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Abstract

Cognitive development studies how information processing in the brain changes over the

course of development. A key part of this question is how information is represented and

stored in memory. This study examined allocentric (world-based) spatial memory, an impor-

tant cognitive tool for planning routes and interacting with the space around us. This is typi-

cally theorized to use multiple landmarks all at once whenever it operates. In contrast, here

we show that allocentric spatial memory frequently operates over a limited spatial window,

much less than the full proximal scene, for children between 3.5 and 8.5 years old. The use

of multiple landmarks increases gradually with age. Participants were asked to point to a

remembered target location after a change of view in immersive virtual reality. A k-fold

cross-validation model-comparison selected a model where young children usually use the

target location’s vector to the single nearest landmark and rarely take advantage of the vec-

tors to other nearby landmarks. The comparison models, which attempt to explain the errors

as generic forms of noise rather than encoding to a single spatial cue, did not capture the

distribution of responses as well. Parameter fits of this new single- versus multi-cue model

are also easily interpretable and related to other variables of interest in development (age,

executive function). Based on this, we theorize that spatial memory in humans develops

through three advancing levels (but not strict stages): most likely to encode locations ego-

centrically (relative to the self), then allocentrically (relative to the world) but using only one

landmark, and finally, most likely to encode locations relative to multiple parts of the scene.

Author summary

As children get older, they develop better ways to store information in memory. Here we

investigate one key aspect of this: how they remember locations in a scene. We asked chil-

dren from 3 to 9-years-old to remember a target location inside a virtual reality (VR)

scene, and then to point to it after they had been ‘teleported’ to a new location within the

scene. Young children in particular often made a certain kind of (relatively minor) error.
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They usually responded near the correct landmark, but had trouble correctly orienting

their responses around this landmark, which would require them to also make use of the

other landmarks. Our interpretation is that they do not necessarily store the full scene in

memory. On most trials, they seem to store only the area immediately around the target.

Formally, we made a mathematical model of this algorithm and used cross-validation to

show that it holds better than alternative explanations. This provides new depth to our

understanding of the different ways that memory changes during childhood. An impor-

tant avenue for future research is testing the potential of VR tasks of this kind for screen-

ing and interventions to improve childhood science and math education.

Introduction

Spatial cognition is a skill that humans and many other organisms employ almost constantly.

Because human development is a particularly long process, we have to understand and make

decisions within the space around us for years before reaching full cognitive maturation.

Potential applications such as screening and interventions to promote spatial-cognitive devel-

opment during early childhood, which have been identified by educators as a major unfulfilled

need [1], require a strong understanding of the typical structure of developing spatial cogni-

tion. To this end, many studies have examined the distinction and interplay between egocen-

tric (self-based) and allocentric (world-based) spatial memory [2–13], finding consistently that

allocentric memory is a distinct cognitive process with a higher level of difficulty. Previous

developmental studies have asked which kinds of cues allow access to allocentric recall at dif-

ferent points in development (e.g. coincident cues [14], beacons [15], proximal landmarks [16,

17], distal landmarks [15, 16], salient landmarks [18], unstable landmarks [19], language [20,

21], transparent boundaries [22], and geometric relations [14, 23–25]). Another crucial way to

subdivide allocentric reasoning is by the richness of the representation, remembering a target

location relative to one landmark versus many. Here we present new data and new models to

further probe a key question from previous work [21, 26–30]: do children use multiple land-

marks to encode a target location allocentrically? How does this tend to change across

development?

Previous work has largely concluded that during allocentric recall, young children remem-

ber locations as a set of allocentric relations to multiple landmarks, rather than just a single

landmark [21, 26, 28–30]. Biology researchers working with non-human species pioneered the

expansion paradigm to test this issue [31]. In this paradigm, a target is hidden in the middle of

two or four landmarks. After training, the array of landmarks is expanded for a test trial. If the

target location was coded and recalled as ‘in the middle’, then test trial searches should still be

in the middle of the expanded landmark array. That would necessarily involve the use of multi-

ple landmarks. If the target location was instead encoded and recalled as a vector from one

landmark, then test trial searches should retain that vector. For example, suppose the middle

of the pre-expansion landmark array was 50cm southwest of the northeast landmark. If that is

how the location was recalled, then the test trial searches should still be 50cm southwest of the

northeast landmark, even though this is no longer ‘in the middle’. This would involve only

using one landmark. Variations on this paradigm have been applied to human children as

well, from approximately 2 to 8 years old. Most reports conclude that children encode the

locations as ‘in the middle’ [21, 26, 28–30] (while another found a pattern of results that was

not particularly consistent with any hypothesized strategy [27]). This fits into a broader theo-

retical context in which young children’s behaviour indicates they use multiple sources of
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information in concert to make decisions (e.g. metric and categorical spatial information [32,

33], inferring causes by using multiple trials or presentations [34], and the McGurk effect

[35]).

However, the current literature leaves a gap wherein the available results concern them-

selves with the particular relation ‘in the middle’ and do not test a wider variety of possible spa-

tial relations [21, 26–30]. The ‘in the middle’ relation is interesting because it has special

language (at least in English), but the exclusive use of targets in the middle of the landmark

array unfortunately leaves open a third interpretation. Regardless of how the child encodes the

target, if they recognize that the landmark array has changed after training, they may not know

how to proceed and may instead just search in the middle because of a response bias [36, 37].

In other words, it may be a kind of ‘default’ place to search when the child does not know

where to search. The present study aims to learn more about this cognitive process by using a

new paradigm that allows for the presentation of many different target locations. Our new par-

adigm provides a new way to diagnose the number of landmarks used in the recall process.

We designed two novel experiments to allow for specific predictions that can disambiguate

if one or many landmarks are being used (Fig 1). Crucially, the environment in both experi-

ments had symmetrical oval landmarks. Participants were shown the target location, virtually

‘teleported’ to a new viewpoint (screen fades to black, camera moves, screen fades back to

scene), and then asked to point to the target location. This ensured that egocentric reasoning

could not contribute to improvements in performance. The use of symmetric landmarks

(ovals) meant that a single vector between the target and a nearby landmark would not provide

Fig 1. Virtual layouts and target distribution in task. The basic task was to remember where a virtual cartoon animal

(duck or penguin) was hiding, watch it disappear, get ‘teleported’ to a new viewpoint, and then point with the ‘magic

wand’ to its hiding place. Panels A and B are screenshots of the environments. Panels C and D are overhead layout

diagrams of the landmarks and targets. The trials that use the ‘near’ targets are the only ones considered here (in blue)

since the ‘far’ trials (in green) were extremely noisy for the youngest age group. We will refer to these as the ‘Jetty’

(panel A and C) and ‘Arctic’ (panel B and D) datasets.

https://doi.org/10.1371/journal.pcbi.1007380.g001
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any way to resolve the local symmetry. In the extreme case, when using only a single-cue strat-

egy (one landmark), we would expect an equal number of responses at the correct location and

at its mirror across the local landmark. For example, in Fig 1A, how could you remember

which end of the green oval the target (duck) is on? Relating the target location to the green

oval would not be enough. The two ends of the green oval are local mirrors of each other. If

that were all you remembered, you would often respond by the wrong end. Consistently dis-

ambiguating the two ends would requires the use of a multi-cue strategy (2 or more land-

marks). For example, you could remember that it is on the end of the green oval (cue 1) and

also remember how far it is from the boundary (cue 2). The two different environments repre-

sent two broad strategies for enabling good performance: (1) only presenting two landmarks,

so that there is minimal distraction, and (2) presenting a rich environment with a large bound-

ary [38], so that there are several possible ways to encode multiple spatial relations.

