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Is perception of translucence based on estimations of
scattering and absorption of light or on statistical
pseudocues associated with familiar materials? We
compared perceptual performance with real and computer-
generated stimuli. Real stimuli were glasses of milky tea.
Milk predominantly scatters light and tea absorbs it, but
since the tea absorbs less as the milk concentration
increases, the effects of milkiness and strength on scattering
and absorption are not independent. Conversely, computer-
generated stimuli were glasses of ‘‘milky tea’’ in which
absorption and scattering were independently
manipulated. Observers judged tea concentrations
regardless of milk concentrations, or vice versa. Maximum-
likelihood conjoint measurement was used to estimate the
contributions of each physical component—concentrations
of milk and tea, or amounts of scattering and absorption—
to perceived milkiness or tea strength. Separability of the
two physical dimensions was better for real than for
computer-generated teas, suggesting that interactions
between scattering and absorption were correctly
accounted for in perceptual unmixing, but unmixing was
always imperfect. Since the real and rendered stimuli
represent different physical processes and therefore differ
in their image statistics, perceptual judgments with these
stimuli allowed us to identify particular pseudocues
(presumably learned with real stimuli) that explain
judgments with both stimulus sets.

Introduction

The perception of colors, textures, and shapes, and
the identification of materials, are all things that we

take for granted in everyday visual experience. How-
ever, the underlying mechanisms are not fully under-
stood. There are open questions not only about the
processing of incoming sensory information but also
about the selection of perceptual estimates to support
particular judgments. Considerable effort has been put
into answering these questions for color and, to a lesser
extent, texture and glossiness. Very little, however, is
known about perceived translucence (Anderson, 2011).
To make judgments about translucence, do we perceive
and make estimates of the physical characteristics of
light transport—scattering and absorption—or do we
rely on heuristics1 or pseudocues?2 The results we
present here provide the first systematic assessment of
how humans perceive scattering and absorption of light
within translucent materials.

Color, gloss, and translucence are perceptual prop-
erties of objects in the world. They can be thought of as
estimates of the different interactions of light with the
materials of which the object is made. An object’s color
depends upon the efficiency with which its surface
reflects light of different wavelengths. The glossiness of
an object depends on how randomly light is scattered
when it is reflected from the object’s surface. The
quality of translucence depends on the way in which
light is scattered and absorbed as it passes through the
bulk of a material before reaching our eyes, either being
scattered back to us or passing entirely through an
object. However, despite the dependence of each of
these perceptual properties on the object’s physical
properties, the information available to us when
looking at an object is insufficient to recover full
veridical measurements of any of the corresponding
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physical properties of the material. In material color
perception (Smithson, 2005) and glossiness perception
(Chadwick & Kentridge, 2015), it is clear that we
employ heuristics or pseudocues that, while not
veridical, usually produce good approximations to the
qualities of a material’s surface color or gloss. Much
less is known about the heuristics or cues that drive
translucence perception.

We are specifically interested in understanding the
contributions of physical properties of light transport
in a material to translucence perception and the visual
mechanisms by which this occurs. We use as test stimuli
photographs of translucent liquids (glasses of milky
tea) whose physical constituents have been systemati-
cally varied. We obtain perceptual judgments of the
physical properties of the liquid (strength and milki-
ness), testing the extent to which observers can
perceptually unmix the liquids to judge differences in
their physical makeup. With these familiar stimuli, the
physical components we vary (concentrations of milk
and tea) do not map independently onto changes in
scatter and absorption. We therefore generate a
comparison set of computer-generated stimuli that are
to be subjected to the same perceptual judgments (of
strength and milkiness), but in which scatter and
absorption are perfectly independent. Comparison of
the different perceptual responses obtained with the
two stimulus sets provides strong tests of the underly-
ing mechanisms of material perception with translucent
liquids. For any image statistic that captures the
pattern of observers’ judgments with the real stimuli,
we can establish whether the same statistic predicts
behavior more generally by testing whether it also
predicts the different patterns of responses when
observers judge artificial stimuli.

Previous research

The perception of translucence has been relatively
little studied, in contrast to work on other visual
properties such as color. Metelli (1970), while not the
first to study the phenomenon, made one of the first
significant attempts to explain perceived transparency
(the absorption component of the more general
property of translucence). He outlined potential alge-
braic conditions under which we perceive transparency,
in terms of relative figural relationships and ordinal
relationships between colors in a scene. However, this
was only relevant to specific limited contexts and
materials. Subsequent work until the early 2000s went
on to define other possible comparative relationships
between materials in terms of conditions that might
have to be satisfied for the visual system to define a
surface as transparent. This work produced descriptive
laws but did not attempt to explain how we perceive the

translucence itself (Adelson & Anandan, 1990; Beck,
Prazdny, & Ivry, 1984; Singh & Hoffman, 1998).
Theories of translucence developed further as technol-
ogy improved, with research showing that it had many
other important aspects (Jensen, Marschner, Levoy, &
Hanrahan, 2001; Koenderink & van Doorn, 2001;
Singh & Anderson, 2002a, 2002b). It also became clear
that most published work did not attempt to address
the fundamental questions of how translucence was
perceived, although it was evident that observers were
very good at discriminating and identifying character-
istics of translucence, like opacity, at short presentation
times (Sharan, Rosenholtz, & Adelson, 2009). Fleming
and colleagues concluded that many of the simple cues
that had been proposed for the perception of translu-
cence were unable to predict how the translucence of a
material was perceived (Fleming & Bülthoff, 2005;
Fleming, Torralba, & Adelson, 2004). They argued that
the physics of translucence—much like the physics of
surface reflectance, in color vision—were too complex
for the visual system to be able to estimate using inverse
optics (i.e., working backward from the stimulus
received to the material most likely to have produced it
based on mental models of light transport). In addition,
those authors argued that simple image statistics were
inadequate when used alone. Nevertheless, they pro-
posed that perceived translucence was achieved by
means of parsing scenes into key regions and gathering
image statistics from those regions, though the precise
statistics remained unknown.

