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Abstract
Anatomically realistic and biophysically detailed multiscale computer models of the heart are
playing an increasingly important role in advancing our understanding of integrated cardiac
function in health and disease. Such detailed simulations, however, are computationally vastly
demanding, which is a limiting factor for a wider adoption of in-silico modeling. While current
trends in high-performance computing (HPC) hardware promise to alleviate this problem,
exploiting the potential of such architectures remains challenging since strongly scalable
algorithms are necessitated to reduce execution times. Alternatively, acceleration technologies
such as graphics processing units (GPUs) are being considered. While the potential of GPUs has
been demonstrated in various applications, benefits in the context of bidomain simulations where
large sparse linear systems have to be solved in parallel with advanced numerical techniques are
less clear. In this study, the feasibility of multi-GPU bidomain simulations is demonstrated by
running strong scalability benchmarks using a state-of-the-art model of rabbit ventricles. The
model is spatially discretized using the finite element methods (FEM) on fully unstructured grids.
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The GPU code is directly derived from a large pre-existing code, the Cardiac Arrhythmia
Research Package (CARP), with very minor perturbation of the code base. Overall, bidomain
simulations were sped up by a factor of 11.8 to 16.3 in benchmarks running on 6–20 GPUs
compared to the same number of CPU cores. To match the fastest GPU simulation which engaged
20GPUs, 476 CPU cores were required on a national supercomputing facility.

Index Terms
Algebraic multigrid; domain decomposition; strong scalability; high-performance computing
(HPC)

I. Introduction
The development of anatomically realistic and biophysically detailed computer models of
integrated cardiac function is an important research focus. Such in-silico models are
considered a promising approach for integrating the wealth of multiscale data available to
research in the postgenomic era into quantitative mechanistic models. However, the
associated computational costs remain a major limiting factor.

Despite steep increases in compute power, execution times may be prohibitive when
exploring larger parameter spaces. Next generation high-performance computing (HPC)
resources promise to deliver significantly better performance in the PetaFLOPS or even
ExaFLOPS range. However, exploiting such resources represents a formidable challenge. As
dictated by the fundamental theorem of many-core computing—increases in clock frequency
are no longer worth the costs of power consumed and heat dissipated—increases in
computer power can only be achieved via a dramatic increase in the number of compute
cores Np. Therefore, it is vital to devise numerical methods that strongly scale to thousands
of cores.

Most current bidomain codes do not benefit from such HPC environments since strong
scalability is limited, at best, to a few hundred cores [1]. A major step forward was achieved
recently [2]. Employing proper grid partitioning and asynchronous parallel IO techniques, a
single activation sequence in a patient-specific anatomically realistic and biophysically
detailed model of a human heart was achieved within 1 min using 16 384 cores. Although
this step change in performance—a speedup of more than two orders of magnitude relative
to the fastest simulations reported [3]—opens new perspectives, it also indicated that strong
scalability of current codes may prove insufficient to fully exploit upcoming larger HPC
platforms. For instance, the real-time lag factor ξr was measured to be ~240 on a 0.12
PetaFLOPS machine. To achieve real-time performance, ~4 million compute cores of a 30
PetaFLOPS computer would be required, assuming strong scalability could be achieved,
something challenging due to the deterioration of the surface-to-volume ratio with Np. That
is, with increasing Np, work assigned to a core decreases, i.e., the “volume,” but the relative
communication cost, associated with the boundaries of a local domain, i.e., the “surface,”
increases. As soon as communication costs dominate, no further benefits from adding
compute cores are achieved.

An alternative to the CPU-based HPC approach is acceleration technologies such as GPUs.
GPUs outperform modern multicore CPUs by almost an order of magnitude in terms of
memory bandwidth and by about factors of 3 and 10 with regard to double and single
precision floating point arithmetic, respectively. Additionally, GPUs are built to schedule a
vast numbers of threads and, thus, efficiently reduce latencies in their many-core chip
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architectures. Therefore, properly implemented algorithms that exploit these architectural
advantages can dramatically improve performance.

