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Typical black hole microstates in AdS=CFT were recently conjectured to have a geometrical dual with a
smooth horizon and a portion of a second asymptotic region. I consider the application of the holographic
complexity conjectures to this geometry. The holographic calculation leads to divergent values for the
complexity; I argue that this classical divergence is consistent with expectations for typical microstates.
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I. INTRODUCTION

The AdS=CFT correspondence provides a nonpertu-
rbative definition of quantum gravity on asymptotically
anti-de Sitter spaces, including black holes in the bulk
spacetime. An essential element in the holographic dic-
tionary is understanding the description of black holes in
this correspondence, particularly the region behind the
horizon. This is understood for the eternal black hole,
which is dual to the thermofield double state, a particular
entangled state in two copies of the CFT [1]. This state
reduces to a thermal density matrix in each copy of the
CFT, which is related to the region outside the horizon.
Reconstruction of the region inside the horizon requires
degrees of freedom from both copies of the CFT. In
particular, approximate bulk field operators in the region
behind the horizon can be reconstructed from the dual local
operators in the two copies of the CFT [2].
The thermofield double state and the thermal density

matrix are mostly supported on energy eigenstates near the
energy of the black hole. It is then important to understand
the relation of the typical state to the black hole. Interest
in the implications for the description of black holes of
considering typical Haar-random states dates back to the
work of Page [3], which has played a seminal role in
the study of the information loss problem. In a typical
high energy pure state in a single copy of the CFT,
the eigenvalue thermalization hypothesis posits that simple
observables will be close to thermal values [4]; this is due
to entanglement between these coarse-grained features
of the state and some fine-grained details that the simple

observables do not measure. It is thus widely believed that a
typical high energy pure state has a bulk description as an
AdS-Schwarzschild black hole, which includes at least the
region outside the horizon.
The question of whether there is a region behind the

horizon is controversial. It has been argued that the
resolution of the information loss paradox requires a
breakdown of the geometric description at the horizon
scale for typical states [5–7]. Papadodimas and Raju have
argued by contrast that the entanglement of the coarse-
grained and fine-grained features of the typical state has the
same general character as the entanglement between the
two copies of the CFT in the thermofield double state, so
one could expect to be able to recover a region behind
the horizon in this case just as in the thermofield double
state [2,8,9]. They have used Tomita-Takesaki theory to
construct state-dependent “mirror operators” which are
entangled with the local operators in the CFT. They
constructed candidate bulk field operators in the region
behind the horizon using both the local CFT operators and
the mirror operators, giving a bulk geometry with a smooth
horizon for typical states. The state-dependent nature of
this construction is supposed to avoid the arguments in
favor of the breakdown of the geometric description at the
horizon.
Recently, the authors of [10,11] argued that the geometry

recovered in this way also includes a part of the other
asymptotic region of the eternal black hole spacetime,
as depicted in Fig. 1. This picture was motivated by the
effective time independence of the typical high energy
state, which was argued to imply an approximate Killing
symmetry of the dual geometry. The local bulk fields in
the left region are reconstructed purely from the mirror
operators. Since the dual of this geometry is a typical pure
state in a single CFT, the Penrose diagram cannot be
extended arbitrarily to the left. The dotted line indicates a
breakdown of the geometric description. Related construc-
tions for atypical states were given in [12–15].
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The aim of the present paper is to test this proposal by
considering the application of the holographic complexity
conjectures to the geometry in Fig. 1, and comparing to
the expectations for the complexity of a typical state. The
holographic complexity conjectures [16–21] relate the com-
plexity of the CFT state to features of the bulk geometry. In
the complexity-volume (CV) conjecture, the complexity of
the state on a spacelike slice Σ of the boundary is related
to the volume of the maximal volume slice B in the bulk
whose boundary is Σ. In the complexity-action (CA)
conjecture, the complexity is instead related to the bulk
action evaluated on the “Wheeler-de Witt” (WdW) patch in
the bulk.
I will describe the application of these conjectures to the

