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Abstract – Impacts of ineffective wastewater management on the biodiversity of receiving waters in
developing countries are poorly documented. Using a before-after-control-impact methodology, we
measured the effects of untreated wastewater release on the fish community in the Barnoi River,
Bangladesh. In 2006, prior to untreated wastewater discharge, fish abundance, species richness and
water quality were similar across sampling sites. In 2016, after 8 years of wastewater release to the
downstream reach, fish abundance and species richness were reduced by>47% and>35% respectively
at downstream sites compared to unaffected upstream sites and >51% and >41% lower respectively
compared to the pre-wastewater discharge period. The wastewater impact was particularly severe
during months of low discharge (October–December). Water transparency, dissolved oxygen and pH
were lower (P< 0.001) at impacted downstream sites compared to upstream sites. Nineteen species
(41.3% of all species we recorded) are threatened in Bangladesh and the abundance of these species,
except one, decreased significantly (P< 0.05) at the impacted sites. We recommend improved
wastewater management by applying primary treatment facilities and incorporating reedbed filtration
as a mean of biological treatment, into the canals carrying wastewaters. The success of such measures
should be tested with fish species that were most responsive to wastewater, using the indicator species
concept.
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Résumé – Les eaux usées municipales peuvent entraîner une baisse spectaculaire du nombre de
poissons: un exemple d'un pays en développement. Les impacts d'une gestion inefficace des eaux
usées sur la biodiversité des eaux réceptrices dans les pays en développement sont mal documentés. En
utilisant une méthodologie BACI, nous avons mesuré les effets des rejets d'eaux usées non traitées sur
la communauté de poissons de la rivière Barnoi, au Bangladesh. En 2006, avant le rejet des eaux usées
non traitées, l'abondance des poissons, la richesse en espèces et la qualité de l'eau étaient semblables
dans tous les sites d'échantillonnage. En 2016, après 8 ans de rejet d'eaux usées dans le bras aval,
l'abondance des poissons et la richesse en espèces ont été réduites de >47% et >35% respectivement
sur les sites en aval par rapport aux sites en amont non affectés et >51% et >41% respectivement par
rapport à la période de rejet avant le rejet des eaux usées. L'impact des eaux usées a été particulièrement
grave pendant les mois de faible débit (octobre-décembre). La transparence de l'eau, l'oxygène
dissous et le pH étaient inférieurs (P< 0,001) aux sites impactés en aval par rapport aux sites en
amont. Dix-neuf espèces (41,3% de toutes les espèces que nous avons recensées) sont menacées au
Bangladesh et l'abondance de ces espèces, sauf une, a diminué de façon significative (P< 0,05) dans
les sites touchés. Nous recommandons d'améliorer la gestion des eaux usées en appliquant des
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installations de traitement primaire et en incorporant la filtration sur lit de roseaux comme moyen de
traitement biologique dans les canaux transportant les eaux usées. Le succès de ces mesures devrait être
testé avec les espèces de poissons les plus sensibles aux eaux usées, en utilisant le concept d'espèces
indicatrices.

Mots-clés : Eaux usées / pollution de l'eau / perte de biodiversité / poissons menacés / BACI
1 Introduction

Worldwide, freshwater habitats are being exposed to a
complex mixture of stressors including water pollution and
habitat degradation (Dudgeon et al., 2006; Dirzo et al., 2014),
threatening the diversity of life (Moss, 2008; Vorosmarty et al.,
2010). Rivers can be particularly vulnerable to receiving
chemical stressors from anthropogenic origin, including
organic matter and inorganic nutrients (Moss, 1998), and
micropollutants such as pesticides or industrial products
(Meybeck, 2004; Sabater et al., 2016). Part of the reason for
this is that rivers are employed to dilute and transport treated
wastes away from human populations. The impacts of
pollution and other stressors on freshwater ecosystems can
be detrimental because decreasing biodiversity reduces the
ability of ecological communities to provide many fundamen-
tal ecosystem services (Keesing et al., 2010). However, the
intensity of threats to freshwater biodiversity in tropical Asia is
exceptional compared to other parts of the world because of a
complex mixture of different factors (e.g. dense population,
deforestation, and flow regulation; see Dudgeon, 2005 for
details).