More recently, Fleming, Jäkel, and Maloney (2011)
noted that much of the work conducted up to that
point had focused mainly on thin filters rather than
solid materials, and had predominantly drawn conclu-
sions based on inferences from the physics of light
transport without empirical tests. They concluded that
distortions in the perceived shape of objects, caused by
thick transparent objects, were an important part of the
evidence indicating the translucence of material vol-
umes, and that this information could comprise an
additional class of cues for the visual system. Gkiou-
lekas et al. (2013) also identified that multiple scattering
(forward and backward scattering of light within a
volume) contributes to the translucent appearance of
materials and showed that the phase function of
scattering, which describes the distribution of scattering
directions, can contribute to a translucent appearance,
changing the blurring and brightness of objects seen
through the translucent material. This is not, however,
necessarily a measure that the visual system attempts to
approximate when making judgments of translucence.
Similarly, Motoyoshi (2010) considered image proper-
ties that might be diagnostic of perceived translucence,
identifying a role for the spatial contrast in specular
highlight and body components of the image. Beyond
pure physical characteristics, it has also been found
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that contextual variation—such as lighting direction—
has a significant effect on perceived translucence; front
lighting made translucent objects appear more trans-
lucent, and back lighting made them appear more
opaque (Xiao et al., 2014).

Our approach

The first stage in our strategy is to estimate the way
in which perceived translucence depends on two
familiar physical parameters—the strength and milk-
iness of tea—that have systematic effects on light
transport. To obtain such estimates we employ a
maximum-likelihood conjoint-measurement (MLCM)
task (Knoblauch & Maloney, 2012). We used images
of real tea, varying in the concentrations of milk and
tea, and we asked observers to make judgments of
either milkiness regardless of tea strength or tea
strength regardless of milkiness. Using glasses of
milky tea as stimuli provided a convenient and
familiar way of asking observers about the nature of
the translucent material, as questions could be framed
in terms of tea strength or milkiness rather than more
abstract terms such as absorption or scattering.
Importantly, tea concentration primarily affects ab-
sorption, and milkiness primarily affects scatter
(Aernouts et al., 2015; Narasimhan et al., 2006),
although when tea and milk are combined there are
interactions between them (Hasni et al., 2011). The
two physical factors, strength and milkiness, could
affect perceptual judgments in three different ways,
each best described by a different type of model. One
possibility is that only one physical property contrib-
utes to judgments of the corresponding perceived
property—for example, milk concentration might be
the sole determinant of perceived milkiness. If this
were the case, an independent model—which uses only
a single physical variable to model performance in
each task—would provide the most parsimonious fit
to the data. Alternatively, both physical factors might
affect perceptual judgments but do so separately, so
that the effect of a change in one physical factor will
remain the same no matter what the strength of the
other physical factor. An additive model is the most
parsimonious way of describing this scenario. Finally,
a saturated model is required if the two physical
variables interact with each other in the effect they
have on perceptual judgments. We fit these three
models to our observers’ judgments using MLCM
analysis, and the model of best fit is determined using
a nested-hypothesis test.

The second stage in our strategy is to use computer-
generated images of tea in which scattering and
absorption of light are manipulated independently,
crucially without the natural interaction that occurs

in mixtures of real tea and milk. Observers were again
asked to make judgments of tea strength regardless of
milkiness or milkiness regardless of tea strength, with
these new stimuli. Running experiments with ren-
dered stimuli in addition to real stimuli allows us to
perform two tests of the underlying perceptual
processes driving observers’ perceptual judgments of
milkiness and strength. First, we can ask whether
these judgments depend separably on scatter and
absorption, the two fundamental processes of light
transport that are manipulated to produce the
rendered images. Second, because the images of real
tea and the images of rendered tea vary in different
ways, we can test whether candidate pseudocues have
the explanatory power to predict differences in
performance with the two stimulus sets. We link the
physical parameters that describe the two stimulus
sets to the respective perceptual judgments by
simulating the behavior of an ideal observer in an
MLCM task who has access to pseudocues derived
from a range of image statistics. It is important to
note that we are not looking to identify cues that are
immune to changes in context or the environment, or
even to test whether cues are specifically necessary for
identifying translucence. We are trying to test whether
a single heuristic model can explain the judgments of
a single perceptual property with two quite different
sets of images. The stimuli are designed so that if this
is the case, it suggests that an approach to under-
standing translucence perception based on pseudo-
cues is more appropriate than one based on inverse
optics.

In the real world, there are of course additional
sources of information as one moves. Using photo-
graphs of real stimuli makes these more comparable to
rendered images, and we acknowledge that the images
do not incorporate the full range of information in real
stimuli.