bulk geometry in Fig. 1. They produce divergent results,
which I argue is consistent with the expectations for the
complexity of the typical state: the complexity should be
exponentially large (of order eS where S is the entropy of
the ensemble the state is chosen from), and the description
of the typical state by the geometry in Fig. 1 treats such an
exponential as infinity. In particular, the time independence
of the typical state used to argue for this geometry is only
true up to corrections of order e−S, so there is no reason to
expect this geometry to be valid when we consider time-
scales of order eS. Corrections to the geometry at these
timescales could cut off the divergence to produce the
expected order eS value of the complexity of the typical
state. Thus this calculation provides some evidence in favor
of the proposed geometry of Fig. 1.
In Sec. II, I consider the application of the CV con-

jecture; see Fig. 2. There is a close connection between
the divergence of the complexity in this geometry and the

late-time growth of the complexity in a black hole formed
by gravitational collapse, or in the time evolution of the
thermofield double state. This also supports the proposal
that this geometry provides a description of the typical
state. For the CV calculation, the coefficient of the
divergence precisely agrees with the late time growth rate
of the complexity. The calculation depends only on the
region behind the horizon and does not probe the left
asymptotic region, so this calculation is in this sense not a
very strong test of the proposal of [10,11].
In Sec. III, I consider the application of the CA

conjecture. We will see that there is a subtlety in the
application of the CA conjecture to this geometry, in
deciding what we want to take the WdW patch to be,
see Fig. 3. The simplest choice is to take the WdW patch to
be the domain of dependence of a bulk Cauchy surface
ending on the boundary surface Σ; this gives us the WdW
patch in the right picture in Fig. 3. However, in this
geometry, the maximal-volume surface B considered in
the CV conjecture is not a Cauchy surface for the full bulk
spacetime, as it does not extend into the left region, as
depicted in Fig. 2. We could therefore take the WdW patch
to be the domain of dependence of the surface B; this gives
us the smaller region in the left picture of Fig. 3.
If we take theWdWpatch to be the domain of dependence

of B, there is again a match between the divergence and the
growth rate in the time-dependent scenario. If we take the
domain of dependence of a Cauchy slice, the coefficient
of the divergence is different. This gives some reason for
preferring the former definition, although perhaps we should
not necessarily expect too straightforward a relation between
the typical state geometry and the time-dependent case.
On the other hand, the former calculation depends only on

FIG. 2. In the CV calculation, the complexity is given by the
divergent volume of the slice B, which approaches Bin in the left
part of the diagram.

FIG. 1. The proposed geometry dual to a typical high energy
state in a CFT. The CFT lives on the boundary on the right; the
dotted line on the left indicates a limit of the geometrical
description of the state.
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the region behind the horizon and does not probe the left
asymptotic region. The second calculation, by contrast,
depends on the region to the left, and the coefficient of
the divergence will depend on where we put the cutoff on
the left and what assumptions we make about the physics of
this cutoff. I will argue that for this calculation, it appears
natural to have this cutoff at a radial position rL of order the
horizon radius. There is some tension with the arguments
in [10,11], which favored a large value for the cutoff.

II. CV CONJECTURE

In the CV conjecture [16], the complexity C of a pure
state jΨi of a holographic field theory on some spatial slice
Σ on the boundary of an asymptotically AdS spacetime
is identified with the volume V of the maximal volume
codimension one slice B in the bulk having its boundary
on Σ,

CV ∝
VðBÞ
GNlAdS

: ð1Þ

This was motivated by the study of the behavior of
Schwarzschild-AdS black hole solutions, where it was
found that the volume of the maximal volume slice grows
linearly with time, even at late boundary times when other
observables have thermalized. The volume grows linearly
because the slice approaches a constant-r surface of
maximal volume in the region inside the black hole, which
we call Bin; as time increases the surface B is close to Bin
over a larger range of t.
When we apply this to the geometry of Fig. 1, we get a

divergence, as the surface B is constrained only to approach
the boundary slice Σ (indicated by a large dot in Fig. 2) and
is otherwise free to vary in the bulk. We can obtain infinite
volume by allowing B to asymptotically approach Bin in the
left side, as illustrated in Fig. 2. Note that the geometry is
time symmetric, so we can take as the maximal-volume
slice either the surface drawn in Fig. 2 in the black hole

region to the future or its mirror image in the white hole
region to the past.
This argument is independent of the details of the

geometry, but to be more explicit, take the black hole to
be the AdS-Schwarzschild solution in dþ 1 bulk dimen-
sions, with d ≥ 3. The bulk metric is