This study aims to assess the potential of multi-GPU codes in the context of current state-of-
the-art cardiac bidomain simulations, that is, for microanatomically accurate fully
unstructured 3-D FE grids executed in parallel distributed memory environments, to allow
for strong scalability up to a large Np. The main challenge, the efficient solution of linear
systems, is tackled by employing advanced numerical techniques, such as algebraic
multigrid. Finally, the feasibility of efficiently integrating a large simulation code (~100k
lines of code) built on top of a linear algebra package with a GPU-enabled domain
decomposition solver code, while minimally perturbing the code base, is demonstrated. The
integration of pre-existing software is of pivotal importance, considering that simulations at
the level of complexity as shown in this study, cannot be executed otherwise.

II. Methods
A. Governing Equations

The bidomain equations in the elliptic-parabolic form the equations are given by

(1)

(2)

(3)

where ϕi and ϕe are the intracellular and extracellular potentials, respectively, Vm = ϕi − ϕe
is the transmembrane voltage, σi and σe are the intracellular and extracellular conductivity
tensors, respectively, β is the membrane surface to volume ratio, Im is the transmembrane
current density, Iei and Ieb are extracellular stimuli applied in the interstitial space or bath,
respectively, Ii is an intracellular current stimulus, Cm is the membrane capacitance per unit
area, and Iion is the membrane ionic current density that depends on Vm and a set of state
variables η. At tissue boundaries, no flux boundary conditions are imposed for ϕi, with the
potential ϕe and the normal component of the extracellular current being continuous. At
boundaries of the conductive bath surrounding the tissue, no flux boundary conditions for ϕe
are imposed.

B. Spatio-Temporal Discretization
The PDEs given in (1) to (2) are spatially discretized using linear tetrahedral FEs [4].
Parabolic and elliptic PDE are decoupled and operator splitting based on a Strang scheme is
employed to solve the parabolic PDE. The inner kernel of the compute scheme is then given
by

(4)

(5)
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(6)

where Mζ and Kζ are FEM mass and stiffness matrices, respectively, with the subscript ζ
specifying which conductivities to use, either intracellular i, extracellular e, or their sum i +
e, P is a projection operator that transfers data between intracellular and extracellular grid,
and η is a discrete representation of the set of state variables of the ionic model. For time
discretization of the diffusion part of the parabolic PDE, the fully implicit Crank–Nicholson
scheme is employed, with κ defined as βCm/Δt:

(7)

C. Parallel Implementation Strategy
The Cardiac Arrhythmia Research Package (CARP) [5], which is built on top of the MPI-
based library PETSc [6], was used as a framework for solving the cardiac bidomain
equations in parallel. PETSc [6] served as the basic infrastructure for handling parallel
matrices and vectors. Hypre [7] advanced algebraic multigrid methods such as BoomerAMG
and ParMetis [8], graph-based domain decomposition of unstructured grids, were compiled
with PETSc as external packages. An additional package, the publicly available Parallel
Toolbox (pt) library (http://paralleltoolbox.sourceforge.net), [9] which can be compiled for
both CPUs and GPUs, was interfaced with PETSc.

The parallelization strategy was based on recent extensions of the CARP framework [2].
Briefly, achieving good load balancing, where both computational load and communication
costs are distributed as evenly as possible, is of critical importance. While this is achieved
for structured grids with relative ease [10] since nodal numbering relationship is the same
everywhere, mirroring the spatial relationship, it is far more challenging in the more general
case of unstructured grids, which are preferred for cardiac simulations [11]. For general
applicability, unstructured grids are mandatory to accommodate complex geometries with
smooth surfaces, which prevent spurious polarizations when applying extracellular fields.
To obtain a well-balanced grid partitioning, ParMeTis computes a k-way element-based
partition of the mesh’s dual graph, to redistribute finite elements among partitions.
Depending on whether PETSc or pt was employed, two different strategies were devised.
This was necessary due to the inherently different parallelization philosophies—PETSc
partitions matrices row-wise, i.e., every node is uniquely assigned to a partition, whereas pt
is a domain decomposition code where each partition holds those parts of the matrix that
correspond to the local domain. Therefore, matrix rows are fragmented with pt, i.e., one
matrix row might be stored across several processes. For vectors, similar differences arise.
While every entry in a PETSc vector is uniquely assigned to a partition, entries in pt vectors
that represent nodal values along boundaries between two or more subdomains are stored on
all processes sharing the boundary. These fundamental differences are illustrated in Fig. 1.