While the impacts and remediation of freshwater pollution,
especially organic pollution, have a long and well-recorded
history in the developed world (Hynes, 1963; Mason, 2001),
wastewater is a serious and emerging problem in the majority
of developing countries (e.g. Girija et al., 2007; Omosa et al.,
2012; Haque, 2017). This is primarily because industrial,
agricultural, municipal and sewage discharge cause deteriora-
tion of receiving water quality (Dudgeon, 1992; Vaseem and
Banerjee, 2013; Paul, 2017) and make freshwater habitats
unfavourable for natural communities of micro and macro-
organisms living in the system (Karaouzas et al., 2018). The
majority of research carried out on wastewater pollution in
Asia focuses on changes in the receiving water’s physico-
chemical quality and sediments (e.g. Kumar and Reddy, 2009;
Dai et al., 2018; Rajeshkumar et al., 2018; Ramachandra et al.,
2018); impacts on invertebrate communities (e.g.Morse et al.,
2007 summarised the status of East Asian countries) or impacts
on the physiology of individual fish species (e.g. Sanchez
et al., 2011; Vaseem and Banerjee, 2013; Yazıcı and Sisman,
2014). Few studies have reported impacts of water pollution on
fish communities in tropical Asia (except see Dudgeon, 1992,
2002; Mulk et al., 2016). However, these fish studies often lack
long-term data that can explain responses of aquatic biota to
stressors and that can quantify changes in the target community
over time and space.

In Bangladesh, water pollution has resulted from
unplanned urbanization and industrialization and is of high
concern (Ali et al., 2016; Kibria et al., 2016; Haque, 2017).
Primarily with a perspective of human health risks, several
studies have been conducted with a view to assessing metal
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concentrations in waters (e.g. Ali et al., 2016; Kibria et al.,
2016; Bhuyan and Bakar, 2017) and also in the bodies of
aquatic animals living in polluted waters (e.g. Ahmed et al.,
2015; Islam et al., 2015). Although it is believed that
freshwater fishes in inland waters of Bangladesh have declined
markedly because of pollution (e.g. Hussain, 2010), no studies
have been carried out to date to address its actual impacts
on fish communities. Although elevated levels of heavy metals
are common in urban or industrial wastewaters, oxygen-
demanding organic waste is often the predominant polluting
component and has the potential to cause dramatic changes
in biodiversity in tropical freshwaters (Dudgeon, 2002).
Therefore, we sought to determine the extent of degradation to
natural biota due to long-term discharge of wastewaters from
nearby municipal, agricultural and small-scale industrial
sources, using the Barnoi River in northern Bangladesh as a
case study.

In this study, we analysed changes in fish abundance,
species richness and water quality parameters over time and
space in relation to current wastewater management practice
using a before-after-control-impact (BACI) approach. We
hypothesized that wastewater disposal would have negative
impacts on the fish abundance, species richness and water
quality at the sampling sites receiving wastewaters compared
to unaffected sites in the Barnoi River.
2 Methods

2.1 Study area

The Barnoi River (Fig. 1), whose upstream part is
known as the Shiva River, originates from the Manda
floodplain in the Tanore sub-district of Rajshahi district
(Bashar et al., 2009), in north-west Bangladesh. The Barnoi
channel can be up to 25m wide and 3m deep during the wet
season (June–September). This river joins the Gumani
River (at 24°3302700 N 88°4803400 E) at Bagmara Upazila
(sub-district) of Rajshahi district.

In 1994, the Rajshahi City Corporation (local municipality)
passed a plan for the construction of two canals that would
drain municipal wastewaters into the Barnoi River. The
construction works finished in December 2008 and became
operational immediately and since then the river has
continuously been receiving wastewaters from Rajshahi City
Corporation through two canals (each 5.1m wide and 2.4m
high; Fig. 1). These wastewaters contain untreated kitchen
wastes, water containing detergent from households, run-off
from streets and often faeces and urine (this is not legal but
many households illegally installed underground pipes
between sewage tanks and drains; also when sewage tanks
become full many residents empty their tanks by draining
the faeces into nearby drains). Currently, there is no
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Fig. 1. Map of the Barnoi River showing sampling sites (S1–S6) and the two major canals (A and B) that carry untreated wastewater to the river.
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wastewater-treatment facility in the study area and thus
untreated wastewaters are being drained directly into the river.
Moreover, a large livestock wholesale market (locally know
as City Hat) is situated by one of these canals (canal A; Fig. 1)
and dead animals (primarily cattle, goats and buffalo)
and organic waste products from slaughtered animals from
this market are often thrown into the canal. Canal A also
receives pharmaceutical and clinical waste (used medicine
bottles, syringes, bandages, etc.; Fig. S1). These two canals
join the Barnoi near Duari and Nowhata points (sampling
points S4 and S5 in this study, Fig. 1) and there has been a
concern for its impact on aquatic biodiversity and riverine
habitat among local people since the wastewater canals
opened. Reduced fish catch and bad odour from harvested fish
have been reported by the local people in these areas. Local
fishermen also reported complete loss of a fish breeding ground
located between sampling site S5 and S6 due to untreated
wastewatermixingwith the riverwater (T. Pervez and S. Arnob,
pers. obs.).