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΣ2
d−1; ð2Þ

where fðrÞ ¼ r2

l2 þ k − μ
rd−2

, and l is the AdS length scale,
k ¼ 0;�1 and dΣ2

d−1 is the metric on a unit sphere Sd−1 for
k ¼ 1, a flat plane for k ¼ 0, and the hyperbolic spaceHd−1

for k ¼ −1. The mass of the black hole is M ¼ ðd−1ÞΩd−1
16πG μ,

where Ωd−1 is the volume of the space of constant t and r
with respect to the metric dΣ2

d−1 (for k ¼ 0;−1, we consider
a compactification to make this volume finite). The solution
has a horizon at rþ where fðrþÞ ¼ 0.
The maximal constant-r surface Bin inside the horizon

is at the radius r ¼ rin < rþ where ∂rðfðrÞr2d−2Þ ¼ 0.
The volume of Bin is

VBin
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrinÞ

p
rd−1in Ωd−1

Z
dt: ð3Þ

This is divergent because of the integral over t.
Consider the state of the CFTon a surface Σ at t ¼ 0 on a

cutoff boundary r ¼ rmax (the cutoff is introduced to regulate
UV divergences). We consider the maximal volume slice
which moves away from Σ towards t > 0, crosses the future
horizon and approaches the surface Bin in the future black
hole region. It will approachBin as t → −∞,1 and thevolume
will hence diverge from integrating over large negative times.
The divergence in this volume is essentially the same as

the unbounded growth of the volume of the maximal volume

FIG. 3. Two alternatives for the Wheeler-de Witt patch: on the left, the domain of development of B, and on the right, the domain of
development of a Cauchy surface.

1The time coordinate in the future region increases to the right,
by continuity of the Killing vector across the right horizon.
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slice in the time evolution in a collapse geometry or the
thermofield double state. In these dynamical situations, the
maximal volume slice will lie along Bin for a finite range
of times, Δt ≈ t for late times, producing a linear growth of
complexity with t. The growth rate of the complexity in the
dynamical calculations is thus simply the volume of Bin per
unit time in (3), which similarly gives the coefficient of the
divergence in the present calculation. Thus, the holographic
complexity we obtain for typical states from the proposed
geometry is essentially the infinite time limit of the holo-
graphic complexity in the dynamical cases.
In both the dynamical situation and our consideration of

the typical state, the divergence is an artifact of the classical
description. We expect this classical geometrical picture to
break down when we consider observations over timescales
of order eS. In the typical state case, this can be seen quite
simply from the arguments in [10,11]: this geometry was
proposed because typical states look approximately time
independent when probed by simple observables:

hψ j dO
dt

jψif ¼ Tr

�
ρm

dO
dt

�
þOðe−SÞ ¼ Oðe−SÞ; ð4Þ

where the first term in the second equality vanishes by
the time independence of the microcanonical density
matrix ρm, and S is the entropy of the ensemble. The
Oðe−SÞ corrections could lead to breakdowns of the time-
independent geometrical description on timescales of order
eS. The complexity of states in the quantum mechanical
system is bounded above roughly by eS, as this is the
dimension of the space of states we are considering. We do
not have control over the nature of the corrections in (4),
but the scaling is right for them to cut off the classical
divergence found in this calculation to reproduce the
expected maximum complexity.

