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Aspects of 3-neutrino mixing and oscillations in vacuum and in matter with constant density are 
investigated working with a real form of the neutrino Hamiltonian. We find the (approximate) equalities 
θm

23 = θ23 and δm = δ, θ23 (θm
23) and δ (δm) being respectively the atmospheric neutrino mixing angle and 

the Dirac CP violation phase in vacuum (in matter) of the neutrino mixing matrix, which are shown 
to represent excellent approximations for the conditions of the T2K (T2HK), T2HKK, NOνA and DUNE 
neutrino oscillation experiments. A new derivation of the known relation sin 2θm

23 sin δm = sin 2θ23 sin δ is 
presented and it is used to obtain a correlation between the shifts of θ23 and δ due to the matter effect. 
A derivation of the relation between the rephasing invariants which determine the magnitude of CP and 
T violating effects in 3-flavour neutrino oscillations in vacuum, JCP, and of the T violating effects in 
matter with constant density, Jm

T ≡ Jm , reported in [1] without a proof, is presented. It is shown that the 
function F which appears in this relation, Jm = JCP F , and whose explicit form was given in [1], coincides 
with the function F̃ in the similar relation Jm = JCP F̃ derived in [2], although F and F̃ are expressed in 
terms of different sets of neutrino mass and mixing parameters and have completely different forms.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction and preliminary remarks

It was shown in 1988 in ref. [1] that in the case of what is 
currently referred to as the reference 3-neutrino mixing (see, e.g., 
[3]), the magnitude of the CP and T violating (T violating) effects in 
neutrino oscillations in vacuum (in matter with constant density) 
are controlled by the rephasing invariant JCP ( Jm

T ≡ Jm) associated 
with the Dirac CP violation phase present in the Pontecorvo, Maki, 
Nakagawa and Sakata (PMNS) [4,5] neutrino mixing matrix:

JCP( Jm) = Im
((

U (m)
e2

)(
U (m)

μ3

)(
U (m)

e3

)∗ (
U (m)

μ2

)∗)
, (1)

where U (m)

li , l = e, μ, τ , i = 1, 2, 3, are the elements of the PMNS 
matrix in vacuum (in matter) U (m) . The CP violating asymmetries
in the case of neutrino oscillations in vacuum, for example,
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A(l,l′)
CPvac = P vac(νl → νl′) − P vac(ν̄l → ν̄l′) ,

l �= l′ and l, l′ = e,μ, τ , (2)

P vac(νl → νl′ ) and P vac(ν̄l → ν̄l′ ) being the probabilities of respec-
tively νl → νl′ and ν̄l → ν̄l′ oscillations, were shown to be given 
by [1]:

A(e,μ)

CPvac = A(μ,τ )

CPvac = −A(e,τ )
CPvac = 4 JCP �vac

osc , (3)

with

�vac
osc = sin

(
�m2

21L

2E

)
+ sin

(
�m2

32L

2E

)
+ sin

(
�m2

13L

2E

)
, (4)

where �m2
i j = m2

i − m2
j , i �= j, mi , i = 1, 2, 3, is the mass of the 

neutrino νi with definite mass in vacuum, E is the neutrino en-
ergy and L is the distance travelled by the neutrinos. In [1] similar 
results were shown to be valid for the T-violating asymmetries in 
oscillations in vacuum (in matter), A(l′,l)

Tvac(m)
= P vac(m)(νl → νl′ ) −

P vac(m)(νl′ → νl):
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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A(μ,e)
Tvac(m) = A(τ ,μ)

Tvac(m) = − A(e,τ )
Tvac(m) = 4 J (m)

CP(T) �
vac(m)
osc , (5)

where �m
osc has the same form as �vac

osc in eq. (4) with �m2
i j re-

placed by mass splitting in the matter �M2
i j = M2

i − M2
j , and Mi , 

i = 1, 2, 3, are neutrino mass-eigenvalues in the matter. In vacuum 
the T violating asymmetries in antineutrino oscillations, Ā(l′,l)

Tvac =
P vac(ν̄l → ν̄l′ ) − P vac(ν̄l′ → ν̄l), are related to those in neutrino os-
cillations owing to the CPT invariance: Ā(l′,l)

Tvac = − A(l′,l)
Tvac. In ordinary 

matter (Earth, Sun)2 the presence of matter causes CP and CPT 
violating effects in neutrino oscillations [6] and | Ā(l′,l)

Tm | �= |A(l′,l)
Tm |. 

However, in ordinary matter with constant density or with density 
profile which is symmetric relative to the middle point, like the 
matter of the Earth, the matter effects preserve the T symmetry 
and do not generate T violating effects in neutrino oscillations [1]. 
Thus, T violating effects in the flavour neutrino oscillations taking 
place when the neutrinos traverse, e.g., the Earth mantle or the 
Earth core can be caused in the case of 3-neutrino mixing only by 
the Dirac phase in the PMNS matrix.

The JCP-factor in the expressions for A(l,l′)
CP(T) vac, l �= l′ , is anal-

ogous to the rephasing invariant associated with the Dirac phase 
in the Cabibbo–Kobayashi–Maskawa (CKM) quark mixing matrix, 
introduced in [7]. In the standard parametrization of the PMNS 
mixing matrix (see, e.g., [3]) it has the form:

JCP = 1

8
cos θ13 sin 2θ12 sin 2θ23 sin 2θ13 sin δ , (6)

where θ12, θ23 and θ13 are the solar, atmospheric and reactor neu-
trino mixing angles and δ is the Dirac CP violation phase. The 
expression for the JCP-factor is the same in the parametrisation 
of the PMNS matrix UPMNS ≡ U employed in [1]:

U = R23(θ23) P33(δ) R13(θ13) R12(θ12) , (7)

where

R23 (θ23) =
⎛
⎝1 0 0

0 cos θ23 sin θ23
0 − sin θ23 cos θ23

⎞
⎠ ,

P33(δ) = diag(1,1, eiδ) , (8)

and

R13 (θ13) =
⎛
⎝ cos θ13 0 sin θ13

0 1 0
− sin θ13 0 cos θ13

⎞
⎠ ,

R12 (θ12) =
⎛
⎝ cos θ12 sin θ12 0

− sin θ12 cos θ12 0
0 0 1

⎞
⎠ . (9)