Although two sluices have been built to regulate the waters
in the canals joining the Barnoi the untreated wastewater has
continuously flowed into the river through broken and partially
opened gates (Fig. S2). These sluices were once managed by
the government officials but since 2015 no personnel have
been appointed for this purpose and they were being operated
(i.e. fully opened) by local people whenever needed depending
on the accumulation of wastewater. Although there are no
statistics of wastewater flowing into the Barnoi River, during
the dry season when the river water becomes almost stagnant,
the wastewater from these two canals constitutes the only
water flow.
2.2 Fish sampling and study approach

Fish sampling at six sites (S1–S6; Fig. 1) in the Barnoi River
wasconductedoneightoccasionsbetween JulyandDecember in
each of 2 years, 2006 (before the wastewater canals opened) and
2016 (8 years after the wastewater canals opened). Each
sampling site was∼3 km distant from neighbouring sites. From
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January to June the water depth in the river became too shallow
for the operation of fishing gears and thus it was not possible to
carry out sampling. Sampling dates were not the same in both
years (varied by ±3 days) but the number of samples in each
month in both years were the same. All samples at all sites in
2006 represent pre-waste outflow conditions. In 2016, three
sampling sites (S4–S6) were affected by the wastewater carried
through two channels as these sites were located downstream of
the outlets (Fig. 1) and samplings carried out that year represent
post-waste outflow samples. This setup enabled a balanced
BACI analysis approach (Downes et al., 2002;Boys et al., 2012)
to be used in this study. In this study, sampling years (2006 vs.
2016) represents “before–after (BA)”, and location (upstream
[S1–S3]/downstream [S4–S6]) resembles “control-impact (CI)”
sites of a BACI design.

All sampling sites appeared similar in habitat with a sand
and mud bottom (about 50:50 ratio), with a channel width
of ∼30m and gently shelving banks to a maximum depth of
4–6m at the peak of the flood. In 2006, the water depth was
quite similar between upstream and downstream sites over the
sampling period. In 2016, although the water depth was similar
(4–6m) between upstream and downstream sites during
the wet period (July–September) it was slightly greater
at downstream sites (2.5 ± 0.2m) during the dry season
(October–December) compared to upstream sites (2.2 ± 0.2m).
No water flow measurements were taken but it was noticed
that there was almost no flow at the upstream sites over the
drying months whereas slow-flowing water (<0.05ms�1) was
noticed at the downstream sites. It may be assumed that these
differences in water depth and flow at downstream sites were
due to wastewater addition to sites located downstream.
Vegetation on both banks of the river was similar at all
the sampling sites in both years. In 2006, the water surface near
both banks at all the sampling sites were partially covered
(∼10%) by marginal aquatic macrophytes, i.e. Alternanthere,
Ipomoea, and Marsilea spp. But marginal macrophyte
vegetation reduced to below 5% at the downstream sites in
2016 with a blackish/greyish layer of silt on the macrophyte
leaves, whereas the upstream part remained almost unchanged
(8–10% cover).
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At the sampling sites, on a given occasion, fishes were
collected with three cast nets (mesh 10� 10mm; p� 1.252

m= 4.9m2), two lift nets (mesh 10� 10mm, 5� 4.5m) and
three rectangular fishing traps locally known as “Kholsun”
(made of split bamboo sticks; mesh 20� 20mm, 0.8� 0.8
� 0.1m). Fishing traps were set in the evening before the day
of sampling and left overnight (approximately 15 h) in the
water. The lift nets were hauled five times at each sampling
site and the total fishing duration was about one hour. The cast
nets were hauled 15 times at each sampling site and the
fishing duration was about 1.5h. The combination of these
fishing gears was effective in sampling fishes of a wide
range of species and sizes from different depth strata
(Galib et al., 2018). All the fishing gears were operated over
the same time on every sampling date to standardize the
sampling effort. The fish abundance data gathered therefore
represent Catch Per Unit Effort (CPUE), enabling the
comparison of relative abundance between locations and
dates. Individuals were identified to species and counted at
the sampling sites. Specimens that were difficult to identify
on site were preserved in 10% formaldehyde solution and
brought to the laboratory for identification. Other fish
sampled were returned to the river unharmed. Identification
was made based on morphometric and meristic characters
following Rahman (2005) and Talwar and Jhingran (1991).
Scientific names and systematic positions of fishes follow
those of Froese and Pauly (2017).