From a certain point of view, the present study is similar to studies where a single uniquely

colored wall (cue 1) can disambiguate the rotational symmetry of a rectangular enclosure (cue

2) [39]. However, the theoretical interpretation is not exactly the same. Young children can

use a colored landmark in a left/right sense [23], meaning that they do not strictly need the

rectangular enclosure to find the correct location (see also [20]). The present study builds on

this by creating a new situation where no single landmark can be used to uniquely encode the

correct target location. Like any change in methods, this could lead to largely different results.

In particular, the present study requires the child to go beyond selecting the single best cue

and instead requires coordination between multiple individually-ambiguous cues to consis-

tently find the correct target.

To understand the response patterns, we propose a model that has separate parameters for

the rates of remembering where target locations were presented relative to (a) the nearest sin-

gle proximal landmark and (b) additional proximal landmarks. We will refer to this as the Sin-

gle- and Multi-Cue Model. Purely doing one or the other would represent a qualitative

difference in how a location is remembered, fundamentally capturing just one single highly-

localized vector (single-cue) versus representing an interconnected graph of a larger scene

(multi-cue). In our model, the parameters can be set so that the single-cue strategy is used fre-

quently. This can capture and predict a pattern of responses that appear correct if only looking

at a small area around the target–responses that can be identified as incorrect when looking at

the larger scene. To test the hypothesis that this feature is necessary to model and understand

developing spatial cognition, we compared the ability of several different models to explain the

data from the two experiments.

The Single- and Multi-Cue Model has three critical parameters. The first two are local, sin-

gle-cue parameters. The chance of remembering the correct landmark is p1. The chance of

remembering if the target was on the end or side of the nearest landmark is p2. A very high p1

and p2 can be achieved without encoding more than the relations to the nearest single land-

mark. The last parameter is the multi-cue parameter. The chance of using other scene features

to disambiguate the local symmetry (for example, remembering that the duck in Fig 1A is on

the inner end of the green landmark, not the end nearer the boundary) is p3. Since these are

independent parameters, this model can flexibly capture different rates of the different allo-

centric sub-types. (Note that this does not imply classifying individual children into hard

stages; rather, it describes the frequency of different strategies within an age range.) However,

this also involves additional parameters and a new theoretical commitment, so we want to be

as sure as possible that we cannot understand the data sufficiently with fewer parameters and

simpler mechanics.

To test our proposed Single- and Multi-Cue Model, it is compared against two generic-

noise models, Correct-Or-Guess and Exponential Decay, and 315 structured-noise models.

One Landmark or Many
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The generic-noise models use only one parameter to capture generic noise, in line with conclu-

sions against the use of a single-cue strategy [21, 28–30]. The Correct-Or-Guess model has a

single probability that they remember the correct area. If this fails, they guess randomly. This

is captured by assigning the correct target a probability of pc, then assigning all other targets an

equal portion of (1-pc). In the Exponential Decay model, response areas become less likely as

they get further from the correct target. This is captured by the expression e-kd, with the proba-

bility of a response decreasing exponentially as the distance from the target (d) increases. In

other words, these models try to explain putative single-cue errors as not being special in any

way, just a random guess or a response area that was relatively near the correct target (Fig 2).

The 315 structured-noise models are a computer search of the space of models that use the

same number and type of parameters as the Single- and Multi-Cue Model, checking to make

sure that there is not a better model at the same level of complexity. These models are then all

compared by cross-validation. The central alternative hypothesis is that one of these compari-

son models will be preferred by cross-validation (highest joint probability of the testing data),

suggesting that the single- versus multi-cue distinction is unnecessary, in line with current the-

ory that is based much more on multi-cue strategies.

In addition, the proposed single- and multi-cue model is fit by Bayesian Markov Chain

Monte Carlo methods. The posterior parameter distributions are then used to answer several

important secondary questions: What are the major sources of error in allocentric spatial

memories at different ages? How can we now characterize the progression towards adult-like

spatial memory? Were there any specific errors that were more likely to occur for older chil-

dren? Was memory performance different in these two environments and does this point

Fig 2. Graphical depiction of how the proposed model (left) and generic-noise alternatives work. The green diamond is the correct target. All

three are (bivariate) Gaussian mixture models, with the mixed Gaussians (dotted lines) centered on the 8 potential targets. On the left panel, the

Single- and Multi-Cue model uses three binary parameters to select the Gaussian to draw from. The first (p1) is how often they respond near the

correct landmark, the second (p2) is how often they remember if it was on a side versus an end, and the third (p3) is how often they use the other

landmark to disambiguate the local symmetry. In the middle panel, the correct Gaussian is chosen with probability pc and all other Gaussians

share (1-pc) equally. This allows for noise but not for a particular weight to errors from local mirroring. In the right panel, the probability of a

Gaussian being drawn from is proportional to e-(kd), where d is the distance in meters and k is a decay rate parameter. This also allows for noise,

but bases it on distance rather than mirroring relations. (This is still a Gaussian mixture model, though; it still has 8 local maximums).

https://doi.org/10.1371/journal.pcbi.1007380.g002
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towards any possible new ideas for further testing? Can we explain individual differences in

spatial memory development with more general cognitive measures–especially inhibition,

which could play a role in suppressing less-accurate response strategies? The ability to answer

each of these questions using the Single- and Multi-Cue Model speaks further to this theory’s

usefulness as a way of understanding the development of allocentric spatial memory.

Results

Participants of all ages gave responses that were well above chance accuracy. In the ‘Arctic’

dataset, the environment was 2.5m in radius and the median error was 61cm for the youngest

age group (3.5–4.5 years old). They responded to the correct nearest landmark on 77% (406/

528) of trials, p< .001 versus 50% chance guessing, with the 4.5–5.5 year-olds scoring 88%

(492/556). For the ‘Jetty’ data, the 4.5–5.5 year-olds responded to the correct nearest landmark

on 69% (116/168) of trials, p< .001 versus 33.3% chance guessing, with the next two age

groups scoring 67% (140/210) at 5.5–6.5 years and 97% (122/126) at 6.5–8.5 years. The ‘tele-

porting’ procedure ensured that participant’s performance levels were not possible via purely

egocentric encoding. While participants were broadly capable of encoding the target locations

allocentrically, even in the youngest age group, a broad range of errors were still evident, moti-

vating a modelling approach.

