in the study area has been complex, with combined influences from glaciation,
active faulting and regional crustal processes. The present-day topography is almost entirely the
result of post-glacial fluvial erosion, in combination with the various processes that modify valley-
side slopes and convey sediment into valley bottoms. ‘Post-glacial’ in this region means post-Sanian
(Elsterian) or post-Odranian (Early Saalian), these being the only Pleistocene glacials during which ice
sheets are known to have reached the Sudetic Foreland (see above; Fig. 1, inset). The modern
valleys have thus formed since these ice sheets encroached upon the region and their flanks
preserve latest Middle Pleistocene—Late Pleistocene river-terrace sequences (Fig. 2). These valleys
are incised into a landscape substantially formed in late Middle Pleistocene glacigenic deposits,
including diamictons, outwash sands and gravels and lacustrine sediments (Krzyszkowski, 1998,
2013). Evidence from boreholes and quarry exposures has shown that this glacigenic sedimentation
was overprinted onto a pre-glacial drainage system, recognizable as a complex pattern of palaeo-
valleys now entirely buried beneath the modern land surface. Thus pre-glacial fluvial sediments,
which have been attributed to the Pliocene, Lower Pleistocene and lower Middle Pleistocene, are
generally buried beneath later Pleistocene deposits and occupy a relatively low position with the
landscape, especially in basin situations (see above). This is in apparent conflict with the
expectations of standard river-terrace stratigraphy, in which progressively older deposits would be
anticipated in positions progressively higher above the modern valley floor. This standard terrace
stratigraphy has, however, been shown to occur only in association with certain, albeit widespread
and common, crustal types, as will be explained in the next section.
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Relation of fluvial archives to crustal type

Westaway et al. (2003) made the important observation that classic river terrace staircases do not
occur in regions of cold, ancient and densely crystallized crust, particularly the cratons that
represent fragments of the earliest continental lithosphere. They attributed this phenomenon to
the absence of mobile lower crust in such regions, which they realised was essential to provide a
positive-feedback response to erosional isostatic uplift, the same uplift that has caused terrace
staircases to form on younger crust, including in areas remote from tectonic influence (see
Westaway, 2001, 2002, a, b; Westaway et al., 2002, Bridgland and Westaway, 2008a, b, 2014).
Subsequent reviews of fluvial archives from different crustal provinces showed distribution patterns
that can be related to crustal type; in this the northern Black Sea hinterland, ~1000 km to the ESE of
the present research area, represents a valuable case-study region, where the range of dating
proxies is exemplary (Bridgland and Westaway, 2008a, b, 2014; Bridgland et al., 2017; cf. Matoshko
et al., 2004; Fig. 3). The significant differences in preservation patterns of fluvial archives between
crustal provinces with different characteristics point to important contrasts in landscape evolution,
in particular relating to the extent of valley incision (Westaway et al., 2003, 2009), as well as the
propensity for loss of fluvial archives to erosional processes, which will be greater in areas of
dynamic and rapidly uplifting crust. Investigations have led to the concept that these geomorphic
effects are controlled by a combination of crustal properties, namely heat flow (see Fig. 4C) and the
depth of the base of the felsic crustal layer, since these properties govern the thickness of the plastic
crustal layer beneath the brittle upper part of the crust, the base of which corresponds to a
temperature of ~350 °C. Thus, if this plastic layer is absent, as in cratonic regions, the crust is
extremely stiff and thus ultra-stable. If the mobile layer is thick (thickness >~6 km), it plays a major
role in isostatic adjustment, and continuous uplift occurs, at rates that vary in response to rates of
erosional forcing and thus to climate change (see Fig. 3). On the other hand, if this layer has an
intermediate thickness (~¥4—6 km), a more complex isostatic response occurs, characterized by
alternations of uplift and subsidence, possibly because under such conditions the isostatic responses
in the mobile lower crust and in the asthenospheric mantle occur at comparable rates but on
different timescales (Westaway and Bridgland, 2014).

Different patterns of fluvial sediment preservation are indeed evident in Poland, and can be
interpreted according to the different crustal regions within which they occur (see Fig. 4). The
occurrence of buried Pliocene and Lower Pleistocene fluvial deposits, as reported in the present
study region, has also been observed in the middle reaches of the Vistula river system (Mojski, 1982;
Bridgland and Westaway, 2014; Fig. 5), the catchment of which accounts for 56% of Poland. The
Middle Vistula flows across the East European Platform (EEP), a crustal province consolidated during
the Early or Middle Proterozoic that is relatively stable in comparison with the younger crust to the
west, including that beneath the Sudeten Mountains, which is part of the Variscan province,
stretching from SW Poland to western Europe (southern England-Iberia; Fig 4). Further SE within
the EEP, patterns of fluvial-archive preservation in which older deposits are buried by younger
terraced sequences have again been observed, for example in the valley of the River Don, one of the
northern Black Sea rivers, near Voronezh (Matoshko et al., 2004; Bridgland and Westaway, 20083, b,
2014; Fig. 3). The alternation between uplift and subsidence implicit in these preservation patterns



162 has been ascribed to the properties of the crust of the EEP; such crust is highly consolidated and
163 relatively cold, with a lower mobile layer of limited thickness (probably a few kilometres at most),
164  making it very much less dynamic than younger crustal types (Westaway and Bridgland, 2014;
165 Bridgland and Westaway, 2017; cf. Kutas et al., 1979).

166

167 Further north, the Lower Vistula, in its course towards the Baltic, flows across a region that would
168  appear to have experienced continuous subsidence during the late Middle and Late Pleistocene, as
169 indicated by the stacking of younger Pleistocene deposits, including fluvial, glacial and even marine
170 sediments, above older (cf. Marks, 2004). This could reflect the wider influence of isostatically

171 induced subsidence of the long-standing depocentre of the Baltic basin, where the crust has been
172 progressively depressed beneath the sedimentary load. In marked contrast there are areas in the
173  extreme SE of Poland, in the uppermost Vistula catchment, which display the only extensive

174 staircases of river terraces in the country, similar to those on the younger, more dynamic crust of
175 NW Europe. These terrace staircases (Fig. 5) can be found in the catchments of the Rivers Dunajec
176 (Zuchiewicz, 1992; Olszak, 2011) and San (Starkel, 2003), as well as in other tributaries of the Vistula
177  that drain the continental crust forming the Western Carpathian Mountains (e.g., Zuchiewicz, 2011;
178 Pliszczyniska, 2012). These archives generally occur on crust bordering the Western Carpathians that
179  was affected by the Caledonian orogeny and is thus more dynamic than that of the EEP. (For a

180 description of the Late Cenozoic palaeogeographical evolution of this area see Brud, 2004.) As

181 Bridgland and Westaway (2014) noted, the headwaters of the San are close to those of the Dniester,
182  ariver flowing southwards to the Black Sea that has an impressive and well-dated terrace staircase
183 (Matoshko et al., 2004; Fig. 3B). Thus, despite their flowing in opposite directions, the San and the
184 Dniester have similar styles of fluvial archive preservation, attributable to the nature of the crust in
185  that region rather than hydrological or base-level influences (cf. Bridgland and Westaway, 2014).
186 Elsewhere in Poland there is localized downwarping as a result of salt diapirism, particularly at

187 Betchatéw, near £odz (Krzyszkowski, 1995; Krzyszkowski and Szuchnik, 1995; Wieczorek et al., 2015).

188 Bridgland and Westaway (2014) suggested that, although the prevalence of stacked sequences in
189  northern Poland might reflect proximity to the Baltic Basin, aspects of the fluvial archive

190  preservation pattern in Central Poland that have traditionally been attributed to the effects of

191  glaciation, or glaciation interspersed with marine transgression (e.g., Marks, 2004), might instead
192 result from the characteristics of the crust. They envisaged three provinces within the Vistula: (1) an
193 upstream, uplifting province, with well-developed terraces, (2) a central province in which the

194  comparative stability of the EEP is dominant and (3) a downstream (northern) province with

195 increasing influence of subsidence around the Baltic Basin and the effects of repeated glaciation.

196  The fluvial sedimentary archives in parts of the Sudetic foreland suggest inversion in vertical crustal
197  movement, with alternation of subsidence and uplift, as surmised previously in systems such as the
198 Don (Westaway and Bridgland, 2014; Bridgland et al., 2017; Fig. 3D). In previous reviews of the
199 preservation patterns shown by fluvial archives, in which causal linkages have been observed with
200  crustal type, such archives indicative of alternating subsidence and uplift were found to be

201 associated commonly with Early or Middle Proterozoic crustal provinces with thick ‘roots’ of mafic
202 material at the base of the crust, restricting the thickness of the mobile lower crustal layer

203 (Westaway and Bridgland, 2014; Bridgland et al., 2017). In the Sudetes this phenomenon is
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apparent in basinal areas, which are separated by structural ridges (horsts) of older, generally
crystalline rocks (Dyjor, 1986; see above).