Reference to the global conservation status categories in
this paper (e.g. Least Concern, Near Threatened, Vulnerable)
are those in the online classification database developed by
the International Union for the Conservation of Nature and
Natural Resources (IUCN, 2018). National conservation
categories are those published in the “Red List of Bangladesh”
(IUCN Bangladesh, 2015).

Physico-chemical parameters (water temperature, water
transparency, dissolved oxygen [DO], and pH) were measured
at each sampling point. Water temperature was measured by
using a digital thermometer (Hanna), DO and pH were
measured using portable water quality test kits (HACH Kit
Box, Model FF1 and FF2; USA) and water transparency was
measured using a Secchi disk. pH and DO tests remained
consistent against laboratory calibrations; although pH was
measured only with a precision of 0.5 of a pH unit, this was
adequate to detect the substantial changes evident in the
polluted zone.

2.3 Data analysis

The statistical software R was used to analyse the data
(version 3.4.2; R Core Team, 2017), with an a level of
significance of 0.05. Linear mixed modelling (LMM) was
employed to analyse repeated measures fish abundance and
richness data using the “lmer” function of the “lme4” package
(Bates et al., 2014); p-values were obtained by the “lmerTest”
package (Kuznetsova et al., 2016). During LMM location of
the sampling sites, sampling years and their interaction were
tested as fixed effects, and sampling sites and time were
considered random effects. Least square means (i.e. marginal
mean; Lenth, 2017) were also calculated to estimate the BACI
contrast. Least square means are useful in the analysis of data
for summarizing the effects of factors, and for testing linear
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contrasts among predictions including interaction contrasts
like BA�CI (Schwarz, 2015; Lenth, 2017).

A Non-metric Multidimensional Scaling (NMDS; Kruskal
and Wish, 1978) ordination plot was generated to visualize
spatial and temporal variation of fishes using the “metaMDS”
function of the “vegan” package (Oksanen et al., 2017). Fish
CPUE abundance data were used to calculate Similarity
Percentage Analysis (SIMPER), based on the decomposition
of Bray-Curtis dissimilarity index (Clarke, 1993) was used to
identify those native taxa that were most important in driving
changes in species abundance among control and impacted
sites.

Changes in water quality parameters were also analysed
using LLMs outlined previously. The BIOENV procedure
(Clarke and Ainsworth, 1993) was used to determine how well
the patterns in water quality parameters correlated (Pearson’s)
with the changing assemblage patternsoffish (Boys et al., 2012).
We ensured the exploration of data during analyses to avoid
common statistical problems (Zuuret al., 2010). Before analysis
data were checked for normality by Shapiro–Wilk test (Peat and
Barton, 2005) and necessary transformations (square-root
transformation for abundance data (McDonald, 2014) and log
(xþ 1) transformation for water quality data (Clarke, 1993)),
were made to meet the statistical assumption for the tests.
Normality of the model residuals were also checked with a q–q
plot and no deviation from the linearity of the observations was
observed.

3 Results

3.1 Fish fauna

In total, 60973 fish specimens belonging to 46 species, 35
genera and 18 families were collected and identified (Tab. 1).
Three species (Sisor rabdophorus, Chaca chaca and Nandus
nandus) were present in pre-waste outflow samples but were
absent in 2016 samples (Tab. 1).

In the Barnoi River, the NMDS ordination plot shows
similar species assemblages in the six sites sampled in 2006
(Fig. 2). In contrast, in 2016, three downstream sites (S4–S6)
showed a notable shift in assemblage composition from before
to after the starting of the wastewater release into the river. A
similar shift was not observed in the upstream sites (S1–S3)
over the same time period (Fig. 2). Although lower fish
abundance and richness were observed at downstream sites in
2016, the difference was comparatively small from July to
September but when the water level began to recede
(September), the difference was more evident (Fig. 3).

3.2 Fish abundance, species richness and water
quality parameters in relation to waste dumping

Levels of fish abundance (measured as CPUE) and fish
species richness were similar between sampling sites before
starting the waste dumping in the Barnoi River and reduced
dramatically at the effluent-receiving downstream sites in
recent times (Figs. 3 and 4). Significant variations in fish
abundance and species richness (both P� 0.001) between
sampling locations (upstream vs. downstream; CI) and period
(before vs. after; BA) were evident from LLM results (Tab. 2).
Interaction effects (BA�CI) on fish abundance and species
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Table 1. Fish species caught at different locations (upstream; sites S1–S3; downstream; sites S4–S6) in the Barnoi River during the study period.

