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ABSTRACT

We present a proof of concept of a new galaxy group finder method, Markov graph CLustering
(MCL) that naturally handles probabilistic linking criteria. We introduce a new figure of merit,
the variation of information (VI) statistic, used to optimize the free parameter(s) of the MCL
algorithm. We explain that the common friends-of-friends (FoF) method is a subset of MCL.
We test MCL in real space on a realistic mock galaxy catalogue constructed from an N-body
simulation using the GALFORM model. With a fixed linking length FoF produces the best group
catalogues as quantified by the VI statistic. By making the linking length sensitive to the local
galaxy density, the quality of the FoF and MCL group catalogues improve significantly, with
MCL being preferred over FoF due to a smaller VI value. The MCL group catalogue recovers
accurately the underlying halo multiplicity function at all multiplicities. MCL provides better
and more consistent group purity and halo completeness values at all multiplicities than FoF.
As MCL allows for probabilistic pairwise connections, it is a promising algorithm to find

galaxy groups in photometric surveys.
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1 INTRODUCTION

The fundamental assumption behind galaxy formation theory is
that galaxies form inside dark matter haloes (White & Rees 1978).
The hierarchical assembly of haloes and the time-scale for galaxy
mergers means that haloes often have a main or central galaxy,
accompanied by distinct satellite galaxies. There are clear predic-
tions for the properties of the galactic content of haloes that can
be tested if we can identify a high fidelity sample of galaxy groups
from galaxy surveys that retains a connection to the underlying dark
matter haloes (Eke et al. 2004, 2005; van den Bosch et al. 2005;
Yang et al. 2005a).

The identification of a galaxy group requires an algorithm to
associate galaxies with a common, unique dark matter halo. Many
ways have been explored to do this, with the most common being
Friends of Friends (FoF; e.g. Huchra & Geller 1982; Zeldovich,
Einasto & Shandarin 1982). For example, Eke et al. (2004) and
Robotham et al. (2011) created FoF galaxy group catalogues from
the 2dF Galaxy Redshift Survey (Colless et al. 2001) and the Galaxy
And Mass Assembly survey (GAMA; Driver et al. 2011). Liu et al.
(2008) extended FoF for galaxies with photometric redshifts, which
was then applied to the Pan-STARRS1 medium deep survey (Jian
etal. 2014). Yang et al. (2005b) developed a halo-based group finder
that was used to construct a group catalogue using Sloan Digital Sky
Survey (SDSS) galaxies (Yang et al. 2007).
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However, despite the success of FoF-based methods they are
far from perfect and struggle when applied to low-density samples
as is the case with galaxy catalogues. This should be contrasted
with their application to numerical simulations where the particle
distribution is thousands of times denser (if not more) than a typical
galaxy distribution. When applied to galaxy catalogues, FoF tends
to create either too many low multiplicity groups (by fragmentation
of the larger ones) or groups that are too big (by spuriously joining
smaller groups to bigger ones). Measures of purity and completeness
are then used to rate the quality of the group catalogue and these
statistics tend to be combined in some way, to create a statistic that
should be minimized to ensure an ‘optimal’ set of groups (see, for
example, Eke et al. 2004). It is worth noting that FoF does not use
all of the available pairwise information, nor can it be extended
naturally to handle probabilistic positional information, as is the
case with e.g. photometric redshifts.

Here we show that the FoF approach to galaxy group finding is
just one solution to the graph clustering problem (e.g. Schaefter
2007). Graph clustering aims to find clusters of points given all
pairwise connection amplitudes between them. It is a problem that
occurs in many situations, such as detecting communities in social
networks (e.g. Liu et al. 2014). We explain, in Section 2, how the
FoF algorithm is a subset of the Markov graph CLustering (MCL)
algorithm (Van Dongen 2000), which we apply to the problem of
galaxy group detection. MCL has been widely used in the field
of bioinformatics in detecting groups of proteins based on their
pairwise interactions (e.g. Vlasblom & Wodak 2009).

Our overall aim is to construct a group catalogue using the narrow
band PAU Survey (PAUS; e.g. Stothert et al. 2018; Eriksen et al.
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2019). A PAUS group catalogue would probe significantly fainter
galaxies than one built using SDSS or GAMA, and would cover a
larger area with better completeness in both sampling and redshift
than a group catalogue constructed using similar depth surveys such
as zCOSMOS (Lilly et al. 2007) or VIPERS (Guzzo et al. 2014).
Hence a PAUS group catalogue would provide a better probe of
the redshift evolution of haloes as traced by galaxy groups and
better sampling of low-mass haloes. The challenge with finding
galaxy groups in PAUS lies in the varying accuracy of the PAUS
photometric redshifts. MCL is a promising approach as it allows
probabilistic pairwise connections (see also Tempel et al. 2018, for
another approach), something that could be useful for PAUS where
it is more natural to frame pairwise connections as probabilities
than as binary links.