EVIDENCE FOR PRE-GLACIAL RIVER SYSTEMS IN THE SUDETEN
FORELAND

Quarrying and boreholes have allowed the reconstruction of considerable detail with regard to river
sytems that existed in the Sudetic Foreland in pre-glacial times (i.e., prior to the Elsterian ice
advance, which is the meaning of pre-glacial in this region). It should be noted, however, that this
reconstruction is based on small ‘windows’ of subsurface evidence, providing limited scope for
detailed reconstruction of areal three-dimensional form. Beneath the Sanian and Odranian glacial
deposits, fluvial sediments of several different types have been recorded, much work having been
done in order to characterize and distinguish these, in particular clast-lithological analysis of their
gravel components and heavy-mineral analysis of sand grains (Czerwonka et al., 1994; Krzyszkowski
and Bowman, 1997; Krzyszkowski et al., 1998; Przybylski et al. 1998; Krzyszkowski, 2001;
Krzyszkowski and Karanter, 2001; Krzyszkowski, 2013). Many of these early fluvial deposits are
kaolinitic, from the weathering of gneiss, gabbro, serpentinite, schist and other feldspathic rocks,
which, in company with a dominance of rudaceous quartz, gave rise to the term ‘white gravels’; they
have also been referred to as the ‘preglacial series’ (Dyjor 1983, 1986, 1987a, b, 1993; Jahn et al.
1984; Dyjor et al. 1992). The matching of these components to source areas is illustrated in Fig. 6.
They lie above the Upper Miocene — Lower Pliocene Poznan (Clay) Formation , sometimes with
channel or palaeo-valley geometries apparent from the subsurface data (Ciuk and Piwocki, 1979;
Ciuk and Pozaryska, 1982; Peryt and Piwocki, 2004). Indeed, there is some evidence of incision and
even terrace formation within the preglacial sequence (see online supplement, Figs S2 and S3), much
of which is however a continuation of the stacked basin-fill represented by the Neogene Poznan
Formation. The pre-glacial fluvial deposits can be collectively described under the name Ziebice
Group, this being the amalgam of several formations, representing different pre-glacial river
systems, defined by their heavy mineral content and non-quartz gravel-clast petrography
(Czerwonka and Krzyszkowski, 2001; Table 1; Figs 7 and 8). The Ziebice locality in central Poland,
formerly called Miinsterberg, was where fluvial ‘white gravel’ sediments, lacking Scandinavian
material, were first described (Jentzsch and Berg, 1913; Frech, 1915; Lewinski, 1928, 1929; Zeuner,
1928; Krzyszkowski et al., 1998; Przybylski et al., 1998;Czerwonka and Krzyszkowski, 2001; online
supplement Fig. S1).

Emplacement of the Ziebice Group as a whole can probably be attributed in part to increased
mountain uplift and active faulting in the Sudetes and their foreland, perhaps resultant from the
global climatic cooling that characterized the mid-Pliocene (e.g., Westaway et al., 2009);
downthrown fault basins would have guided the main drainage lines. Each component formation
represents sequences deposited by a specific fluvial system originating in the Sudeten Mountains.
Within the group as a whole, four informal members (I-I1V) have been recognized (Czerwonka and
Krzyszkowski, 2001), their distinction being broadly age dependent, which is why they have not been
formally defined, although there are no means for precise dating. These members are variously
represented within the different formations, only two of which have all four members (Table 1; Fig.
9), with each numbered member believed to have been formed approximately synchronously in the
different rivers across the region. The supposed ages of the members are relative and rely on
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superposition (see online supplement) and sporadic but rare preservation of biostratigrahical
evidence (Czerwonka and Krzyszkowski, 2001; see below). Supplementary evidence for
distinguishing between the members comes from erosional hiatuses at the bases of Members 1, llI
and IV and for the distinct widening of the valley systems between Members | and 11l (Czerwonka
and Krzyszkowski, 2001; compare Figs 9 and 10). The sedimentology and range and type of facies
suggests a meandering fluvial regime for Members | — lll, especially away from the mountain front,
and a braided river envrionment for member IV (Czerwonka and Krzyszkowski, 2001). Systematic
analyses have been undertaken from exposures and boreholes, including sand heavy mineralogy and
gravel clast lithology, arguably the most valuable, combined with particle-size analysis, quartz (sand)
grain angularity—roundness analysis and palaeocurrent measurements (Czerwonka et al., 1994;
Krzyszkowski and Bowman, 1997; Przybylski et al. 1998; Krzyszkowski et al., 1998; Krzyszkowski and
Karanter, 2001; Krzyszkowski, 2001; Table 1; see online supplement).

As summarized in Table 1, six main pre-glacial river systems have been recognized, each with
characteristic heavy-mineral signatures and some with distinctive clast-lithological assemblages.
These are (1) the Palaeo-Odra, characterized by a zircon—rutile heavy-mineral assemblage and gravel
clasts of Carpathian origin, represented by the Chrzgszczyce Formation, (2) the Palaeo-Biata
Gtuchotaska (staurolite-amphibole mineralogy), represented by the Debina Formation, (3) the
Palaeo-Nysa Ktodzka (staurolite—garnet/amphibole—garnet), represented by the Ktodzko—Stankowo
Formation, (4) the Palaeo-Bystrzyca (zircon, sillimanite and various) , represented by the Bojanice
Formation (as well, potentially, as the Pogalewo and Wichréw formations), (5) the Palaeo-
Strzegomka (sillimanite—garnet), represented by the Mielecin—-Wotéw Formation, and (6) the Palaeo-
upper Bobr/Kaczawa (andalusite), as represented by the Rokitki—Bielany Formation. Of these the
Palaeo-Nysa Ktodzka appears to have been the trunk river throughout the ‘pre-glacial’ period (see
Figs 9-12). Evidence for four additional systems has been recognized but is more localized; these
are the Palaeo-Wierzbiak, represented by the Snowidza Formation, the Palaeo-Budzdwka,
represented by the Zgbkowice Formation, and two other local rivers, near Bardo/Potworéw and
Szydtdw, identified only by gravel-clast analysis (Przybylski et al., 1998) and impossible to match with
existing rivers.

These drainage systems probably originated during the Early Miocene, since the Miocene—Lower
Pliocene Poznan Formation is thought to represent the low-energy sediments of anastomosing river
or inland-delta environments (Peryt and Piwocki, 2004), which, from the available evidence,
persisted with relatively little change until disrupted by glaciation in the Middle Pleistocene. It
should be noted that those formations with ‘double-barrelled’ names (Ktodzko—Stankowo, Mielecin—
Wotdéw and Rokitki—Bielany) are traced for significant distances from the mountain front and have
‘proximal’ type locailties (giving the first part of the name) near the Sudetes and ‘distal’ type
localities further downstream. The lack of Scandinavian clasts in these various pre-glacial fluviatile
sediments distinguishes them from the glacial deposits (Elsterian and Lower Saalian) and from the
terrace deposits of the post-glacial rivers, in which reworked glacially-derived material occurs
(Schwarzbach, 1955; Jahn, 1960, 1980; Czerwonka and Krzyszkowski, 1992; Krzyszkowski 1995, 2013;
Czerwonka et al. 1997).

Turning to the informal members, |-lll have generally been attributed to the Pliocene—lowermost
Pleistocene and IV to the lower Middle Pleistocene (Cromerian Complex). This seemingly points to a
hiatus spanning much of the first half of the Pleistocene, although there may well be unrecognized
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representation of this interval amongst sequences that are notoriously difficult to date and which
include components that have yet to be defined and characterized fully. Alluvial-fan sediments
occur within all members at localities near the mountain front. The Pliocene members can be
presumed to represent rivers draining northwards to join the erstwhile Baltic River, which existed as
a major east—west flowing system at that time (e.g., Gibbard, 1988). The drainage represented by
members I-lll was sinuous, as indicated by sediment geometry (Figs 9—11) as well as sedimentology
(see above), in contrast to the braided-river deposits of member IV. This perhaps indicates
sedimentation of members |-lll during periods of temperate and relatively moist climate, whereas
member |V records more variable conditions, with evidence of both temperate (interglacial) and cold
(periglacial) climates. This contrast could, indeed, be a reflection of climatic cooling in the Early
Pleistocene, a trend that would culminate in the glaciations of the Baltic region in the Middle
Pleistocene.

The evidence for different pre-glacial rivers, precursors of the modern drainage of the Polish Sudetic
margin, will be described in east to west sequence, starting with the Palaeo-Odra, the post-glacial
successor of which forms the principle arm of the modern regional drainage.

The Palaeo-Odra (Chrzaszczyce Formation)

Within the research area the Chrzgszczyce Formation, which is thought to represent the main
palaeo-Odra river, is restricted to locations >20 km from the Sudetic mountain front, entering the
region from the south-east in the area south of Opole (Figs 7 and 9—11). It has been studied at
relatively few localities at and to the west of Opole and west of Wroctaw, with representation only
of Members I-lll (Table 1; Figs 9-11). Only at Chrzaszczyce, the type locality ~5 km SSW of Opole
(Figs 7 and 8; online supplement, Fig. S4), have all three of these members been observed. Gravel
analysis has only been possible from the Member Ill sediments at Ose (Figs 7 and 8), where the
occurrence of Carpathian siliceous rocks (silicified limestones and sandstones, radiolarites, etc.)
amongst a quartz-dominated assemblage provides important support for origin within the Odra
catchment (Czerwonka and Krzyszkowski, 1992). There are subtle changes in heavy mineralogy
between members I-lll (Table 1): all have assemblages dominated by zircon, with staurolite and
tourmaline, plus garnet in members | and Il and rutile in Il and Ill. Member Ill at Tulowice has
yielded plant macrofossils (leaves and fruit) with close affinity to those of the underlying uppermost
Poznan Formation: i.e. not older than late Pliocene (Przybylski et al., 1998).

