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Abstract

In recent years, post-translational modification (PTM) of proteins has emerged as a key process that integrates plant 
growth and response to a changing environment. During the processes of domestication and breeding, plants were 
selected for various yield and adaptational characteristics. The post-translational modifier small ubiquitin-like modi-
fier (SUMO) protein is known to have a role in the regulation of a number of these characteristics. Using bioinfor-
matics, we mined the genomes of cereal and Brassica crops and their non-crop relatives Arabidopsis thaliana and 
Brachypodium distachyon for ubiquitin-like protease (ULP) SUMO protease sequences. We discovered that the SUMO 
system in cereal crops is disproportionately elaborate in comparison with that in B. distachyon. We use these data to 
propose deSUMOylation as a mechanism for specificity in the SUMO system.
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Introduction

The selection pressures applied through centuries-long pro-
cesses of domestication and breeding of crops have brought 
about large phenotypical changes. The Brassica genus is a fine 
example of this process: selection and crossing of ancestral vari-
eties for leaves, stems, flowers, and seeds have led to the devel-
opment of phenotypically diverse crops such as kale, kohlrabi, 
cauliflower, and rapeseed, respectively. The cereal family too 
has seen impactful changes, such as the transition from the 
low-yielding grass teosinte to the current high-yielding maize 
varieties (Janick, 2004).

It is a combination of many traits that makes a plant a suc-
cessful crop. In the case of cereals, all the seed must ripen at 
approximately the same time and stay on the plant for easy har-
vesting. Additionally, it must not germinate while still attached 
to the mother plant or while in storage, but must be reliably 

viable and germinate quickly and evenly when sown in order 
to outcompete weeds. As it is the seed endosperm which is 
destined for consumption, an increased size and/or number 
of seeds per plant is also desirable (Fuller and Allaby, 2009). 
Furthermore, levels of defensive toxins must be reduced and 
the plants must still be able to cope with the biotic and abiotic 
stresses they encounter in the field.

In recent years, the post-translational modification (PTM) 
of proteins has emerged as a key process that integrates plant 
growth and response to a changing environment. It allows for 
activation or deactivation of stress sensors and downstream 
transcription factors that control the expression of hundreds of 
genes. Protein ubiquitination and phosphorylation are the two 
best understood PTMs controlling stress signalling, but many 
more exist.
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Many key transcriptional regulators including DREB2, 
ICE1 (controlling cold, heat, salt, and drought stress), NPR1 
(regulator of salicylic acid responses), and ABI5 (regulator of 
abscisic acid responses) have been shown to undergo these 
PTMs in order to be effective in promoting plant stress adap-
tation (Miura et  al., 2009; Miura and Hasegawa, 2010; Saleh 
et al., 2015), and PTMs have also been shown to be influen-
tial in countering biotic stresses (Casey et al., 2017). PTMs are 
also relevant to agronomically important alleles. For example, 
the DELLA genes, which are responsible for dwarfed, high-
yielding varieties of the ‘green revolution’ (Peng et al., 1999), 
undergo multiple PTMs: they have been shown to undergo 
both ubiquitination (Dill, 2004) and SUMOylation (Conti 
et al., 2014).

Indeed, SUMOylation is believed to be able to regulate ubi-
quitination and phosphorylation (Ulrich, 2005; Perry et  al., 
2008). When ubiquitin is covalently attached to a lysine residue 
in a substrate protein, this often leads to polyubiquitin chains. 
Polyubiquitination of a given substrate serves not only as a 
signal for degradation, but also for retargeting and reprofiling 
(Hochstrasser, 2009). A key function of the small ubiquitin-like 
modifier (SUMO) is to act as a vital counterpoise to ubiqui-
tination, adding a layer of control above ubiquitination with 
respect to substrate availability, stoichiometry, competition for 
targets, and prevention of ubiquitin-dependent protein deg-
radation (Johnson, 2004). Conversely, SUMOylation can act as 
a signal for the ubiquitination of proteins by SUMO-targeted 
ubiquitin ligases (Elrouby et  al., 2013). Similarly, recent evi-
dence indicates that phosphorylation can be regulated by 
SUMOylation of kinases and phosphatases (Crozet et al., 2014), 
indicating a key point of crosstalk between the different PTMs 
(Swaney et al., 2013). This places SUMOylation as a likely cen-
tral regulator of signalling in eukaryotes, and hence is an ideal 
target for manipulating complex molecular responses such as 
salt and drought resistance.