Method

To investigate the basis of perceptual judgments of
translucent materials, we asked our observers to make
decisions about the properties of a translucent liquid:
tea. Each stimulus combined different concentrations
of a black-tea solution and differing amounts of milk.
We asked our observers to make perceptual judgments
about either the perceived strength of the tea (ignoring
the milkiness) or the milkiness (ignoring the strength of
the tea).

MLCM requires stimuli that vary in at least two
physical dimensions—in this case, the concentration of
black tea and the amount of milk. We generated stimuli
that covered approximately the same perceptual range
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in both dimensions, with a physical spacing that was
chosen to linearize the estimated response function.
Such conditions are useful for subsequent data analysis
and are likely to optimize the conditions for rejecting
the independent model and detecting an interaction in
the saturated model. To find the desired stimulus levels
for MLCM, we first ran maximum-likelihood differ-
ence scaling (MLDS; Knoblauch & Maloney, 2012)
with a wide range of candidate stimuli. Using the
MLDS results, we then selected stimuli to use in
MLCM that were matched in discriminability (ex-
pressed by d0) for the two physical parameters
(generating a perceptually linear ‘‘tea-space’’). We thus
ensured that any interactions found in the main
MLCM experiment were not due to scale differences in
discriminability in the range of physical parameters
selected (this approach has been used elsewhere;
Hansmann-Roth & Mamassian, 2017; Rogers, Kno-
blauch, & Franklin, 2016).

In MLDS, two pairs of stimuli differing along one
physical dimension were presented simultaneously, and
observers were asked to decide which of the two pairs
showed a greater perceptual difference. The two pairs
(quadruples) were chosen in accordance with the
methods of Knoblauch and Maloney (2012). The
maximum-likelihood perceptual scale in units of d0 was
computed using the Knoblauch and Maloney (2008)
MLDS package for R (R Core Team, 2017). Having
obtained the MLDS scales, we used them to choose
four values of the physical variables that were
perceptually equally spaced (in discriminability). The
set of stimuli for the MLCM experiment comprised all
possible combinations of these values for the physical
variables. Since the tea-space included four levels of
milkiness and four levels of tea strength, we had 16
MLCM stimuli in total.

In MLCM, pairs of stimuli that differed from one
another in terms of both physical variables were
presented to observers. On each trial, different pairs of
stimuli were presented. Observers were instructed to
make a judgment about just one perceptual dimension
per task, reporting in which stimulus the tea appeared
either milkier or stronger. All possible combinations of
stimuli were presented.

Data were analyzed with the Knoblauch and
Maloney (2014) MLCM package for R to test which of
the three classes of model—independent, additive, or
saturated—provided the most parsimonious fit to the
perceptual estimates (expressed in units of d0). The
models fit latent parameters that describe the contri-
bution of specific levels, or combinations of levels, of
the physical parameters to the intensity of the
perceptual quality about which the judgments were
made.

In an additive model we assume that the contribu-
tions of the physical properties scattering s and

absorption a to the percept milkiness M add together:

D i; j; k; lð Þ ¼ wM:s
i þ wM:a

j

� �
� wM:s

k þ wM:a
l

� �
; ð1Þ

where D is the perceived difference in milkiness, wM:s
i

and wM:a
j are the latent parameters referring to the

milkiness percepts from a stimulus with the ith level of
scatter and the jth level of absorption, and wM:s

k and
wM:a
l are the latent parameters referring to the

milkiness percepts from a stimulus with the kth level
of scatter and the lth level of absorption. The
probability of reporting that the milkiness M of an
item with physical scattering and absorption (i, j) is
greater than that of an item with scattering and
absorption (k, l) is

P½Dði; j; k; lÞ� ¼ P
h��

wM:s
i þ wM:a

j

�

�
�
wM:s
k þ wM:a

l

��
.e
i
ð2Þ

P D i; j; k; lð Þ½ � ¼ 1� U wM:s
i þ wM:a

j

� ��

�
�
wM:s
k þ wM:a

l

��
; ð3Þ

where e is a Gaussian random variable, e ;N 0; r2
� �

,
representing observer decision noise.

The likelihood function for a single pair of stimuli
with physical values (i, j, k, l) having possible response
values 1 and 0 is

L rji; j; k; lð Þ ¼ P r ¼ 1½ �rP r ¼ 0½ �1�r; ð4Þ
where the expected value of r is the probability of
making the decision.

We can take the same approach to fitting the other
models. An independent model, where perceived
milkiness is dependent only on physical scattering, has
no absorption parameters. A saturated model, in which
physical scattering and physical absorption interact,
has separate terms for every combination of physical
scattering and absorption, wM:a;s

i;jð Þ . An independent
model fits three latent parameters: one for each value of
the physical variable used except the first level, which is
fixed. An additive model fits six hypothetical parame-
ters: one for each level of each physical variable, except
the first levels of each variable. A saturated model
needs separate parameters for every combination of the
levels of the physical variables except the combined first
levels of each variable, in this case fitting 15 parame-
ters.

When testing the goodness of fit of the models, we
used the log likelihood values of each model in
nested-hypothesis tests to establish whether there
were significant differences between the amounts of
deviance (minus twice the log likelihoods) explained
by each model. We interpret the results by first
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comparing the saturated model with the additive
model, to see if the additional parameters in the
saturated model yield a significantly better model fit.
If this is not the case, then we go on to test the
additive model against the less complex independent
model, again determining whether additional param-
eters produce a significantly better fit. Where these
tests are inconclusive in identifying a model of best fit,
we follow this up with a comparison of the saturated
and independent models. These nested-hypothesis
tests are based on a chi-squared approximation of the
distribution of log likelihood ratios (Mood, Graybill,
& Boes, 1974).