In both scenarios, following the domain decomposition step, nodal indices in each domain
were renumbered. Inner nodes were linearly numbered, forming the main diagonal block of
the global matrix, which map onto the local rows of the linear system to solve. In the PETSc
scenario, interface nodes have to be split and assigned to one parallel partition. Since entries
in the off-diagonal of a matrix are more expensive in terms of communication cost, we
aimed at evenly distributing interface nodes across the computed partitions to load balance
communication. Interfacial nodes were split equally between the minimum and maximum
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numbered partitions. Both grid partitioning and nodal renumbering were tightly integrated to
compute partitioning information very fast in parallel on the fly. Permutation vectors kept
track of the relationship between the reordered mesh and the user-provided canonical mesh.

D. Software Engineering Considerations
While the libraries Hypre and ParMeTis are straight forwardly integrated with PETSc as
external packages, integration of pt is a more challenging problem due to the inherent
conceptual difference. To reconcile this under the constraint of minimizing the perturbation
of the code base, we wrapped the PETSc and pt matrix formats into a basic matrix data
structure where C/C++ defines decided at compile time which matrix format to use. The
parallel vector format remained unchanged in standard PETSc format. These decisions were
based on the observation that the number of distinct matrix operations is small—in our case,
only 12 functions affected—relative to the number of vector operations. Therefore, vector
data structures could be reused unmodified, only additional gathering or scattering operation
were required in any matrix-vector operation to communicate off-partition entries of the
vector needed in a particular partition. For instance, when calling solving a linear system, a
gathering operation was performed first for ghost padding of the initial guess and right-hand
side vector, and, after solving the system, the solution vector was scattered back.

Following this strategy, coding effort was minimized. Modifications of the basic matrix data
structure and matrix-vector operations required less than 100 lines of code, while the API for
connecting CARP with pt amounted to 980 lines. Compared to the CARP code base of
~100k lines of code, these costs were negligible.

E. GPU Implementation
In our discretization scheme, there are three main contributors to the overall computational
cost: solving the linear systems associated with elliptic and parabolic PDEs, and the set of
ODEs representing cellular dynamics. In line with the notion of minimal perturbation, only
these three time critical portions were implemented on the GPU. At each step outlined in
(4)–(6), right-hand side vectors and initial guesses are transferred from the host (CPU) to the
device (GPU), while the matrices associated with the various linear systems reside on the
GPU for an entire simulation. The problem is solved on the device and the solution
transferred back to the host. The advantage is that the code controlling the global execution,
which is, generally, not time critical, remains unchanged. In our multi-GPU implementation,
the bidomain equations are partitioned exactly the same way as in the multi-CPU case,
where an MPI process is linked to a single GPU and vice versa.

1) GPU Implementation of the ODE Solvers—The ionic model library included in
CARP, which implemented the Rush–Larsen technique [12], [13] was compiled for the
GPU. The exact same code was executed either on the GPU or CPU. When executed on the
GPU, the transmembrane voltage vector vm

t was copied over to the GPU memory to solve
(5) at each time step. State variables η, since they are not required for solving the PDEs,
were kept in GPU memory. That is, the update of the state vector, the computation of the

total ionic current  and the update of the voltage vector vm
t+1/2 based on the

contribution of the reaction term are executed on the GPU. Subsequently, vm
t+1/2 is

transferred back to the CPU memory prior to being sent back to the GPU for solving the
parabolic PDE in (6). Details on the GPU-based ODE solver have been described previously
[14].

