
 

All-in-one relaxion: A unified solution to five particle-physics puzzles

R. S. Gupta, J. Y. Reiness, and M. Spannowsky
Institute for Particle Physics Phenomenology, Durham University,

South Road, Durham DH1 3LE, United Kingdom

(Received 24 May 2019; published 5 September 2019)

We present a unified relaxion solution to the five major outstanding issues in particle physics: Higgs
mass naturalness, dark matter, matter-antimatter asymmetry, neutrino masses and the strong CP problem.
The only additional field content in our construction with respect to standard relaxion models is an up-type
vectorlike fermion pair and three right-handed neutrinos charged under the relaxion shift symmetry. The
observed dark matter abundance is generated automatically by oscillations of the relaxion field that begin
once it is misaligned from its original stopping point after reheating. The matter-antimatter asymmetry
arises from spontaneous baryogenesis induced by the CPT violation due to the rolling of the relaxion after
reheating. The CPT violation is communicated to the baryons and leptons via an operator, ∂μϕJμ, where Jμ

consists of right-handed neutrino currents arising naturally from a simple neutrino mass model. Finally, the
strong CP problem is solved via the Nelson-Barr mechanism, i.e., by imposing CP as a symmetry of the
Lagrangian that is broken only spontaneously by the relaxion. The CP breaking is such that although an
Oð1Þ strong Cabibbo-Kobayashi-Maskawa (CKM) phase is generated, the induced strong CP phase is
much smaller, i.e., within experimental bounds.

DOI: 10.1103/PhysRevD.100.055003

I. INTRODUCTION

Recently, particle physics research has been driven to a
large extent by the expectation of physics beyond the
Standard Model (BSM) at the TeV scale. While there are
many theoretical and observational reasons to extend the
Standard Model (SM)—such as Higgs mass naturalness,
dark matter, matter-antimatter asymmetry, neutrino masses
and the strong CP problem—only the first of these issues
necessarily requires TeV-scale new physics. In fact, if
Higgs mass naturalness is ignored and new physics scales
far beyond the TeV scale are allowed, the other issues can
be solved by very minimal extensions of the SM [1–6].
It is arguably far more challenging to find an explanation

(apart from tuning or anthropics) for a light Higgs mass
with a high new physics scale. While conventional wisdom
says this is impossible, the recently proposed cosmological
relaxation (or relaxion) models [7] aim to find just such an
explanation. In these models the rolling of the so-called
relaxion field during inflation leads to a scanning of the
Higgs mass squared from positive to negative values. Once
the Higgs mass squared becomes negative it triggers a
backreaction potential that stops the scanning soon after, at
a value much smaller than the new physics scale.

We show in this paper that the relaxion construction has
many interesting built-in features that can provide solutions
to multiple other BSM puzzles in a way that is completely
different from the other examples referred to above. These
features are: spontaneous CPT violation during its rolling,
spontaneous CP violation when it stops and oscillations
about its stopping point after reheating. The spontaneous
CPT violation leads to spontaneous baryogenesis during
the rolling of the relaxion after reheating [8]; the sponta-
neous CP violation leads to a Nelson-Barr solution [9,10]
of the strong CP problem [11,12]; and the relaxion
oscillations generate the observed dark matter abundance
[13]. The spontaneous baryogenesis mechanism requires
that baryons and/or leptons are charged under the relaxion
shift symmetry. In this work the relaxion shift symmetry is
identified with a Froggatt-Nielsen symmetry [14], under
which three new right-handed (RH) neutrino states (but no
SM states) are charged. This satisfies the requirement of
spontaneous baryogenesis while also giving an explanation
for the smallness of neutrino masses.
Thus, we achieve a unified solution to five BSM puzzles,

namely the lightness of the Higgs boson in the absence of
TeV scale new physics, dark matter, matter-antimatter
asymmetry, neutrino masses and the strong CP problem.