Methods for real-stimuli experiment

Stimuli

The tea solution we used for each stimulus combined
different concentrations of black-tea solution and differ-
ing amounts of milk, to produce a fixed volume of liquid
in each glass. Further details are given in Supplementary
Material, Table S1. Photographs were taken with a
Nikon D80 in manual mode, without exposure compen-
sation. The real glasses of tea were placed against a white
infinity-curve backdrop in a windowless lab lit from
above by a halogen ceiling light and from the front, top,
and side by a single D65 daylight desk lamp. An initial set
of 14 stimuli was produced for MLDS testing: seven
varying in milkiness at the lowest strength of tea and
seven varying in tea strength at the lowest level of
milkiness. Using the results of the MLDS (see Supple-
mentary Figure S1), a new set of stimuli was generated for
MLCM testing, yielding a final set of 16 stimuli (see
Supplementary Table S1 for the amount of each liquid
used to create the final set of volumes, and Figure 1 for
the set of photographic stimuli).

Observers

To determine appropriate levels of milkiness and
strength for the physical stimuli, we ran repeated
MLDS experiments, revising the stimuli each time, with
a pool of five observers. There was good interobserver
consistency, and the final perceptually uniform scale
was derived from the MLDS data of a single observer.
A total of sixteen observers took part in the MLCM
tasks, with eight completing each condition (judging
either milkiness or strength). All observers were aged
18–25 years and had normal or corrected-to-normal
vision.

Apparatus

Stimuli were presented using a MATLAB program
(MathWorks, Natick, MA) on a calibrated NEC CRT

display, controlled by a CRS Visage (Cambridge
Research Systems, Rochester, UK). Responses were
collected using a multibutton input device (Cedrus, San
Pedro, CA).

MLDS procedure

In a single trial, a fixation point was presented for 0.6
s, followed by a blank screen for 0.4 s, after which a
quadruple (two separate pairs of images) was presented
on the display screen for 3 s. In each of three blocks,
126 trials were presented, to give a total of 378 trials.
The observer judged which of the two pairs of images
had a greater perceptual difference (of either milkiness
or tea strength) and indicated their decision by pressing
one of two keys. The next trial was then triggered.
Separate measurements were obtained for stimuli that
differed in milkiness or in strength.

MLCM procedure

In a single trial, a fixation point was presented for 0.4
s, and a pair of stimuli were then presented sequentially
on the screen for 1.5 s each, separated by a blank screen
for 0.5 s. In each of three blocks, 136 trials were
presented, to give a total of 408 trials. Observers were
asked to respond indicating which of the two appeared
to be either milkier or stronger. The next trial was then
triggered. Observers were randomly allocated to one of
the two MLCM conditions, making judgments of either
milkiness or of strength.

Methods for rendered-stimuli experiment

Stimuli

Stimuli were created by simulating a glass tumbler,
a volume of liquid, and a scene in Blender (v2.68;
2013), an open-source 3-D computer graphics pro-
gram that can model 3-D scenes and objects. Images
were then rendered using the LuxRender ray-tracing
renderer (http://www.luxrender.net), which simulates
physical properties of materials, including their light-
transmitting and light-scattering properties. It is
based on physically-based ray tracing (Pharr &
Humphreys, 2004) and uses physically-based equa-
tions to simulate the propagation of light and its
interaction with materials in a scene in a physically
realistic way.

The properties of the liquid were varied by manip-
ulating the degree of physical light absorption and
physical light scattering (the absorption spectrum used
produced a brown liquid at high values, and the
scattering spectrum was uniform and so produced a
white milky liquid at high levels of scatter; see
Supplementary Material, section 3). The models of the
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liquid in the tumbler were illuminated by a real-world
lighting probe using natural light distributions (Debe-
vec & Malik, 1997), with a single large area lamp
behind the glass providing some additional weak
diffuse illumination. The original stimulus set com-
prised 625 rendered images—that is, all combinations
of 24 levels of physical absorption and 19 levels of
physical scattering. For MLDS testing we selected 11
levels of each variable (see Supplementary Figure S2).
MLDS testing allowed us to choose sets of four values
for scattering and absorption that were perceptually
equally spaced (in discrimination space) to produce a
final set of 16 stimuli for the MLCM experiment.

Apparatus

The apparatus was the same as that used with the
real stimuli, with the exception of the monitor, which
was a calibrated 17-in. ViewSonic CRT color display.

Observers

Three observers participated in both the MLDS
tasks and the MLCM tasks, with an additional two
observers participating in the MLCM tasks. All were
aged 18–25 years and had normal or corrected-to-
normal vision.

MLDS procedure

The three observers each completed both conditions
of the MLDS tasks, on consecutive days. The stimulus
sequence was the same as for the experiment with real
stimuli, with minor differences in timing. Instructions
for observers were also the same. Each of three blocks
presented 330 trials in a randomized order, giving 990
trials in total.