2) GPU Implementation of the PDE Solvers—Solving sparse linear systems on GPUs
efficiently is a more involved endeavor. Although support for GPU execution has been
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added via Cusp and Thrust to the PETSc library, this applies to the PETSc base package
only, but not to external packages such as Hypre [7] that provide multigrid preconditioners
crucial for solving the bidomain equations efficiently [15], [16]. The key advantage of the
small pt solver package is that pt can be compiled for both multi-CPU and multi-GPU
environments. The library includes a highly optimized algebraic multigrid framework that
can be used as a preconditioner for an iterative conjugate gradient solver and as such is very
well suited for solving the elliptic PDE embedded in the bidomain equations. An additional
ω-Jacobi was implemented since algebraic multigrid is too expensive for solving the
parabolic PDE. The exact same interface to pt could be used as in the CPU case, no extra
costs incurred.

F. Numerical Setup and Benchmarking
An anatomically detailed FE model of rabbit ventricles immersed in a conductive fluid was
used for benchmarking [1], [17], [18]. The FE mesh of the ventricles comproised 4.3 million
vertices and 24.1 million tetrahedra, whereas the mesh of the surrounding bath comprised
2.6 million vertices and 16.9 million tetrahedra. Cellular dynamics were modeled using a
recent rabbit ventricular action potential model [19]. A propagating wavefront was initiated
at the left ventricular apex using a transmembrane current pulse of 50-µA/cm2 strength and
1-ms duration. Electrical activity was simulated over 250 ms to observe a full action
potential cycle over the entire ventricular volume. A full bidomain formulation was used for
all benchmarks runs, using a fixed global time step of 25 µs. All linear systems were solved
using iterative solvers where the convergence crtierion was an absolute L2 norm of 10−6 of
the unpreconditioned residual. Execution times spent on solving elliptic PDE, parabolic PDE
and ODEs were recorded.

Benchmark runs were executed employing the CARP framework, compiled for three
different flavors.

1. The CARP standard setup running on CPU cores (CARPstd) [1], [16]: The elliptic
PDE is solved using Boomer AMG [20] preconditioning for the CG solver
(BAMG-CG). The parabolic PDE is solved using a global block Jacobi
preconditioner with an incomplete Cholesky preconditioner in each subblock (BJ-
ICC-CG). The set of ODEs is solved using an optimized Rush–Larsen technique
[12], [13].

2. CARP coupled to pt running on CPU cores (CARPpt): pt was engaged to solve the
linear systems. A previously described AMG preconditioner for CG (ptAMG-CG)
was employed for the elliptic PDE [9]. The stopping criterion for coarsening of the
AMG preconditioner ensured a global size of the coarse system in the range 8000–
12 000. The coarse grid system was solved in parallel using the direct solver
MUMPS [21]. For the parabolic PDE, an ω-Jacobi preconditioner in combination
with CG (ωJ-CG) was implemented within pt, using an ω of 2/3 and two iterations
per CG iteration.

3. CARP coupled to pt running on GPU cores (CARPgpu): PDEs are solved using the
same methods as in CARPpt, but on the GPU. A slightly different setup had to be
used for solving the elliptic PDE due to the lack of a GPU-enabled direct solver:
Therefore, the multigrid stopping criterion for coarsening was set to allow
coarsening until the local systems were linearly independent. ODEs were solved
using the same method [13], but compiled on the GPU [14].

G. Performance Metrics
The following metrics were used to evaluate parallel performance.
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1. Real time lag factor ξr : Execution time divided by the time span simulated.

2. Parallel efficiency E: The algorithm’s ability to reduce execution time as Np
increases, defined as the ratio between the factors by which calculation time has
been reduced and Np has been increased. An E value of 1 is referred to as linear
scaling, because computation time is reduced by the same amount as Np is
increased. E values below 1 are sublinear scaling while above are super linear
scaling.

3. Speedup S: The reduction in execution time of the CARPpt and CARPgpu
benchmark flavors compared to the CARPstd baseline benchmark.