The expression of the PMNS matrix in the standard parametrisa-
tion U sp , is related to the expression in the parametrisation in 
eq. (7) as follows: U sp = U P∗

33(δ).
In eq. (7) the two CP violation (CPV) Majorana phases present in 

UPMNS in the case of massive Majorana neutrinos [8] were omitted 
since, as was shown in [8,6], the probabilities of flavour neutrino 
oscillations of interest for the study performed in [1] and for the 
present study, do not depend on the Majorana phases. Thus, the 
results presented in [1] and the new results derived in the present 
article are valid for both Dirac and Majorana neutrinos with defi-
nite masses in vacuum.

2 By “ordinary” we mean matter which does not contain antiprotons, antineutrons 
and positrons.
In ref. [1] the following relation between the rephasing in-
variants in vacuum and in matter with constant density, JCP and 
Jm

T ≡ Jm , has been reported:

Jm = JCP F (θ12, θ13,�m2
21,�m2

31, A) , (10)

where A = 2E
√

2 GF Ne is the matter term [9–11], GF and Ne be-
ing respectively the Fermi constant and the electron number den-
sity of matter. The function F in eq. (10) was given in the following 
explicit form in [1]:

F = F1

F2 F3
D12 D13 D23 D32 , (11)

where

Dij ≡ m2
i − M2

j , i, j = 1,2,3 , (12)

F1 = D12 D13 D23 D32 + A
[

D13 D23

(
D32 − �m2

31 |Ue3|2
)

+ D12 D32

(
D23 − �m2

21 |Ue2|2
)]

+ A2
[
|Ue1|2 D32 D23 + |Ue2|2 D32 D13 + |Ue3|2 D12 D23

]
,

(13)

F2 = |Ue1|2 (D12 + A)2 D2
32 + |Ue2|2 D2

12 D2
32

+ |Ue3|2 D2
12 (D32 + A)2 − A2 |Ue1|2|Ue3|2(�m2

31)
2 , (14)

F3 = |Ue1|2 (D13 + A)2 D2
23 + |Ue3|2 D2

13 D2
23

+ |Ue2|2 D2
13 (D23 + A)2 − A2 |Ue1|2 |Ue2|2(�m2

21)
2 . (15)

As was noticed in [1], the function F3 can formally be ob-
tained from the function F2 by interchanging m2

2 and m2
3, M2

2
and M2

3, and |Ue2|2 and |Ue3|2. In the parametrisation (7) used 
in [1] and, thus in eqs. (13)–(15), Ue1, Ue2 and Ue3 are real 
quantities: Ue1 = c12c13, Ue2 = s12c13 and Ue3 = s13, where ci j ≡
cos θi j and si j ≡ sin θi j . Thus, |Uei |2 = U 2

ei , i = 1, 2, 3. The function 
F (θ12, θ13, �m2

21, �m2
31, A) as defined by eqs. (11)–(15), depends, 

in particular, on the differences between the squares of the neu-
trino masses in vacuum and in matter, Dij = m2

i − M2
j , i �= j. How-

ever, as it follows from the form of the Hamiltonian of the neutrino 
system in matter with constant density, whose eigenvalues are 
M2

j /(2E) (see further), as well as from the explicit analytic expres-

sions for M2
j derived in [10], the mass squared differences Dij of 

interest are functions of θ12, θ13, �m2
21, �m2

31 and A and do not 
depend on θ23 and δ. As a consequence, the function F in eq. (10)
is independent on θ23 and δ [1]: F = F (θ12, θ13, �m2

21, �m2
31, A).

In deriving the relation (10), the following parametrisation of 
the neutrino mixing matrix in matter Um was used:

Um = Q R23(θ
m
23) P33(δ

m) R13(θ
m
13) R12(θ

m
12) ,

Q = diag(1, eiβ2 , eiβ3) , (16)

where θm
23, θm

13, θm
12, δm are the neutrino mixing angles and the 

Dirac CPV phase in matter and the Majorana CPV phases were 
omitted. The phases β2 and β3 in the matrix Q are unphysical and 
do not play any role in the derivation of relation (10). They ensure 
that the matrix Um can be cast in the form given in eq. (16) [12]
(see also [13]). Obviously, the parametrisation of Um in eq. (16) is 
analogous to the parametrisation (7) of the neutrino mixing matrix 
in vacuum.
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It follows from eqs. (11)–(15) that [1] in the case of oscillations 
in vacuum, i.e., for Ne = 0 (A = 0), one has

F (θ12, θ13,�m2
21,�m2

31,0) = 1 , (17)

and that F is symmetric with respect to the interchange of m2
2 and 

m2
3, M2

2 and M2
3 and of |Ue2|2 and |Ue3|2.

The relation (10) between Jm and JCP implies, in particular, 
that we can have Jm �= 0 only if JCP �= 0, i.e., T violation effects can 
be present in neutrino oscillations taking place in matter with con-
stant density or density distributed symmetrically relative to the 
middle point (like in the Earth) only if CP and T violation effects 
are present in neutrino oscillations taking place in vacuum. It was 
shown also in [1] that the presence of matter can enhance some-
what | Jm| with respect to its vacuum value | JCP|: in the example 
considered in [1] the enhancement was by a factor of 3. Taking 
the best fit values of neutrino oscillation parameters for neutrino 
mass spectrum with normal ordering (inverted ordering)3 obtained 
in the global analysis in [14],

θ12 = 33.62◦ , θ23 = 47.2◦ (48.1◦) , sin2 θ13 = 8.54◦ (8.58◦) ,

δ = 234◦ (278◦) , �m2
21 = 7.4 × 10−5eV2 ,

�m2
31 = 2.494 × 10−3eV2 (�m2

32 = −2.465 × 10−3eV2) , (18)

one always has for the ratio | Jm/ JCP| < 1.2 [15]. This result per-
sists even if we fix δ to its best fit value and vary the other 
neutrino oscillation parameters in their 3σ allowed ranges de-
termined in [14]. Relaxing arbitrarily the 3σ experimental con-
straints on the allowed ranges of �m2

21 and �m2
31, we find that in-

deed the maximal enhancement factor | Jm/ JCP| is 3.6 for neutrino 
mass spectrum with normal ordering (NO) and 2.9 for spectrum 
with inverted ordering (IO). In both cases, the maximal enhance-
ment corresponds to Jm reaching its theoretical maximal value 
max(| Jm|) = 1/(6

√
3).