Section 2 presents the MCL algorithm and explains its relation to
the standard FoF algorithm. Section 3 presents the mock catalogue
which is used to test the algorithm. Section 4 summarizes the
metrics we use to assess the group finding performance. Section 5
presents the results in real space. We provide our conclusions and
future prospects of the MCL algorithm in Section 6. Hereafter
we refer to a ‘clustering’ of galaxies interchangeably with a
‘grouping’ of galaxies. Throughout we assume a flat A cold dark
matter cosmology, with parameters 2, = 0.272, oy = 0.81, and
h = 0.704, consistent with those used to create the mocks (as
described in Section 3). We refer the reader to Stothert (2018) for
additional details regarding the algorithm, the mocks, and some of
the additional tests performed (and not reported here).

2 MARKOV CLUSTERING

The MCL algorithm was developed as a fast, scalable approach
to graph clustering! (Van Dongen 2000). Graph clustering (e.g.
Schaeffer 2007) is a solution to the problem of finding clusters
of points given their pairwise connection amplitudes. One obvious
and instructive example of a graph clustering problem is detecting
communities within a social network (Liu et al. 2014). Here users
are ‘friends’ with other users. The entire friendship network can
be represented by a (symmetric) binary matrix, which we call the
pairwise connection matrix W, with elements w;;. If users i and j are
friends, wy; is 1 and is O otherwise. A graph clustering algorithm
detects communities within this structure. MCL was chosen for two
key reasons: (1) in one of its limits it tends to the standard FoF
algorithm as explained later; (2) it supports probabilistic pairwise
connections rather than just fixed binary links, which is essential
for finding galaxy groups with photometric redshifts.

The MCL algorithm has one free parameter, the inflation param-
eter I', which has to be greater than or equal to unity. The algorithm
takes the initial pairwise connection matrix, W, (specified by its
elements w?j), as an input and assigns points to clusters following
an iterative process, where W; is the pairwise connection matrix
after k steps:

(i) Normalize w; column-wise such that >~ w]; = 1.

(i) At step k, create W) by squaring the pairwise connection
matrix Wy _,i.e. W = W2 .

(iii) Raise every element of wf; to the power of I', i.e. (w},)"".

(iv) Renormalize wy; column-wise such that 3 i wf; = 1.

(v) Repeat from (ii) until all elements of W, have converged
individually to within a specified tolerance.

IThe MCL code is publicly available at http://micans.org/mcl/.
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(vi) Rearrange the converged cleaned W) matrix into a block
diagonal matrix and read off the groups.

We now explain each step in turn. The initial column-wise nor-
malization in step (i) above — and those that follow in step (iv) — are
necessary to ensure that the pairwise connection elements relating
to point i can be treated as probabilities. By squaring the pairwise
connection matrix Wy _ ; to create a new pairwise connection matrix,
Wi, the MCL algorithm approximately simulates a random walk
on the graph by using the elements w;‘j as transition probabilities
to determine which pairs are more bound than others.? Step (iii),
raising the elements of wf.‘j to the power I', is designed to boost
the more travelled connections and reduce the less travelled inter-
cluster ones. This process of matrix multiplication (here assumed to
be squaring), element inflation (to the power of ') and column-wise
normalization is repeated until a predefined convergence criteria
is met by the pairwise connection matrix W;. The convergence
criterion is that the final matrix becomes idempotent, i.e. invariant
under expansion and inflation. The exact criterion is expressed in
terms of the maximum over all columns of the difference between
the maximum value in a column and the sum of all elements squared
of that column. Once converged, the matrix W is cleaned (by setting
to zero all wfj elements below a pruning value of 10~*) and then
rearranged with row replacement into a block diagonal matrix, with
members of each group defined by the matrix blocks.