H. Benchmarking Hardware
The bulk of benchmark simulations were executed on the Mephisto GPU cluster, consisting
of six Supermicro Super-Server nodes—one master- and five compute-nodes—each
equipped with two Intel Xeon Six-Core CPUs X5650 clocked at 2.67 GHz. Each compute
node is equipped with 96 GB DDR3 ECC RAM and four Nvidia Tesla C2070 GPUs, each
with 6 GB RAM, giving a total of 24 GB of GDDR5 RAM per compute node. In total, the
five nodes provide 20 GPUs (8960 CUDA Cores) with a total video memory of 120 GB
RAM, and 60 CPU cores with a total of 480 GB of RAM. All nodes are interconnected by a
40 GB/s QDR low-latency InfiniBand switch.

As a reference, all CPU benchmarks with the CARPstd executable were repeated on the
Phase 2B element of the wider HECToR service, the national supercomputing facility in the
U.K., using 96–1536 cores. Briefly, each HECToR blade contains four compute nodes, each
with two 12-core AMD Opteron 2.1 GHz Magny Cours processors. Each 12-core processor
shares 16 GB of memory. The MPI point-to-point bandwidth is 5 GB/s or more and latency
between two nodes is around 1–1.5 µs. More details are found online (http://
www.hector.ac.uk/service/hardware/phase2b.php).

III. Results
As previously [1], a strong scalability benchmark was performed using a state-of-the-art
anatomically accurate and biophysically detailed computer model of rabbit ventricles [see
Fig. 2(a)]. The stimulus protocol induced electrical activity representative of a paced
activation sequence under healthy conditions. This sequence covered all phases of an action
potential cycle [see Fig. 2(c)] and allowed study of the impact of these phases upon
performance of iterative solvers [see Fig. 2(d)].

A. Baseline Benchmarks
To allow comparison with previous reports [1], [16] benchmarks were performed employing
CARPstd and CARPpt using 6–60 CPU cores on the Mephisto GPU cluster. These
benchmarks allowed us to assess performance for two factors: 1) the custom-tailored AMG
approach, as implemented in pt [22], relative to the performance of BAMG-CG [1], [16],
and, 2) GPUs, since CARPpt and CARPgpu rely upon the same solver algorithm. Measured
execution times are summarized in Tables I and II. Overall, performance differences
between the two implementations are comparable, with CARPpt being slightly faster in
solving the elliptic PDE while being slower in solving the parabolic PDE, CARPpt being
overall faster by 26–36%.

B. GPU Benchmarks
Benchmarks were repeated with CARPgpu where the number of GPUs was varied between 6
and 20 and summarized in Table III. Comparing performance between CARPpt and
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CARPgpu reveals that there are dramatic speedups for all three major components of the
computational scheme. Even the smallest GPU setup with 6 GPUs clearly outperformed the
fastest CPU setup with 60 CPU cores. In a 1:1 GPU to CPU comparison, the GPU code
always outperformed the CPU code by more than an order of magnitude, with S being in the
range between 11.8 and 16.3.

C. Strong Scalability and Parallel Efficiency
Strong scalability is a key metric for assessing the potential of numerical methods on current
and future HPC resources. Comparing CARPstd with CARPpt showed very similar
scalability characteristics (see columns E in Tables I and II as well as Fig. 3). Although the
GPU code performed best in terms of overall execution time, scalability was inferior to CPU
counterparts. For instance, the worst E with the CPU benchmarks was 81.0%, observed
when all 60 CPU cores were engaged. With GPUs, E degraded to these lower value at a
much smaller Np where E dropped to 79% with only 12 GPUs (see Table III). An overview
showing the scaling properties of all executables in terms of both overall compute time as
well as time spent on individual components is given in Fig. 3. Despite inferior scaling of
the GPU code, reductions in execution time were substantial. The number of CPU cores
required to match the fastest GPU simulation run N̄p turned out to be 472 cores. For the
elliptic PDE, parabolic PDE and the set of ODEs, N̄p was 567, 274, and 367 cores,
respectively.