In 1991 in [2] a relation similar to that given in eq. (10) was 
obtained:

Jm = JCP F̃ . (19)

The function F̃ was given in the following form:

F̃ = �m2
12 �m2

23 �m2
31

�M2
12 �M2

23 �M2
31

, (20)

where �M2
i j = M2

i − M2
j .

The relation (10) between the rephasing invariants Jm and JCP

was presented in [1] without a proof. In the present article, after 
discussing certain aspects of neutrino mixing in matter, we provide 
a derivation of the relation (10). Further, we show that the func-
tion F in eq. (10), as defined in eqs. (13)–(15), coincides with the 
function F̃ in the relation (19) obtained in [2],

F = F̃ , (21)

i.e., that the function F is just another representation of the func-
tion F̃ .

2. On the 3-neutrino mixing in matter

In [1] the analysis was performed starting with the following 
Hamiltonian of the neutrino system in matter diagonalised with 
the help of the neutrino mixing matrix in matter Um [6]:

3 For a discussion of the different possible types of neutrino mass spectrum see, 
e.g., [3].
1

2E
U

⎡
⎣

⎛
⎝m2

1 0 0
0 m2

2 0
0 0 m2

3

⎞
⎠ + U †

⎛
⎝ A 0 0

0 0 0
0 0 0

⎞
⎠ U

⎤
⎦ U †

= 1

2E
Um

⎛
⎝ M2

1 0 0
0 M2

2 0
0 0 M2

3

⎞
⎠ (Um)† . (22)

It follows from the preceding equation4 that the Hamiltonian of 
the neutrino system,

H = 1

2E

⎛
⎝m2

1 0 0
0 m2

2 0
0 0 m2

3

⎞
⎠ + 1

2E
U †

⎛
⎝ A 0 0

0 0 0
0 0 0

⎞
⎠ U (23)

= 1

2E

⎛
⎝m2

1 + A|Ue1|2 AU∗
e1Ue2 AU∗

e1Ue3

AU∗
e2Ue1 m2

2 + A|Ue2|2 AU∗
e2Ue3

AU∗
e3Ue1 AU∗

e3Ue2 m2
3 + A|Ue3|2

⎞
⎠ (24)

is diagonalised by the matrix U †Um and its eigenvalues are 
M2

i /(2E), i = 1, 2, 3. In the parametrisation (7) of the PMNS matrix 
Ue1, Ue2 and Ue3 are real quantities: Ue1 = c12c13, Ue2 = s12c13

and Ue3 = s13, where ci j ≡ cos θi j and si j ≡ sin θi j . As a con-
sequence, the Hamiltonian H is a real symmetric matrix.5 This 
implies that the matrix U †Um , which diagonalises H , is a real or-
thogonal matrix:

U †Um = O , O ∗ = O , O T O = O O T = diag(1,1,1) . (25)

Since H does not depend on θ23 and δ, O  = U †Um should not 
depend on θ23 and δ either. The fact that the matrix O in eq. (25)
is a real orthogonal matrix implies that in the parametrisations (7)
and (16) of the PMNS matrix in vacuum and in matter, the matrix

Õ = R13(θ13) R12(θ12) O RT
12(θ

m
12) RT

13(θ
m
13)

= P∗
33(δ) RT

23(θ23) Q R23(θ
m
23) P33(δ

m) (26)

=
(

1 0 0
0 cm

23c23eiβ2 + sm
23s23eiβ3 sm

23c23 ei(β2+δm) − cm
23s23 ei(β3+δm)

0 s23cm
23 ei(β2−δ) − c23sm

23 ei(β3−δ) sm
23s23ei(β2−δ+δm) + cm

23c23ei(β3−δ+δm)

)
,

(27)

is a real orthogonal matrix.
The requirement of reality of the nondiagonal elements of Õ

leads to the conditions:

cos θ23 sin θm
23 sin(β3 − δ) = sin θ23 cos θm

23 sin(β2 − δ) ,

cos θ23 sin θm
23 sin(β2 + δm) = sin θ23 cos θm

23 sin(β3 + δm) , (28)

which imply, in particular:

cos(2β3 + δm − δ) = cos(2β2 + δm − δ) . (29)

The last condition has two solutions:

β3 = β2 + k π , k = 0,1,2, ... , (30)

β2 + β3 = δ − δm + k′π , k′ = 0,1,2, ... . (31)

4 The CPV Majorana phases α21 and α31, enter into the expression for the PMNS 
matrix in vacuum through the diagonal matrix P = diag(1, eiα21/2, eiα31/2) [8,16]): 
UPMNS = U P . It follows from the expression in the left hand side of eq. (22) that 
the Hamiltonian of neutrino system in matter, and thus the 3-flavour neutrino os-
cillations in matter, do not depend on the Majorana phases [6].

5 Replacing the matrix U with U sp = U P∗
33(δ) in eq. (22), it is easy to convince 

oneself that the Hamiltonian H has the form given in eq. (24) also in the standard 
parametrisation of the PMNS matrix with Ue3 replaced by |Ue3| = s13.
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The requirement of reality of the diagonal elements of Õ leads to:

cos θ23 cos θm
23 sinβ2 = − sin θ23 sin θm

23 sinβ3 ,

cos θ23 cos θm
23 sin(β3 − δ + δm)

= − sin θ23 sin θm
23 sin(β2 − δ + δm) . (32)

These conditions also lead, in particular, to the constraint given in 
eq. (29) and to the solutions (30) and (31). It should be clear that 
satisfying the constraint (30) or (31) is not enough to ensure the 
reality of the matrix Õ .