Cross-validation pointed strongly to the use of the Single- and Multi-Cue Model over all of

the alternatives as a way of explaining allocentric encoding in children. Fig 2 displays the ‘Arc-

tic’ dataset to illustrate the proposed model and the two generic-noise alternatives function.

Table 1 shows the cross-validation scores; the single- and multi-cue model had the best score

for each age group and experiment. All three models were Gaussian mixture models, centered

on the eight targets. The cross-validation procedure found maximum likelihood estimates of

the parameters using the data from all-but-one target (the training data). It then used these

parameters to predict the data from the remaining target (8-fold for the ‘Arctic’ dataset, which

had 8 targets, and 6-fold for the ‘Jetty’ dataset, which had 6 targets). This was repeated until

each point of data had been predicted once for each model. The score given is the negative

sum of the logarithm of the probabilities assigned to the testing data (the part of the data left

out of the fitting).

Fig 3 illustrates how the data and the cross-validation predictions from these three models

(Fig 2) are distributed around the space in the ‘Arctic’ dataset. The Single- and Multi-Cue

Model predicts good performance in terms of which landmark the target was near (p1) and

Table 1. Table of cross-validation scores.

Experiment and Age Cross-Validation Score

Single vs Multi Correct or Guess Exponential
Arctic

3.5–4.5 Years 887.64 928.00 900.68

4.5–5.5 Years 555.76 683.28 642.39

Jetty

4.5–5.5 Years 329.79 390.85 339.62

5.5–6.5 Years 467.17 522.59 471.78

6.5–85. Years -7.80 28.96 -1.32

Note. Lower scores indicate better performance. Figures are the negative sum of the log of the probability assigned to

the dataset. For reference, a difference of 4.6 between two scores translates to approximately 100 times better

prediction overall. Best scores are in bold.

https://doi.org/10.1371/journal.pcbi.1007380.t001

One Landmark or Many

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007380 October 28, 2019 6 / 25

https://doi.org/10.1371/journal.pcbi.1007380.t001
https://doi.org/10.1371/journal.pcbi.1007380


Fig 3. Model predictions and data for one target in the ‘Arctic’ dataset. The black and red ellipses are the landmarks. The

green diamond (left of the red landmark) is the correct target. The contours show how these data are predicted to fall around

the space based on the data with other targets, placed at probability density intervals of 0.25 per square meter, with the lowest

at 0.1. Small colored circles are testing data, colored from blue (very likely) to gray to orange (very unlikely). The issue with

One Landmark or Many
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whether it was on the side or end of that landmark (p2), but also a low rate of using the other

landmark to prevent a local mirroring error (p3). In contrast, the other two models did not

give especially high probability to the mirror targets (in this case, the rightward end of the red

landmark). They do predict that errors will fall on the mirror end, but not in any special or

particularly frequent way. This is the main reason why they do not cross-validate as well. To be

more specific, for the 3.5–4.5 year olds, the Single- and Multi-Cue Model fits p1 = 0.79, p2 =

0.77, and p3 = 0.61. This means that the probability of a mirror error is 0.79�0.77�(1–0.61) =

24%. The Correct-Or-Guess Model fits pc = 0.46. The probability of a mirror error is (1–0.46)/

7 = 8%, since all errors share (1-pc) equally. The Exponential Decay model fits k = 0.058. The

mirror error is 1.2m away, so the probability of a mirror error is proportional to e-0.058�1.2.

After normalizing (so all targets sum to one), this equals 5%. The mirror errors in the testing

data are too frequent for the Correct-Or-Guess or Exponential Decay model to capture effec-

tively. S1 Text gives further illustration, explanation, and examples of how these three models

function.

After visually inspecting Fig 3, we also wanted to be sure that it was not sensible to drop p2

and p3 entirely for the younger participants. Conceptually, this means that they remember

which color landmark the target was near, but nothing further. A version of the Single- and

Multi-Cue Model was run through the cross-validation process with p1 free, but fixing p2 = p3

= 50%. This cross-validated much worse, scoring 920.97 (3.5–4.5 years) and 670.42 (4.5–5.5

years) for the ‘Arctic’ data.

Fig 4 shows how the three main models apply to the ‘Jetty’ dataset. The ‘Jetty’ environment

had several experimental differences from the ‘Arctic’, yet the results are very similar; the Sin-

gle- and Multi-Cue Model is again preferred. In this experiment, there were no targets on the

sides of the landmarks, only on the ends, so the p2 parameter was dropped. The data are again

fit with a high p1 and low p3 for the younger ages. As above, this correctly predicts many mir-

roring errors and favours the Single- and Multi-Cue Model. S1 Fig plots all of the data, broken

down by dataset and age range. The datasets are also given in Excel sheets in the S1 and S2

Data. Together with the ‘Arctic’ results, the ‘Jetty’ results suggest some basic generality to the

Single and Multi-Cue Model, and therefore, this pattern is not unique to a single environment.

Since these three main models are structured differently, including different numbers of

parameters, it is also important to verify that the models with less parameters can be selected

by this procedure. For 100 runs, simulated data were generated from the Correct-Or-Guess

Model with pc = 1/3 and a standard deviation of 15cm. The targets and the number of trials

(528) were matched to the 3.5–4.5 year olds in the ‘Arctic’. Each simulated dataset was submit-

ted to the exact same procedure. The Correct-Or-Guess Model was chosen on 94% of the runs.

The same was done with the Exponential Decay model, using k = 1. The Exponential Decay

model was chosen on 98% of the runs. This verifies that the other models likely would have

been selected by the model selection procedure if they were correct.