The Palaeo-Biata Gtuchotaska (Debina Formation)

This is a relatively minor formation, representative of a subordinate river, the most south-easterly
that drained the Sudetes Mountains within the study area. Only Member | has been recognized,
made up of quartzose gravels with a staurolite—amphibole heavy-mineral suite (Table 1). It has been
recognized at a small number of sites from Strybowice to the type locality at Debina, ~30 km SSW of
Opole (Fig. 7). Although its occurrences trace a course from SSW to NNE, the petrography of the
Ziebice Group as a whole, plus knowledge of the bedrock surface, suggests that the palaeo-river
turned sharply to the NW in the vicinity of Debina to a confluence with the Palaeo-Nysa Ktodzka,
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rather than continuing NNE-wards to join the palaeo-Odra (Fig. 9). It uncertain whether any of the
Debina Formation sequences continue upwards into Member Il but the existence of a Palaeo-Biata
Gtuchotaska flowing NE from the Sudetes has been reconstructed for that time-span, joining a
considerably wider Palaeo Nysa Ktodzka (Fig. 10) in comparison with that reconstructed for Member
I. The continued existence of such a river during later times can only be speculative (Krzyszkowski et
al., 1998).

The Palaeo-Nysa Ktodzka (Ktodzko—Stankowo Formation)

This formation accounts for the vast majority of the pre-glacial series, being represented at sites
over an area of considerable width from its proximal type locality (see above) at Ktodzko, in the
south (in the Ktodzko [intermontane] basin) eastwards towards (but not reaching) Opole and then
northwards to Wroctaw and beyond (Fig. 7). This distribution demonstrates the dominance of the
Palaeo-Nysa Ktodzka during pre-glacial times (Figs 9-12). Its distal type locality, at Stankowo (Fig. 7,
site [1]), is at the northern periphery of the study area, ~20 km NE of Leszno (Fig. 1; supplement, Fig.
S5). The recognition of this formation is based on a gravel clast lithology reflecting the characteristic
geology of the Ktodzko Basin, including gneisses and other cystalline rocks, notably porphyries,
together with Mesozoic sandstones and ‘flint’ (Table 1; Figs 6 and 7). The heavy mineralogy is
complex and regionally variable, also changing from staurolite—garnet dominance in Members I-ll|
to garnet and amphibole in Member IV (Table 1).

With the formation represented at >50 sites (Figs 7 and 8), the comparative distribution of the
different members reveals significant changes in the course of this trunk river, with Member | tracing
a relatively confined WSW-ENE reach from Ktodzko to Gnojna (Fig. 7 [35]), diverging northwards
from the modern Nysa Ktodzka course, and then a wider but still confined reach (in comparison with
younger members) from here to Wroctaw and Taborek (Fig. 7 [3]), by which point the Palaeo-Odra
was converging from the east (Fig. 9). At the time of Member Il emplacement, both reaches were
considerably wider, that east of Ktodzko spreading southwards to envelop the course of the modern
river, whereas in its northward-flowing reach it extended eastwards to meet the Palaeo-Odra ~10
km west of Opole and spread out north-eastwards across the foreland to encompass an area from
that of its earlier course across to that around Ostréw Wielkolpolski and beyond (Fig. 10).

By Member Ill times the palaeo-river had been diverted from near Ziebice into a more confined
northerly course towards Wroctaw, sweeping across the area south and east of this city towards
Ostrow Wielkolpolski, turning northwards as it met the palaeo-Odra, by this time of almost equal
size, and other drainage from the east, possible the ‘Betchatéw River’, as recognized in central
Poland at the large lignite quarry by the same name (Krzyszkowski, 1995; Krzyszkowski et al., 2015;
Fig. 11).

By member IV times there is little evidence that the Palaeo-Nysa Ktodzka extended north-eastwards
of the modern Odra course, except in the area NW of Wroctaw. This suggests that a Palaeo-Odra
closely following its modern valley had come into existence by this time, perhaps as a result of early
Middle Pleistocene glaciation (Zeuner, 1928; Fig. 12), otherwise poorly documented because its
extent was less than the ice sheets of the Elsterian, the suggestion being that the line of the Odra
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across the northern edge of the Sudetic foreland might be of early ice-marginal (‘pradolina’) origin
(see above).

The Palaeo-Budzéowka (Zagbkowice Formation)

The Budzdéwka is a minor left-bank tributary of the Nysa Ktodzka, joining the latter ~20 km
downstream of Ktodzko. Its pre-glacial forebear is represented by probable Member IV deposits that
occur at two sites, the Zgbkowice type locality [73] and Albertéw [107] (Figs 7, 8 and 12). These
deposits are characterized by gravel in which the dominant clast type is Sowie Géry gneiss, with
subordinate quartz and other siliceous rocks; there is a garnet—amphibole heavy mineral suite (Table
1).

The Palaeo-Bystrzyca (Bojanice, Wichréw and Pogalewo formations)

The River Bystrzyca, which is the next important Odra tributary moving to the NW along the Sudetes
margin, flows through the town of Swidnica on its SW—NE course towards a confluence with the
trunk river ~7 km NW of Wroctaw; ~15 km upstream of that confluence it receives a substantial left-
bank tributary, the Strzegomka (Fig. 7). Pre-glacial versions of both these rivers are represented
amongst the Ziebice Group sediments, although with courses that appear to have been entirely
separate until the trunk river was reached; at that time the latter was the Palaeo-Nysa Ktodzka (Figs
9-12.

Three different pre-glacial formations are potential products of deposition by the palaeo-Bystrzyca.
First is the Bojanice Formation, of which Members II, Ill and possibly IV occur in the vicinity of
Swidnica, in the form of porphyry-rich quartz gravels, also containing melaphyre, Sowie Géry gneiss
and quartzite, although the uppermost (potentially Member 1V) deposits lack rudaceous
components (Table 1). The heavy minerology of these upper deposits is dominated by sillimanite,
whereas that of the gravelly facies is dominated by zircon and garnet (Table 1).

The Wichréw Formation is represented by a small group of sites, of which the Wichréw type locality
is one, ~20-30 NNE of Swidnica, in the modern catchment of the Strzegomka tributary (Figs 7 and

8[45]). Only the basal part of the sequence is present, with Member | and a possible extension into
Member I, sharing the zircon-rich mineralogy of the lower members within the Bojanice Formation
(Table 1). Despite its modern location within the tributary catchment, the Wichréw Formation sites
seem likely to represent a downstream continuation of the palaeo-Bystrzyca from the Swidnica area

(Fig. 9).

The Pogalewo Formation is identified in the area much further from the mountain front, to the north
of the modern River Odra downstream of Wroctaw. Members |, Il and Ill are all recognized, albeit at
different sites (Figs 7 and 8). Member | is identified only at the Pogalewo type locality [31], on the
northern side of the Odra valley ~30 km downstream of Wroctaw (Fig. 9; online supplement Fig. S3).
It is the only member of this formation to have yielded rudaceous material, this being quartz gravel
with local flint and a trace of porphyry; it has a zircon—tourmaline-rutile heavy mineralogy (Table 1).



407
408
409
410
411
412
413
414
415
416

417

418

419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

435

436

437
438
439
440
441
442
443
444
445
446

Further upstream (both within the modern Odra system and the pre-glacial palaeovalley), ~5-10 km
east from Pogalewo, is a small cluster of sites that represent Member Ill, which have the same
dominant mineralogy but with additional epidote, kyanite, amphibole and staurolite (Table 1). The
intervening Member I, although perhaps represented by the uppermost deposits at Pogalewo, is
optimally recorded much further downstream, at Chatupki [51], ~30 km SW of Gtogdéw (Fig. 7). The
mineralogy of this member is different again, with kyanite in addition to the zircon—tourmaline—
rutile suite but lacking epidote, amphibole and staurolite (Table 1). Although given a separate name,
the deposits of the Pogalewo Formation are most readily interpreted as more distal (downstream)
palaeo-Bystrzyca sediments, implying a separate northward course far from the mountain front,
especially during emplacement of Member Il (Fig. 10).

The Palaeo-Strzegomka (Mielecin-Wotéw Formation)

As noted above, the modern River Strzegomka joins the Bystrzyca ~15 km upstream of the
confluence between the combined river and the Odra. Prior to the Middle Pleistocene, however, it
seems likely that the precursors of these rivers maintained separate courses to the trunk palaeo-
Nysa Ktodzka (Figs 9—11). The palaeo-Strzegomka is represented by the Mielecin—Wotédw Formation,
as is apparent from the preservation of that formation at sites close to the mountain front within the
modern Strzegomka catchment, including the Mielecin (proximal) type locality (Fig. 7 [47]; online
supplement Fig. S6). The deposits here comprise quartzose—porphyry-rich gravels representing
Members |-lll, also containing local siliceous rocks (flint), conglomerate, spilite, diabase, greenschist
and quartzite from the Watbrzych Upland, Strzegom granite and local schist (phyllite), as well as a
sillimanite—garnet heavy-mineral suite (Table 1; Fig. 6). The distal type locality, at Wotdw, where
only Member | is represented, is located north of the modern Odra, approximately equidistant
between Wroctaw and Gtogéw (Fig. 8 [32]). Member IV of the Mielecin—Wotdw Formation is
recognized at two sites, Sosnica [43], in the modern Bystrzyca valley upstream of its confluence with
the Strzegomka, and Brzeg Dolny 3 [108], north of the modern Odra, where it overlies Member | of
the Ktodzko—Stankowo Formation (Figs 8 and 12; online supplement Fig. S2). This upper member
lacks gravel but is characterized by a sillimanite-dominated heavy mineralogy (Table 1).