Consider first the consequences of the constraint in eq. (30). 
Requiring in addition that the determinant of Õ is a real quantity 
implies:

2β2 = δ − δm + k′π , k′ = 0,1,2, ... (33)

The constraint in eq. (30) for k = 0, for example, and the conditions 
of reality of the elements (Õ )23(32) and (Õ )22(33) of Õ lead to:

sin(θ23 − θm
23) sin(β2 − δ) = 0 , sin(θ23 − θm

23) sin(β2 + δm) = 0 .

(34)

cos(θ23 − θm
23) sinβ2 = 0 , cos(θ23 − θm

23) sin(β2 − δ + δm) = 0 .

(35)

As a consequence of eq. (33) the second conditions in eqs. (34) and 
(35) are equivalent to the first conditions in eqs. (34) and (35). The 
constraint (30) for k = 0 and the conditions (34) and (35) can be 
simultaneously satisfied if the following relations hold6:

θm
23 = θ23 , 0 < θ23, θ

m
23 ≤ π/2 , (36)

δm = δ + k′π , k′ = 0,1,2 , (37)

β2 = qπ , q = 0,1,2, ... . (38)

Numerical results on the dependence of θm
23, δm , θm

23 and δm on the 
matter potential A, θm

23 and δm being the corresponding antineu-
trino mixing angle and CP violation phase, show that the relations 
(36) and (37) cannot be exact. These relations are not the true 
solutions of the reality conditions of the matrix Õ since they do 
not fully guarantee the reality of Õ as given in eq. (27). Only if 
both θ23 = 45◦ and δ = ±π/2 hold in vacuum, the relations (36)
and (37) are exact and are not violated by the effects of matter 
[17]. However, they are fulfilled with extremely high precision for 
the mixing of neutrinos (antineutrinos) in matter in the case of IO 
(NO) neutrino mass spectrum. We find that in this case for any 
A/�m2

21 and the best fit values of the neutrino oscillation param-
eters quoted in eq. (18) we have:

∣∣∣∣
(−)

θ m
23

θ23
− 1

∣∣∣∣ � 0.0004 (0.0015) , (39)

∣∣∣∣
(−)

δm

δ
− 1

∣∣∣∣ � 0.0001 (0.00006) . (40)

For the mixing of neutrinos (antineutrinos) in matter and spectrum 
with normal (inverted) ordering, eqs. (36) and (37) are fulfilled 
also with extremely high precision for A/�m2

21 < 30:

6 An alternative solution to the discussed constraints is θm
23 �= θ23, β2 = qπ , 

q = 0, 1, 2, ..., δ = k′π , k′ = 0, 1, 2, δm = k̃′π , k̃′ = 0, 1, 2. It corresponds to CP (T) 
conserving values of δ (δm).
∣∣∣∣
(−)

θ m
23

θ23
− 1

∣∣∣∣ � 0.006 (0.0015) , (41)

∣∣∣∣
(−)

δm

δ
− 1

∣∣∣∣ � 0.0003 (0.001) . (42)

For7 A/�m2
21 � 30 and mixing of neutrinos (antineutrinos) in mat-

ter and NO (IO) neutrino mass spectrum we have:

∣∣∣∣
(−)

θ m
23

θ23
− 1

∣∣∣∣ � 0.07 (0.016) , (43)

∣∣∣∣
(−)

δm

δ
− 1

∣∣∣∣ � 0.001 (0.004) . (44)

Setting δ to its best fit value given in eq. (18) and varying the 
other neutrino oscillation parameters in their 3σ allowed ranges 
determined in [14] does not change significantly the results quoted 
in eqs. (40)–(44). Indeed, for mixing of neutrinos (antineutrinos) 
in matter in the case of IO (NO) neutrino mass spectrum and any 

A/�m2
21 we find that |(−)

θ m
23/θ23 − 1| � 0.0005 (0.002) and |(−)

δm/δ −
1| � 0.0002 (0.0002). In the case of mixing of neutrinos (antineu-
trinos) in matter and NO (IO) spectrum and A/�m2

21 < 30 we get 

|(−)

θ m
23/θ23 − 1| � 0.013 (0.003) and |(−)

δm/δ − 1| � 0.0013 (0.003), 

while for A/�m2
21 � 30 we obtain |(−)

θ m
23/θ23 − 1| � 0.09 (0.02) and 

|(−)

δm/δ − 1| � 0.01 (0.01).
These results are illustrated in Figs. 1 and 2 (3 and 4) where the 

ratios θm
23/θ23 and δm/δ (the ratios θm

23/θ23 and δm/δ) are shown 
as functions of A/�m2

21 in the case of mixing of neutrinos (an-
tineutrinos) and NO (left panel) and IO (right panel) neutrino mass 
spectrum. We used the best fit values of neutrino oscillation pa-
rameters �m2

31, �m2
21, θ12 and θ13 from [14] and the analytic 

expressions for M2
i , i = 1, 2, 3, from [12].