III. CA CONJECTURE

In the CA conjecture [20,21], the complexity of jΨi is
identified with the action of the WdW patch. The proposal
is that

CA ¼ I
πℏ

; ð5Þ

where I is the action of the WdW patch. This proposal has
the advantage that the formula is more universal, containing
no explicit reference to a bulk length scale. It is also often
easier to calculate, as there is no maximization problem to
solve. Finding the WdW patch for a given boundary slice is
easier than finding the maximal volume slice. We adopt the
action prescription of [22], with the additional counterterm
required for parametrization independence on the null
boundaries. The action of the WdW patch also exhibits
linear growth in time at late times for the black holes,
saturating a conjectured universal upper bound on the rate
of growth of the complexity [23],

dC
dt

≤
2M
πℏ

: ð6Þ

For the CA conjecture, there is a subtlety, as there are two
possible choices for the WdW patch. We usually take the
WdW patch to be the domain of development of the surface
B. In the examples considered to date, however, this surface
was also a Cauchy surface for the bulk spacetime. In our
present example, the surface B we considered above is not a
Cauchy surface for the full spacetime, as it never enters the
left asymptotic region.2 So we have a choice: either we
consider the domain of development of B, as depicted on the
left in Fig. 3, or we consider the domain of development of a
Cauchy surface, as depicted on the right in Fig. 3.3 Both of
these choices have their attractions: the former will produce
results which accord nicely with the late time limit of the
time dependent cases, while the latter seems more natural
and offers a more useful probe of the full geometry.
We will first discuss the action calculation in the former

case, where we take the domain of dependence of B. To do
the calculation, we cut off B at some large time −tmax on the
left. The calculation of the action for this patch is very
similar to the calculation for the eternal two-sided black
hole in [22,24] (mapped to a coordinate system with
tL ¼ t; tR ¼ 0). The difference is that the WdW patch in
their case is extended into the left asymptotic region. But at
large t, the past null boundary in the left region approaches
the horizon, while the past null sheet from t ¼ −tmax;
r ¼ rin in our case approaches the horizon from the inside
at large tmax. As a result, as we will explicitly see below, the
divergence in this calculation will have a coefficient which
is the same as the late time rate of growth with t in the
eternal black hole.
The action of the Wheeler-de Witt patch in the pre-

scription of [22] is

I ¼ 1

16πG

Z
W
ddþ1x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ þ 1

8πG

Z
S
ddx

ffiffiffiffiffiffi
−h

p
K

−
1

8πG

Z
N
dd−1xdλκ −

1

8πG

Z
N
dd−1xdλΘ ln jlΘj

−
1

8πG

Z
Σ
dd−1x

ffiffiffi
γ

p
a; ð7Þ

2Note that this is a subtle issue, and depends sensitively on
exactly how we define B. We could start by requiring the bulk
slice to be a Cauchy surface, extending all the way to the dotted
line on the left in Fig. 1, and try to extremize its volume in this
family of Cauchy surfaces; this constrained minimization prob-
lem produces the same divergence as before, as the surface lies
increasingly along Bin as we move to the future.

3In drawing the latter WdW patch, we have assumed that there
are no independent boundary conditions we need to impose at the
left boundary, so knowledge of the state on a Cauchy surface is
sufficient to determine evolution along the boundary. This seems
appropriate as this geometry is supposed to correspond to a state
in the CFT defined on the right boundary.
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whereW denotes theWdW patch, S the spacelike boundary
at r ¼ ϵ, N the null boundaries, and Σ the joints between
boundaries. The spacelike boundary contribution is the
usual Gibbons-Hawking-York (GHY) term, where K is the
trace of the extrinsic curvature. In the null boundary
contributions, λ is a parameter on the null generators, so
kα ¼ ∂xα=∂λ is the tangent to the generators, with κ defined
by kα∇αkβ ¼ κkβ, and Θ ¼ 1