The Palaeo-upper Bobr/Kaczawa (Rokitki-Bielany Formation)

The next Odra tributary north-westwards along the mountain front is the River Kaczawa, which has a
confluence with the trunk river ~20 km downstream from Legnica. lts pre-glacial forebear, however,
had a catchment that penetrated deeper into the mountain zone, including areas now drained by
the headwaters of the Bébr, a yet more westerly Odra tributary that flows NW from the Sudetes to
join the trunk river well to the west of the study area (Fig. 7). This is indicated by the characteristic
clast lithology of the Rokitki—Bielany Formation, which has rudaceous sediments representing all
four members with contents that show drainage from the Bobr catchment: these are quartzose
gravels with porphyry, Karkonosze granite, crystalline rocks, schist, quartzite, with the addition, in
Member IV, of Cretaceous sandstone and Wojcieszéw limestone (Table 1). The heavy mineralogy is
characterized by andalusite and tourmaline, with the addition of epidote in Member | and of kyanite,
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zircon, garnet, amphibole and sillimanite in Member IV (Table 1). The proximal type locality of this
formation, Rokitki [55], is situated in the Kaczawa valley, ~ 8 km upstream of its catchment with the
Nysa Szalona, a right-bank tributary (Fig. 7). Members |-lll are attributed to a palaeo-Bébr—Kaczawa
that drained northwards, to the west of Legnica, towards Gtogéw (Figs 9-11). Member IV of this
formation is recognized only at sites in the interfluve area between the Strzegomka and the
Kaczawa, at Kepy [95] and Bielany [50] (Fig. 12; online supplement Fig. S7), where it overlies older
members of the Mielecin—-Wotdéw Formation that represent the earlier northward drainage of the
palaeo- Strzegomka (see above; Figs 1 and 9). Bielany is the distal type locality of th#e Rokitki—
Bielany Formation, although it lies further south than Rokikti (Fig. 7 [50]). The most northerly
Mielecin—Wotdw site is Polkowice [62], <20 km south of Gtogdéw, where only Member Il occurs (Figs
7,8 and 11).

Other minor rivers

Fluvial tracts of more localized rivers have been traced. The Snowidza Formation, known from a

single locality (Fig. 8), represents a possible ancestral River Wierzbiak, the modern river of the same
name being a right-bank Kaczawa tributary that joins the latter ~10 km downstream of Legnica (Fig.
7). The sole representation of the Snowidza Formation is probably equivalent to Member | of other
Ziebice Group formations (Fig. 8). The deposits of two other local rivers have been recognized (Fig.
7) in the vicinity of Bardo [96-97], Potwordw [98—99]and Szydtow [101] on the basis of gravel-clast
petrography (Przybylski et al., 1998). These occurrences are again of probable Member | affinity

(Fig. 8).

DATING THE ZIEBICE GROUP

Much of the dating of the individual components of the Ziebice Group is dependent on their relative
stratigraphical positions within the sequence and their relation to the underlying Poznan Formation
and overlying Middle Pleistocene glacial deposits. At Gnojna (~55 km NE of Ktodzko; Fig. 7: [35])
palynological analyses of the uppermost member of the Poznan Formation, immediately below
member | of the Ktodzko—Stankowo Formation, have yielded a flora indicative of the earliest
Pliocene (Sadowska, 1985; Badura et al., 1998a). A similar Early Pliocene flora has been obtained
from Sosnica (Stachurska et al., 1973; Sadowska, 1985, 1992; Fig. 7 [43]), where it is overlain by
member IV of the Mielecin-Wotédw Formation. Macrofossil analysis of the Poznan Formation at
Ziebice, Sosnica and Gnojna have revealed the presence of Late Miocene to Early Pliocene leaves
and fruits (Krauzel, 1919, 1920; taricucka-Srodoniowa et al., 1981; Krajewska, 1996). These
occurrences provide a maximum (limiting) age for the Ziebice Group

A very few sites have yielded palaeobotanical remains from sediments of Ziebice Group formations.
At Ktodzko (Figs 7 and 8 [68]; online supplement Fig. S8) an organic deposit was recorded at the top
of a sequence that potentially represented member Il and/or member Il of the Ktodzko—Stankowo
Formation (cf. Krzyszkowski et al., 1998). Pollen and macrofossils from this deposit have been
attributed to the Reuverian Stage of the Late Pliocene (Jahn et al., 1984; Sadowska, 1995). Poorly
preserved leaf macrofossils from member Il of the Chrzgszczyce Formation at Tutowice (~15km SW
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of Opole; Figs 7 and 8 [74]) represent a temperate-climate assemblage of trees and shrubs that
cannot be dated with precision but is unlikely to be older than late Pliocene (Przybylski et al., 1998).
The fossiliferous deposits here are thus attributed to the palaeo-Odra, although they overlie
member |l deposits that are attributed to the palaeo-Nysa Ktodzka and thus the Ktodzko—Stankowo
Formation (Fig. 8). Further west, nearer the modern Nysa Ktodzka and in sediments attributed to
the Ktodzko—Stankowo Formation, organic remains and leaf impressions have been found at
Niemodlin 2 [80] and Magnuszowiczki [83] in member Il (Figs 7 and 8); Przybylski et al. (1998) noted
that the leaf impressions occurred in laminated silty alluvial sediments.

Zeuner (1928, 1929) described pre-glacial organic deposits at Jonsbach (now Janowiec) that would
appear to have been part of member IV of the Ktodzko—Stankowo Formation (Figs 2, 7 [72], 8 and
12): part of a pre-glacial fluvial (‘white gravel’) sequence ~11 m thick, located just downstream of the
Sudeten Marginal Fault (cf. Krzyszkowski et al., 1998). The limited pollen record (Stark and
Overbeck, 1932; Badura et al., 1998b; Krzyszkowski et al., 1998) lacks Tertiary relics and is thus
suggestive of the early Middle Pleistocene (Cromerian Complex). Attempts to relocate these
deposits and provide a more detailed analysis have proved unsuccessful.

This is meagre evidence upon which to base an age model for the Ziebice Group, but broad inference
from these data points to Pliocene—earliest Pleistocene deposition of members I-lIl and to early
Middle Pleistocene emplacement of member IV. That inference concurs well enough with the
sedimentological evidence for a meandering fluvial regime during deposition of members I-lll and a
braided gravel-bed river at the time of member IV emplacement (Czerwonka and Krzyszkowski,
2001; see above), given that the change could readily be attributed to the greater severity of cold-
stage climatic episodes in the early Middle Pleistocene, following the Mid-Pleistocene Revolution.
The latter, which saw the transition to 100 ka glacial-interglacial climatic cyclicity (e.g., Maslin and
Ridgwell, 2005), has been noted to have had a profound effect on valley evolution in many parts of
the world, notably causing enhanced valley deepening and concomitant isostatic uplift (e.g.,
Westaway et al., 2009; Bridgland and Westaway, 2014;.cf. Stange et al., 2013).

POST-GLACIAL LANDSCAPE EVOLUTION OF THE SUDETIC MARGIN

Following the Middle Pleistocene glaciation of the Sudetic foreland, the present-day rivers,
established in the courses they still occupy, have incised their valleys by varying amounts. In the
vicinity of the Bardo Gorge (sites 96 and 97, Fig. 7), in an uplifting inter-basinal location, the Nysa
Ktodzka has cut down >50 m below the level of the Odranian till, forming five terraces during the
process (Krzyszkowski et al., 2000; Fig. 2A), presumably in response to post-Odranian regional uplift
(Krzyszkowski and Stachura, 1997; Krzyszkowski et al., 1998, Migon et al., 1998; Starkel 2014),
perhaps with a component of glacio-isostatic rebound (cf. Bridgland and Westaway, 2014).

As Krzyszkowski et al. (1995, 2000) have shown, the amount of fluvial incision (and thus of uplift)
differs markedly on either side of the Sudetic Marginal Fault, the displacement suggesting ~15-25 m
of additional uplift on the upthrow side (related to continued elevation of the Sudeten Mountains)
since formation of the ‘Main Terrace’, the oldest post-Elsterian river terrace. Previous authors have
ascribed this main terrace to the Odranian, since it is overlain by till of that age (e.g., Krzyszkowski
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and Biernat, 1998; Krzyszkowski et al., 2000); it is essentially the starting point for post-glacial
incision by the Sudetic marginal rivers such as the Bystrzyca and Nysa Ktodzka (Fig. 2). If attribution
of the Odranian to MIS 6 is correct then several terraces have been formed during the relatively
short interval represented by the Late Pleistocene. Dating evidence is generally lacking, however.
The following is a general summary of the sequence:

i Upper terrace (erosional /depositional) ~10-18 m above alluvial plain (MIS 6; Wartanian)
ii. Middle Upper terrace (depositional) ~4—-8 m above alluvial plain (MIS 3; mid-Weichselian)
iii. Middle Lower terrace (depositional) ~2—5 m above alluvial plain (MIS 2; Vistulian/

Weichselian /LGM)
iv. Lower terraces of the recent alluvial plain (Holocene) - see Fig. 2.