At face value MCL is an iterative N? process as all links between
N points need to be defined at each iteration. The larger the value of
the inflation parameter, I", the more rapidly the pairwise connection
tends towards zero during the iterations and the faster the MCL
algorithm will split structures into smaller components. A structure
that is split by inflation parameter I"| will always be splitby any I" >
I';. In principle I' has no maximum value but there will be a value of
I" above which the catalogue stops splitting, as all clusters become
fully connected sub-graphs with equal pairwise connections, i.e. all
points in every cluster are connected only to all other points within
the same cluster with the same w;; value (and such clusters are not
split by MCL). We note that a I value of unity will connect any
structure that has any path connecting it. In that case MCL tends to
converge extremely slowly as no links are ever trimmed from the
matrix (see Section 4 for a practical application).

In the astrophysical case we first have a connection criterion that
sets the values of w;; between galaxies i and j. This is normally
based on a distance criterion between two galaxies, setting w;; to 1
if the galaxies are closer to each other than some specified linking
length and 0O otherwise. The standard FoF algorithm connects all
points that could be reached via a succession of links between
points. This outcome is exactly the same as that for MCL with
the inflation parameter I" set to unity. Therefore the FoF algorithm
should be considered as the limit towards which MCL converges
when I" tends to unity, i.e. formally FoF is a subset of MCL. An
advantage of MCL over FoF is that, even though MCL like FoF
uses all pairwise links, MCL gives higher priority to points that
are more connected than those with fewer connections, unlike FoF.
By carefully using the inflation parameter, the less well connected
points (or less important pairwise links) can be broken up. Only
through detailed tests on mocks (see Section 5) can the accuracy of
the MCL algorithm be assessed against e.g. FoF.

2See e.g. Van Dongen (2000) for a discussion of why this approach produces
a similar result to a standard random walk, while strictly speaking it is not
arandom walk.
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3 MOCK CATALOGUE

To test the MCL approach to galaxy group finding we apply it to a
realistic real space galaxy mock catalogue. We use real space rather
than redshift space to better understand the impact of changing the
clustering algorithm. We use a z = 0 snapshot of the GALFORM
model presented in Gonzalez-Perez et al. (2018), implemented in
the 125 4~ Mpc per side MilliGas simulation cube. Note that this
simulation has the same cosmology and number of snapshots as
the 500 4~' Mpc MR7 simulation (Guo et al. 2013). We use a
smaller simulation to speed up the calculations, as deciding between
methods of linking galaxies and optimization of free parameters
requires running the algorithm many times. The catalogue is limited
in the rest-frame r band to M, — Slogh < —20.0 and contains
~20 000 galaxies, corresponding to a galaxy density of ~1072
(h~" Mpc)~3, comparable to the GAMA survey at z ~ 0.15 (Driver
et al. 2011; Liske et al. 2015; Baldry et al. 2018). By construction
each galaxy belongs to a unique dark matter halo and each halo
contains one or more galaxies. See Stothert (2018) for further details
of how the mock catalogue was constructed.

4 GOODNESS OF FIT METRICS

We assess the quality of group finding using the measures of purity
and completeness. Group purity, P, quantifies the extent to which
galaxies in the same group are actually in the same halo (e.g.
Manning, Raghavan & Schiitze 2008; Wu, Xiong & Chen 2009):

P = max ;(n;;), (1)
Z ZNHl nij ; Y

where n;; is the number of galaxies in group i and halo j, Ng is
the total number of groups, and Ny is the total number of haloes.
Similarly, we define the halo completeness, C, which quantifies the
extent to which galaxies in the same halo are placed in the same
galaxy group:

C = max;(n;;) . 2)
PO zNﬂl Z !

We also use the associated cumulative measures C (>M) and P
(>M) defined, respectively, as the completeness of haloes and the
purity of groups with multiplicity (i.e. number of members) greater
than or equal to M. For the cumulative measures, the multiplicity
cut is only applied to the haloes for C (>M) and groups for P (>M).

To optimize the parameters of the MCL algorithm a single statistic
is desirable. Here we would like a problem agnostic measure to
build an ‘optimal” group catalogue. Most astrophysical applications
invoke combinations of bijective measures of completeness and
purity (Gerke et al. 2005; Robotham et al. 2011; Knobel et al. 2012;
Jian et al. 2014). Instead we follow Wu et al. (2009) who tested
multiple goodness of fit metrics in a statistical context and choose
to use the variation of information (VI; Meild 2003).