2
γ−1∂λγ is the expansion of the

null surfaces, where γ is the determinant of the metric on
the cross sections of constant λ. We will always work with
affinely parametrized null generators, so the first term on
the null boundaries vanishes. In the joint contribution, a ¼
ln jk · k0=2j is determined by the inner product of the two
tangent vectors.
The boundaries of our first WdW patch are the future and

past null sheets emanating from t ¼ 0; r ¼ rmax on the
boundary, the future and past null sheets emanating from
t ¼ −tmax; r ¼ rin inside the black hole, and a segment
along the black hole singularity in between the two null
sheets, which we cut off at r ¼ ϵ. There are joints at
t ¼ 0; r ¼ rmax, at t ¼ −tmax; r ¼ rin, at the intersection of
the two past null sheets, and at the intersections of
the future null sheets with r ¼ ϵ. The null sheets from
t ¼ 0; r ¼ rmax lie at tðrÞ ¼ �ðr�max − r�Þ, where r�ðrÞ ¼R

dr
fðrÞ is the tortoise coordinate, and r�max is its value at the

cutoff surface. The null sheets from t ¼ −tmax; r ¼ rin
similarly lie at tþ tmax ¼ �ðr�in − r�Þ, but in this case
the minus sign is the future sheet and the plus sign is the
past sheet.
We are interested in the contributions to this action

which diverge as we take tmax → ∞. There will be such a
contribution from the volume term and from the spacelike
surface term at r ¼ ϵ. The affine parameter on the null
boundaries is proportional to r, so the null boundary terms
are independent of tmax, and do not contribute to the
divergence. The joint contributions at r ¼ ϵ and r ¼ rmax
are similarly independent of tmax, which leaves just the joint
contribution at the intersection of the past null sheets. This
approaches the Killing horizon as tmax → ∞, producing a
divergence as in the calculation of [24].
The volume contribution from the region behind the

horizon is

IFbulk ¼−
d

8πGl2
Ωd−1

�Z
rin

ϵ
drrd−1ðtmaxþ r�maxþ r�in−2r�Þ

þ
Z

rþ

rin

drrd−1ðtmaxþ r�max− r�inÞ
�

¼−
rdþ

8πGl2
tmaxþ�� � ; ð8Þ

where we have used R − 2Λ ¼ − 2d
l2, and in the second step

we have dropped terms that do not diverge with tmax and
set ϵ ¼ 0. For the surface term, the trace of the extrinsic
curvature is K ¼ 1

2
∂rf þ d−1

r f, so

IFsurf ¼ −
ϵd−1

16πG
Ωd−1

�
∂rfðϵÞ þ

d − 1

ϵ
fðϵÞ

�

× ðtmax þ r�max þ r�in − 2r�ðϵÞÞ: ð9Þ

For small ϵ, fðϵÞ ≈ − μ
ϵd−2

, so

IFsurf ¼
dμ

16πG
Ωd−1tmax þ � � � : ð10Þ

The affine parameter on the null sheets is proportional to r.
Let us take it to be equal to r (with the inclusion of the
expansion counterterm, the value of the action is unchanged
by this choice) so the tangent vectors are k ¼ �f−1∂t þ ∂r,
and at the intersection of the past sheets, k · k0 ¼ 2f.
The joint term is then

Ijoint ¼ −
dμ
8πG

Ωd−1rd−1jnt log jfðrjntÞj; ð11Þ

where rjnt is determined by solving

−tmax þ r�in − r�jnt ¼ −rmax þ r�jnt: ð12Þ

As tmax → ∞, rjnt approaches the horizon, which implies
fðrjntÞ ≈ f0ðrþÞðrjnt − rþÞ, and r�jnt ∼ 1

f0ðrþÞ logðrjnt − rþÞ,
so

Ijoint ≈ −
1

8πG
Ωd−1rd−1þ logðrjnt − rþÞ

≈ −
1

8πG
Ωd−1rd−1þ f0ðrþÞr�jnt

¼ 1

16πG
Ωd−1rd−1þ f0ðrþÞtmax þ � � � : ð13Þ

Putting it all together, we have that the divergence in the
action in the limit as tmax → ∞ is