II. REVIEW AND BASIC SETUP

In relaxion models, the Higgs mass squared parameter is
promoted to a dynamical quantity μ2ðϕÞ, which varies due
to its couplings to the relaxion field, ϕ,
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Vroll ¼ μ2ðϕÞH†H þ λHðH†HÞ2 − r2rollM
4 cos

ϕ

F
; ð1Þ

with,

μ2ðϕÞ ¼ κM2 −M2 cos
ϕ

F
: ð2Þ

Here,H is the SM Higgs doublet, λH is its quartic coupling,
M is the UV cutoff of the Higgs effective theory and κ ≲ 1
[15]. The rolling starts from a relaxion field value,
ϕ < ϕc ¼ −jFcos−1κj, such that μ2 > 0. After crossing
the point ϕ ¼ ϕc, μ2 becomes negative, prompting electro-
weak symmetry breaking. This in turn activates the back-
reaction potential, which induces periodic “wiggles” on top
of the linear envelope,

Vbr ¼ Λ4
c cos

ϕ

fk
: ð3Þ

Here, Λ4
c ¼ mnvðϕÞ4−n, is an increasing function of the

Higgs vacuum expectation value (VEV). These wiggles
cause the relaxion field to come to a halt soon after,
generating a large hierarchy between the Higgs VEV and
the cutoff M. As discussed in [7], the cutoff, M, cannot be
raised to an arbitrarily high value because of cosmological
requirements,

M ≲
�
MP

rroll

�
1=2

�
Λ4
c

fk

�
1=6

: ð4Þ

The relaxion mechanism must be complemented by a new
mechanism at the scale M (for e.g., supersymmetry [16] or
Higgs compositeness [17]) to solve the full hierarchy
problem up to the Planck scale.
Let us now discuss what happens after inflation. For the

backreaction sector we adopt the non-QCD model of [7],
where ϕ is the axion of a new strong sector. If the reheating
temperature is greater than the critical temperature of the
chiral phase transition of the new sector, i.e., if
Tr > Tc ∼

ffiffiffiffiffiffi
4π

p
fπ0 , the wiggles disappear and the relaxion

starts rolling again. Here fπ0 is the “pion decay constant” of
the new sector. When the universe cools below Tc again,
the backreaction potential reappears and the rolling even-
tually stops provided, mϕ ≲ 5HðTcÞ. This condition is
obtained by demanding that the relaxion does not have
enough kinetic energy to overshoot the barriers once the
backreaction potential reappears [13,18,19]. If satisfied, the
relaxion enters a slow-roll-like regime with,

V 0ðϕÞ ¼ 5H _ϕ: ð5Þ

It is this second phase of rolling that can lead to a
generation of both the observed dark matter abundance as
well as the baryon asymmetry. The explanation for dark

matter requires no additional ingredient. This is due to the
fact that during the second phase of rolling, the relaxion
gets misaligned from its original stopping point by an
angle [13],

Δθ ¼ Δϕ
f

≃
1

20

�
mϕ

HðTcÞ
�

2

tan
ϕ0

f
: ð6Þ

As shown in Ref. [13], this sets off relaxion oscillations that
can give rise to the observed dark matter relic abundance,

Ωh2 ≃ 3Δθ2
�

Λd

1 GeV

�
4
�
100 GeV

Tosc

�
3

: ð7Þ

Note that the correct relic density can always be reproduced
by choosing an appropriate value of tan ϕ0

f . While there is
some room for this in the relaxion mechanism, as the
relaxion is spread across multiple vacua at the end of its
rolling, the probability distribution of the relaxion field
peaks for Oð1Þ values of tan ϕ0

f [20]. Thus the extent to

which tan ϕ0

f deviates from unity can be interpreted as a
measure of the tuning required to get the correct relic
abundance.
It was shown in [8] that with just one additional