The Single- and Multi-Cue Model was also selected over the full family of structured-noise

models for the ‘Arctic’ dataset. Because we are proposing a model with more parameters than

would be expected from previous theory, it is important to make sure that these extra parame-

ters are being used in the best way possible. We searched through all 315 possible models that

use the same number and type of parameters (specifically three binary parameters) to split the

eight targets into two groups of four, then two groups of two, and then two isolated targets. Fig

5B shows that a small sub-family of these models falls into the lower (better) range of cross-

the Correct-or-Guess Model and Exponential Decay Model can be seen on the right end of the red landmark: many data

points fall there, but are assigned relatively low probability.

https://doi.org/10.1371/journal.pcbi.1007380.g003
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validation scores, leading to three top models. The best fitting one is the Single- and Multi-Cue

Model. The other two are largely similar, at least in terms of our interpretation. For our pur-

poses here, these top three models can be interpreted as having a separate p3 parameter for the

relation to the other landmark. Further, all fit a relatively low p3 compared to p1 and p2. This

Fig 4. Model predictions and data for one target in the ‘Jetty’ dataset. The red, yellow, and green ellipses are the landmarks. As before, the green diamond

(above and left of the yellow landmark) is the correct target. The contours show how these data are predicted to fall around the space based on the data with

other targets, placed at probability density intervals of 0.25 per square meter, with the lowest at 0.1. Small colored circles are testing data, colored from blue

(very likely) to gray to orange (very unlikely). The issue with the Correct-or-Guess Model and Exponential Decay Model is the same as before, failing to assign

high probability to mirroring errors (down and right of the yellow landmark).

https://doi.org/10.1371/journal.pcbi.1007380.g004
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means that, for example, when shown target D (in Fig 5A), all three top models predict target

B to be the most likely error. Alternatives that placed less emphasis on local mirroring errors

(e.g. using p3 to pair D with A, which could be resolved locally) did not cross-validate as well.

Taken together, these analyses point towards a need for separate parameters to capture the

rate of single- versus multi-cue encoding of target locations. It is not sufficient to model these

errors as the more generic forms of noise in the comparison models; there must be special

providence for mirroring errors that are predicted by just encoding against the nearest land-

mark. However, the interest in a particular model is often due to many factors, with the raw

ability to fit and predict data being only one of them. A useful model should also have parame-

ters that are easily interpreted and clearly relevant to a domain of study. To examine this fur-

ther, the Single- and Multi-Cue Model was fit by Bayesian Markov Chain Monte Carlo

methods [40]. The posterior parameter distributions were then used to answer the secondary

questions:

What were the major sources of error in allocentric spatial memories at different ages? To

answer this, Fig 6 shows the transformed parameter estimates at each of the age groups to gen-

erate a memory rate. It is evident that failing to use the far landmarks (p3) remained the most

common error for all ages. In addition, the multi-cue memory rate only credibly rose above

Fig 5. All possible ways of splitting the targets with three binary parameters were examined, favouring the main

model presented here. (A) Display of the targets with letters for reference. (B) Histogram of the cross-validation scores

from the 315 ways of splitting the targets. Only three models are within 100x the joint probability of the best-fitting.

(C) The model with the best cross-validation score splits the targets by landmark, then side versus end, then local

reflections (i.e. the Single- and Multi-Cue Model). (D) The second-best model splits targets in a way that reflections are

still the third layer. The other two layers are similar but reversed in order, grouping by side/end then landmark. (E)

The third best model also splits targets in a way that splits by side/end, then landmark, then reflections.

https://doi.org/10.1371/journal.pcbi.1007380.g005
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50% in the oldest age group (6.5–8.5 years old). Note that this analysis would not be possible if

only describing the data, for example, in terms of the average distance between target and

response.

How can we now characterize the progression towards adult-like spatial memory? Further

examining Fig 6, two additional features also stand out. First, if we consider each memory rate

as a resource to be allocated, the way that young participants have done this is relatively sensi-

ble. If you could only remember two things about the target location, the landmark that it was

nearest and the way it related to that landmark are reasonable choices to prevent very large

errors. The estimates for p1 (which landmark) and p2 (side/end) were credibly higher than p3

(other landmark) for all age groups across both experiments. Second, while p3 was lower, the

p3 credible interval was still entirely above-zero (i.e. they were not just guessing) for the youn-

gest age group. Therefore, it is not that multi-cue recall only emerges in middle childhood, but

that it becomes more frequent over a protracted span of childhood.

Were there any specific errors that actually became more likely as children got older? The

posterior estimates from the Arctic dataset suggest that 3.5–4.5-year-olds and 4.5–5.5-year-olds

had similar p3 rates, but that the older children had a higher p1 and p2. A mirror error happens

with probability p1
�p2
�(1-p3). This indicates that mirroring errors become more common in

the older children, but not at the expense of responses by the correct target; instead, at the

expense of errors by the other landmark or incorrectly selecting the side versus end relation.

Was memory performance different in these two environments and does this point towards

any possible new ideas to test further? The p1 memory rate estimate was credibly lower in the

‘Jetty’ environment, which is somewhat surprising. This environment had distal scenery that

could be used for reorientation and a circular boundary that could be used to judge distance.

The ‘Arctic’ did not have either. In general, little is known about what environments make spa-

tial memory easier or harder in childhood. This may suggest that some spatial cues actually

distract young children away from forming accurate memories rather than aid them. This

Fig 6. Model parameters by age group (displayed at the center of the range). Solid lines are from the ‘Arctic’ dataset

and dashed lines from the ‘Jetty’. Error bars are 95% credible intervals. Since p1, p2, and p3 are all rates of correct

response, and the two environments sometimes gave different chance levels, they were transformed into an inferred

memory rate. For example, if a participant gives 60% correct responses with two options, we would work back to say

that they were remembering correctly on 20% of trials and guessing on 80% of trials, leading to 40% correct by

guessing and 20% correct by memory. A memory rate of zero would indicate chance guessing. The p2 line is only

present for the ‘Arctic’ as the ‘Jetty’ only had targets on the ends of the landmarks.

https://doi.org/10.1371/journal.pcbi.1007380.g006
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raises interesting possibilities to test whether recent results arguing that young children reori-

enting in simple environments use multiple cues with Bayesian efficiency [41] would extend to

more rich and complex environments.

Can we explain individual differences in spatial memory performance with more general

cognitive measures–especially inhibition, which could play a role in suppressing less-accurate

response strategies? To answer this, children in the ‘Arctic’ dataset were also given the Day-

Night Task [42] and a basic Vocabulary measure [43]. The Day-Night task is a Stroop-like

working memory and inhibition task that is appropriate for young children. They are asked to

first say “day” when shown a sun and “night” when shown a moon, then later to say the oppo-

site. In a Bayesian logistic regression on the p1-p3 parameters, Day-Night scores were a credi-

bly non-zero predictor of p1 (which landmark; Fig 7, Table 2). In addition, the credible

interval for this beta value still does not contain zero when switching from a 95% interval to a

more conservative 99.5% interval: 0.033 to 0.60. Neither the vocabulary measure nor their

chronological age were credibly non-zero predictors of any parameter (p1-p3) at the 95% level.

This suggests that developing executive function could be a bottleneck in terms of developing

spatial performance; they are entirely capable of the relevant computations, but perhaps face

difficulty when organizing themselves to carry out the correct ones for the current task. Longi-

tudinal datasets with more control measures would be immensely useful in answering this

question (and many others) more definitively.

Discussion

The model selection results point towards a need for a distinction between single- and multi-

cue allocentric recall in order to capture and understand the different mechanisms used to

Fig 7. In a Bayesian regression, only one measure (Working Memory / Inhibition–Day/Night Task) shows a

credibly non-zero effect on one model parameter (p1—which landmark). This could mean that the skills underlying

the Day Night Task (working memory and inhibition) also help participants correctly choose which landmark the

target was near, suppressing egocentric responses while maintaining allocentric representations in working memory.