The approximate ranges of values of A/�m2
21 relevant for 

the T2K (T2HK) [19], T2HKK [20], NOνA [21] and DUNE [22]
long baseline neutrino oscillation experiments read, respectively: 
[0.266, 2.66], [0.306, 3.06], [2.90, 8.70] and [3.02, 12.10]. In ob-
taining these ranges we used the best fit value of �m2

21 = 7.4 ×
10−5 eV2 and took into account i) that A = 7.56 × 10−5 eV2 (ρ/

g/cm3) (E/GeV), where ρ is the matter density, ii) that the mean 
Earth density along the trajectories of the neutrinos in the T2K 
(T2HK), T2HKK, NOνA and DUNE long baseline neutrino oscilla-
tion experiments respectively is 2.60, 3.00, 2.84 and 2.96 g/cm3, 
and iii) that in these experiments beams of neutrinos with ener-
gies ∼ (0.1–1.0) GeV (T2K, T2HK, T2HKK), ∼ (1–3) GeV (NOνA) 
and ∼ (1–4) GeV (DUNE) are being, or planned to be, used. At the 
peak neutrino energies at T2K (T2HK), T2HKK, NOνA and DUNE 
experiments of respectively 0.6 GeV, 0.6 GeV, 2.0 GeV and 2.6 GeV 
we have A/�m2

21 = 1.59, 1.84, 5.80 and 7.86. Taking a wider 
neutrino energy interval for, e.g., NOνA and DUNE experiments 
of [1.0, 8.0] GeV, we get for the corresponding A/�m2

21 ranges: 
[2.90, 23.21] and [3.02, 24.20]. For all the intervals of values of 
A/�m2

21 quoted above, which are relevant for the T2K (T2HK), 
T2HKK, NOνA and DUNE experiments, the equalities (36) and (37)
are excellent approximations.

Consider next the implications of the second condition (31) re-
lated to the requirement of reality of the matrix Õ . As can be 
easily shown, this condition alone i) ensures the reality of det(Õ ), 

7 For an analytic understanding of the results in eqs. (41) and (42) see [18].
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Fig. 1. The ratio θm
23/θ23 as a function of A/�m2

21 in the case of mixing of neutrinos and NO (left panel) and IO (right panel) neutrino mass spectrum. See text for further 
details.

Fig. 2. The ratio δm/δ as a function of A/�m2
21 in the case of mixing of neutrinos and NO (left panel) and IO (right panel) neutrino mass spectrum. See text for further 

details.

Fig. 3. The same as in Fig. 1 but for the ratio θm
23/θ23. See text for further details.
and ii) makes identical the two conditions in eq. (28) and the two 
conditions in eq. (32). Thus, after using condition (31) there are 
still two independent conditions to be satisfied to ensure the re-
ality of the matrix Õ . We will derive next a condition that can 
substitute one of the required two conditions. The second condi-
tion then can be either the condition in eq. (28) or the condition 
in eq. (32) (after eq. (31) has been used).

The condition of orthogonality of Õ , Õ (Õ )T = diag(1, 1, 1), as 
can be shown, leads to the following additional constraints:
(cm
23)

2 sin(2β2 − δ) + (sm
23)

2 sin(2β2 − δ + 2δm)

= − cm
23sm

23

c23s23
cos 2θ23 sin δm , (45)

sin 2θ23 sin 2θm
23 sin δ sin δm

+ (cm
23)

2 cos(2β2) + (sm
23)

2 cos(2β2 + 2δm)

= 1 − 2 s2
23 sin δ [(cm

23)
2 sin(2β2 − δ)

+ (sm
23)

2 sin(2β2 − δ + 2δm)] , (46)
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Fig. 4. The same as Fig. 2 but for the ratio δm/δ. See text for further details.

Fig. 5. The ratio sin 2θm
23 sin δm/(sin 2θ23 sin δ), eq. (49), for mixing of neutrinos as a function of A/�m2

21 in the cases of NO (left panel) and IO (right panel) neutrino mass 
spectra. See text for further details.
− sin 2θ23 sin 2θm
23 cos δ sin δm + (cm

23)
2 sin(2β2)

+ (sm
23)

2 sin(2β2 + 2δm)

= 2 s2
23 cos δ [(cm

23)
2 sin(2β2 − δ)

+ (sm
23)

2 sin(2β2 − δ + 2δm)] , (47)

where we have used the relation in eq. (31). Conditions (45), 
(46) and (47) follow from the requirements (Õ (Õ )T )23(32) = 0, 
Re((Õ (Õ )T )22) = 1 and Im((Õ (Õ )T )22) = 0, respectively. Replacing 
(cm

23)
2 sin(2β2 − δ) + (sm

23)
2 sin(2β2 − δ + 2δm) in eqs. (46) and (47)

with the right hand side of eq. (45), after certain simple algebra 
leads to the equality:

sin 2θm
23 sin δm = sin 2θ23 sin δ . (48)

This result was derived in [23] (see also [13]) using the parame-
terisations (7) and (16) introduced in [1] but employing a different 
method.8 The equality (48) implies that the product sin 2θ23 sin δ

does not depend on the matter potential, i.e., is the same for 
neutrino oscillations taking place in vacuum and in matter with 
constant density. It is valid for neutrino and antineutrino mixing 

8 The method employed in [23] is based on the observation [24] that the 
parametrisation (7) allows to factor out the part R23(θ23)P33(δ) in the neutrino 
mixing matrix in matter. In this case one works with the Hamiltonian Ĥ =
P∗

33(δ)RT
23(θ23)U HU † R23(θ23)P33, which is also a real symmetric matrix, where H

is given in eq. (24).
in matter independently of the type of spectrum neutrino masses 
obey – with NO or IO. From eq. (10) using the parametrisations 
defined in eqs. (7) and (16) we find:

sin 2θm
23 sin δm

sin 2θ23 sin δ
= F

cos θ13 sin 2θ12 sin 2θ13

cos θm
13 sin 2θm

12 sin 2θm
13

= F
Ue1 Ue2 Ue3

Um
e1 Um

e2 Um
e3

.