MLCM procedure

All observers completed both conditions of the
MLCM tasks on consecutive days. Each condition
consisted of four blocks of 180 trials, giving 720 trials in
total. The stimulus sequence was the same as for the
experiment with real stimuli, with minor differences in
timing, and pairs were shown side by side rather than
sequentially.

Image statistics for both real and rendered
images

Each image was converted from RBG to HSV, and
the mean, standard deviation, skew, and kurtosis were
calculated for both the saturation and the value (where
value is akin to brightness or intensity in this context).

Figure 1. (a) The set of 16 real stimuli used in the MLCM task, with milkiness increasing from left to right and tea strength increasing from

top to bottom. (b) The set of 16 rendered stimuli used in the MLCM task, with simulated milkiness (scattering) increasing from left to right

and simulated tea strength (absorption) increasing from top to bottom. (These images have been adapted for publication purposes.)
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Since light propagation through an attenuating mate-
rial depends on path length (as summarized by the
Beer–Lambert law), we also extracted information
about the saturation gradient extending downward
from the surface of the liquid, summarized by the space
constant on a single exponential fit to the image data.
Our model simulations assumed an ideal observer
whose decisions in the MLCM task were determined by
the relative values of image statistics. For example, the
decision as to whether one image was perceived as
milkier than another would be based on which of the
pair had a lower mean saturation, with an error term
that allows performance to be scaled in d0 units. We
fitted the simulation data to the saturated MLCM
parameter estimates of perceived milkiness and
strength, and used the adjusted r2 values from the fits to
evaluate how well the candidate image statistics
accounted for the observed data.

Results

Results from photographs of real tea

In the comparison of saturated, additive, and
independent model fits produced by MLCM analysis of
perceived tea strength, the independent model was
rejected for all eight observers. The additive model was
found to account for a significantly greater amount of
the variation (discounting the additional parameter
estimates), with p , 0.01 in all cases (Supplementary
Table S2). This demonstrates that both physical
variables always contributed to perceptual judgments
in this task. In the perceived-milkiness task, the
independent model was rejected for seven of the eight
observers (Supplementary Table S3). For most ob-
servers in both tasks, the physical variables contributed
in additive combination to perceptual judgments. So,
when judging milkiness, every level of the distractor
variable (tea strength) contributed a fixed offset to the
perceptual judgment. The same was true for judgments
of perceived tea strength, in that milkiness produced a
fixed offset to the perceptual judgment (Figure 2a and
2b). Only two of the eight observers needed a model
more complex than the additive one to fit judgments of
tea strength, and only one needed more than an
additive model to fit judgments of milkiness (p , 0.01
in all cases). For perceived tea strength, two of the
additive observers (CM and DT) showed a clear
tendency for increasing milkiness to increase perceived
tea strength, whereas for three others (AG, CG, and
GT) there was a clear tendency for it to decrease
perceived tea strength. In the milkiness task, increased
tea strength decreased perceived milkiness for all
observers apart from observer BC. Observers’ judg-

ments were largely driven by the physical parameter
that we asked them to judge, as regressions of the
additive models showed greater contribution of ‘‘rele-
vant’’ variables toward parameter estimates (as seen
most clearly in the additive plots in Figure 2a and 2b).

To support reliable and useful estimation of the
physical constituents of tea mixtures, whenever concen-
trations of either tea or milk increase, so should
perceptual estimates of their concentration. This is
exactly what we found with our observers. However,
unmixing was not perfect: Additive rather than inde-
pendent models dominated the results, indicating
consistent additive contributions of milkiness on judg-
ments of strength and vice versa. The magnitude of these
additive contributions was small but significant across
the discriminable scale. Observers are therefore far from
perfect at unmixing real tea and milk but are neverthe-
less responding to tea and milk concentrations in a
systematic manner. What exactly, then, are they doing?

The information available for visual perception of
the material properties of objects derives from the
physical properties of a material, which in turn
determine the nature of its interaction with light. Real
materials exhibit complex combinations of a variety
of types of physical light transport, such as absorp-
tion and scattering, operating over multiple spatial
scales. In tea specifically, the particles of predomi-
nantly light-absorbing tea agglomerate onto fat
globules in predominantly scattering milk, so as milk
concentration increases, the absorbing power of a
given concentration of tea decreases (Hasni et al.,
2011).

Perhaps the way real milk and tea interact in their
effects on scattering and absorption interfered with
unmixing. If our perceptual judgments of mixtures were
based purely on estimates of scattering and absorption
of the separate constituents, without taking proper
account of the interactions between milk and tea that
affect scattering and absorption in real tea (Hasni et al.,
2011), then images of artificial computer-rendered tea
in which milkiness affected only scattering and tea
strength affected only absorption, without complex
interaction, should be easier to unmix. Furthermore,
perceptual judgments with the two classes of stimuli
(real and rendered) that arise from different physical
processes and that therefore differ in their image
statistics would allow us to test the extent to which
particular pseudocues (presumably learned with real
stimuli) can explain judgments.