ingredient, this second phase of rolling can also give
spontaneous relaxion baryogenesis (SRB). One requires
that some fermions with Bþ L charge are charged under
the relaxion shift symmetry. This leads to the presence of
the operator, ∂μϕJμ=f, where Jμ contains the Bþ L
current. This operator generates a chemical potential for
Bþ L violation once the second phase of relaxion rolling
results in a CPT-breaking expectation value for ∂μϕ. A
baryon asymmetry is consequentially generated via
(Bþ L)-violating sphaleron transitions.
As shown later, generation of the observed baryon

asymmetry requires a hierarchy f ≪ fk. This and the fact
that the relaxion, in any case, requires a large hierarchy
between fk and its field excursion during rolling, fk ≪ F,
are problematic as explained in [21]. The solution to
generating the latter hierarchy is embedding the relaxion
construction in a so-called clockwork model [22–24]; this
can easily be extended to also generate the former hier-
archy, giving f ≪ fk ≪ F. In clockwork models there is a
system of interacting complex scalars,Φi, all of which get a
VEV such that hΦii ¼ fffiffi

2
p eiπi=f. There is an approximate

Abelian symmetry, Uð1Þi, at each site which is sponta-
neously broken to give rise to a corresponding pseudo-
Goldstone mode πi. Explicit breaking effects give the
angular fields, πi, a mass matrix such that the lightest
state is a massless (Goldstone) mode given by,

ϕ ∝
X
j

πj
3j

¼ π0 þ
π1
3
þ � � � þ πN

3N
: ð8Þ
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Given that the mixing angle hπkjϕi ∼ 3−k, any Lagrangian
term where the angular field πk couples with a decay
constant f translates to an interaction of ϕ with an
exponentially enhanced effective decay constant, 3kf, in
the mass basis. Coming back to our setup, the hierarchy
f ≪ fk ≪ F can be obtained by having the operator, OSB,
at the 0-th site, the backreaction sector at the intermediate
kth site and the rolling potential at the Nth site, such that
fk ¼ 3kf and F ¼ 3Nf. This is schematically shown in
Fig. 1. The rolling and backreaction potentials eventually
lift the flat direction in Eq. (8), giving a mass to the
relaxion.
The SRB setup reviewed above is incomplete in two

respects: the operator, OSB, and the rolling potential are
nonrenormalizable and introduced in a somewhat ad hoc
way. While OSB arises naturally if baryons and/or lepton
are charged under the Abelian symmetry of which the
relaxion is a Goldstone boson, charging the SM fermions
seems to have no purpose other than generating OSB.
Furthermore, the charge assignments have to be carefully
chosen such that they are anomalyfree with respect to QCD
(to avoid generating a strong CP phase) and preferably also
with respect to electromagnetism (to avoid the generation
of a ϕγγ coupling that rules out most of the parameter space
in this set-up [8]). Here we complete the SRB set-up as
follows:

(i) Instead of introducing the operator, OSB, by hand,
we propose a simple neutrino mass model at site 0,
which generates this operator with a current con-
taining only three new right-handed (RH) neutrino
fields. The operator arises because the RH fields are
charged under the relaxion shift symmetry, which in
turn is identified with a Froggatt-Nielsen symmetry.
This also explains the observed smallness of neu-
trino masses. Only the SM-singlet RH neutrinos are
charged under the relaxion shift symmetry, which is
thus automatically anomaly-free with respect to both
QCD and electromagnetism.

(ii) We show that the rolling potential can be generated
by the addition of a single up-type vector-like pair at
site N. This modification can also solve the strong
CP problem via the Nelson-Barr mechanism [9,10].
In Nelson-Barr models, CP is a good symmetry in
the UV and is spontaneously broken at an inter-
mediate scale to generate anOð1Þ Cabibbo-Kobaya-
shi-Maskawa (CKM) phase but a much smaller
strong CP phase (within allowed constraints). We
borrow the Nelson-Barr relaxion sector from [11],
where the relaxion phase upon stopping results in an
Oð1Þ CKM phase.

Also, spontaneous baryogenesis is an attractive potential
feature from the point of view of the Nelson-Barr relaxion
model, as it does not require explicit CP violation.