SUMO is a conserved protein tag similar to ubiquitin which 
has been implicated in the plant stress response. Like ubiquitin, 
SUMO possesses a flexible tail, which allows it to be conju-
gated to its substrates though an E1–E2–E3 cascade (Saitoh 
et al., 1997; Hay, 2007). While Arabidopsis thaliana encodes two 
ubiquitin activating enzymes (E1) (Hatfield et  al., 1997), up 
to 45 E2 conjugating enzymes (Chen and Hellmann, 2013), 
and some 1400 E3 ligases (Hua and Vierstra, 2011), allowing 
for an extraordinary degree of specificity, the SUMO conju-
gation cascade encompasses a much smaller group of proteins. 
Currently only one dimeric E1 SUMO activating enzyme 
(SAE), one E2 SUMO conjugating enzyme (SCE), and two 
E3 ligases have been identified in Arabidopsis (Miura and 
Hasegawa, 2010), suggesting that the specificity of SUMO 
addition is limited. SUMO chains can then be constructed by 
the E4 ligases PIAL1 and PIAL2 (Tomanov et al., 2014).

However, SUMOylation is a reversible process. When the 
stress signal subsides, deSUMOylation takes place. This process 
is mediated by SUMO proteases. The ubiquitin-like proteases 
(ULPs) are the most studied family of SUMO proteases. They 
are cysteine proteases, characterized by a conserved H–D–C 
catalytic triad (Kurepa et al., 2003). A consensus group of seven 
ULPs has been identified in Arabidopsis, of which six have 

been characterized (Murtas et  al., 2003; Novatchkova et  al., 
2004; Conti et al., 2008; Hermkes et al., 2011; Kong et al., 2017; 
Liu et al., 2017). The observation that substantially more ULPs 
than E3 ligases are present in Arabidopsis has led to the hypoth-
esis that specificity in the SUMO system may also be conferred 
by deSUMOylation (Yates et  al., 2016). In order to investi-
gate whether this pattern holds true in crops and whether the 
cultivation level influences the number of ULPs present, we 
compare the number of putative ULP SUMO proteases in 
crop plants and their non-crop relatives. Concretely, we com-
pare A.  thaliana with a number of cultivated Brassicas and 
Brachypodium distachyon with various cereal crops. We hypothe-
size that some of the selection pressures applied in the domes-
tication and breeding process could provide an insight into the 
increase in ULP numbers observed in some crops. Additionally, 
we build on the recent data mined by Augustine et al. (2016) 
on SUMOylating enzymes in cereals to put forward the possi-
bility that the specificity of the SUMO system is at least in part 
derived from specific deSUMOylation.

Materials and methods
We used the NCBI-blast (p-blast, DELTA-blast, and PSI-blast) to retrieve 
protein sequences, using the AtOTS2 catalytic domain as a query for the 
Brassica crops and the AtOTS2 and BdOTS2 catalytic domains for the 
cereal crops. As the rice genome is well annotated, we also used the puta-
tive function search tool from the Rice Genome annotation project to 
find putative members of the ULP1 family. Alignements were made using 
ClustalX and visualized in Jalview. Bootstrap Neighbor–Joining trees 
were made using ClustalX and visualized using Figtree and MEGA7.

Results and Discussion

ULP SUMO proteases in the Brassica family

As the A. thaliana proteome is well characterized, we started 
out by comparing it with the Brassica crops Brassica rapa and 
Brassica oleracae, whose cultivars make up most of the vegetable 
cabbages, and with the oilseed rape Brassica napus. The num-
ber of sequences retrieved for each species can be found in 
Table 1. In addition to the seven consensus ULPs, our searches 
also revealed an eighth ULP candidate, At3g48480. Although 
originally identified as a ULP candidate (Kurepa et al., 2003), it 
was not included in the consensus ULP family (Novatchkova 
et  al., 2004) as it is phylogenetically related to a clade of 

Table 1. ULP SUMO protease sequences retrieved in Arabidopsis 
thaliana and crop Brassicas