Results from rendered stimuli

The rendered stimuli appeared highly realistic, and
observers thought that they were images of real glasses
of tea. We asked observers exactly the same questions as
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in the task with real images, that is, to judge tea strength
or milkiness. Although observers felt they could estimate
each perceptual property separately and thought the two
to be conceptually distinct, the perceptual estimates we
extracted with MLCM were described by complex
saturated combinations of the two physical properties
for the majority of observers (see Figure 3a and 3b). For
tea strength, the perceptual estimates of four of five

observers were best fitted by a saturated model (AC,
PM, YB, and EG), and for milkiness that was true of
three of five observers (AC, PM, and YB), with an
additive model fitting the estimates of the others (p ,
0.01 in all cases). The independent model never provided
an optimal fit (Supplementary Tables S4 and S5). In
perceptual terms, variation in scattering and absorption
did not map separably onto perceived milkiness and

Figure 2. The results of MLCM analyses from the real-tea experiment. A pair of plots is presented for each observer. The upper plots

with four lines show parameter estimates from saturated models. The y-axis (in units of d0) always represents the estimated value of

the perceptual property: (a) perceived tea strength and (b) perceived milkiness. The x-axis always represents levels of one physical

parameter: (a) milk concentration and (b) tea concentration. The four lines represent levels of the second physical parameter: (a) tea

concentration and (b) milk concentration. For the physical parameters, the scales from 1 to 4 on both the x-axis and between the

lines indicate increases in concentration. These plots have characteristic properties for the three models we test. If the data are best

fit by an independent model, we should expect the second physical parameter to have no effect on judgments, and so the four lines

representing different values of this parameter should therefore be identical. If the data are best fit by an additive model, then the

effect of the second physical parameter should be the same at all levels of the first parameter, and so the four lines should be parallel.

If the lines are not parallel, this indicates that a saturated model is required. The lower plots with two lines show parameter estimates

from additive models. The axes are the same as for the saturated plots in both panels. In these plots the line labeled M denotes the

contribution from physical milkiness and the line labeled T denotes the contribution from physical tea strength. For results where the

additive model provided the best fit, the additive graph is in bold. The slopes of the two lines indicate the relative additive

contributions of the two physical parameters to perceptual judgments.
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strength. Observers cannot therefore be basing their
judgments on independent estimates of the light-
transport properties of absorption and scattering in the
constituent liquids.

Perhaps rather than estimating light-transport
properties and inferring material properties from them,
observers use pseudocues in the image that are direct
heuristic estimates of concentrations of specific mate-

Figure 3. The results of MLCM analyses from the rendered-tea experiment. The format of the plots and the way in which they should

be interpreted are analogous to those of Figure 2. The only difference between experiments is that in this case the physical

parameters, represented on the x-axis and between lines, were scatter and absorption rather than milk concentration and tea

concentration. Correspondingly, in the lower plots the line labeled S denotes the contribution from physical scatter and the line

labeled A denotes the contribution from physical absorption.
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rials (Chadwick & Kentridge, 2015). By this reasoning,

they should be better at perceptual unmixing when

physical dimensions correspond to previously encoun-

tered materials, and applying learned pseudocues to

our rendered images should produce less effective

performance. The data suggest that this is the case.

With rendered stimuli, complex interacting combina-

tions of the physical dimensions contribute to percep-

tual judgments of strength. These can produce

nonmonotonic effects—sometimes increasing scatter

(adding more milk) makes the liquid look stronger, and

sometimes less.

Image statistics as pseudocues

If observers are not making estimates of light-transport
properties, how are they unmixing the real materials? We
conducted a number of simulations of the MLCM task
with an ideal observer who has access to pseudocues
based on image statistics of the tea region of the images.
The averaged data and simulations are shown in Figure 4.
Before averaging, the data shown in Figures 2 and 3 were
normalized to each observer’s maximum d0 values, and
the normalized average was rescaled to the average d0

range for that task. When calculating best fits of the ideal-
observer estimates with the averaged estimates from our
observers, we used a simple linear model fit with an offset

Figure 4. The results from the ideal-observer MLCM simulations in comparison to the MLCM parameter estimates from the saturated

models of the two experiments averaged across observers. The top row and bottom rows refer to real and rendered stimuli,

respectively. The pair of panels at the extreme left (a and b) refer to milkiness judgments. The three pairs of panels on the right (c and

d, e and f, g and h) refer to tea-strength judgments. In all cases, the grayscale lines and symbols represent parameter estimates from

human observers (with 95% confidence intervals across observers), and the colored lines and symbols represent the parameter

estimates from ideal observers whose responses are governed by candidate image statistics. (a–b) Milkiness estimates with ideal-

observer responses based on the mean of saturation, adjusted r
2¼ 0.920 and 0.970 for real and rendered. (c–d) Strength estimates

with ideal-observer responses based on the mean of value, adjusted r
2 ¼ 0.535 and 0.670 for real and rendered. (e–f) Strength

estimates with ideal-observer responses based on the space constant of gradients of saturation, adjusted r
2¼0.096 and 0.207 for real

and rendered. (g–h) Strength estimates with ideal-observer responses based on a weighted sum of the mean of value and gradients

of saturation, adjusted r
2 ¼ 0.812 and 0.894 for real and rendered.
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term and scaled contribution(s) from the image statistic(s)
under test. Since there is no variability in the extracted
image statistics, scaling is necessary to account for the
noisy decisions of the real observers. We used the
adjusted r2 values from the fits to evaluate how well the
candidate image statistics accounted for the observed
data. Mean color saturation (the S of HSV) provided a
good explanation of performance in the milkiness task
with real tea (adjusted r2¼ 0.920). The same pseudocue
was also best at reproducing performance on the rendered
task (adjusted r2¼ 0.970), even though the patterns of
perceptual estimates of the two tasks were quite different.
In the tea-strength tasks, no simple statistics provided a
good account of behavior. For this task, the inclusion of
spatial information was crucial for getting a good fit to
the data. A linear mixture of mean value (the V of HSV)
and color-saturation gradient (from the top surface of the
liquid into the tea volume, summarized by a fitted
exponent describing the space constant of variation in
saturation as light penetrates the volume) provided a
good account for the real images (adjusted r2¼ 0.812).
Again, the statistic that successfully accounted for
performance in the task with real stimuli also produced
the best fit to the perceptual estimates of the rendered
stimuli (adjusted r2¼ 0.894).