Fish species 2006 2016 Conservation
Upstream Downstream Upstream Downstream BDa Globalb

Belonidae
Xenentodon cancila 296 300 204 143 LC LC
Clupeidae
Gudusia chapra 403 437 456 252 VU LC
Corica soborna 275 201 138 26 LC LC
Engraulidae
Setipinna phasa 281 241 137 30 LC LC
Cyprinidae
Amblypharyngodon mola 1145 1279 1371 779 LC LC
Aspidoparia morar 199 224 88 3 VU LC
Cirrhinus mrigala 109 131 54 4 NT LC
Cirrhinus reba 170 187 147 46 NT LC
Esomus danricus 391 401 318 43 LC LC
Labeo bata 276 264 193 21 LC LC
Labeo rohita 177 187 121 4 LC LC
Puntius chola 502 494 588 152 LC LC
Puntius sophore 2118 2136 2248 1111 LC LC
Puntius ticto 239 267 152 56 VU LC
Salmostoma phulo 719 796 812 445 NT LC
Cobitidae
Botia dario 287 225 218 42 EN LC
Botia lohachata 80 64 47 30 EN NE
Lepidocephalichthys LC LC
guntea 567 513 515 389
Bagridae
Mystus cavasius 435 444 413 282 NT LC
Mystus tengara 1057 1046 1018 772 LC LC
Mystus vittatus 283 282 179 57 LC LC
Rita rita 269 268 239 48 EN LC
Sperata seenghala 238 235 75 20 VU LC
Chacidae
Chaca chaca 21 9 0 0 EN LC
Schilbeidae
Ailia coila 553 643 544 111 LC NT
Clupisoma garua 345 329 210 19 EN LC
Eutropiichthys vacha 322 327 215 7 LC LC
Pachypterus atherinoides 438 404 276 102 LC NE
Siluridae
Ompok bimaculatus 170 158 131 5 EN NT
Wallago attu 71 59 24 3 VU NT
Sisoridae
Gagata cenia 410 441 512 91 LC LC
Sisor rabdophorus 8 4 0 0 CR LC
Ambassidae
Chanda nama 1053 977 1377 1104 LC LC
Parambassis lala 92 79 90 129 LC NT
Parambassis ranga 1094 1009 1189 949 LC LC
Anabantidae
Anabas testudineus 191 214 103 73 LC DD
Channidae
Channa punctata 197 209 92 59 LC LC
Channa striata 56 83 12 2 LC LC
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Table 1. (continued).

Fish species 2006 2016 Conservation
Upstream Downstream Upstream Downstream BDa Globalb

Gobiidae
Glossogobius giuris 836 876 872 329 LC LC
Nandidae
Nandus nandus 74 52 0 0 NT LC
Osphronemidae
Trichogaster fasciata 499 541 440 560 LC LC
Trichogaster lalius 126 147 91 205 LC LC
Sciaenidae
Otolithoides pama 66 62 43 0 LC NE
Mastacembelidae
Macrognathus aculeatus 109 100 30 2 NT NE
Macrognathus pancalus 347 353 262 116 LC LC
Mastacembelus armatus 282 270 206 58 EN LC

BD, Bangladesh; CR, critically endangered; EN, endangered; LC, least concern; NE, not evaluated; NT, near threatened; VU, vulnerable.
a as per IUCN Bangladesh (2015).
b IUCN (2018).

Fig. 2. Non-metric multidimensional scaling (NMDS) ordination plot showing spatial and temporal variations of fish abundance in relation to
wastewater release into the Barnoi River.
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richness were also significant (all P< 0.001; Tab. 2). Least
square means also indicated that both fish species richness and
their abundance reduced at the downstream sites in recent
times compared to other combinations (i.e. vs. CB or IB or CA;
Tab. 2).

Similar to fish abundance and species richness, patterns of
different physico-chemical parameters of water, except water
temperature, also varied significantly over time (before vs.
after) and space (upstream vs. downstream) (all P< 0.01;
Fig. 5; Tab. 2). Least square means also indicated that pH, DO
and water transparency reduced at the downstream sites in
recent times compared to other combinations (i.e. vs. CB or IB
or CA Tab. 2).
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BIOENV analysis revealed that DO and pH collectively
were strongly correlated with the fish assemblage patterns
observed in the Barnoi River (r = 0.731), and showed a
significant response to waste dumping practices in the river
(Tab. 2). There was an overall decrease in both DO and pH
from before to after wastewater release across all sampling
sites receiving waste waters (S4–S6) when compared to
upstream sites (S1–S3).