Organism Number of ULP sequences found

Arabidopsis thaliana 8
Brassica rapa 8
Brassica napus 10
Brassica oleracea 7

As ploidy varies between Brassica species and the sequences were 
well annotated, sequences identified as isoforms of each ULP were not 
counted separately. The number of putative ULPs is conserved in Brassica 
rapa, while one sequence less was retrieved in Brassica oleracea. Two 
more sequences were retrieved in Brassica napus.
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ULP-like genes thought to have emerged from transposon 
activity (Hoen et  al., 2006). However, as At3g48480 encodes 
a full transcript, has the highest number of associated ESTs 
seen in this group, and is the most similar to the human ULPs 
HsSENP6 and HsSENP7 (Lois, 2010)—which are thought to 
be poly-SUMO deconjugases (Lima and Reverter, 2008)—we 
included it in our analysis in order to assess whether homo-
logues are present in other Brassica species, naming it AtULP3. 
The sequences we found to show distinct homology within 
the catalytic domain (see Fig.  1). Figure  1 reveals that only 
B. napus showed a slight increase in the number of ULPs. As 
this crop was bred for its seed, we decided to investigate our 
hypothesis further by focusing on cereal crops, all of which 
have been bred for their seed.

ULP SUMO proteases in the cereal family

While the differences in ULP number in the Brassica fam-
ily are only subtle, those in the cereal family are clearer. Crop 
plants Oryza sativa and Zea mays have more than double the 
number of ULP sequences found in B. distachyon (Table 2).

We hypothesize that the reduced increase in ULP sequences 
found in Sorghum bicolor is due to a lack of resolution of the 
sorghum proteome compared with the highly resolved rice 
and maize proteomes. This is supported by the fact that we 
found only three and seven ULP protein sequences, respect-
ively, in barley and wheat, whose proteome data are still under-
developed. Interestingly, the Z.  mays genome is thought to 
stem from a genome duplication event in which an ancestor 
of S. bicolor acted as one of the parent genomes (Swigonova 
et  al., 2004). This duplication may account in part for the 
lower number of ULP sequences recovered in S. bicolor when 
compared with Z. mays. Genes in O. sativa do not exhibit a 
generalized duplication when compared with their S.  bicolor 
orthologues (Swigonova et  al., 2004). However, the number 
of ULP sequences recovered from O. sativa is roughly equal to 
that of Z. mays rather than S. bicolor (Table 2), indicating that 
multiple factors are likely to be at play.

Phylogenetic analysis of the sequences recovered shows par-
tial conservation of the OTS and ESD4 groups (see Fig. 3), but 
a number of novel groups also emerge, as was previously sug-
gested (Yates et al., 2016). Meanwhile, the ULP2 group is less 

Fig. 1. Alignment of Brassica ULP sequences. The H–D–C catalytic triad characteristic of the ULP SUMO proteases is marked in black. The areas 
surrounding the key amino acid residues show strong conservation across species. Phylogenetically, the Brassica ULPs sort into three branches: ESD4-
ULP1A-ULP1B (ESD4 group), ULP1C-ULP1D (OTS group), and ULP2A-ULP2B group (ULP2 group) (Fig. 2). Accession numbers for the proteins used 
can be found in Supplementary Table S1. Interestingly, both BnULP3 and BrULP3 are part of the OTS group, forming a subclade separate from the 
ULP1C and ULP1D orthologues, and may themselves be AtULP3 orthologues. Additionally, the two other additional Brassica napus ULPs, BnULP4 and 
BnULP5, are found in the ULP2 and ESD4 groups, respectively.
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clearly defined in cereals. Accession numbers for the proteins 
used can be found in Supplementary Table S1 at JXB online.

The selection pressures applied during domestication 
and breeding target a number of processes which are 
known to involve SUMOylation

The centuries-long process of domestication has driven 
the evolution of low-yielding ancestral plants into the 

high-yielding crops we know today. This phenotypic trans-
formation is the result of a number of selection pressures 
exerted in order to make crops easier to grow and harvest, 
and to improve the yield of the tissue destined for consump-
tion. The main characteristics selected for in cereals have been 
reviewed both archaeologically and biologically by Fuller and 
Allaby (2009). They include reducing shattering so as to ena-
ble effective harvesting of the seed head and reducing the size 
and number of seed dispersal appendages to avoid unwanted 
dispersal by wind or animals. Also important are controlling 
germination time so as to produce seed that does not germi-
nate in dry storage conditions but germinates promptly and 
strongly when sown in order to outcompete weeds; increas-
ing seed size and therefore yield, and adapting to changes in 
environment as the crop spreads to areas by developing ways 
of coping with new (a)biotic stresses without compromising 
greatly on yield (Fuller and Allaby, 2009). More fundamen-
tally, the plant must reliably produce viable seed and enough 
vegetative growth to sustain the development of many and/
or large seeds. A number of these aspects have already been 
linked to (de)SUMOylation, notably fecundity, germination 
time, seed development, and stress tolerance (Lois et al., 2003; 