Circles are individual children.

https://doi.org/10.1371/journal.pcbi.1007380.g007

Table 2. Beta parameters relating the model’s key probabilities to predictor z-scores.

Parameter Predictor

Age Vocabulary Working Memory / Inhibition

p1 (which landmark) 0.120

(-0.068 to 0.305)

0.016

(-0.157 to 0.196)

0.308

(0.122 to 0.500)�

p2 (side/end) 0.080

(-0.250 to 0.404)

0.159

(-0.161 to 0.511)

0.103

(-0.261 to 0.458)

p3 (other landmark) -0.007

(-0.162 to 0.160)

0.035

(-0.127 to 0.194)

0.041

(-0.140 to 0.221)

�Credibly non-zero relation between predictor and model parameter (i.e. the 95% credible interval does not contain zero).

https://doi.org/10.1371/journal.pcbi.1007380.t002
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remember a target location during childhood. Children at ages 3.5–6.5 frequently remembered

which landmark a target was closest to and also how the target related locally to that nearest

landmark (i.e. if it was on a side or an end of the oval landmarks). They also frequently made a

specific error that can be predicted if they do not use the rest of the landmarks in the scene.

The individual landmarks were ovals, which have two lines of symmetry. This required relating

the target to additional landmarks in the overall scene in order to resolve which side/end of the

landmark the target was on. For example, remembering the target as being “on the end of the

green landmark” would ambiguously indicate two places since it had two identical ends. Par-

ticipants frequently responded near that local mirror, the other end (or side) of the landmark.

This is consistent with a failure to encode additional landmarks in their memory, which would

prevent such errors. We also tried to model these errors without suggesting that they are spe-

cial in any way (i.e. just a random guess that happened to fall on the mirror end, or a function

of mirror ends being close to the correct target), but these attempts failed in cross-validation

tests. Further, the tendency to only use one landmark fell systematically with age.

Integrating this new result with previous theory regarding egocentric reasoning [2–13], we

arrive at a theory of spatial-cognitive development with three ‘levels’ in development: egocen-

tric, single-cue allocentric, and multi-cue allocentric. This does not imply a stage-like progres-

sion, but three different modes in which children represent space that surrounds them with

increasing sophistication. We theorize that children will tend to use earlier levels more often

when they are younger and/or faced with a more difficult task (e.g. different instructions, dif-

ferent sets of landmarks, more or less time to respond). As the child matures and gains experi-

ence with each level, they become more likely to apply a more advanced level in a similar task.

The first level, egocentric, involves encoding relations as a vector to the self. The second level,

single-cue allocentric, involves encoding relations against a single salient landmark or scene

feature. This was the predominant method for children under 6.5-years-old in the data pre-

sented here. The final level, multi-cue allocentric, involves encoding relations against multiple

parts of the scene at once. This was the predominant method for children over 6.5-years-old.

Effectively, this expands current theory from two levels to three, providing a more detailed tra-

jectory of spatial-cognitive development. This could in turn provide a more useful framework

for screening and intervention to promote spatial-cognitive development in early childhood

[1]. This has its own merits, as the ability to flexibly use multiple landmarks in an allocentric

representation is a very useful in everyday tasks. Spatial skills are also related to achievement in

science, technology, engineering, and mathematics [44–48].

The view we take here contrasts with some specific parts of previous work [21, 28–30].

These papers take the view that allocentric spatial memories in early childhood are related to

multiple landmarks, as previous studies have not shown any systematic reason to suggest oth-

erwise. It is possible that results here stand in contrast because we used a variety of target loca-

tions, making it impossible for a response bias to imitate a successful multi-cue strategy.

This finding and general method (likely without VR) might also be useful to a much wider

group of Biology researchers. The expansion paradigm has been employed across a large vari-

ety of species. To name a few: the common marmoset (Callithrix jacchus jacchus) [27], squirrel

monkey (Saimiri sciureus) [49], orang-utan (Pongo abelii) [26], bonobo (Pan paniscus) [50],

capuchin (Cebus apella) [50], and the mongolian gerbil (Meriones unguiculatus) [31]. Similar

ideas have been employed to study the domestic dog (Canis familiaris) [51, 52], the rufous

hummingbird (Selasphorus rufus) [53], and more. Many of these studies have suggested that

these various organisms do not use more than the nearest single landmark. This could be fur-

ther tested through an adapted version of the method here. Place two identical containers on

the ends of an oval landmark. Place down another distinctive landmark. Always bait the con-

tainer that is closer/further (counterbalanced across subjects) to the other distinctive
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landmark. The organism should learn to search the two containers near the oval landmark,

but never learn to discriminate between them.

Comparing the parameter estimates from the two experiments suggests that the ‘Jetty’ was

more difficult than the ‘Arctic’. This is unexpected because the ‘Jetty’ had more ways to encode

locations. Based on this, we suggest that a recent developmental theory [41] needs further

examination. This theory proposes that very young children routinely use multiple sources of

spatial information in a rational Bayesian manner, gaining the full possible benefit from the

presentation of multiple encoding methods. It seems difficult to reconcile this with the current

results, but perhaps not impossible if the specific landmarks present are not equally informa-

tive across the two environments. If young children do reorient by combining cues with Bayes-

ian efficiency, it would also be an exception to the general trend where they do not employ

Bayesian cue combination in other settings [10, 54]. This tension should prompt further inves-

tigation. For example, young children may deal with one set of spatial cues with Bayesian effi-

ciency but not another set of spatial cues.

Further, to be more specific, the ‘Jetty’ had both distal landmarks and a surrounding circu-

lar walkway. The ‘Arctic’ did not have either. Despite this, some level of multi-cue recall was

seen in the ‘Arctic’ dataset, even in the youngest age group (3.5–4.5 years old). This suggests

that the ability to use multi-cue recall is not entirely dependent on either distal landmarks [28]

or the geometry of local boundaries [38]. This aspect of the results agrees with previous

research on the use of multiple cues [21, 28–30].

A regression analysis further suggests that inhibitory control is a useful predictor of spatial

performance. Specifically, it credibly predicted p1 (the parameter controlling the rate of ego-

centric or random responding). This could indicate that executive function forms a major

bottleneck in terms of spatial memory development. Since executive function was not experi-

mentally manipulated, we cannot be sure that this is a direct causal link. However, given the

importance of executive function [55], this should be a point for future research to explore.