IV. Discussion
In this study, the potential of a multi-GPU implementation for solving the cardiac bidomain
equations was investigated. Strong scalability benchmarks were performed using a state-of-
the-art anatomically accurate and biophysically detailed in-silico model of rabbit ventricles
that relied upon a fully unstructured FE grids for spatial discretization. The main emphasis
was on employing current numerical techniques, such as algebraic multigrid, for solving
large sparse linear systems of equations for which efficient GPU implementations remain a
challenge. Finally, the feasibility of integrating a GPU-enabled domain-decomposition
solver code with a large simulation code built on top of the PETSc linear algebra package is
demonstrated that minimizes the perturbation of the code base. This is of particular
importance when considering that codes for performing simulations at this level of
complexity typically require decades of person years for development.

A. Previous Work on Multigrid Solvers for GPUs
There is a limited number of reports on GPU-enabled multigrid solvers suitable for the
bidomain equations. FEAST [23], [24] relies on block-structured grids to take advantage of
local structure on a single GPU, and is considered to be among the most advanced methods;
however, fully unstructured grids are unsupported. Notay [25] proposed a geometry-based
semistructured algebraic multigrid method that is also not suited for unstructured grids nor is
available on the GPU. Similar limitations apply to the matrix-free multigrid solver reported
by Flaig and Arbenz [26] which requires direct implementation of material parameters in the
code, something not feasible in our case. GPU support has been added to the most recent
PETSc release [6] that is very well suited for unstructured grids. However, no advanced
preconditioners are available for GPUs and acceleration factors of ~3, with a diagonally
preconditioned cg solver, are well below expectations. The Hypre [7] preconditioners, which
include BoomerAMG, will not be transferred to GPUs, Trilinos [27] preconditioners are
currently implemented on GPUs, but no benchmark results are available yet. An interesting
approach of implementing algebraic multigrid on GPUs based on the Thrust library (CUDA)
has been proposed recently [28]. The reported GPU accelerations for unstructured problems
by a factor 2–3 are inferior to those achieved with pt, and the use of multiple GPUs is in its

Neic et al. Page 8

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2013 June 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



infancy. Nevertheless, the two latter solvers are promising and may be of interest at a more
mature stage. While GPU implementations of direct solvers such as MUMPS [21] and
SuperLU [29] are announced for 2012, their CPU parallel performance is clearly inferior to
pt, and preliminary GPU acceleration results are not too promising. However, such direct
solvers may be useful in multigrid implementations for the coarsest mesh.

B. Previous GPU Work on Cardiac Tissue Simulations
Previous studies have evaluated the potential of GPUs for solving the cardiac monodomain
equation. Sato et al. [30] demonstrated speedups by a factor of 32. While demonstrating that
GPUs yield speedups for this type of equation, the methods are not applicable to bidomain
simulations. To summarize the most severe limitations, regular grids were used with a
matrix-free finite difference stencil for spatial discretization; the parabolic PDE was solved
explicitly, that is, no linear system was solved; simulations were parallelized over GPUs
using threads instead of MPI, thus limiting the number of GPUs to the number of available
slots on a single mainboard; Older NVidia GT 8800 and GT 9800 GX2 cards were used that
are faster for single precision floating point operations than the Tesla GPUs used in our
study, but do not support double precision calculations; the phase I of the Luo–Rudy ionic
model [31] was used that has far fewer variables and less stiff dynamics than the one used in
this study [19]; finally, the set of ODEs was solved using an explicit Euler method that does
not necessarily provide any speedup when compared to more stable ODE integration
techniques such as optimized Rush–Larsen methods [12], [13].

For modeling studies that aim to capturing cardiac anatomy as faithfully as possible,
unstructured grids are key to smoothly accommodate organ boundaries. In these cases,
explicit methods may be disadvantageous since time stepping is severely limited by the
Courant–Friedrich–Lewy condition [32] that depends on the shortest edge lengths in the
mesh. Subtime stepping techniques are needed to maintain stability [2]. In [30], 4–6 subtime
steps were required per ODE solver step to satisfy the CFL condition, suggesting that
implicit methods may be better suited. We investigated this previously [33] where an
implicit method was implemented on the GPU. FEM was employed for spatial discretization
and full stiffness matrices were accumulated, necessitating the efficient implementation of
matrix-vector products for the GPU. Using an unpreconditioned CG method, promising
speedups were achieved with 2-D tissue models, but with unstructured 3-D bidomain
simulations, the number of iterations required for convergence became prohibitive, thus
rendering the method impractical in a more general context.