DISCUSSION: PLIOCENE-QUATERNARY LANDSCAPE EVOLUTION IN
THE POLISH SUDETEN FORELAND AND THE WIDER REGION

The landscape of Poland represents a mosaic of crustal provinces, as illustrated in Fig. 4A and in
more detail in Fig. 4B. The boundaries between these provinces have been delineated by many
studies, initially outcrop investigations, later borehole studies and, most recently, deep controlled-
source seismic-profiling projects (e.g., Grad et al., 2002, 2003, 2008; Hrubcova et al., 2005;
Malinowski et al., 2013; Mazur et al., 2015). NE Poland is thus known to be located within ancient
(Early-Middle Proterozoic) continental crust overlying the relatively thick lithosphere of the EEP (see
above). The boundary between this region and the younger crustal province to the SW was first
identified in the late 19th century in territory now in SE Poland and western Ukraine by Teisseyre
(1893; Teisseyre and Teisseyre, 2002). This boundary, nowadays known as the Teisseyre—Tornquist
Zone (TTZ) or Trans-European Suture Zone, marks the suture of the Tornquist ocean, which formerly
separated the ancestral continents of Baltica (to the NE) and Avalonia (to the SW), and closed during
the Caledonian orogeny, when the crust SW of the TTZ experienced deformation (e.g., Grad et al.,
2003). At a later stage, SW Poland, including the Sudetes, was deformed during the Variscan
orogeny, the northern and eastern limits of the region thus affected being now concealed in the
subsurface by younger sediments. Figure 4B indicates one interpretation of these limits; Grad et al.
(2003) provide another. The Variscan orogeny in this part of Europe involved northward subduction
of the Rheic ocean beneath the southern margin of Avalonia, followed by the continental collision
between the Armorica continent (more specifically, its eastern part, Saxothiringia) and various
microcontinents with Avalonia (e.g., Mazur et al., 2006). The Sudeten massif in the extreme SW of
Poland, in the core of the Variscan orogeny, experienced pervasive deformation, metamorphisim,
and granitic magmatism. This region was also affected at this time by NW—-SE-oriented left-lateral
strike-slip faulting (including slip on the Sudetic Boundary Fault and Intra-Sudetic Fault), creating a
collage of fragmented crustal blocks of extreme complexity (e.g., Aleksandrowski et al., 1997;
Aleksandrowski and Mazur, 2002; Franke and Zelazniewicz, 2002; Gordon et al., 2005; Jefabek et al.,
2016; Koztowski et al., 2016; Fig. 1). Much later, SE Poland was affected by Late Cenozoic plate
motions, involving southward or south-westward subduction of the former Carpathian Ocean (Fig.
3B); as a result, the mosaic of continental fragments affected by the Variscan orogeny in what is now
Slovakia (which were formerly located further southwest) became juxtaposed against SE Poland
(e.g., Plasienka et al., 1997; Szafian et al., 1997; Stampfli et al., 2001, 2002; Von Raumer et al., 2002,
2003; Bielik et al., 2004; Schmid et al., 2004; Alasonati-Tasarova et al., 2009; Handy et al., 2014;
Broska and Petrik, 2015). Thus the crustal structure of Poland is highly variable, reflecting the
complex tectonic history of the wider region.
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The ideas about different crustal types having very different landscape evolution histories presented
above were developed without reference to fluvial sequences in Poland, although data from
neighbouring countries, such as Ukraine, were taken into account, as exemplified by the example of
the northern Black Sea rivers (Fig. 3). Application of these ideas to Poland, and in particular to the
data under consideration in this paper, thus provides a valuable test of the underlying theories. This
task has been facilitated by the aforementioned deep seismic projects, from which have been
published crustal transects with the required spatial resolution; indeed, some of the transects
combine crustal structure and heat flow, for example those across Poland from SW to NE presented
by Grad et al. (2003). The first such transect, likewise combining crustal structure and heat flow, was
prepared in a similar location by Majorowicz and Plewa (1979); comparison between the two
indicates the technical progress over the intervening decades, although the main features
identifiable in the modern cross-sections can also be resolved on the older one. One aspect of
particular importance for the present investigation is identification (from its relatively high seismic
velocity) of the presence of mafic underplating at the base of the crust. Such a layer remains rigid (or
brittle) under the temperatures typically experienced (<~550 °C) and thus behaves mechanically as
part of the mantle lithosphere, any mobile lower-crustal layer present being restricted to shallower
depths in the felsic lower crust. The phenomenon was mentioned above in connection with Early or
Middle Proterozoic crustal provinces in which fluvial archives point to past alternation subsidence
and uplift.

The seismic transect studied by Grad et al. (2003) crosses the TTZ ~150 km NW of Warsaw with ESE—
WSW orientation, revealing a layer of mafic underplating at the base of the crust persisting from
here to a point ~100 km NW of Wroctaw. According to Grad et al. (2003), emplacement occurred
during magmatic rifting of eastern Avalonia from the Precambrian supercontinent Rodinia during the
latest Proterozoic or Cambrian. This layer is up to ~10 km thick, its top locally as shallow as ~25 km
depth; it evidently extends beneath the external part of the Variscides, including the high-heat-flow
region around Poznan, depicted in Fig. 4C, but no long-timescale fluvial sequences are evident in this
region due to the effect of multiple glaciations. The subparallel transect studied by Grad et al.
(2008) starts just SW of the TTZ, ~170 km west of Warsaw, crosses the Czech—Polish border in the
extreme SW of Poland, then through the NW extremity of the Czech Republic before entering
Germany. It again reveals up to ~10 km of mafic underplating at the base of the crust, its top locally
as shallow as ~22 km, persisting WSW for ~250 km and dying out in the vicinity of the Intra-Sudetic
Fault Zone. Mafic underplating, with thickness up to ~8 km, its top locally as shallow as ~18 km,
resumes in the western part of the Bohemian Massif near the Czech—German border, as the transect
approaches Saxothiringia, the intervening crustal provinces (Barrandia, forming the central
Bohemian Massif) being free of underplating. The NW-SE seismic transect across the Bohemian
Massif, reported by Hrubcova et al. (2005), confirms the presence of underplating beneath
Saxothiringia but not beneath Moldanubia (the SE Bohemian Massif) or Barrandia.

As already discussed, the structure of the Sudeten Mountains is complex; as a result of the Variscan
left-lateral faulting it consists of small fragments of crustal blocks that have become juxtaposed.
Jerabek et al. (2016) have recently demonstrated that this process included transposition of
Saxothiringian crust (presumably including its characteristic layer of mafic underplating) beneath
fragments of Barrandia. It would thus appear that mafic underplating persists beneath much of the
Sudeten Mountains region, as Majorowicz and Plewa (1979) inferred, even though this was not
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resolved in the Grad et al. (2008) study. The heat flow typically decreases southward across the
Sudeten Mountains, reaching values of <70 mW m2in the Ktodzko area (Fig. 4C); it can thus be
inferred that this effect, along with the presence of mafic underplating derived from Saxothiiringian
crust, constricts the mobile lower-crustal layer, resulting in the pattern of alternations of uplift and
subsidence that are evident in the fluvial records, particularly in basinal areas (see above). A
noteworthy record comes from Ktodzko [site 68], which gives its name to the Ktodzko Basin and is
the proximal type locality of the Ktodzko—Stankowo Formation, which represents the pre-glacial
River Nysa Ktodzka. Here in the basin the pre-glacial gravels extend to below river level, suggesting
the sort of reversal in vertical crustal motion described above. This can be compared with the
situation ~12km downstream at the Bardo Gorge, on the inter-basinal ridge (see above), where it is
evident that uplift has been more continuous (Compare Figs 2A and 2B).

Another good example of the low level of the pre-glacial deposits in parts of the Sudetic Foreland, as
well as their geomorphological inter-relationship, is the site at Brzeg Dolny in the Odra valley
downstream of Wroctaw [site 108], where Members | and Il of the Ktodzko—Stankowo Formation
occur in superposition, their base ~10 m above the level of nearby Holocene valley-floor sediments.
Member IV of the Mielecin-Wotdéw Formation (representing the palaeo- Strzegomka) occurs nearby,
incised to a lower level. Given the tributary status of the palaeo- Strzegomka, this relationship
implies rejuvenation between the Pliocene (Member |) and early Middle Pleistocene (Member V),
when the latter river traversed an area formerly occupied by the pre-glacial Nysa Ktodzka; this is a
clear example of terrace formation within the pre-glacial sequence (see online supplement Fig. S2).

In some parts of the Sudetes, thick plutons of highly radiothermal granite were emplaced during the
Variscan orogeny, their radioactive heat production resulting in local heat-flow highs; for example,
Bujakowski et al. (2016) inferred temperatures as high as ~390 °C at 10 km depth beneath the
Karkonosze granite pluton (see Fig. 6 for location). However, this is one locality where Jerabek et al.
(2016) inferred that the Variscan orogeny emplaced Saxothiringian crust beneath crust of
Barrandian provenance, so that here it can be anticipated that the mafic underplating will constrict
the mobile crustal layer, notwithstanding the high surface heat flow.