Further, as a more general point, the typical method of analysis for these kinds of data is to

just report the rate of responses in the correct general area (plus any other general areas that

are intentionally impossible to tell apart from the correct target) [9, 14, 29, 39, 41, 56]. This is

an implicit endorsement of the Correct-Or-Guess Model. Results here suggest that these sim-

ple kinds of analysis can have significant limitations if there are multiple plausible strategies

that a participant might use. In that case, it would be more informative to create a full model

to fit to the data. There might be interesting patterns of errors that go beyond just being right

or wrong.

The present study uses virtual reality to study spatial cognition. This can lead to biased esti-

mation of egocentric distance if there is no opportunity to walk around the space [57]. How-

ever, participants here were frequently asked to walk through it. Beyond that caveat, despite a

great deal of study, there is no specific reason to doubt the validity of virtual reality as a way to

study spatial cognition; instead, there is a great deal of evidence that spatial cognition is the

same in real and virtual environments [58–65]. This includes similar effects in young children

[7, 8]. It also includes the transfer of training from virtual to real environments for neurologi-

cal patients [66–68]. Despite that, it is unknown how tasks like ours here relate to other com-

mon spatial tasks, like mental rotation [69] or reorienting without a change in viewpoint [14].

Similarly, the relation between the skills on display here and spatial skills that Educators want

to encourage needs more examination in the future.

An important avenue for future research is understanding which different cognitive and

neural resources are deployed to enable the aspects of allocentric memory studied here. This

may be investigated via relationships with other cognitive skills, and relationships with EEG or

fMRI signals during the recall tasks. A powerful application of a model-based approach like
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the one used here would be relating individual parameter estimates (e.g. for p1, p2, p3) to indi-

vidual behavioural and neural measures. Another important avenue for research is testing the

potential of VR tasks of this kind for screening and interventions to improve childhood science

and math education.

In conclusion, developing spatial cognition sometimes only represents the relation between

a target location and one nearby single landmark. The resulting errors are not explained as

well when modelling them as more generic errors, such as guesses that just happened to fall on

the mirror reflection of the target. In that sense, capturing the single- versus multi-cue allo-

centric distinction is necessary to understand and predict spatial memory performance at dif-

ferent ages. Several aspects of allocentric spatial memory develop over childhood, including

how often they remember which landmark the target was nearest–but a failure to use multiple

landmarks remained the most common type of error. This leads us to theorize that spatial cog-

nition has three developing ‘levels’: egocentric (self-based), single-cue allocentric (world-based

but only using one nearby landmark), and multi-cue allocentric (world-based and using multi-

ple landmarks).

Methods

Ethics statement

Ethics approved by the Ethics Committee in the Psychology Department at Durham Univer-

sity (14/05 –Development of navigation in virtual reality). The parents of participants gave

written consent. Participants were asked to consent verbally.

Participants

All participants were recruited around the Durham, UK area. In the ‘Jetty’ dataset, there were

12 children aged 4.5–5.5 years, 15 children aged 5.5–6.5 years, and 9 children aged 6.5–8.5

years. Not included here were two adults run to make sure the task was sensible (ages 28 and

25), both of whom had perfect scores on the categorical measures and a continuous error of

<10 cm on average. The stopping rule for the ‘Jetty’ was to have at least 12 children in the low-

est age bracket and 8 in the others, but to continue contacting families from all age ranges and

gathering data from anyone who could be arranged during the data collection period. Since

this procedure is relatively new, this stopping rule was chosen on the basis that 16 children is a

relatively standard sample size (e.g. [70]) in studies of developing spatial cognition with far

fewer trials (usually only 4 trials, compared to 14 here). In the ‘Arctic’ dataset, there were 17

children aged 3.5–4.0, 16 children aged 4.0–4.5, 17 children aged 4.5–5.0, and 18 children aged

5.0–5.5. The stopping rule was to have at least 16 children in each age group and to test any

available siblings that wanted to participate even if their age bracket was filled. This was

selected on the basis that 64 participants is high power (90%) for correlations of 0.4 and

higher.

In the ‘Jetty’ dataset, the minimum age was chosen on the belief that children needed to be

at least 4.5 years of age to reliably show allocentric recall at all [8]. Our choice to expand the

age bracket for the oldest children (6.5–8.5 years) reflects a belief that the development of spa-

tial cognition should start to slow around 7 years of age [2]. For the ‘Arctic’ dataset, the mini-

mum age was chosen based on pilot data from a previous experiment that suggested the basic

spatial task is too much of a motor demand (holding the wand still and pointing it accurately)

for children under 3.5 years old [8]. To compare experiments, we wanted an overlapping age

bracket, so we chose the range of 3.5–5.5. Because we wanted to look at correlation data with

vocabulary and executive function, a larger sample size was desired.
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Apparatus

We conducted our experiments in a 5m x 9m laboratory equipped with 16 infrared Vicon

Bonita cameras. The cameras could motion-track by tracking reflective markers and had a cap-

ture rate of 240 frames per second at<1mm resolution. The markers were attached to a head-

mounted display (Oculus Rift; see Fig 8A), a wand, and a cap. The experimenter wore a cap

Fig 8. Photographs of the equipment and testing: (a) the headset, (b) the motion-tracked cap worn by the experimenter, (c) the ‘magic wand’, (d) the target

object for the ‘arctic’, (e) the sticker chart used for the ‘Arctic’, plus the sprite representing the experimenter and the blue cross used to indicate where the

participant should stand, (f) a child participating in the experiment with the equipment, and (g) the horizontal sections of the skybox used for the ‘Jetty’–an

image that participants would see wrapped around the virtual world.

https://doi.org/10.1371/journal.pcbi.1007380.g008
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(see Fig 8B), and this cap appeared in VR as a sprite–a large circular figure with ear-like struc-

tures on it. The sprite was used because young children in the piloting phase of a previous proj-

ect [8] found it upsetting to hear the experimenter’s voice (explaining the game and giving

instrucitons) with no visible source. The participant held a pointer (see Fig 8C) constructed

out of a screwdriver handle and PVC cylinders. The Rift has a field of view of 110 degrees and

a resolution of 2160x1200 with a refresh rate of 90Hz. The headset can be adjusted according

to the head size of the participant to ensure that it fit properly.

Virtual environments

The virtual environments were programmed in Vizard (WorldViz, Santa Barbara, CA) (Fig 1).

Both involve a large circular arena where targets appeared, with a donut-shaped area around it

where participants stood to encode and recall the targets. Both also involved elongated spheres

as landmarks in the target area. The landmarks were different colors. They were set apart by a

minimum of 1.5m in an effort to make it clear that they were distinct landmarks and not parts

of a larger structure. In both experiments, there was also a large flat X that lay on the ground

surface and could be moved to different places by the program (Fig 1E). This was used when-

ever we asked participants to stand somewhere (“Can you come stand on this cross for me?”)

or when telling them that they were going to be ‘teleported’ somewhere. To make the 3D

nature of the space easier to see, both environments had a light checkerboard pattern on the

surface of the ground plane (Figs 1 and 8E).