VI, also called the shared information distance, quantifies the
distance between two clusterings by looking at the amount of infor-
mation in each that cannot be inferred using the other clustering. A
smaller value of VI means a better clustering, so we minimize this
metric to determine the best MCL parameters. Using a definition of
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Figure 1. Variation of information (VI; top), group purity, and halo
completeness [P (>M) and C (>M); main panel] as a function of linking
length in a standard FoF approach to galaxy group finding for three values
of minimum group/halo multiplicity M. The minimum of VI provides
a good compromise between group purity and halo completeness at all
multiplicities.

entropy from statistical physics, VI is formally written as

Ny No
=Y psjn(psy) =Y pizIn(pix)
=1 i=1

Ng Ny
()

i=1 j=1 ptZPZ}

3

where p,, = n,/nsys for any x or y. This includes the special case of
x=X(ory=Xorx=y= E)forwhichwedeﬁnenzl = ZIN | Nijs
niy = EN \nij, and nyy = E Z ! n;j, corresponding to the
number of galaxies in group j, the nurnber of galaxies in halo 7, and
the total number of galaxies, respectively.

We validate the use of VI by testing how it relates to the
more familiar measures of halo completeness and group purity
(equations 1 and 2). Fig. 1 shows the VI and three values of P
(>M) and C (>M) as a function of the assumed fixed linking length
for a standard FoF algorithm applied to our mock galaxy catalogue.
The minimum value of VI gives a catalogue that is well balanced
between completeness and purity. The minimum value of VI also
agrees with the value of the linking length relative to the mean
galaxy separation found in e.g. Eke et al. (2004). This shows that
our choice of optimization statistic is sensible, and that using it in
standard FoF produces results comparable to those found in previous
work.

5 RESULTS

We compare the results of applying two different clustering methods
(MCL and FoF) to the mock galaxy catalogue. In each case the free
parameters are found by minimizing VI (equation 3). All models
set the binary connection between galaxies i and j, wy;, to unity if
the pairwise separation r;; is smaller than the linking length L;;, and
0 otherwise.

In our first groupings we adopt a constant linking length, i.e. L;;
is fixed. For FoF this is the only free parameter. Fig. 1 indicates that
the optimal value is L; = 0.55 2~ Mpc. The optimal solution with
MCL using a fixed linking length is achieved, according to VI, when
the inflation, I', tends to unity, indicating that the FoF algorithm is

ij»
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Figure 2. Group purity, P (>M) (left-hand panel), and halo completeness, C (>M) (right-hand panel), as a function of minimum multiplicity, M, for different
VI minimized galaxy group catalogues: simple FoF (dotted), FoF with density enhancement (dashed), and MCL with density enhancement group catalogues
(solid). The purity and completeness of the MCL group catalogue is the most consistent as a function of multiplicity, and has undoubtedly the best halo

completeness.
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Figure 3. The cumulative multiplicity function, N (>M), for haloes (truth,
thick black line) and three groups catalogues (green lines), which are the
simple FoF (dotted), FoF with density enhancement (dashed), and MCL
with density enhancement (solid). The bottom panel shows the ratio of the
multiplicity functions to the truth, N (>M)y. MCL with density enhancement
recovers the true halo multiplicity function extremely well (to better than
7 per cent at all multiplicities).

preferred over MCL in this fixed linking length scenario. This is
because with a fixed linking length small structures have poor purity
and large structures have poor completeness, and increasing I" only
splits the larger structures further, worsening the situation. Hence,
hereafter we only show the FoF results for fixed linking length.
The second set of models use a variable linking length set by the
geometric mean of the local galaxy density in an attempt to include
the known scale dependence of the clustering, as was done in e.g.
Eke et al. (2004) and Robotham et al. (2011). We calculate the local
density, p;, at the position of galaxy i using a 3D Gaussian kernel
with ¢ = 1 h~! Mpc truncated at 40. Other reasonable values of
the smoothing scale were tested with no significant improvement

found. L; is now given by

JPiP; )'3
Lii=Lo( Y22 . 4
! 0((,0)(71',') @

Ly and B are free parameters and (p) (r) is the mean value of the
geometric mean of the pairwise local densities at separation r
o)) = ZL 2P0 )
PIDIE

where the sums are over all galaxies separated by r. This process
extends the linking length for galaxy pairs in overdense region rel-
ative to those in underdense ones. A scale-dependent normalization
is necessary because, for pairs of galaxies at small separations, the
product of their local galaxy densities will on average be larger than
that of galaxy pairs at larger separations.

The first density enhanced model connects groups using the FoF
algorithm and has two free parameters, 8 and Ly. The best value of
Vlisat f =0.6and Ly =09 ™! Mpc. From its VI value, this
best FoF density enhanced model is preferred over the best model
with a constant linking length.