III. NEUTRINO MASSES AND SPONTANEOUS
BARYOGENESIS

A. Getting the operator OSB

At site 0 we introduce a sector that simultaneously
generates small neutrino masses and an operator suitable
for spontaneous baryogenesis. We introduce three RH
neutrinos, ni, that are charged under the 0th site Abelian
symmetry, Uð1Þ0. We fix the charge of Φ0 to be −1 under
this symmetry and take all SM fields to be neutral. The
Lagrangian for the couplings of these RH neutrinos is
given by,

LFN ⊃ yijn

�
Φ0

ΛFN

�
qnj
l†i Hnj þ

�
Φ0

ΛFN

�
qniþqnj

M̂ij
n ninj; ð9Þ

where l†i are right handed spinors denoting the SM lepton
doublets, qnj are the Abelian charges for the sterile

neutrinos and Mij
n is the Majorana mass matrix. Given

that we will eventually use the Nelson-Barr solution to the
strongCP problem, we imposeCP as an exact symmetry of
the Lagrangian so that all couplings above are real.
Substituting, hΦ0i ¼ fffiffi

2
p eiπ0=f, we obtain exponentially-

suppressed effective Yukawa couplings and Majorana
masses, Yij

n ¼ yijn ðϵFNÞqnj and Mij
n ¼ M̂ij

n ðϵFNÞqniþqnj ,
where ϵFN ¼ f=

ffiffiffi
2

p
ΛFN < 1.

FIG. 1. Schematic representation of our set-up with the vertical
line representing the clockwork system. The three right-handed
neutrinos at the 0th site, ni, couple to the SM in the usual way,
generating neutrino masses; they also provide the current in the
all-important operator for spontaneous baryogenesis,
OSB ¼ ∂μϕJμ. At the kth site we introduce a new strong sector
which couples to SM via its fermionic matter content,
ðL; Lc; N;NcÞ. This sector generates the backreaction wiggles
and relaxion oscillations inside these wiggles generate the
observed dark matter abundance. Finally, at site N there is a
Nelson-Barr sector that radiatively generates the rolling potential
while also providing a solution to the strong CP problem. This
sector couples to the SM up sector via a new vector-like quark
pair ðψ ;ψcÞ.
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Factors of eiπ0=f, that appear upon substitution of Φ0 in
Eq. (9), can be rotated away by the field redefinition
nj → nje

−iπ0qnj =f, which, through the redefinition of the
kinetic terms for the RH neutrinos, yields the desired
operator, OSB,

qni
f

ð∂μπ0Þn†i σ̄μni →
qni
f

ð∂μϕÞn†i σ̄μni; ð10Þ

where we ignore an Oð1Þ factor corresponding to hπ0jϕi.

B. Getting baryon asymmetry from OSB

The presence of OSB can lead to spontaneous baryo-
genesis, an idea developed in [25,26]. The essential feature
of this mechanism is the presence of a rolling field that
breaks CPT, a role played here by the relaxion [8].
During the second phase of the rolling, the operator OSB

causes equal and opposite shifts in the energies of particles
versus antiparticles, implying,

μi ¼ −μ̄i ¼ qi _ϕ=f þ ðBi − LiÞμB−L þQiμQ þ T3iμT3
;

where μi (μ̄i) is the chemical potential for (anti-) particles of
the ith specie; qi is its charges under Uð1Þ0 (which is
nonzero only for the RH neutrinos); Qi is the electromag-
netic charge; T3i is the charge corresponding to the
diagonal generator of SUð2ÞL; and the chemical potentials
μQ;T3;B−L have been introduced to enforce conservation of
Q; T3, and B − L. In the presence of (Bþ L)-violating
sphaleron processes, we find,

ni − n̄i ¼ fðT; μÞ − fðT; μ̄Þ

¼ giμi
T2

6
; giμi

T2

3
; ð11Þ

for fermions and bosons respectively, where fðT; μÞ is the
Fermi-Dirac (Bose-Einstein) distribution for fermions
(bosons). We have taken μ ≪ T and the factor gi denotes
the number of degrees of freedom for each species.
The quantities μT3;Q;B−L can be obtained by imposing
nT3