In the ‘Jetty’ dataset, there were three landmarks set at oblique angles. Participants were

screened for colorblindness by asking if they could tell which was green, which was red, and

which was yellow. In the only case where the participant was not able to do this, the landmarks

were changed to white, gray, and black. There was an orienting ‘skybox’, meaning an image

that is wrapped around the virtual environment–something that the simulation shows if there

are no other virtual objects in the way. It was a mountain scene adapted from a photograph

taken in Iceland (Fig 8G). This cue is rendered at infinite distance, so it can be used to orient

but not to measure distances. The encoding and retrieval area was displayed as a jetty that the

participants stood on, raised 50cm above the water. This was also a spatial cue, but opposite in

use–it could be used to measure distances to its edges, but it was not possible to orient to it.

The target was a small duck. To help participants differentiate trials and maintain interest, the

duck appeared in different, random primary colors on each trial. It also spun slowly in place to

attract attention.

In the ‘Arctic’ dataset, there were two landmarks set at a right angle. The landmarks were

longer (1m) than those used in the first experiment (0.8m) in order to make the two ends

more distinctive and further apart, in case motor noise was a severe problem for the younger

children. The encoding and retrieval area was not marked in any visible way. The skybox was a

uniform light blue, which could not be used to orient. The target was a small penguin. We

were concerned that the younger children may not know the word ‘penguin’, so the target was

named Steve and this was used for all of the instructions given to participants. To help partici-

pants differentiate trials and maintain interest, Steve’s torso changed to random primary colors

on each trial. To attract attention, Steve also moved his head and wings up and down a small

amount.

Procedure

Training and warm-up trials. In the ‘Jetty’ dataset, only a very brief pre-training proce-

dure was needed before entering the VR. Participants were simply asked to stand up straight

and hold the wand with both hands. In the ‘Arctic’ dataset more extensive pre-training was
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needed for testing a younger age range. Children were asked to point, using their wand, for

three seconds at a real stuffed animal/penguin while not wearing the headset. For the first four

of these practice trials, the stuffed animal was openly visible on the floor. For the next four, it

was hidden under a towel to imitate the penguin hiding underground in the actual experiment.

If needed, the experimenter would give feedback and would model the requested posture for

the participant to mimic.

After this practice, for both experiments, children wore the headset and were immersed

within VR. During the first 4 trials in VR, participants practiced pointing in the new environ-

ment. For these trials, the target simply went to a new place and the child was asked to point at

it and hold the wand still until a response registered. When the wand (Fig 8C) was pointed at

the ground plane, a white circle appeared where the wand was pointed. As with all parts of the

experiments, a response registered when the indicated location was stable within a 20cm area

for 2 seconds. During movement beyond this 20cm range, the white circle would expand.

When the wand was being held still within the 20cm range, the circle would shrink. This was

done so that the circle would collapse entirely just as the response registered. Trials continued

until 4 responses were registered within 50cm of the target.

The next trials were designed to help the participants practice recalling locations from

memory. The target moved to a new location and then disappeared. (In the ‘Jetty’, it simply

faded from view. In the ‘Arctic’, this was animated as Steve digging underground.) After a 3

second delay, participants were instructed to point to the target location. The character (duck/

penguin) then re-appeared but a marker was left where the response registered.

As with all trials, this was narrated by the researcher. First a generic affirmation was given:

“Good job!”. Next, a positive aspect of the response was noted: “You held the wand really still”,

“You pointed by the [green] one, and look, it was over by the [green] one”, or “You pointed by

that end of the [green] one, and look, it was actually on that end of the [green] one.” Then, if

the response was not on the correct end of the correct landmark, any constructive feedback

was given as future goals: “You pointed by the [green] one, but he was actually over by the [yel-

low] one. For the next one, I bet you can remember which one he is by”, or “But look! He was

on the other end! For the next one, let’s see if we can also remember which end he is on.” This

again went on until 4 responses were registered within 50cm of the target. Later, for targets far

away, feedback was more generic: “Good job! Look where you pointed” followed by “He was

right there” for responses within a small error versus “and look where he was” for larger errors.

General encouragement was also given as needed, such as “You’re doing great.”

Next, they were presented with another 4 trials designed to show them how the teleporting

worked. The target moved to a new location and a green cross appeared. The experimenter

explained that the target would hide and then we (both the participant and experimenter)

would get ‘teleported’, meaning that the computer would move us over to the green cross. The

child was asked to imagine what the scene would look like from the green cross and to take a

careful look at the location of the target. The target hid. The screen faded slowly to black over a

period of 1.25 seconds. The participant’s viewpoint and the experimenter’s avatar in the VR

simulation changed (i.e. the experimenter ‘teleported’ with the child). The screen slowly faded

back up over another 1.25 seconds. The child was asked to look where they were now and then

to point to the target. There was no criterion for advancement. The size of the teleports around

the donut-shaped encoding/response area increased over these trials: 22.5, 45, 135, and 180

degrees from their original position.

Interspersed throughout this procedure and the data collection trials were requests to move

by walking. The experience of walking in VR can help participants understand the scale of the

space correctly [58]. For these parts, a blue cross appeared on the ground and participants

walked over to it with the experimenter. This took place after every third trial. In the ‘Arctic’
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experiment, to help motivate the younger children, a virtual sticker chart appeared showing

how many trials they had done. Also, there were scheduled breaks. 3.5–4.5 year old children

were given mandatory breaks after every 6th trial to receive actual stickers and place them on a

printed picture of a penguin. 4.5–5.5 year old children were asked if they wanted to take a

break and put real stickers on their chart or if they wanted to keep playing and put the stickers

on later. In the ‘Jetty’, with older children, breaks were given in a less structured way. Any

breaks requested by the participant were given immediately and the experimenter would occa-

sionally offer them if the child seemed distracted or in need of one. There was no specific activ-

ity or reward during these breaks.

Data collection trials. In both experiments, participants were asked to look carefully at

the location of the target. When the participant was ready, the target disappeared. In the same

procedure as above, they were then teleported to a different viewpoint from which they had to

point to where the target was. The main difference is that they were not shown where they

would be teleported to (no cross on the ground). After pointing, the target re-appeared and

their choices were narrated as before.

In the ‘Jetty’, teleports consisted of rotating 45, 60, 75, 110, 140, or 170 degrees, on a total of

30 trials. There were 14 trials where the target locations were near the landmarks (blue “x” in

Fig 1C), four of which were on the two ends of the red landmark. Twelve additional trials

tested targets classified as “far targets” in the upper and lower halves of the arena, between

landmarks (green “x” on Fig 1C). The remaining four trials tested the specific location that was

the farthest from the landmarks and the walkway (lower third, middle horizontally on Fig 1C).

Each teleportation magnitude was used evenly (i.e. 5 times), with the constraint that the rota-

tions used for any given target category above were evenly split as rotations under 90 degrees

and over 90 degrees.