I ¼ 2Mtmax þ � � � : ð14Þ

The coefficient of the divergence is precisely the same as
the late-time growth rate of the action in the dynamical
cases.
This is a nice result, which makes a close connection

between the complexity calculation for typical states and
dynamical calculations. However, it depended on a choice
for the WdW patch which might seem more in keeping
with the letter than the spirit of the original proposal.
The alternative choice for the WdW patch could also offer a
sharper probe of the proposed geometry, as it extends into
the left region.
Let us therefore consider the calculation of the action

for the patch on the right in Fig. 3. There is some cutoff
in the left region at r ¼ rL. We will also cut off the
integration over t by introducing null sheets extending from
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r ¼ rL; t ¼ �tmax into the black hole. We are again
interested in the contributions which diverge as
tmax → ∞. There will be divergent contributions from
the bulk integral in the black hole and white hole regions,
and from the GHY surface term along the future and past
singularities. The divergences with tmax for each of these
terms are the same as in the previous calculation, so we now
get twice the previous result, from taking into account the
past and future regions,

IF;Pbulk þ IF;Psurf ¼
Ωd−1

8πG

�
dμ − 2

rdþ
l2

�
tmax þ � � � : ð15Þ

There is also a divergence from the bulk integral in the left
region,

ILbulk ¼ −
Ωd−1

4πGl2
ðrdL − rdþÞtmax þ � � � : ð16Þ

Any surface term at the left boundary will also produce a
divergent contribution proportional to tmax, so the calcu-
lation now depends on our model for this boundary. One
possibility would be to imagine that the spacetime closes
off smoothly here, as in the AdS soliton; there would then
be no boundary contribution, as in [25], and the action
would be

I ¼ Ωd−1

8πG

�
−2

rdL
l2

þ dμ

�
tmax þ � � � : ð17Þ

However, this is a problematic result, as the value could
be negative if rL is big enough, or if μ is small for k ¼ −1
(as rL > rþ, and for k ¼ −1 μ → 0 at finite rþ). Therefore,
we should probably think about the left boundary as more
like an end of the world brane, as in [12]. Then we should
at least include a GHY term at r ¼ rL. The GHY surface
term is

ILsurf ¼ −
rd−1L

8πG
Ωd−1

�
∂rfðrLÞ þ

d − 1

rL
fðrLÞ

�
tmax: ð18Þ

Adding this contribution,

I ¼ Ωd−1

4πG
ðd − 1Þ

�
rdL
l2

þ krd−2L

�
tmax þ � � � : ð19Þ

This result has, oddly, no direct dependence on the mass
of the black hole. The smallest possible value is when

rL ¼ rþ. Then I ¼ 4Mtmax þ � � �; we get precisely twice
the divergence in the first WdW patch calculation, as
expected since the calculation includes two regions behind
the horizon, one in the past and one in the future. The
coefficient of the divergence increases monotonically as
we increase rL, moving the breakdown of the geometric
description into the left region.
The larger coefficient of the divergence means this

calculation has a less direct connection with the previous
dynamical studies, but it is not a serious problem; there is
no dynamical process here, so there is no reason to expect a
bound on the coefficient similar to the Lloyd bound [23].
Cutting off this divergence could still lead to the expected
maximal value of the complexity if the geometry breaks
down at some timescale t ∼ eS, the coefficient in this
relation just needs to be smaller. Thus, this calculation is
still reasonably consistent with expectations for typical
states; if this were the correct prescription for CA calcu-
lations, the proposed geometry would still be a credible
dual for typical states. However, we might expect the
coefficient of the divergence to at least be related to the
black hole parameters, rather than being set by some
arbitrary UV scale. So from the point of view of this
calculation, it might seem natural to take rL of the order of
rþ, rather than a fixed large value as in [10,11].
In summary, including the full region behind the horizon

in the geometric description of typical states produces a
classical divergence in the complexity that does seem to
match generic expectations for typical states. In the fuzzball
or firewall proposals, one could imagine that the exponen-
tially large value of the complexity for typical states could
be reproduced instead by a classically divergent contribu-
tion from the singular structure which replaces the horizon.
This is certainly possible; particularly for the action one
can imagine getting such a divergent contribution (although
divergences in the action for the bulk description of
individual microstates could be problematic for other argu-
ments, for example about tunneling rates [26]). However,
it is encouraging that the geometric description for typical
states proposed in [10,11] naturally produces such a diver-
gence, in a way which is consistent with our heuristic
ideas about the relation of complexity to the growth of the
wormhole geometry in the spacetime.
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