(49)

From this result and eq. (48) we obtain yet another equivalent rep-
resentation of the function F (θ12, θ13, �m2

21, �m2
31, A):

F = Um
e1 Um

e2 Um
e3

Ue1 Ue2 Ue3
. (50)

The ratio given in eq. (49) is shown graphically in Fig. 5 for 
mixing of neutrinos as a function of A/�m2

21 for the best fit values 
of neutrino oscillation parameters �m2

31, �m2
21, θ12 and θ13 from 

[14] and the analytic expressions for M2
i , i = 1, 2, 3, from [12]. The 

numerical result presented in Fig. 5, as we have verified and could 
be expected, is valid not only for best fit values of the relevant 
neutrino oscillation parameters, but indeed holds for any values of 
these parameters, varied in their respective physical regions. The 
same result is valid for mixing of antineutrinos. Thus, the equality 
(48) is exact. It holds also in the standard parametrisations of the 
PMNS matrix (see footnote 4). In this case the ratio Ue3/Um

e3 in 
eqs. (49) and (50) has to be replaced by |Ue3|/|Um

e3|.
It follows from eq. (48) that for the values of sin 2θ23 = 1 and 

δ = 3π/2, which are perfectly compatible with the existing data, 
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we have sin 2θm
23 sin δm = − 1. This in turn implies sin 2θm

23 = 1 and 
sin δm = − 1, i.e., the vacuum values of θ23 = π/4 and δ = 3π/2
are not modified by the presence of matter [17].

Given the fact that, as we have seen, the corrections of θ23 and 
δ due to the matter effects are small, the relation (48) allows to 
relate the matter correction to θ23, ε23(A/�m2

21), with the matter 
correction to δ, εδ(A/�m2

21). Working to leading order in ε23 � 1
and εδ � 1 we get from eq. (48) using θm

23 = θ23 + ε23 and δm =
δ + εδ :

εδ(A/�m2
21) cos δ ∼= −2ε23(A/�m2

21)
cos 2θ23

sin 2θ23
sin δ . (51)

Thus, for θ23 = π/4 and δ �= 3π/2, π/2, the leading order mat-
ter correction to δ vanishes, while for δ = 3π/2 (π/2) and θ23 �=
π/4, the leading order matter correction to θ23 vanishes. For 
δ �= qπ/2, q = 0, 1, 2, 3, 4, and θ23 �= π/4 the sign of εδ coincides 
with (is opposite to) the sign of ε23 provided cos 2θ23 cot δ < 0
(cos 2θ23 cot δ > 0).

3. The relation between J m and JCP

Equation (22) can be cast in the form:⎡
⎣

⎛
⎝m2

1 0 0
0 m2

2 0
0 0 m2

3

⎞
⎠ + U †

⎛
⎝ A 0 0

0 0 0
0 0 0

⎞
⎠ U

⎤
⎦ (U † Um)

= (U † Um)

⎛
⎝ M2

1 0 0
0 M2

2 0
0 0 M2

3

⎞
⎠ . (52)

One possible relatively simple way to derive the relation be-
tween Jm and JCP given in eq. (19) and reported in [1] is to exploit 
the fact that the column matrices ((U †Um)1i (U †Um)2i (U †Um)3i)

T

are eigenvectors of the Hamiltonian H defined in eq. (24), corre-
sponding to the eigenvalues M2

i /(2E), i = 1, 2, 3. Using this obser-
vation it is possible to derive from eq. (52) explicit expressions for 
the elements of the neutrino mixing matrix in matter Um . They 
read:

Um
li = 1

Di

[
Ni Uli − A Uei

(
D ji U∗

ek Ulk + Dki U∗
ej Ulj

)]
,

l = e,μ, τ , (53)

where

Ni = D ji Dki + A
(

D ji |Uek|2 + Dki |Uej|2
)

, (54)

D2
i = N2

i + A2 |Uei |2
(

D2
ji |Uek|2 + D2

ki |Uej|2
)

, (55)

with i, j, k = 1, 2, 3, but i �= j �= k �= i. For the elements of Um of 
interest, Um

e2, Um
e3, Um

μ2 and Um
μ3 we get from eqs. (53)–(55):

Um
e2 = 1

D2
Ue2 D12 D32 , (56)

Um
e3 = 1

D3
Ue3 D13 D23 , (57)

Um
μ2 = 1

D2

[
N2 Uμ2 − A Ue2

(
D12 U∗

e3 Uμ3 + D32 U∗
e1 Uμ1

)]
,

(58)

and
Um
μ3 = 1

D3

[
N3 Uμ3 − A Ue3

(
D13 U∗

e2 Uμ2 + D23 U∗
e1 Uμ1

)]
.

(59)

The function D2
2, which, as it follows from eqs. (1) and (56)–(59), 

enters into the expression for Jm , is given by:

D2
2 = N2

2 + A2 |Ue2|2
(

D2
12 |Ue3|2 + D2

32 |Ue1|2
)

= D2
12 D2

32 + 2 A D12 D32

(
D12 |Ue3|2 + D32 |Ue1|2

)
+ A2

[
D2

12 |Ue3|2
(
|Ue3|2 + |Ue2|2

)
+ D2

32 |Ue1|2
(
|Ue1|2 + |Ue2|2

)
+ 2 D12 D32|Ue1|2 |Ue3|2

]
= D2

12 D2
32 + 2 A D12 D32

(
D12 |Ue3|2 + D32 |Ue1|2

)
+ A2

[
D2

12 |Ue3|2 + D2
32 |Ue1|2

− (D32 − D12)
2 |Ue1|2 |Ue3|2

]
. (60)

It is easy to check that expression (60) for the function D2
2 coin-

cides with expression (14) for the function F2, i.e., that we have

D2
2 = F2 . (61)

One can show in a similar way that the function D2
3 coincides with 

the function F3 given in eq. (15), i.e., that

D2
3 = F3 . (62)

The calculation of the rephasing invariant in matter Jm in-
volves, in particular, the product Um

μ3(Um
μ2)

∗(Um
e3)

∗Um
e2 of elements 

of Um . From eqs. (56)–(59) we have:

R ≡ D2
2 D2

3

D13 D23 D12 D32

Im
(
(Um

μ2)
∗ Um

μ3 (Um
e3)

∗ Um
e2

)
Im

(
U∗

μ2Ue2Uμ3U∗
e3

) (63)

= 1

Im
(
U∗

μ2Ue2Uμ3U∗
e3

) Im
([

N∗
2 U∗

μ2 Ue2

− A |Ue2|2
(

D12 Ue3 U∗
μ3 + D32 Ue1 U∗

μ1

)]
× [

N3 Uμ3 U∗
e3 − A |Ue3|2

(
D13 U∗

e2 Uμ2 + D23 U∗
e1 Uμ1

) ])
.