SIMPER test results (Tabs. S1–S4) revealed that the CPUE
of only four native fish species (Wallago attu, C. chaca, S.
rabdophorus and N. nandus) varied significantly (P < 0.05)
between upstream and downstream sites before wastewater
releases (Tab. S1). Subsequent to wastewater releases, the
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Fig. 3. Fish abundance (as CPUE) and species richness over time at different sites in the Barnoi River. Before and After refer to data gathered
prior to and after the commencement of wastewater release in the middle part of the study section.
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abundance of 25 species varied significantly (P< 0.05)
between upstream and downstream sites and 16 species
contributed >70% of the dissimilarity in fish assemblages
(Tab. S2). Again, assemblages at the downstream sites (S4–S6)
varied widely between time periods where 39 species (84.8%
of the total species) varied significantly (P< 0.05; Tab. S3)
whereas no significant temporal changes, except for one
species (N. nandus), were observed in upstream sites (Tab. S4).
In this case 21 native taxa contributed >70% of the
dissimilarity in fish abundance. The majority of the indigenous
taxa contributing to the dissimilarity among upstream vs.
downstream [in 2016] and between downstream sites
over time (2006 vs. 2016) were small indigenous species
(Tabs. S2–S4).
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3.3 Threatened taxa

Nineteen species (41.3% of all species) recorded in the
present study are classed as of conservation concern in
Bangladesh (critically endangered, one sp.; endangered, seven
spp.; vulnerable, five spp.; near threatened, six spp.; Tab. 1).
Among these, three species, between time periods, were absent
in post-wastewater release (2016) catches, both downstream
and upstream of the wastewater inputs. Otolithoides pama was
absent downstream of the wastewater input in 2016, but
present upstream. Among remaining threatened fish species
(n= 16), abundance of all but one species (Botia lohachata)
decreased significantly (P< 0.05) at the downstream sites
following wastewater releases (Tab. S3). Similar to overall fish
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Fig. 4. Number of fish species (mean ± SD) occurring at each
sampling site in relation to wastewater release (before, 2006, during,
2016) in the Barnoi River.

Table 2. BACI comparisons of fish assemblages and physico-
chemical parameters of water in the Barnoi River at various times
from before to after waste dumping, obtained through linear mixed-
effects modelling.

Factors F P LSmeans

Fish abundance
Before–After (BA) 6.60 0.022
Upstream–Downstream (CI) 94.0 0.001
BA�CI 119.61 < 0.001
Upstream–Before (CB) 5.181
Downstream–Before (IB) 5.182
Upstream–After (CA) 5.083
Downstream–After (IA) 4.319

Fish species richness
Before–After (BA) 123.84 <0.001
Upstream-Downstream (CI) 170.27 <0.001
BA�CI 181.80 <0.001
Upstream–Before (CB) 5.723
Downstream–Before (IB) 5.741
Upstream–After (CA) 5.480
Downstream–After (IA) 4.397

Abundance of locally threatened spp.
Before–After (BA) 18.42 <0.001
Upstream–Downstream (CI) 72.09 <0.001
BA�CI 19.60 <0.001
Upstream–Before (CB) 222.526
Downstream–Before (IB) 224.158
Upstream–After (CA) 173.789
Downstream–After (IA) 69.211

pH
Before–After (BA) 183.54 <0.001
Upstream–Downstream (CI) 63.21 0.001
BA�CI 370.50 <0.001
Upstream–Before (CB) 6.938
Downstream–Before (IB) 7.083
Upstream–After (CA) 6.854
Downstream–After (IA) 4.813

Table 2. (continued).

Factors F P LSmeans

Dissolved oxygen
Before–After (BA) 61.40 <0.001
Upstream–Downstream (CI) 1194.90 <0.001
BA�CI 1260.30 <0.001
Upstream–Before (CB) 5.168
Downstream–Before (IB) 5.194
Upstream–After (CA) 5.045
Downstream–After (IA) 3.106

Water temperature
Before–After (BA) 1.72 0.211
Upstream–Downstream (CI) 0.46 0.501
BA�CI 0.47 0.499
Upstream–Before (CB) 24.646
Downstream–Before (IB) 24.500
Upstream–After (CA) 26.209
Downstream–After (IA) 26.208

Water transparency
Before–After (BA) 11.28 0.005
Upstream–Downstream (CI) 170.34 <0.001
BA�CI 203.10 <0.001
Upstream–Before (CB) 31.500
Downstream–Before (IB) 32.167
Upstream–After (CA) 33.083
Downstream–After (IA) 17.917
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abundance and species richness patterns, abundance of species
considered threatened in Bangladesh followed the same
temporal and spatial variations, with a lower number of
individuals at impacted sites (Tab. 2). Four species (Ailia coila,
Ompok bimaculatus, W. attu and Parambassis lala) were also
on the IUCN redlist of globally threatened species (ranked as
Near Threatened; Tab. 1). However, out of 27 non threatened
species, the abundance of 24 also decreased significantly
(P< 0.05) at downstream sites following wastewater releases
(Tab. S3).