C. Strong Scalability of Solver Components
Independent of CPU or GPU, strong scalability is a key metric. Since almost all HPC
scenarios rely on the use of a massively large number of compute cores, only strongly
scalable codes will benefit. A large Np means that for a given problem size, the local
workload becomes small enough so that communication costs start to carry weight. This can
be measured with strong scaling experiments, but not weak scaling experiments [10]. The
largest bidomain strong scalability data have been reported recently [34] where local
workload dropped to 3k nodes with Np = 2048. Potse et al. [35] reported a smaller bidomain
strong scalability benchmark for up to 96 cores on a shared memory machine. However, due
to the large problem size of 55 million nodes and the small Np = 96, local workload was
~573k nodes, which is too large to draw meaningful conclusions in terms of current HPC.

The three major components of the bidomain solver scheme implemented here pose quite
different requirements for achieving favorable strong scalability. The easiest problem is the
solution of the ODEs due to its embarrassingly parallel nature. This results in almost linear
scaling, as shown in Fig. 3(c). In general, the parabolic problem is the next less expensive
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system to solve. Either highly scalable explicit approaches can be used [2], or cheap iterative
solvers such as ωJ-CG or BJ-ICC-CG. Due to diagonal dominance, particularly pronounced
with mass lumping, convergence is fairly quick. In our benchmarks, the BJ-ICC-CG solver
converged within 6–12 iterations (average 8.6) and the ωJ-CG solver within 9–16 iterations
(average 11.3). The most challenging problem is the elliptic PDE. More expensive
preconditioners, such as algebraic multigrid methods [9], [20] are much more efficient.
Cheaper iterative solvers require an excessively large number of iterations [16]. Strong
scalability is more difficult to achieve due to the rapid increase in communication costs
arising at the coarser grids [34]. This is illustrated in the top panels of Fig. 3. Scalability
started to level off around 768 cores as indicated by the drop in E from 63%/70% down to
35%/43% for elliptic and parabolic solvers, respectively.

D. Potential of GPU-Enabled Codes for Bidomain Studies
Strong scaling properties are governed by the communication cost relative to the
computational workload per core. Due to the coprocessor model implemented, extra costs
incur for GPUs due to transferring vectors between host and device. Since communication
costs are slightly higher with GPUs, while solving costs are reduced, inferior strong scaling
is expected, which is confirmed. Despite this, GPUs can lead to significant reductions in
execution time. The various solver components benefit to different degrees. Solving the set
of ODEs on GPUs does yield the expected benefits, with robust speedups in the range
between 11.6 and 12.5 (compare ODE columns in Tables II and III) without any degradation
of scaling characteristics compared to the CPU [see Fig. 3(c)].

Speedups achieved in solving the elliptic and parabolic PDEs were in the ranges 12.7–18.5
and 8.1–9.5, respectively. While scalability of the parabolic GPU solver was only
moderately inferior to its CPU counterpart, more noticeable differences were observed with
elliptic solvers. This is due to a less favorable computation-to-communication ratio and the
use of a different numerical strategy on the GPU. On the CPU, MUMPS [21] was used as a
coarse grid solver, whereas, on the GPU, the system was coarsened until it was linearly
independent, since no direct sparse GPU solver was available. The direct solver quartered
the number of CG iterations and helped reduce the dependence of convergence on the
distribution of Dirichlet nodes.

While benchmark results were reported only for one specific grid, the methods used are
general and independent of grid structure. As confirmed by the vast number of simulation
runs performed with our code with grids of varying complexity, the important factor is the
surface-to-volume ratio that depends only on grid size and number of cores, not on the
structure of the grid itself, as long as mesh quality is sufficient.