(64)

Using the fact that

JCP = Im(U∗
μ2Ue2Uμ3U∗

e3) = Im(U∗
μ3Ue3Uμ1U∗

e1)

= − Im(U∗
μ2Ue2Uμ1U∗

e1) , (65)

the function R in eq. (64), after some algebra, can be brought to 
the form:

R = D13 D23 D12 D32 + A
[

D13 D23
(

D32 − |Ue3|2 (D32 − D12)
)

+ D12 D32
(

D23 − |Ue2|2 (D23 − D13)
)]

+ A2 [
D23 D32 |Ue1|2 + D13 D32 |Ue2|2 + D12 D23 |Ue3|2

]
.

(66)

Equations (11), (10), (63) and the equalities F2 = D2
2 and F3 = D2

3
proven above, together with the equalities D32 − D12 = �m2

31 and 
D23 − D13 = �m2

21, imply that R = F1. This completes the proof of 
the result reported in [1] and given in eqs. (10) and (11).

Two comments are in order. First, the function F (θ12, θ13, �m2
21,

�m2 , A), as determined in eqs. (11) is positive. Indeed, it follows 
31
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Fig. 6. The functions F (blue solid line), F̃ (red dashed line) and the difference F − F̃ (green line) versus A/�m2
21 for NO (left panel) and IO (right panel) neutrino mass 

spectrum. See text for further details. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)
from eqs. (61) and (62) that the functions F2 and F3 are positive. 
For A = 0, we have also F1 D12 D13 D23 D32 > 0. One can show that 
this inequality holds also for A �= 0, which leads to F > 0. This im-
plies that the rephasing invariants in vacuum and in matter, JCP

and Jm , have the same sign:

sgn
(

Jm) = sgn
(

JCP
)
. (67)

This result is valid both for neutrino mass spectra with normal 
ordering (�m2

31 > 0) and with inverted ordering (�m2
31 < 0).

Second, the function F (θ12, θ13, �m2
21, �m2

31, A) in eq. (10) has 
different equivalent representations. This should be clear from the 
fact that

JCP( Jm) = Im
((

U (m)
μ2

)∗
U (m)

e2 U (m)
μ3

(
U (m)

e3

)∗)
= Im

((
U (m)

μ3

)∗
U (m)

e3 U (m)
μ1

(
U (m)

e1

)∗)
= Im

(
U (m)

μ2

(
U (m)

e2

)∗ (
U (m)

μ1

)∗
U (m)

e1

)
= ... , (68)

and the derivation presented above. Indeed, we can use the second 
or the third form of JCP ( Jm) in eq. (68) to obtain the relation 
given in eq. (10). The function F thus derived will differ in form 
from, but will be equal to, the function F defined in eqs. (11)–(15).

It follows from eqs. (10) and (19) that

Jm

JCP
= F (θ12, θ13,�m2

21,�m2
31, A) = F̃ = �m2

12 �m2
23 �m2

31

�M2
12 �M2

23 �M2
31

,

(69)

i.e., that the function F (θ12, θ13, �m2
21, �m2

31, A) found in [1] is an-
other representation of the function F̃ found in [2]. The functions 
F and F̃ have very different forms. Nevertheless, as we have ver-
ified, they coincide numerically. This is illustrated in Fig. 6 where 
we show the functions F (eq. (11)), F̃ (eq. (20)) and the difference 
(F − F̃ ) versus A/�m2

21. We used the analytic expressions for M2
i , 

i = 1, 2, 3, in terms of m2
1, A and the neutrino oscillation param-

eters �m2
31, �m2

21, θ12 and θ13 derived in [12]. It should be clear 
from eq. (22) that, as we have already discussed, in the parametri-
sation (7) employed in [1] the mass parameters M2

i , i = 1, 2, 3, do 
not depend on θ23 and δ. In Fig. 6, the neutrino oscillation parame-
ters on which the functions F and F̃ depend were set to their best 
fit values found in the global analysis of the neutrino oscillation 
data in [14] in the cases of NO and IO neutrino mass spectra.
As is suggested by Fig. 6 and we have commented earlier, our 
numerical results show that the function F is positive.

The function F in eq. (10), as we have remarked earlier, does 
not depend on θ23 and δ. This implies that the ratio

Jm

sin 2θ23 sin δ
= F

JCP

sin 2θ23 sin δ
= 1

8
F cos θ13 sin 2θ12 sin 2θ13 ,

(70)

does not depend on θ23 and δ.
From eqs. (11), (61), (62) and (50), using Um

e1 = Ue1 D21 D31/D1

we find a new expression for the function F1 as well:

F1 = D2 D3

D1
D21 D31 . (71)

4. The case of antineutrino mixing in matter

In the preceding Sections we have focused primarily on the 
mixing and oscillations in matter of flavour neutrinos. In this Sec-
tion we will discuss briefly the case of mixing and oscillations in 
matter of flavour antineutrinos.

In ordinary matter (of, e.g., the Earth, the Sun) the mixing of 
antineutrinos in matter differs from the mixing of neutrinos in 
matter as a consequence of the fact that ordinary matter is not 
charge conjugation invariant: it contains protons, neutrons and 
electrons, but does not contain their antiparticles. This causes CP 
and CPT violating effects in the mixing and oscillations of neutri-
nos in matter [6]. As a consequence, the neutrino and antineutrino 
mixing angles, as well the masses of the respective neutrino mass-
eigenstates, in matter differ. The expressions for the antineutrino 
mixing angles in matter, θ i j , the neutrino masses in this case, Mk , 
and the corresponding J -factor, Jm , can be obtained from those 
corresponding to neutrino mixing in matter, as is well known, by 
replacing the potential A with (−A).