We additionally tested whether the data from
individual observers could be accounted for using the
same image statistics. For milkiness judgments, mean
color saturation provided a very good explanation
(adjusted r2 . 0.870) for all five observers viewing
rendered tea and for six out of eight observers viewing
real tea. The remaining two observers, BC and PB, gave
r2 values of 0.642 and 0.778, respectively. For strength
judgments, linear mixtures of mean value and color-
saturation gradient provided acceptable fits to the data
(adjusted r2 . 0.7) for all five observers viewing
rendered tea and for five out of eight observers viewing
real tea. The remaining three observers—CM, DT, and
HW—gave r2 values of 0.417, 0.571, and 0.413,
respectively. For all but two observers, both parameters
contributed significantly to the fit (p , 0.005), with
individual differences in performance consistent with
differential weighting of the two cues. For CM the fit
was poor and the mean-value parameter did not reach
significance, and for AC the fit was very good with only
mean value and no significant contribution from
saturation gradient. Full details of the fits are provided
in Supplementary Tables S6–S9.

Discussion

The real-tea task draws on observers’ everyday
experience and asks them to make judgments about
concrete properties that they clearly understand rather

than about abstractions—for example, physical pa-
rameters such as scattering or absorption coefficients,
or perceptual qualities such as translucence and
transparency. Nevertheless, when we ask someone to
judge milkiness from an image of milky tea, we are
presenting them with a complex unmixing task. The
observers have information only about the distribu-
tions of brightness and color within an image, which
are insufficient to recover the light-transport properties
affected by milkiness and tea strength, and yet we show
empirically that they are able to make judgments that
are reliable and effective. Their judgments are domi-
nated by the property, be it milkiness or tea strength,
that they are asked to estimate. The additive models we
derived from MLCM show that although there are
contributions to their judgments from the factor to be
ignored, those contributions are relatively small (on
average about 15% for the milkiness task and about
30% for the strength task).

In the second stage of our study we used rendered
stimuli to investigate the mechanisms underlying
these judgments. Perceptual unmixing of rendered tea
was less successful than the unmixing of the real tea
images. For real tea, judgments departed from the
true concentrations only by a small additive contri-
bution from the distracting variable, whereas judg-
ments with rendered tea typically required modeling
full interactions between the two physical variables.
Observers were unable to effectively unmix the
rendered images of tea despite the fact that one might
regard differences within the set of rendered images as
being less complex than those within the set of real
images—in the rendered tea, scattering and absorp-
tion parameters are manipulated independently as
one moves between steps in the tea-space, in contrast
to the interactions in the effects of milk and tea on
scattering and absorption. Since the contributions of
the physical parameters to perceptual judgments are
less complex for real tea than for the simplified
renderings, this suggests that observers were making
judgments based on characteristics that encapsulated
the real interactions of the material rather than
making simplified estimates of the light scatter or
absorption.

There are individual differences evident in the
MLCM analyses of both experiments. It is not
surprising that we find these individual differences. If a
trial is ambiguous (as indeed many were, as the tasks
were designed to challenge observers) and observers
cannot find consistent cues, then differences will be
inevitable as they try out different strategies to make
judgments about difficult comparisons. However, over
and above these individual differences, there are global
differences between conditions, particularly in the
models required to account for the data. With rendered
stimuli, saturated models were more likely to be
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required, whereas additive models were sufficient to
account for judgments with real stimuli.

There were clear differences in the appearance of the
sets of real and rendered images. The real stimuli are
necessarily a less homogeneous set than the computer-
generated set. Nevertheless, the two stimulus sets were
spanned by similar ranges of perceptual discriminabil-
ity, as measured by the d0 measure in the preliminary
MLDS task and shown in the range of extracted
perceptual estimates from MLCM (Figures 2 and 3).
The number of trials differed between experiments;
however, when we reanalyzed the data, subsampling
the same number of trials for each, there were no
meaningful changes to our findings.

In the third stage of our study, we made use of the
differences between the images of the real and rendered
stimuli. Specifically, we tested whether it is possible for
the same statistical pseudocue(s) to predict the perfor-
mance of observers in the two experiments, which have
quite different outcomes. We are not attempting to find
a pseudocue that is invariant under changes in viewing
conditions—we are simply aiming to establish whether
the use of pseudocues could provide a plausible
mechanism underlying performance in this study.

We found that a weighted sum of the same two
statistical pseudocues was the best predictor of
perceptual estimates of tea strength for judgments of
both real and rendered stimuli. Similarly, a different
pseudocue was the best predictor of performance in the
milkiness task with both types of stimulus. The
similarities of statistical-model predictors between the
real and rendered images suggest that there is a level of
consistency in the mechanisms underlying observers’
judgments of them. The common mechanisms these
results imply are used across experiments may provide
insights into observers’ strategies for estimating a
specific material property.