South of the Sudeten Mountains, in the Bohemian Massif, rivers such as the Vltava and Labe
(affluents of the Elbe) have substantial terrace staircases (e.g., Tyracek et al., 2004), with no
indications of alternations in vertical crustal motion. The heat flow in the central Bohemian Massif is
~50-60 mW m (e.g., Cermdk, 1979), less than in the Sudeten Mountains. However, as already
noted, the crust in this region, up to ~35 km thick in Barrandia (in which the Vltava terrace staircase
is located) and up to ~40 km thick in Moldanubia, is free of mafic underplating (Hrubcova et al.,
2005). The felsic lower crust is thus much thicker in this region, and concomitantly much hotter near
its base, than in the Sudeten Mountains. The different landscape response between these areas can
thus be explained: the mafic underplating accounts, via the mechanism advocated by Westaway and
Bridgland (2014), for the observed pattern of sedimentary archives in parts of the Sudetes; the
importance of underplating is underlined by evidence for sustained upward vertical crustal motion,
despite lower heat flow, in the central Bohemian Massif, where underplating is absent (cf.
Stépancikova et al., 2008).

Wider crustal comparisons can also be made between fluvial sequences in the Sudeten Mountains
and elsewhere in Poland. Comparison of Figs 4A and B indicates that the surface heat flow increases
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from ~70 mW m at the external (northern) margin of the Carpathians to ~80 mW m along the
Poland-Slovakia border, for example along the upper reaches of the River San. No modern deep
seismic profile in this area is known to the authors, but by analogy with other localities further NW it
can be inferred that the region consists of ~40 km thick crust with ~10 km of mafic underplating (cf.
Grad et al., 2003, 2008). However, during the Late Cenozoic plate convergence this crust became
buried beneath up to ~7 km of young sediment (e.g., Oszczypko, 1997). The ‘thermal blanketing’
effect of this sediment will significantly raise the temperature in the underlying crust, reducing the
constriction effect of the underplating on the thickness of mobile lower crust; 7 km of sediment of
thermal conductivity 2 W m™ °C? overlying crust in which the heat flow is 80 mW m will raise the
temperature in this bedrock by 7 km x 80 mW m2/2 W m™ °C? or ~280 °C. Westaway and
Bridgland (2014) suggested an analogous explanation for the disposition of the terrace deposits of
the River Dniester in the Ukraine—Moldova border region further to the SE (see Fig. 3A).

Comparison is also possible with the crust underlying the fluvial sequence laid down by the River
Vistula in the Warsaw area. As illustrated in Fig. 5D, Pliocene deposits here occur near the present
river level, and Early Pleistocene deposits at a height ~30 m lower. After these were laid down, the
ancestral Vistula cut down to ~50 m below its present level before laying down a stack of Middle and
Late Pleistocene sediments, including Holocene temperate-climate deposits overlying their Eemian
and Holsteinian counterparts. Overall, this sequence indicates a transition from uplift in the
Pliocene and Early Pleistocene to subsidence thereafter. Warsaw is ~50 km inside the EEP (Fig. 4B).
From Grad et al. (2003) and Mazur et al. (2015), the crust is locally ~45 km thick with ~20 km of
underplating at its base, overlain by ~19 km of basement and ~3 km of sediments, which are mainly
Mesozoic (in contrast with the much thicker sequences dominated by Palaeozoic shale, closer to the
TTZ). The surface heat flow in the Warsaw area is ~60 mW m (Fig. 4C); if the sediment and
basement are assumed to have thermal conductivities of 2.5 and 3.5 W m™ °C%, respectively, the
~350 °Cisotherm can be expected at ~19 km depth, making the mobile lower crustal layer ~6 km
thick, within the range of values where alternations of uplift and subsidence have been observed in
fluvial sequences elsewhere (Westaway and Bridgland, 2014). Other fluvial sequences within the
EEP, with alternations of uplift and subsidence evident, include those of the River Dnieper in Ukraine
and the Rover Don in SW Russia (e.g., Westaway and Bridgland, 2014; Fig. 3).

A final point on the effect of lateral variations of crustal properties, with resultant lateral variations
in uplift, on the disposition of fluvial terrace deposits concerns the occasional occurrence of back-
tilted fluvial deposits, in cases where rivers have flowed from regions of colder to warmer crust, with
an example evident from the Sudetic margin. It is evident that the ancestral drainage from the
Sudeten Mountains was directed northward, from the Wroctaw area and points further east to the
Poznan area, before adjusting (probably around the start of the Early Pleistocene) to its modern
configuration. Fig. 4C indicates that the former drainage was directed across the high heat-flow
region between Wroctaw and Poznan, raising the possibility that the subsequent drainage
adjustment was the result of faster uplift of the latter region. As already noted, the Grad et al.
(2003) seismic profile passes through this high-heat-flow region, indicating that the top of the mafic
underplating is at ~25 km depth and that the sedimentary sequence in the overlying crustal column
is thin. Assuming a thermal conductivity of 3.5 W m™ °C! in the basement, as before, and a typical
heat flow of ¥90 mW m, the ~350 °C isotherm can be expected at a depth of ~14 km, making the
thickness of the mobile lower crust ~11 km, significantly greater than in other parts of Poland and
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high enough (based on comparisons with other regions) to sustain significant uplift rates. Recorded
heights of pre-glacial fluvial deposits in this region (Czerwonka and Krzyszkowski, 2001; Supplement,
Table S1) indeed reveal evidence of back tilting. The best such evidence is provided by comparison of
the heights of the Pliocene deposits along the ancestral River Odra, between Chrzaszczyce(Fig. 7
[76/77]), Smardzow [33], 77.3 km further downstream, and Stankowo [1], 84.9 km further
downstream, the latter site adjoining the confluence with the ancestral Nysa Ktodzka (Fig. 7). The
top of the deposits assigned to Member | of the Ziebice Group is 180, 72, and 99 m a.s.l. at these
sites, thus indicating back-tilting over the reach between Smardzow and Stankowo, the long-profile
gradients being ~1.4 and ~-0.3 m km™ along these two reaches, respectively. Thus, if this river had
an original gradient of ~1 m km™, the deposit at Stankowo is now 81 m higher in the landscape, and
that at Smardzow 34 m lower, than would be expected if all three sites had experienced the same
history of vertical crustal motion. In the absence of detailed modelling the precise sequence of
processes in this region cannot be ascertained, but this pattern is consistent with the interpretation
that lower-crustal material was drawn from beneath the Smardzow area to beneath the hotter
Stankowo area, as a result of the lateral pressure gradient at the base of the brittle upper crust
caused by the variation in heat flow between these two regions. An established analogue of this
effect is the back-tilting of the deposits of the early Middle Pleistocene Bytham River in the East
Midlands of England; this river flows eastward from the northern part of the London Platform, a
region of relatively low heat flow, into the higher-heat-flow zone of crustal deformation during the
Caledonian orogeny, at the NE margin of Avalonia (Fig. 4A), its sediments now being gently tilted in
an upstream direction (Westaway et al., 2015).

The explanation for the fluvial archives in the marginal area of the Sudeten Mountains promoted
here has a more general analogue in records from SW England, in the rivers of Cornwall and west
Devon (Westaway, 2010). In that region radiothermal Variscan granites are underlain by thick mafic
underplating and the crust is relatively strong, as indicated by the minimal Late Cenozoic vertical
crustal motions deduced from fluvial sequences. The principal difference is that the mafic
underplating beneath SW England was emplaced after the Variscan orogeny, as a result of the
Palaeocene British Tertiary Igneous Province magmatism, whereas the underplating beneath the
Sudeten Mountains is evidently derived from fragments of pre-Variscan Saxothiiringian crust.

The different styles of fluvial archive preservation in the different parts of the European continent
described above are an important consideration in the understanding of Quaternary stratigraphy in
these regions, given that fluvial sequences provide valuable templates for the Late Cenozoic
terrestrial record (Vandenberghe, 2002; Bridgland et al., 2004; Bridgland and Westaway, 2014). It
has been shown that the most stable regions, in which the fluvial archives suggest a complete or
near absence of net uplift during the Quaternary, coincide with the most ancient cratonic crustal
zones, such as parts of the EEP and in particular the Ukrainian Shield (Bridgland and Westaway,
2008, 2014; Fig. 3). Such highly stable regions are the exception for the EEP, however; over much of
its area there has been limited net uplift as a result of alternations of vertical crustal movements,
resulting in periods of terrace generation with intervening periods of subsidence and burial. In Fig.
13 the fluvial archive from the Sudetic margin, using the optimal example of the Nysa Ktodzka at
Bardo (see above), is compared with that of the River Don at Voronezh. Despite the differences in
size (catchment area and, therefore, discharge) of the fluvial systems in question and the very
different glacial influences (the Don here was reached only by glaciation in MIS 16), there are
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significant points of comparison. Contrastingly, the difference between the fluvial records from the
EEP and those from the youngest and most dynamic European crust is quite profound, albeit that
many of the comparisons made above are with crust of somewhat intermediate age, such as the
Variscan and Avalonia provinces (Fig. 4). This is because much of the youngest crust, in the Alpine
and Carpathian provinces (Fig. 4), remains tectonically active (i.e., continues to be affected by active
plate motions) and so has fluvial archives that are less clearly related to regional vertical crustal
movements.