Since the derivations of the results given in eqs. (69)–(71) do 
not depend on the sign of the matter term A, these results are 
valid also for mixing of antineutrinos in matter and for oscillations 
of antineutrinos νl in matter with constant density. Thus, we have:

Jm = JCP F (θ12, θ13,�m2
21,�m2

31, A) , (72)

F (θ12, θ13,�m2
21,�m2

31, A) = F (θ12, θ13,�m2
21,�m2

31,− A) ,

(73)
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Jm = Im
((

Um
e2

)(
Um

μ3

)(
Um

e3

)∗ (
Um

μ2

)∗)
= 1

8
cos θm

13 sin 2θm
12 sin 2θm

23 sin 2θm
13 sin δm , (74)

where Um
lj are the elements of the antineutrino mixing matrix in 

matter Um , δm is the Dirac phase present in Um , and θm
ij are the 

antineutrino mixing angles in matter. We also have:

sin 2θm
23 sin δm = sin 2θ23 sin δ , (75)

F = Um
e1 Um

e2 Um
e3

Ue1 Ue2 Ue3
= �m2

12 �m2
23 �m2

31

�M2
12 �M2

23 �M2
31

, (76)

with M2
i j = M2

i − M2
j . From the exact relations (48) and (75) we 

get

sin 2θm
23 sin δm = sin 2θm

23 sin δm = sin 2θ23 sin δ , (77)

while eqs. (69) and (76) imply:

F = F
�M2

12 �M2
23 �M2

31

�M2
12 �M2

23 �M2
31

. (78)

Finally, as in the neutrino mixing in matter case, the equalities

θm
23 = θ23 , 0 < θ23, θ

m
23 ≤ π/2 , (79)

δm = δ , (80)

although not exact, represent excellent approximations for the 
ranges of values of A/�m2

21 relevant for the T2K (T2HK), T2HKK, 
NOνA and DUNE neutrino oscillation experiments.

5. Summary

In the present article we have analysed aspects of 3-neutrino 
mixing in matter and of CP and T violation in 3-flavour neutrino 
oscillations in vacuum and in matter with constant density. The 
analyses have been performed in the parametrisation of the PMNS 
neutrino mixing matrix UPMNS ≡ U specified in eq. (7) and intro-
duced in [1]. However, as we have shown, the results obtained in 
our study are valid (in some cases with trivial modifications) also 
in the standard parametrisation of the PMNS matrix (see, e.g., [3]).

Investigating the case of 3-neutrino mixing in matter with con-
stant density we have derived first the relations θm

23 = θ23 and 
δm = δ, θ23 (θm

23) and δ (δm) being respectively the atmospheric 
neutrino mixing angle and the Dirac CP violation phase in vacuum 
(in matter) present in the PMNS neutrino mixing matrix. Perform-
ing a detailed numerical analysis we have shown that although 
these equalities are not exact, they represent excellent approxima-
tions for the ranges of values of A/�m2

21 < 30 relevant for the 
T2K (T2HK), T2HKK, NOνA and DUNE neutrino oscillation experi-
ments, the deviations from each of the two relations not exceeding 
respectively 1.3 ×10−2 and 1.3 ×10−3 (Figs. 1 and 2)). Similar con-
clusion is valid for the corresponding parameters θm

23 and δm in the 
case of mixing of antineutrinos (Figs. 3 and 4)).

We have derived next the relation sin 2θm
23 sin δm = sin 2θ23 sin δ, 

and have shown numerically that it is exact (Fig. 5). The relation 
is well known in the literature (see [23,13]). We have presented a 
new derivation of this result. Using the indicated relation and the 
fact that the deviations of θm

23 from θ23, ε23(A/�m2
21), and of δm

from δ, εδ(A/�m2
21), are small, |ε23|, |εδ| � 1, we have derived a 

relation between ε23 and εδ working in leading order in these two 
parameters (eq. (51)). It follows from this relation, in particular, 
that for θ23 = π/4 and δ �= 3π/2, π/2, the leading order matter 
correction to δ vanishes, while for δ = 3π/2 (π/2) and θ23 �= π/4, 
the leading order matter correction to θ23 vanishes.
We have discussed further the relation between the rephas-
ing invariants, associated with the Dirac phase in the neutrino 
mixing matrix, which determine the magnitude of CP and T vi-
olating effects in 3-flavour neutrino oscillations in vacuum, JCP, 
and of the T violating effects in matter with constant density, 
Jm

T ≡ Jm , obtained in [1]: Jm = JCP F . F is a function whose 
explicit form in terms of the squared masses in vacuum and in 
matter of the mass-eigenstate neutrinos, of the solar and reac-
tor neutrino mixing angles and of the neutrino matter poten-
tial (eq. (11)) was given in [1]. The quoted relation between 
Jm and JCP was reported in [1] without a proof. We have pre-
sented a derivation of this relation. We have shown also that 
the function F = F (θ12, θ13, �m2

21, �m2
31, A) i) is positive, F > 0, 

which implies that Jm and JCP have the same sign, sgn( Jm) =
sgn( JCP), and that ii) it can have different forms. We have 
proven also that the function F as given in [1] is another rep-
resentation of the so-called called “Naumov factor” (Fig. 6): F =
�m2

12�m2
23�m2

31(�M2
12�M2

23�M2
31)

−1, where �m2
i j = m2

i − m2
j , 

�M2
i j = M2

i − M2
j , mi and Mi , i = 1, 2, 3, being the masses of the 

three mass-eigenstate neutrinos in vacuum and in matter.
Finally, we have considered briefly the case of antineutrino mix-

ing in matter and have shown that results similar to those derived 
for the mixing of neutrinos in matter are valid also in this case.

The results of the present study contribute to the understanding 
of the neutrino mixing in matter and flavour neutrino oscillations 
in matter with constant density, widely explored in the literature 
on the subject. They could be useful for the studies of neutrino 
oscillations in long baseline neutrino oscillation experiments T2K 
(T2HK), T2HKK, NOνA and DUNE.
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