4 Discussion

4.1 Spatial and temporal changes in fish community
and water quality

This study provides evidence of the impact of wastewater
on the fish community and some water quality parameters in
the Barnoi River. As predicted, in sites receiving wastewater
declines in species abundance (>51%) and species richness
(>41%) were recorded. Over the same time, fish abundance
and richness at upstream sites declined slightly by ∼8%.
Downstream wastewater-impacted sites supported much lower
fish abundance (by >47%) and species richness (by >35%)
compared to unaffected upstream sites. Similar significant
changes in pH, DO and water transparency were also observed.
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Fig. 5. Spatial and temporal variations in different physico-chemical parameters over time and space in the Barnoi River.
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These changes were clearly a result of wastewater discharge, as
similar changes were not observed in un-affected upstream
sites.

Severe organic pollution can result in an elimination of
fishes for long distances but they often disappear from the
impacted area without apparently being killed (Hynes, 1963).
As fishes are extremely mobile (Boys et al., 2012; Cooke et al.,
2016) and can move to new localities rapidly (Peterson and
Bayley, 1993; Sheldon and Meffe, 1995), fish populations in
the downstream sites of the river might have moved to un-
impacted upstream sites or further downstream to a more
suitable area. However, some species, especially those with
accessory respiratory organs (i.e. air-breathing fishes) may still
survive in habitats with poor water quality (Ip et al., 2004;
Lefevre et al., 2014). In Bangladesh air-breathing fishes
include catfishes (Siluriformes), labyrinth fishes (Anabantoi-
dea), spinyeels (Mastacelembidae) andsnakeheads (Channidae)
(Rahman,2005;HasanandMohsin, 2010)and thesespecies (e.g.
Anabas testudineus,Channa punctata andChanna striata) were
among the few species whose abundance did not vary
significantly (P> 0.05) between upstream and downstream
sites in 2016 despite wastewater release (Tab. S2).

Although lower numbers of individuals and species were
observed in downstream sites in 2016 this difference was
comparatively smaller from July to September than in other
months. This might be due to the rise in water level associated
with heavy rains during the rainy season (Galib et al., 2016,
2018) that may reduce the level of unfavourable physico-
chemical properties of water through pollutant dilution
(Kumar and Reddy, 2009). When the water level began to
recede, the impact of wastewater pollution on fish abundance
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and species richness became much more apparent. Evidence of
similar impacts of wastewater on zooplankton, the key natural
food for many of the fishes, during low water level is available
(Deksne, 2011).

Observed patterns of fish population abundance in the
Barnoi were strongly correlated with DO and pH � two vital
physico-chemical parameters for aquatic life. The influences
of wastewater on these parameters are well documented (e.g.
Hynes, 1963; Mason, 2001; Sepulveda-Jauregui et al.,
2013). Temporal patterns of DO, pH and water transparency
in this study are clear signs of organic pollution (Allan et al.,
1958; Hynes, 1963). Although BIOENV results showed that
the DO and pH collectively were strongly correlated with the
changing patterns of the fish assemblage, reduced water
transparency can also impact fish populations in various
ways. Spawning and feeding efficiencies of fishes may be
seriously affected by suspended matter produced through
organic pollution in water (Hynes, 1963) as reported by
the fishermen in the study area. In addition, it also reduces
light availability to photosynthetic organisms that may
result in reduced primary productivity of the habitat
(Mason, 2001). However, accumulation of fine, grey sludge
on the leaves of aquatic macrophyte in the impacted
downstream sites also indicates effects of organic pollution
that may seriously impact the aquatic vegetation and thus
may make the habitat less suitable for other aquatic animals.
The overall impacts of untreated wastewater release on
fishes in the Barnoi are therefore likely a combination
of direct water quality effects and indirect effects on the
habitat, particularly on vegetation and food sources (Hynes,
1963; Mason, 2001).
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4.2 Conservation implications

Serving as a channel that connects with several water
bodies (Manda floodplain, Atrai River, Baral River, Chalan
Beel and others) the Barnoi is ecologically vital for sustaining
not only fishes but also other organisms. But wastewater
releases in the impacted location (i.e. downstream sites) may
have caused a functional disconnection by making the habitat
unfavourable, reducing longitudinal movement of fish and
leading to local extinction of migratory aquatic organisms
(Warren and Pardew, 1998; Cooke et al., 2016). Fish
abundance and diversity were greater in upstream sites;
however, the effect of wastewater outflow on river water
quality has virtually isolated these habitats (primarily its
origin, Manda floodplain) from other floodplains and rivers
including the country’s largest wetland. This imposes a serious
threat to biota in isolated parts of the river system making them
more susceptible to local extinctions.