CONCLUSIONS

The rivers of the Polish Sudeten foreland have pre-glacial precursors, their courses recognized from
sediments that generally underlie the Middle Pleistocene glacial deposits and which date from the
Early Pliocene — Early Pleistocene, being substantially different from those of their modern
successors. The pre-glacial fluvial formations are preserved in the subsurface, in part as buried
valley fills, and recorded as the Ziebice Group. They were partly destroyed and buried by the Middle
Pleistocene Scandinavian ice sheets that entered the Sudeten Foreland, covering the previously
formed valleys with glacial deposits: the Elsterian (= Sanian) and the early Saalian (= Odranian). No
post-Odranian ice sheet reached the Sudeten Foreland, where renewed incision (brought about by
post-Odranian uplift) led to post-glacial river-terrace formation. In addition to glacial and tectonic
influences on fluvial evolution, the overall pattern of fluvial archive preservation is commensurate
with the Variscan crustal province in which they are developed. However, the effects of mafic
underplating, emplaced by the incorporation of pre-Variscan crustal material, may have been
considerable, as this can explain reduced net Pleistocene uplift and reversals in vertical crustal
motion, especially in basinal areas. Differential uplift in reflection of crustal type may have led to
disruption of former downstream gradients in the palaeovalleys, with an example of back-tilting
identified in the case of the Palaeo-Odra. In addition, some younger terraces can be shown to have
been offset by slip on active faults of the Sudeten Marginal Fault system.
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Figure captions

Geology and location of the research area. The inset shows the limits of the various
Quaternary glaciations of Poland and the course of the River Odra. Modified from
Czerwonka and Krzyszkowski (2001).

Cross sections through key fluvial sequences in the study area: A - the River Nysa Ktodzka
in the Bardo area (sites 96 and 97 in Figs 7 and 8), where the river has cut a gorge
through an inter-basinal (progressively uplifting) ridge, the inset showing the sequence
a few km downstream, in the Janowiec—Ozary area (sites 72 and 71 in Figs 7 and 8); B -
the sequence in the Ktodzko Basin in the Ktodzko—Leszczyna area (site 68 in Figs 7 and
8), both modified from Krzyszkowski et al. (1998); C - The River Bystrzyca near
Lubachow (modified from Krzyszkowski and Biernat, 1998); for location see Flg. 7.

The Rivers of the northern Black Sea region (modified from Bridgland and Westaway,
2014; after Matoshko et al., 2002; 2004). A - The locations of parts B-D in relation to
the Ukrainian Shield. B - Idealized transverse profile through the Middle—Lower Dniester
terrace sediments, which represent a classic river terrace staircase (with approximately
one terrace per 100 ka climate cycle following the Mid-Pleistocene Revolution) inset
into Miocene fluvial basin-fill deposits. This region has higher heat flow than might be
expected from its location at the edge of the EEP (see A), for reasons discussed in detail
by Westaway and Bridgland (2014). C. - Transect across the Middle Dnieper basin,~100
km downstream of Kiev (~240 km long), showing a record typical of an area with no
considerable net uplift or subsidence during the Late Cenozoic, as typifies cratonic
crustal regions (cf. Westaway et al., 2003). D. - Transect through the deposits of the
Upper Don near Voronezh, showing a combined stacked and terraced sequence that
points to fluctuation between episodes of uplift and of subsidence during the past ~15
Ma.

Figure 4  Crustal characteristics. A - Crustal provinces in the European continent and neighbouring

areas. Modified from Pharaoh et al. (1997); the location of parts B and C is shown. B -
Crustal provinces in Poland. Modified from Mazur et al. (2006). DFZ = Dolsk Fault Zone;
OFZ = Odra Fault Zone. C - Borehole heat flow measurement sites and resulting
contours of surface heat flow in Poland. Modified from Bujakowski et al. (2016), using
data from Szewczyk and Gientka (2009). Plus and minus signs are used to aid
interpretation in grayscale; for the colour diagram, see the online pdf version.

Comparison of fluvial archives in different parts of the River Vistula system. A —location;
B — Transect through the valley of the River Dunajec, central Carpathians (modified from
Zuchiewicz, 1992, 1998); C —. Transect through the valley of the River San (after Starkel,
2003); D — Idealized transverse sequence through the deposits of the Middle Vistula,
based on data from upstream (Mojski, 1982) and downstream (Zarski, 1996; Marks,
2004) of Warsaw.

Distribution of provenance indicator materials. Modified from Czerwonka and
Krzyszkowski (2001).



824 Figure 7 Location of pre-glacial sites (identified by number, with different symbols for the various
825 formations, which represent different river systems). For locality names see Fig. 8.
826 Modified from Czerwonka and Krzyszkowski (2001).

827 Figure 8 Occurrence of the different pre-glacial fluvial formations and their constituent members,
828 showing which are present at the various localities. Numbers and symbols correspond
829 with those in Figs 7 and 9-12. Modified from Czerwonka and Krzyszkowski (2001).

830 Figure 9 Palaeodrainage during emplacement of Member | deposits. Numbers and symbols
831 correspond with those in Figs 7 and 8. Modified from Czerwonka and Krzyszkowski
832 (2001).

833 Figure 10 Palaeodrainage during emplacement of Member Il deposits. Numbers and symbols
834 correspond with those in Figs 7 and 8. Modified from Czerwonka and Krzyszkowski
835 (2001). For key see Fig. 9.

836 Figure 11 Palaeodrainage during emplacement of Member Ill deposits. Numbers and symbols
837 correspond with those in Figs 7 and 8; for key see Fig. 9.

838 Figure 12 Palaeodrainage during emplacement of Member IV deposits. Numbers and symbols
839 correspond with those in Figs 7 and 8; for key see Fig. 9.

840 Figure 13 Comparison between the fluvial archives from the Sudetes, in the form of the Nysa

841 Ktodzka (Krzyszkowski et al., 1998, 2000), and the River Don in the vicinity of Voronezh,
842 Russia (showing suggested MIS correlations; see also Fig. 3D and Matoshko et al. (2004),
843 who provided further stratigraphical details.

844

845

846 Table1l Characteristic clast data (gravel petrography and heavy mineralogy) used in
847 differentiation of Ziebice Group formations

848
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EiPalteristic clast data (gravel petrography and heavy mineralogy) used in differentiation of Ziebice Group formations

Gravel lithologies

Formation Member(s)  Primary Secondary Others Heavy minerals Interpretation
Chrzaszczyce mn quartz Carpathian zircon, rutile, garnet, Main palaeo-
siliceous rocks staurolite, tourmaline Odra
- zircon, tourmaline,
staurolite [+ garnet in
Mbr [; + rutile, in Mbr 1]
Debina I quartz quartzite staurolite, amphibole Palaeo-Biata
Gluchotaska
Ktodzko- v various porphyry Permian (red), garnet, amphibole Palaeo-Nysa
Stankowo gneiss types  quartz Carboniferous (grey) Ktodzka
of the and Cretaceous (white)
Ktodzko sandstone,
Basin Carboniferous mudstone,
siliceous rocks (local
flint)
-l quartz porphyry, crystalline rocks staurolite, garnet,
siliceous rocks  (including gneisses of (+ local admixtures of
(local flint) the Ktodzko Basin), zircon + rutile, andalusite
Permian (red) and + kyanite and sillimanite
Cretaceous (white)
sandstone
Zabkowice v? Sowie Géry  quartz siliceous rocks (local garnet, amphibole Palaeo-
gneiss flint) Budzéwka
Bojanice v Sillimanite
2] quartz porphyry Sowie Gory gneiss, zircon, garnet, sillimanite  Palaeo-
melaphyre quartzite Bystrzyca
Pogalewo - zircon, garnet, Palaeo-
tourmaline [+,kyanite in  Bystrzyca or
Mbr 1] local river
(in Mbr IIl epidote,
kyanite, amphibole,
staurolite)
I quartz siliceous rocks (local zircon, tourmaline, rutie
flint), porphyry
Wichréw I zircon, tourmalline, Palaeo-
epidote, kyanite Bystrzyca or
local river
Mielecin- v Sillimanite Palaeo-
Wotow -l quartz porphyry siliceous rocks (local sillimanite, garnet Strzegomka
flint), rocks from the
Watbrzych Upland
(conglomerate, spilite,
diabase, greenschist,
quartzite), Strzegom
granite, local schist
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Supplemental Material (Online Only)

Supplementary material in support of the paper:

Drainage and landscape evolution in the Polish Sudeten
Foreland in the context of European fluvial archives

by Dariusz Krzyszkowski, David R. Bridgland, Peter Allen, Rob
Westaway, Lucyna Wachecka-Kotkowska, Jerzy A. Czerwonka