¼ nQ ¼ nB−L ¼ 0. For temperatures above the critical
temperature for the electroweak phase transition, we obtain
the following chemical potentials,

μQ ¼ −
3

14

Qn
_ϕ

f
μT3

¼ 3

14

Qn
_ϕ

f
μBL

¼ 33

112

Qn
_ϕ

f
; ð12Þ

taking all the qni ¼ Qn. We subsequently obtain a baryon
number density,

nB ¼ −nL ¼ gSB
_ϕ

f
T2

6
; ð13Þ

where gSB ¼ 3 Qn=4 and finally for its ratio with the
entropy density,

η≡ nB
s

¼ gSB
_ϕ

f
T2

6
×
�
2π2g�T3

45

�−1
¼ 15

4π2
gSB
g�

_ϕ

fT
: ð14Þ

The equilibrium distribution changes after electroweak
symmetry breaking, when there is no longer a need to
conserve T3. This gives μQ ¼ −ð4=11ÞμB−L ¼ −Qn

_ϕ=12f
and, once again, gSB ¼ 3Qn=4. However, species such as
the RH fermions, which are coupled very weakly to the
thermal plasma, would not be able to reequilibrate on the
timescale of the electroweak phase transition. The precise
value of gSB is thus hard to compute without considering
the full dynamics of the process and may be different from
the value obtained above. Given that these subtleties only
lead to an Oð1Þ ambiguity in gSB, for definiteness we stick
to the value derived in Eq. (13).
The value of η is frozen at T ¼ Tsph ¼ 130 GeV, the

temperature at which the sphaleron processes decouple
[27]. Demanding the observed baryon asymmetry,
η0 ¼ 8.7 × 10−11, we obtain,

fk
f

¼
ffiffiffi
2

5

r
2π3g3=2� T3

sphη0

9gSBm2
ϕMPl

∼ 109
�

mϕ

10−5 eV

�
−2
; ð15Þ

using V 0 ¼ 5H _ϕ ∼ Λ4
c=fk (see Sec. II). It is crucial that the

relaxion keeps rolling with a nonzero _ϕwhen the value of η
is frozen at T ¼ Tsph. To ensure this, we require that the
critical temperature for the phase transition of the strong
sector, Tc, is lower than Tsph.
We have assumed so far that the RH neutrinos are

relativistic and in equilibrium at the temperatures relevant
to the calculation. The first condition requires that the
seesaw scale, Mn ≲ Tsph, where Mij

n ∼Mn. The second
requirement implies that the interaction rate of ni with SM
particles satisfies, ΓðnÞ > HðTsphÞ. Taking, ΓðnÞ ∼ g2Y2

NT

[28], where g is the weak coupling and Yij
n ∼ Yn and

requiring Γ > HðTsphÞ, we get Yn ≳ 10−8.

C. Neutrino masses

The Lagrangian in Eq. (9) generates masses for the SM
neutrinos mν ∼ Y2

nv2=Mn ≲ 0.1 eV. Given that spontane-
ous baryogenesis demands Mn ≲ Tsph, we require small
effective Yukawas Yn ≲ 10−6, which can be naturally
obtained via the Froggatt-Nielsen mechanism, as explained
above.
The constraints derived in the previous subsections

imply that our model requires a finite range for both the
effective Yukawa coupling and effective Majorana mass
scale: 10−8 ≲ Yn ≲ 10−6, 30 MeV≲Mn ≲ Tsph. Note that
sterile neutrinos with masses below 500 MeVare in tension
with big-bang nucleosynthesis (BBN) [29]. Masses around
a few GeV may be within reach of future experiments such
as SHiP [29]. For ϵFN ¼ 0.1 the above range of the Yukawa
couplings can be obtained for 6 ≤ Qn ≤ 8, where we have
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taken all qni ¼ Qn. Given that all the couplings in Eq. (9)
are real, a concrete prediction of our model is a CP-even
neutrino mass matrix, which is still comfortably allowed by
neutrino experiments [30].