Table 2. ULP SUMO protease sequences retrieved in 
Brachypodium distachyon and crop cereals

Organism Number of sequences retrieved

Brachypodium distachyon 10
Oryza sativa 22
Zea mays 21
Sorghum bicolor 13
Hordeum vulgare 3
Triticum aestivum 7

A number of crops encode more putative ULPs than B. distachyon, 
with Oryza sativa and Zea mays encoding more than double. Due to the 
underdevelopment of proteome data, very few sequences were recovered 
from Hordeum vulgare and Triticum aestivum.

Fig. 2. Phylogenetic tree of putative ULP sequences of Arabidopsis thaliana and crop Brassicas. The sequences cluster into three groups. The closely 
conserved ESD4 group incorporates ESD4, ULP1A, and ULP1B homologues and is coloured in red. The OTS group incorporates OTS1 and OTS2 
homologues and is coloured in green. The ULP2 group incorporates ULP2a and ULP2b homologues and is coloured in blue.
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Novatchkova et al., 2004; Saracco et al., 2007; van den Burg 
et al., 2010; Augustine et al., 2016; Yates et al., 2016).

Fertility

SUMOylation is involved in various aspects of fecundity, from 
the ability to form viable embryos to correct flower develop-
ment and prevention of early flowering.

SUMOylation is known to be essential for embryogen-
esis: homozygous Arabidopsis mutants for either both the 
canonical SUMOs SUMO1 and SUMO2, the E1 activating 
subunit SAE2, or the E2 conjugating enzyme SCE1 are non-
viable, aborting in early embryogenesis (Saracco et al., 2007). 
Additionally, mutants lacking the two known E3 ligases SIZ1 
and HPY2 were also non-viable (Ishida et al., 2012). This phe-
notype coincides with high levels of SUMO1 and/or SUMO2 
expression in various parts of developing flowers, seeds, and 

embryos in wild-type plants as measured by β-glucuronidase 
(GUS) staining (van den Burg et al., 2010).

Less dramatic but still highly impactful are the single siz1 and 
hpy2 mutants, which were both strongly dwarfed. hpy2 mutants 
often do not survive bolting, and a considerable proportion of 
the seeds they do generate are aborted (Ishida et al., 2012). Not 
only defective SUMOylation, but also defective deSUMOyla-
tion lie at the heart of the dwarfed phenotype. esd4 mutants 
are severely dwarfed and early flowering, with a reduced num-
ber of flowers and amount of pollen (Reeves, 2002; Murtas 
et al., 2003; Villajuana-Bonequi et al., 2014). ots1/ots2 mutants 
share the first two of these characteristics and exhibit reduced 
seed numbers in all but ideal conditions (Conti et  al., 2008; 
Campanaro et  al., 2016). Fertility is also severely affected in 
spf1 mutants, with less than half of seeds developing normally, 
and in the spf1/2 double mutant, in which only 15% of seeds 
complete full normal development (Liu et al., 2017).

Fig. 3. Phylogenetic tree of putative ULP sequences of Brachypodium distachyon and crop cereals. The grouping of sequences is less clear in cereals in 
comparison with Brassicas. This is due in part to the increase in number of sequences and the lack of characterization of crop ULPs. However, the ESD4 
group (coloured in red) and the OTS group (coloured in green) remain recognizable. The placement of BdULP2b outside the ULP2 group (coloured in 
blue) is probably due to the fact that only a partial sequence was recovered. However, new groups have seemingly emerged.
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One of the causes of the lack of optimal seed development 
in SUMO mutants could be malformations in floral organ 
development. For example, ots1ots2 double mutants exhibit a 
reduction in stamen elongation which, when rescued by cross-
ing in a DELLA mutation, also restores the otherwise reduced 
seed formation rate back to wild-type levels (Campanaro et al., 
2016). Conversely, some spf1/2 double mutant flowers exhibit 
increased style length, causing a physical pollination barrier. 
Interestingly, this phenotype is only present in approximately 
one-third of flowers. These double mutants also produced a 
smaller proportion of viable pollen grains and showed slower 
pollen tube growth (Liu et al., 2017). Additionally, siz1 mutants 
show disrupted guidance of the pollen tube, again reducing the 
chances of successful fertilization (Ling et al., 2012).