The second density enhanced model uses MCL, so adds the
inflation I" as a third free parameter. The minimum value of VI
is now givenby I' = 1.6, 8 = 0.6, and Ly = 1.1 4~' Mpc. From its
VI value, this optimal MCL density enhanced algorithm produces
the best catalogue of the four algorithms considered (FoF and MCL,
with and without density enhanced linking lengths).

Fig. 2 shows the group purity P (>M) and halo completeness C
(>M) as functions of group and halo multiplicity respectively for
the optimal catalogue produced by each of the three models. FoF
has low purity for small groups and poor completeness for large
haloes. FoF with density enhancement performs significantly better,
but still tends to overjoin some larger groups, explaining the fall
in purity with increasing multiplicity. The density-enhanced MCL
algorithm improves on both aspects and produces a group purity
and halo completeness that are largely independent of multiplicity.
A catalogue with high purity and completeness that are only mildly
dependent on multiplicity is preferable. This MCL also produces
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a catalogue that has higher halo completeness for all multiplicities
considered here than the corresponding FoF algorithm with density
enhancement. We note that the purity of high multiplicity groups is
larger for the simple FoF case, but this is at the expense of a very
poor halo completeness.

Fig. 3 shows the cumulative multiplicity function, N (>M), for
the underlying haloes and the three galaxy group catalogues. By
including density enhancement, FoF provides a better estimate of
the number of small groups, but the number of large groups remains
underestimated. MCL with density enhancement impressively re-
covers the correct numbers of groups at all multiplicities tested here
to better than 7 per cent, and often to better than 3 per cent. This is to
be compared to the best FoF performance which underestimates the
number of haloes by as much as 25 per cent from the truth at N >
5 and ~15 per cent for most multiplicities. Note these results were
not used to identify the optimal group finder, which is determined
by minimizing the VI for each clustering model.

Our results show that MCL can better address the stochastic
nature of ‘bridges’ connecting structure that appear with FoF. FoF
needs to be more cautious about the connection criterion as there
is a large penalty if even a single link is found between two large
structures, whereas MCL reduces this penalty by using inflation
to break loosely connected structures. These ‘bridges’ cause the
number of high multiplicity FoF groups to be underestimated (see
Fig. 3), and their group purity to be low (see Fig. 2). Both aspects
are improved significantly upon using MCL.

6 CONCLUSIONS

For the first time in an astronomical context we apply the MCL
algorithm (Van Dongen 2000), which is part of the more general
graph clustering algorithms, to identify galaxy groups. MCL has
one free parameter, inflation, I'. We show that the widely used FoF
algorithm is a subset of MCL; with I' = 1, MCL produces the same
result as the deterministic FoF algorithm. We apply MCL to detect
galaxy groups in a real space galaxy mock catalogue. We minimize
the VI (Meild 2003) to compare group catalogues to real haloes. We
validate this choice by showing that the minimum value of VI for
a simple FoF approach is found at linking lengths that are in good
agreement with previous values (e.g. Eke et al. 2004).

For a constant linking length FoF produces the best group
catalogue. Nevertheless, FoF returns too many spurious small
groups and too few large groups: increasing inflation away from
unity only makes this discrepancy worse. Using a linking length
sensitive to the local density to account for the scale dependence
of the grouping, MCL is superior to FoF (i.e. VI is minimized
with ' > 1). In both cases the group purity and halo completeness
are improved over a fixed linking length FoF for all multiplicities.
The MCL group catalogue has better halo completeness and group
purity than the comparable FoF catalogues, with a completeness
and purity that is approximately independent of multiplicity. As a
result, MCL provides a better estimate of the number of groups of a
given multiplicity than either of the two FoF models considered. In
particular, compared to the best FoF approach (as measured by VI),
it significantly improves the purity of, and the estimate of the number
of, high multiplicity groups. This is most likely because MCL ad-
dresses better, through its inflation parameter, the problem of bridges
linking large structures together, a common limitation of FoF.

MCL allows pairwise connection amplitudes that are not just
ones and zeros, which may prove useful in catalogues with mixed
redshift measurement precision, such as those from the PAUS (e.g.
Eriksen et al. 2019). Even in real space, where pairwise connections
are not probabilistic, MCL produces better group catalogues than

MNRASL 485, L126-1.130 (2019)

FoF. Future work will test MCL on more detailed mock galaxy
catalogues in redshift space with photometric errors.
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