The majority of previous studies of translucence
perception have been based on achromatic stimuli, so
the role of color statistics has not been thoroughly
tested. One notable exception is that the perception of
wetness of a surface has been shown to rely on
saturation: Image regions with a higher saturation
appeared wetter, particularly for images with a wide
color distribution (Sawayama, Adelson, & Nishida,
2017). The present data show that, in judgments of
milkiness, mean saturation was a good predictor of
performance. This is consistent with the underlying
physics: Highly scattering liquids direct more of the
incident, whitish illumination to the camera, desatu-
rating the image. In the tea-strength judgment, mean
value was a significant predictor of performance, with
darker images consistent with higher absorption.
However, mean value is also affected by milkiness, and
strength affects mean saturation, so these image
statistics alone are not separable indicators of strength

and milkiness. Good fits to observer data for strength
judgments were obtained only by including an addi-
tional pseudocue that included a spatial component.
The spatial distribution of information within an image
is well known to be vital for making judgments of
material properties (Landy, 2007; Motoyoshi, 2010;
Sawayama & Nishida, 2018). Here we find that a
chromatic gradient of saturation, summarized by the
space constant on a single exponential fit, is the
common pseudocue whose contribution predicted
behavior with real and rendered stimuli. In a purely
absorbing material, with no scattering component,
transmittance depends on the concentration of the
absorbing species and path length of the light through
the material. Scatter increases the effective path length
(Ben-David, 1995, 1997). For the tea images, the
saturation gradient from the top surface of the liquid
provides a measure of light penetration into the volume
and selective absorption of some wavelengths, and it
shortens with absorption and with scatter for rendered
tea and with strength and with milkiness for real tea.
Importantly, although the saturation gradient varies
with both physical parameters, it does so differently
from mean value. So a weighted sum can be used to
obtain separable estimates of strength and milkiness, as
indicated in the behavioral data. Further exploration of
spatially specific statistics might yield even more
effective pseudocues; one would want to design stimuli
that powerfully discriminate between different spatially
specific statistics.

Our conjecture that observers’ judgments are based
on statistical pseudocues (and not on direct estimates of
the physical components of light transport) makes
specific predictions about differences in performance
between experiments with the real and rendered stimuli.
When observers use a pseudocue that is optimized for
discriminating properties of natural materials with
stimuli whose properties are unlike those natural
materials, we would predict that their judgments will
err. In our study we found that when observers made
judgments about rendered stimuli, there were clear
deviations from monotonicity, meaning that as the
concentration of milk increases, the judgment of
milkiness may decrease. This maladaptation to ren-
dered stimuli is presumably inherited from the observ-
ers’ experiences with natural materials.

Our finding that it is entirely possible for simple
perceptual heuristics to produce very different re-
sponses for what appear to be very similar stimuli
opens the way to empirical studies of perception of
material properties with complex underlying physical
determinants. Asking observers questions about those
physical factors would be all but impossible. However,
when we constructed artificial stimuli broadly resem-
bling tea, yet in which we could control aspects of light
transport, we could still ask concrete questions about
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natural material properties. Our results suggest that a
single strategy describes performance in both experi-
ments. Taking a similar approach in which compari-
sons are made between real stimuli and rendered
stimuli resembling them, but in which physical prop-
erties can be rigorously controlled, might reveal
whether other perceptual properties are truly unitary
and are also estimated using an individual heuristic.

The discovery of image statistics that can approx-
imate real observers’ responses in both of the
experiments illustrates that there may well be a
shortcut to achieve modeling of a material substance.
This shortcut takes the more complex interactions of
the volume into account without necessarily estimat-
ing the physical variables of light transport, since it is
possible to find pseudocues that implicitly capture the
effects that the physical dimensions have on the
perceptual dimensions. Color signals may be impor-
tant for judging more than surface spectral reflectance,
since gradients of color can provide summary infor-
mation about the complex optics of light penetration
into a volume.

Conclusion

These results have implications for the fundamentals
of translucence perception. We can of course perceive
translucence; it is clear, however, that we do not
independently perceive the physical determinants of the
composition of light reaching the eye, in that we do not
perceive translucent substances as simple linear mix-
tures of the scatter and absorption properties of the
constituents. Our results support the suggestion that
observers are employing pseudocues without requiring
knowledge of physical light-transport factors and
without using those physical properties as an interme-
diate step in material perception. Using real and
rendered stimuli allowed us to generate conditions that
make explicit, separable predictions for direct estima-
tion of light transport versus reliance on pseudocues,
and so test this hypothesis. Pseudocues that are derived
from properties of specific real materials are capable of
accounting for complex physical interactions within
those materials, and are therefore perhaps more useful
than estimations of the physical properties of light
transport when determining the best proxies to use in
making perceptual decisions about objects in the real
world.

More generally, these results provide evidence in
favor of a general theory of vision which denies that we
see the physical determinants of volumetric or surface
properties. The visual system does not ‘‘know’’ the
physical laws of light scattering and absorption, and

does not perform calculations of inverse optics to
estimate these properties.

Keywords: translucence, material, perception
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Footnotes

1 A nonanalytic method of approximation.
2 Cues will refer to image properties that covary with

object properties, whereas pseudocues or perceptual cues
will refer to their perceptual correlates.
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