IV. NELSON-BARR SECTOR AND THE ROLLING
POTENTIAL

A. Generating the rolling potential

As shown in [11], the rolling potential in Eq. (1), (2) can be
generated by a minimal modification of the SM up sector,
namely the addition of a vectorlike pair, ðψ ;ψcÞ, whereψ has
the same quantum numbers as an up-type singlet.
Furthermore, as shown in [31], the same modification can
also give a Nelson-Barr solution [9,10] to the strong CP
problem, provided we impose an additional Z2 symmetry.
The Lagrangian terms for the relevant interactions are,

LNB ¼ Yu
ijQH̃uc þ yiψψΦNuci þ ỹiψψΦ�

Nu
c
i

þ μψψψ
c þ H:c: ð16Þ

The ψ , ψc, and ΦN are odd under the Z2 symmetry, which
forbids the term QHψc. Recall that an exact CP symmetry
has been imposed and thus all couplings are real. The Uð1ÞN
symmetry is collectively broken by yiψ and ỹiψ , leading to
breaking of the relaxion shift symmetry and radiative gen-
eration of the rolling potential in Eq. (1), (2) with,

M ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yiψ ỹ

j
ψ ðYu†YuÞij

q
4π

f; ð17Þ

rroll ∼
4π

ffiffiffiffiffiffiffiffiffiffi
ykψ ỹkψ

q
yiψ ỹ

j
ψðYu†YuÞij

: ð18Þ

The 1-loop ΦN → ΦN diagram gives the first term
whereas the Φ2

NH
†H box diagram gives the second term.

For the loop diagram generating the first term, we have
taken the cutoff for the ψuc loop to be the mass of the
clockwork radial modes, mρ ∼ f.

B. Nelson-Barr solution to the strong CP problem

The Lagrangian in Eq. (16) also provides a solution to
the strong CP problem. Once the relaxion stops, the phase,
θN ¼ hπNi=f ∼ ϕ=F, enters the 4 × 4 matrix for the up
sector,

Mu ¼
� ðμψÞ1×1 ðBÞ1×3

ð0Þ3×1 ðvYuÞ3×3

�
; ð19Þ

where Bi ¼ fðyiψeiθN þ ỹiψe−iθN Þ=
ffiffiffi
2

p
. The phase, θN , is

nothing but the phase of the cosine of the rolling potential at
the relaxion stopping point. Note that the bottom-left
element in the above mass matrix is zero due to the
absence of the QHψc term in the Lagrangian, which in

turn is a direct consequence of the Z2 symmetry. This
ensures that at tree level there is no contribution to θ̄QCD
from the phase, θN , as ArgðdetðMuÞÞ ¼ 0, where we use the
fact that μψ is real. On the other hand, for μ2 þ BiB�

i ≫ v2,
we can integrate out the vectorlike pair to give an effective
3 × 3 mass squared matrix of the SM up quark sector with
an Oð1Þ phase. This gets translated into an Oð1Þ phase in
the CKM matrix VCKM ¼ V†

uLVdL (see [11]). Radiative
effects can spoil the solution to the strong CP problem
unless yψ ≲ 10−2 [11].
Before going to the next section we would like to

comment that there appears to be no obvious difficulty
in extending our model along the lines of [12] to also
address the SM flavor puzzle for the charged leptons and
quarks. At the cost of complicating our model, this can be
achieved by identifying one of the intermediate sites of the
clockwork chain with the flavon for the charged fermions
and the Abelian symmetry at this site with a Froggatt-
Nielsen flavor symmetry. In order not to generate a θ̄QCD,
the charge assignment of the SM fermions must be
anomalyfree with respect to QCD as emphasised in [12]
where an example charge assignment was also presented.
We do not explore this direction further and stick to our
more minimal setup here.