In the ‘Arctic’, teleports consisted of rotating 30, 40, 50, 60, 105, 125, 145, or 165 degrees.

There were a total of 16 trials near the landmarks, with each target repeated twice. The other 8

targets were each used once. This made for a total of 24 trials. Each teleport amount was used

evenly (3 times). All 8 rotations were randomly paired with the 8 far trials. Each near target

had one rotation under 90 degrees and one over 90 degrees.

Additional measures

Location description task (Jetty). After the very last data collection trial, the participant

was unexpectedly asked to turn away from the duck and to "tell [the experimenter] with words

instead of pointing" where the duck was. Their response was noted and then they were asked

to turn back around, facing the landmarks and the target. The experimenter said that they

were keeping their eyes closed (to further discourage pointing) and asked the participant if

there was anything else they could say about where the duck was. Feedback was not given on

this last trial.

The British picture vocabulary scale III (BPVS) (Arctic) [43]. The BPVS tests receptive

vocabulary for Standard English in children between 2 years and 6 months old to 6 years and

11 months old. It can indicate language development and vocabulary knowledge and takes 5–8

minutes to complete. The procedure largely consists of asking the child to identify which of

four displayed pictures corresponds to a given word. It was administered according to the

standard procedures and instructions in the manual.

The Day-Night Task [42] (Arctic). The Day Night Task is a measure of inhibitory control

(IC), which tests if an individual can suppress an acquired /dominant response and replace it

with a competing response (Montgomery & Koeltzow, 2010). The Day-Night task is a simpli-

fied version of the Stroop Test and is often used with young children. It involves a set of cards
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that either have a picture of the sun or the moon. In the first part of this task (forward condi-

tion), the children were instructed to say “day” when they saw a sun card, and “night” when

they saw a moon card. In the second part of the task (reverse condition), which was taxing for

both memory and inhibition, children were asked to say “day” when they saw the moon, and

“night” when they saw the day. Children were timed and the number of mistakes was

recorded.

The behavioral rating inventory of executive function (BRIEF)—preschool version [71]

(Arctic). The BRIEF-P is used for children between 2 years, 0 months to 5 years, 11 months.

In this study, the Parent Form questionnaire of the BRIEF was used. This form asks questions

about how often their child’s behaviors were problematic over the past six months. It has good

internal consistency (0.80–0.95) and moderate test-retest reliability (0.78–0.90). These data are

reported in the SI, for the sake of completeness, but they were not interpreted here.

Models

The proposed Single- and Multi-Cue Model has four implicit stages. First, the children need to

remember which landmark the target was closest to. With probability (1-p1), they fail and

select a random Gaussian near the other landmark. With probability p1, they remember cor-

rectly and move to stage two. Stage two involves remembering whether the target was on the

side or end of the landmark. With probability (1-p2), they fail and select a random Gaussian

among the non-side or non-end targets that are near the correct landmark. With probability

p2, they remember correctly and move to stage three. At stage three, they need to use the rela-

tion to the other landmark to resolve the local symmetry. With probability (1-p3), they fail and

select the Gaussian over the local mirror of the target. With probability p3, they remember cor-

rectly and select the Gaussian over the correct target location. At this point, they have selected

a general area represented by the selected Gaussian. However, they are likely to have some

additional small sources of noise, such as motor error. Their final response is modelled as a

draw from the selected Gaussian. All of the Gaussians share a single variance that applies along

both axes with no correlation (i.e. is circular).

The Correct-Or-Guess Model has two implicit stages. First, the children need to remember

the correct location. With probability (1-pc), this fails and they select a random incorrect

Gaussian. With probability pc, they select the correct Gaussian. In the final stage, their

response is modelled as a draw from the selected Gaussian.

The Exponential Decay Model also has two implicit stages. The pre-normalized probability

of selecting each Gaussian is e-kd, where d is the distance between the target and each response

area’s center, in meters, and k is a free decay parameter. These probabilities are then all divided

by their sum so that they sum to 100%. A Gaussian is drawn based on these normalized proba-

bilities, then the response is modelled as a draw from this Gaussian.

The 315 structured-noise models are generalizations of the proposed model. In the first

stage, they are faced with two sets of four Gaussians. One set contains the correct target. They

need to select this set. With probability (1-p1), they fail and select a random Gaussian from the

incorrect set. With probability p1, they remember correctly and move on to stage two. In stage

two, the selection is narrowed from four to two. In stage three, it is narrowed from two to one.

These structured-noise models search through all 315 possible ways of grouping the Gaussians

into a hierarchy that allows this.

Each of the models was fit in the cross-validation procedure with the fminsearch function

in Matlab, minimizing the negative sum of the log probability of the training data. The testing

data were then sent through the same function with the fitted parameters to calculate their

associated score.
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MCMC analysis

For Fig 6, the Single- and Multi-Cue Model was submitted to slice sampling with no explicit

priors. There were 10,000 samples drawn for each age group, seeded with a maximum likeli-

hood estimate.

For an overall model relating the p1-p3 parameters to the three predictors, a Bayesian logis-

tic regression was used (see Fig 7). This means that each parameter (which is a probability and

therefore between 0 and 1) was the inverse cumulative normal distribution of a real-valued

parameter. That real-valued parameter was then the sum of five figures: mu + b1
�Z1 + b2

�Z2

+ b3
�Z3 + E. Z1 was the z-score of their chronological age. Z2 was the z-score of their vocabu-

lary score (the total number of correctly-answered questions in the BPVS). Z3 was a combined

score for the Day-Night task, the z-score of the rank of their time plus the z-score of the rank

of their errors in the second round with reversed instructions. (Ranks were used due to large

outliers.) E was a normally distributed error amount with a mean of zero and a precision of

tau. This structure was repeated three times, once for each of the p1-p3 parameters. Only one

explicit prior was used: tau was given an exponential prior with a mean of 100. The other

parameters implicitly have a flat (completely non-informative) prior. Four chains of 5,000

samples were drawn, each with 1000 discarded as burn-in.

For the logistic regression, we chose to report credible intervals rather than a Bayes factor.

This was done because it is, in our opinion, more appropriate for the present stage of under-

standing of these data. A Bayes factor is used to compare two (or more) specific models with

specific prior distributions to see which one has a better average fit to the observed data. Best

practice for a Bayes factor involves creating a relatively small number of a priori restricted

models to compare. In other words, the best-practice use of a Bayes factor involves both the

specification of prior distributions and the prior selection of restricted models to be compared.

We did not believe this to be appropriate in this situation. In contrast, we report credible inter-

vals that were calculated without any explicit prior distributions and without the prior selec-

tion of restricted models. This results in unbiased interval estimates of an unrestricted model.

Future work can use the results for a more principled Bayes factor comparison.
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