E. Framework-Specific Aspects
Every numerical method must be implemented in a software package running on hardware,
and, thus, every benchmark is dependent on the underlying hardware and software
frameworks. In this study, CARP was used as a software framework to test the potential
benefits of multi-GPU execution of bidomain simulations. While benchmarks were shown
only for CARP, the approaches described are generic, allowing the implementation of these
methods within other frameworks with similar benefits. To summarize, the two most
important aspects to address are: 1) Independent of CPU or GPU, both compute and
communication load has to be well balanced to achieve strong scalability; 2) With regard to
GPU execution, the implementation of optimized sparse matrix-vector operations as well as
advanced solver techniques that account for the specifics of GPU hardware are key to
achieve maximal speedup in the generic scenario of fully unstructured FE grids.

Neic et al. Page 10

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2013 June 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



All major aspects of the presented method are built upon publicly available software
packages, thus facilitating the replication of these benchmarks within other software
frameworks. As numerous other scientific simulation frameworks CARP relies upon the
MPI-based library PETSc [6] that served as the basic infrastructure for handling parallel
matrices and vectors, and external packages such as Hypre [7] provide advanced algebraic
multigrid methods such as BoomerAMG. Proper load balancing relied upon the graph-based
domain decomposition package ParMetis [8]. GPU-enabled solution of linear systems was
built on top of the publicly available Parallel Toolbox (pt) library (http://
paralleltoolbox.sourceforge.net), [9]. The only CARP-specific aspect is the interface code
that had to be implemented to glue the various methods together. Compared to the overall
size of a framework such as CARP, the effort invested in the interface code was virtually
negligible, requiring only 980 lines of code including documentation. While this step can be
replicated in any other framework, it requires an in-depth understanding of the framework
used and, thus, efficient implementations can only be achieved by the developer teams of the
various simulation frameworks themselves.

V. Conclusion
This study demonstrates the significant benefits of using GPUs for solving the cardiac
bidomain equations. All components of a bidomain solver could be sped up by more than an
order of magnitude. Despite inferior scalability, a small GPU cluster could match the
performance of a substantially larger setup on national supercomputing facility, where
roughly 25 CPU cores were needed to match one GPU.
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Fig. 1.
Parallelization strategies of the linear algebra package PETSc and the domain decomposition
solver pt. Left panel: FE mesh of a domain consisting of two subdomains p0 and p1 and
sparsity pattern of the corresponding global accumulated FE stiffness matrix A. In the FE
mesh, black and white circles are inner nodes of p0 and p1, respectively, while squares are
boundary nodes. Edges in the FE mesh correspond to nonzero entries of the stiffness matrix
A. In the depicted sparsity pattern of A, white and black circles represent FE edges between
inner nodes of p0 and p1, respectively, and squares represent FE edges from or to a boundary
node. Right upper panel: Grid partitioning in the PETSc case. Submatrices A0 and A1,
corresponding to p0 and p1, contain entire rows for all nodal indices assigned to a partition.
Vector b0 holds the entire local index range but for an operation equivalent to A0 · b0 the
node values corresponding to the triangles on p0 need to be communicated, respectively, b1
and p1. Hatched areas in the FE mesh indicate domain overlap between p0 and p1. Right
lower panel: Grid partitioning in the pt case. Domains p0 and p1 do not overlap. Therefore,
rows corresponding to interface nodes in submatrices A0 and A1 are fragmented, but vectors
b0 and b1 are complete, holding any entry corresponding to matrix entries in A0 and A1.
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Fig. 2.
(a) Image-based high-resolution FE mesh of rabbit ventricles. Clipping plane exposes view
on trabeculation and papillary muscles in the LV cavity. (b) Activation sequence used for
benchmarking. Wavefront propagation is initiated by delivering a transmembrane stimulus
at the LV apex. (c) Time traces are shown for Vm and Φe at three different sites, close to the
stimulus site (blue), halfway between apex and base (green) and at the latest activating site
(red) at the base of the ventricles. (d) Convergence history as a function of time.
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Fig. 3.
Realtime lag ξr as a function of Np for the solution of elliptic PDE, parabolic PDE, ODE and
overall compute time. Red traces were measured with the U.K. national supercomputing
facility HECToR. Number of cores required to match fastest GPU setup N̄p are indicated in
each panel.
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