V. PARAMETER SPACE

First, let us consider the constraints that arise on the SRB
scenario for the right-handed neutrino current introduced in
Sec. III. We fix the fk=f ratio according to Eq. (15) such
that each point in the plot gives the correct baryon
asymmetry. The vertical green band shows the region that
is ruled out by requiring, mϕ < 5HðTcÞ, the condition in
Eq. (5) that the relaxion does not overshoot the barriers of
the backreaction potential once they reappear after reheat-
ing. Here we have taken the maximal value Tc ¼ Tsph (see
Sec. III). The blue shaded region corresponds to the region
Λ2
c > 16π2v2 ruled out by the requirement (derived in [7])

that the Higgs-dependent parts of the backreaction potential
dominate over any Higgs-independent contribution. The
dashed lines show the required value of tanðϕ0=fkÞ to
reproduce the correct dark matter density in Eq. (7). As
explained below Eq. (7), the extent to which tan ϕ0

f deviates
from unity can be interpreted as a measure of the required
tuning. The orange region shows fifth force constraints that
arise due to the fact that the relaxion mixes with the Higgs

boson with a mixing angle (see [32]), sin θ ∼ Λ4
c

fkvm2
h
.

The rest of the constraints arise from the implementation
of the Nelson-Barr mechanism in Sec. IV. First of all, from
Eq. (18) we see that for a given value of f and yψ one can
fix the value of the Higgs mass cutoff, M, giving us the
scale on the right-hand side of the frame. The red band at
the top shows the region where the value of the cutoff, M,
exceeds the upper bound imposed in Eq. (4). The grey band
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at the bottom shows the region where the relaxion mecha-
nism is unable to raise the Higgs cutoff beyond 2 TeV.
Finally, the region to the left of the dashed line may be
probed in future atomic physics experiments if there is an
overdensity of relaxion dark matter around the earth
[33,34]. We see from Fig. 2 that after all the constraints
are imposed, a finite allowed region remains that remark-
ably contains the region in which tuning to obtain the
correct relic density for dark matter is minimal.
We will comment in the next section on how this allowed

region can be probed further by future experiments.

VI. DISCUSSION AND CONCLUSION

We have presented a simultaneous solution to five BSM
puzzles: namely the lightness of the Higgs boson in the
absence of TeV scale new physics, dark matter, matter-
antimatter asymmetry, neutrino masses and the strong CP
problem. While our construction is admittedly more
involved than some other attempts to solve BSM puzzles
in a unified way [1,2,5,6], this is because we also use
cosmological relaxation to achieve the challenging task of
obtaining a light Higgs boson without adding any TeV
scale states that cutoff the Higgs mass divergence. Our
construction has all the ingredients of a standard relaxion
model—such as a chain of clockwork scalars and a TeV-
scale strong sector—but beyond this we only make
minimal modifications by adding three RH neutrinos and
an up-type SUð2ÞL singlet vectorlike quark pair.
Our all-in-one relaxion setup gives a diverse set of

observational predictions. Our construction predicts the
absence of a CP-violating phase in the neutrino mass
matrix and GeV-scale sterile neutrinos potentially close to
the reach of future experiments such as SHiP [29]. The
strong CP phase in our model is nonzero and may be
detectable in future experiments. The finite allowed param-
eter space in Fig. 2 can also be probed by future atomic
physics experiments [33,34] or future improvements in fifth
force experiments. Finally, we would like to point out the
interesting trade-off that exists in Fig. 2 between the Higgs
mass cutoff scale and the tuning required to reproduce the
correct abundance of dark matter. The least tuned regions
correspond to cutoff values smaller than 100 TeV, a scale
where top partners in a full solution to the hierarchy
problem can be seen in future high energy colliders.
We conclude by mentioning an interesting future direc-

tion. Our construction involves the standard relaxion
mechanism, which utilises Hubble friction to stop the
relaxion. It will be interesting to see if some of our ideas
can be implemented in alternative models involving particle
production [35–38], which are attractive because they
decouple the relaxion mechanism from inflation.
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