This material constitutes detailed information on selected
localities, including sediment logs, section drawings, results from
petrographic analyses, palaeocurrent measurement and height
records.
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Table S1 — Site data from Czerwonka and Krzyszkowski (2001)

fop of the base of the

number

of site site stratigraphy X Y ceries series comments
T nKOWD 1 L3 ARl 36,312 | 57,570 9.0 -
z Swierczyna 2 K5 7 36,225 | 57,562 | 95.0 -
3 Taborek K-8, 3A 37,035 | 57,012 255.0 - strongly deformed
q Budy K-S, 2 37,0271 57,004 Z55.0 - [strongly deformed
5 Rzetnia K-5; 3,3A 31,036 | 56,946 20810 T06.0  |shightly deformed
b Wernikopale K-5; 3,3A J7,012 1 56,542 2440 - deformed
7 Tgnacow kS 3 36,989 56,972 2500 - deformed
B [igota kS 2 36,058 | 58,067 7150 : eformed
g malarze kS, 7 36,960 | 57,019 730 -
56 - K-S 3 3b,844 | 56,977 2350 .
i Klondw 1 K-S, 3 36,835 [ 57, 1750 - delormed
17 ondw 7 K53 36,835 | 57,070 TEG.0 - strongly deformed
fondw 3 K5, 3 J6.B27 | 57002 T80 - |strongly deformed
™ amien 1 K53 3 57,003 TE00 - [deformed”
15 [FamienZ K-5,3 3 56,993 1850 - deformed
16 Kopalina K5, 372 36,816 | 57,040 1500 - deformed
17 Cieszyn K-35, 3-2 , 27,012 170.0 .
18 Chefstdwek 53 36,743 | 56,947 235.0 - deformed
19 Lakrzow K-35 3 36,779 | 57,027 137.0 -
20 uznica Goszcz. kS, 3 36,695 | 56, T30 -
1 Pierstnica K-S 3 X aT.015 17000 .
77 Trzebnica K57 36,07 | 56,805 T80 T95.0 [sTightly deformed
23 Marcinowo K-S; 2 36,413 | 56,901 180.0 . strongly deformed
n Pegow K-S 1 ,300 | 56,810 130.0
75 Golgdzinow UB/3 P 3 339 | 56,847 T430 - orefole
Fi Roscislawice Ub/6 P 3 36,2711 56,873 1430 1230 orehole
7 Brzeg Dolny 2 K-, 2 36,774 56,377 T35.0 .
28 |Brzeg Dolny 1 ST 36,2 56,845 1200 TZT0
[~ 29 |Radecz By/7 P 3 36203 | 56,867 | 1325 TZ50  [borehole
3 |Godzigcin Zm/2 KS: 1 36,236 | 56,919 | 1295 ez PORE IMEXPECTaDIe heavy mincra
kil Fogalewo 1 F 1 36,152 | 56,813 11%.0 1120
37 olow T W T 36,728 | 56,892 1140 AR
33 Ssmardzow OVT [N ] 36,608 | 56,777 120 bd.5 borehole
k| Tustorgby S 2 36,764 | 55,160 TS50 -
kL Gnojna £ K-35 1 ; 56,245 200.0 -
5 Osinka 1 K-S 3 . 56,085 753.0 : weathered sediments only |
37 Zigbice 1 kS 7 : 56,088 2580 : olosiratofype section
38 Swiginiki K-S 3 36,362 | 96,389 1950 240
39 [Siemianow 4 kS, 3 36,337 | 55,380 T/00 - strongly defarmed
a0 Bojanice T B 4,37 36,067 | 56,284 2900 - strongly deformed
L3 Bojanice 7 B 32 36,060 56,287 790.0 - deformed
[¥3 Bystrzyca Dolna 1 36,037 | 56,375 7550 - profile not yet studied
73 Sosnica MW 36,264 | 56,571 T62.0 : archival data only
LL Fiotrowice 51/3 Wi T 36,185 | 56,573 138.7 1342 (borehole
45 Wichrow St/ W; 1 36,102 | 56,578 1545 1513 borehole
1] Osiek S1/6 Wi 1 ] vb,042 T66.5 1600 borehole
Ly ) Mielecin W, 36,057 | 56,507 2000 :
13 Jaroszéwi - Stanislaw -S| W, 1 36,027 | 56,510 1970 T87.0 |deformed
50 |Bielany 2 | 35088 [ ses20 | eso - |partly deformed
51 Chalupki Rw? P Z 35987 | 57,148 U0 | 805 borehole
57 076w T 35875 | 58,674 1750 . profile not yet studied
B3 [Rozow 2 35,800 | 56680 | 1950 - profile not yet studied
59 |Wysocko 35,7 56,682 | 1900 - profile nof yet studied
55 Rokitki R-B 37 664 | 56,682 T95 8 -
56 Lublatéw Lg/3 R-B; ¢ 35,718 | 56,766 1310 . orehole
a7 ledrwiedzice Lg/T R-B, 2 35,740 | 56,847 107.0 83.0 orehole
o8 Modia Th/5 R-E 32 . 56,9720 1275 i orehole™
59 T[Chocianow CH/& REB 37 , |56, 74T 1105 B30 orehole
50 Pogorzeliska CR/3 RE3 55372 | 57, T2 0 orehale; strongly defarmed
81 Parchow Ch/Z L 35,656 | 57,069 | 10B.0 - orahole; strongly deformed
57 Polkowice GI/3 A8 3 35738 57,009 | T90.0 - orenale; strongly deformed
53 WMoskorzyn GIT RE T 35,754 | 57,129 977 794 orehole; propably deformed




Table S1 (continued)

Pogalewa Formation

top of the series

- ‘indicates the highest topographic

n;n;::zr site stratigraphy X Y m:::e:“' hd:‘;f?;slhe comments
L ielkocin T/ T GRA TE6T | 57060 | 155 | 1238 [borehole; propably deformed |
65 Ladek-Szary Kamien K51 36,327 | 55,816 [ 4800 475, Isediments covered by hasalt Tava
okra 01 76,098 [ 55,021 | 1950 T92.0
67 gbina V] 36,943 | 55,932 1800 | 186.0
[1}:] Klodzka 2 | &5 55,934 268.0 - organic deposits, dated
6d Gorzuchow K5, 2 ] , J040 - weathered sediments only
70 Ligofa Wielka 1+2 KSd 36,498 | 55,961 | 27900 deformed
71 Dzary kS 7 793 [ 55,982 | 2800
77 Janowiec kS 4 36,757 | 55, ~ 2730 - organic deposits, dated
73 Zabkowice 77 76,703 | 56,088 | 2710 7680 |shghtly deformed
14 Tulowice F??.’}-Z 36,908 | 56,110 185.0 166.0 shightly deformed, floral macrofossils
75 Skarbiszowice K-S 2 . IAKE L
1b Chrzgszczyce 1 G 31 37,047 | 56,134 180.0 slightly deformed
77 Tizgszczyce 2 CZ1 7,092 56,139 T80.0
18 Nowy Dwor KS; 3 36,440 | 56,140 220.0 B
79 Jagielno K-S, 2T .60 | 56,147 7450
80 |Niemodiin 2 C.7 36,038 | 96,165 1800
Bl Niemodhin T -Wesele (V] 76,847 | 56,166 | 1800 -
87 Gracze | &7 36,612 1 586,200 170.0 1600 sediments underain hy basalt Tave
81 [Magnuszowiczal kS 2 36,847 | 56,216 T60.0 . [Moral macrofossils
81 Skorogaszcz K-S, 3.2 , 56,275 161T.0
85 |Mleczna kS 3 36,308 | 56, 715 E
56 Tigoika Nam/T kS, 2 T 56,602 T36.0 1370 orehole 7
81 |Radzowice Syc/2 Ks:3 36,871 | 56799 | 1430 1330 [ e gt S Tam
-S & C formations
EE STupia K, 3R ) 56,018 2000 -
89 Showidza 176 S Z3) X 56,670 1770 0 orehole; profile not Tully studied
90 Kroloszyn K-5; 3.7 695 | 57,344 1330 strongly deformed
91 | Stankowo Kr/1 KS; 3 36,317 | 57,566 |  95.0 gy  |CCrENCE. Mmixed series from
K-§ & C formations
07 Wszczyczyn Gos/1 K-S 2 36,497 [ 57586 | 1040 TOT.0  |borehole
93 Bukow 173 MW, T 36,170 | 56,510 T68.0 T5G.5 orenole
LT} Zasiruze 472 W, T 36,062 | 56,520 670 TI0Z  |borehole
95 Kepy 38/1 Mﬁ‘f;j -2 35-980 | 56,660 155.0 124.0  |borehole
L] Bardo 2 Tocal, | I6, 744 | 56,007 000 | ﬁWk’Trehole
97 Bardo 4 Tocal, T 36,244 | 56,007 3000 Z90.0 orehole
L Fotworow 1 LS 280 | 56.008 7950 285.0  |borehale
99 [Potworiw 3 KS3 36,248 | Hb,008 3000 “7290.0 |borehole
100 Stara Jamka kS, Z 36,888 | 55,980 | 1900
107 SWiglow Tocal, 1 76,680 | 55,869 2700 780.0
102 Czarnolas kS 2 76,635 | 56,088 7300 -
103 Grabin K-S, 2 30,71 ab, 110 2050
104 Rosdkowice K-S, 7 36,800 | 56, T95.0 =
105  |[Rudzicka D 1 36,799 | 55,865 Z65.0 7500 orehale
T8 [Seybowice ;7 36,797 | 55,832 7750 ZSD‘U:qurelmla
T07 Albetdw P 36,267 | 56,088 | 28s.0 - deformed
s orenole; archival data only;
108 |Bizeg Dolny 3 M\'Nf 14 36,220 | 56,847 106.0 1000 |membr IV - mixed series from
! M-W & R-B formations
D - Debina Formation M-W - Mielgcin - Woldw Formation
K-S - Klodzko-Stankowo R-B - Rokitki - Bielany Formation
C - Chrzaszezyce local - other, not specifically defined preglacjal deposits
/ - Zabkowice Formation 1-4 - time units (members)
B - Bojanice Formation X - horizontal coordinate of site
w - Wichrow Farmation Y - vertical coordinate of site
P
S

Snowidza Formation

position of sediment “in the studied site”

base of the series - indicates the lover boundary of the

formation in non-deformed or only
slightly deformed sequences
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