The complete absence of three species in 2016 sampling
(both upstream and downstream of the wastewater outflow)
indicates that these species (C. chaca, S. rabdophorus and N.
nandus), all bottom dwellers and of high conservation
importance in Bangladesh (IUCN Bangladesh, 2015), have
possibly become extinct from the study area. This might be
due, in part, to existing wastewater releases in the Barnoi.
Bottom dwelling fishes are very susceptible to anthropogenic
river pollution that can damage their DNA and fatty acid
profiles (Hussain et al., 2017) and other physiological
functions including reproduction (Jessica et al., 2007;
Nogueira et al., 2011; Palanisamy et al., 2011; Lenhardt
et al., 2012). The absence of these species from cleaner-water
sites upstream of the wastewater suggests that stochastic
factors acting on the more isolated populations upstreammight
have depleted populations too.

4.3 Implications for current wastewater management
and further research

The current management practice for wastes or industrial
effluents in Bangladesh, as well as in other developing
countries, is similar (e.g. Girija et al., 2007; Omosa et al.,
2012; Haque, 2017) � draining them out into the nearby
waters, usually rivers, usually without any prior treatment (e.g.
Dudgeon, 2000). This is primarily because the majority of the
industries do not have a proper treatment plant or plants have
been kept idle to reduce operating costs (Omosa et al., 2012;
Haque, 2017). Thus similar results can also be expected in
other developing countries where wastewaters are being
drained into the nearby water bodies without any prior
treatment. To minimise this impact, wastewater should be
treated through establishing proper treatment plants. However,
treated effluents can also be dangerous to the receiving water
bodies (Kumar and Reddy, 2009) and thus multiple treatments
might be considered before releasing wastewater into natural
water bodies.

This study also showed that not only traditional
pollutants or effluents (from industrial, agricultural, munic-
ipal etc. sources) are finding their way into the rivers with
wastewaters but also waste products from pharmacies and
clinics are being dumped into the waste channels.
Pharmaceutical effluents can result in endocrine disruption
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in fishes, reduced abundance and a lack of sensitive fish
species (Sanchez et al., 2011). There is a high potential
for accumulation of antibiotics, chemical and biological
agents (including harmful pathogens) in the river water in
the study area that can be a significant threat to all animals
including fish and humans (Kümmerer, 2001; Brown et al.,
2006; Fent et al., 2006). This practice must be stopped
and proper waste management (incineration of medical
and pharmaceutical waste) should be introduced. Another
important source of water quality degradation in the studied
river was dumping of large-sized dead animals (cattle,
goats and buffalo) that requires huge amounts of DO for
its decomposition i.e. biological oxygen demand (BOD)
would be much higher and results in lower DO and higher
dissolved carbon dioxide (Mason, 2001). Again, regulation
needs to be enforced so that these dead livestock are
disposed of properly, without increased pollution risk.

The broken sluices found in this study must be repaired
to stop continuous flow of wastewater into the river and
natural biological treatment should be considered using
locally available aquatic macrophytes (e.g. common reeds,
water hyacinths and duckweeds) that can effectively remove
nutrients and heavy metals from wastewaters (O’Hogain and
Gray,2002;NielsenandWilloughby,2005;Rezaniaetal., 2015).
However, care should be taken if floating macrophytes are
used as these may cover the water surface and restrict
sunlight penetration. A reed (Phragmites spp.) bed treatment
approach is likely to be the best option, provided that screens
are used to remove large debris and most solid organic
waste first. Reed bed treatment is a common, cost-effective
and environmentally friendly method used for filtering water
and removing suspended sediments, organic materials and
metals worldwide (O’Hogain and Gray, 2002; Nielsen and
Willoughby, 2005; Uggetti et al., 2012). Considering the
floodplain topography of the study area, a horizontal reed-bed
system (into which the canals run, before release to the river)
is suggested.

If in future, wastewater is treated, research should be
carried out to determine the success from a biodiversity
standpoint using fish species that are most responsive (e.g.
Puntius sophore, Chanda nama, Amblypharyngodon mola
and Parambassis ranga, Glossogobius giuris; a list of more
responsive species is available in Tab. S2) to wastewater
in the Barnoi River. Alongside this, improvements in physico-
chemical parameters of river water should be monitored
continuously.
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