As protein and/or transcript levels of almost all characterized 
ULP SUMO proteases (the northern blot performed in esd4 
mutants is inconclusive) are known to be elevated in developing 
flowers (Murtas et al., 2003; Hermkes et al., 2011; Castro et al., 
2016; Kong et al., 2017), we suspect the ULP mutants may be 
harbouring undiscovered floral phenotypes. For example, esd4 
mutants exhibit deformed and irregularly placed siliques (Reeves, 
2002) reminiscent of sum1-1 amiR-SUM2 SUM1/2 knock-
down plants (van den Burg et al., 2010), which may be caused 
by defective flower or seed formation earlier in development.

Complementarily, high levels of SUMO conjugates and 
SUMOylation elements SUMO1, SAE1, and SCE1 were also 
observed in flowers (Saracco et al., 2007), emphasizing the crit-
ical importance of (de)SUMOylation in floral development.

Seed size

The end target of cereal breeding of yield is to maximize the 
amount of seed endosperm produced.. Transcriptional analysis 
of a range of maize tissues showed endospermal transcriptional 
up-regulation of the two canonical SUMOs, the maize SAE, 
a number of SCEs and E3 ligases, and all except two of the 
eight investigated ULPs (Augustine et al., 2016). Interestingly, 
the same study found an increase in the transcript levels of 
SUMO-v, a non-conjugatable SUMO analogue presumably 
acting through SIM domains in endosperm tissue. The enriched 
endosperm SUMO system could provide an explanation for 
the increase in ULP number observed in B. napus, a crop bred 
for its seed, in comparison with other Brassica cultivars.

The difference in the extent of ULP family expansion may 
be due to the different pathways of endosperm formation and 
fate observed in monocot grasses and dicot Brassicas (Olsen, 
2004). However, very few analyses of the endospermal SUMO 
system have been published. Furthermore, the data available 
are limited to transcriptome analysis. Further research into 
both the transcriptional and (post-)translational level of the 
endospermal SUMO system in a wider variety of plant species 
is needed to validate this hypothesis.

Germination time and stress tolerance

For farmers to be able to differentiate clearly between crop 
and weed seedlings and for the crop seedling to outcompete 

their weed competitors, crop seeds must have a narrow ger-
mination time window and germinate quickly. Both the siz1 
and the ots1ots2 double mutant exhibit a late germination 
phenotype (Castro et al., 2016; Kim et al., 2016) and abscisic 
acid hypersensitivity (Miura and Hasegawa, 2010), while 
SUMO overexpression leads to abscisic acid hyposensitivity 
(Lois et al., 2003).

In the field, crops are grown close together and must be able 
to withstand the associated abiotic stresses. Moreover, they may 
have lost defensive toxins in the breeding process, increasing 
their reliance on other defensive mechanisms to respond to 
the biotic stresses they encounter in the field. SUMO has long 
been established as a strong player in the plant stress system.

A variety of abiotic stresses are known to cause the accumu-
lation of SUMO conjugates, including oxidative, salt, osmotic, 
and temperature stress, which disappear as the plant is given 
time to recover (Kurepa et al., 2003; Catala et al., 2007; Conti 
et al., 2008). Meanwhile, esd4, ots1/2, and spf1 mutants exhibit 
higher levels of SUMO conjugation in non-stressed conditions 
(Conti et al., 2008; Hermkes et al., 2011; Liu et al., 2017), while 
the ability to recover from stress-induced SUMO conjugate 
accumulation was shown to be compromised in spf1 mutants 
(Kong et  al., 2017). Phenotypically, ots1/2 mutants are more 
sensitive to salt, osmotic stress, and abscisic acid (Conti et al., 
2008; Castro et  al., 2016; Srivastava et  al., 2017). The salinity 
tolerance of the esd4 mutant has not yet been studied but, as 
it is known to be hypersensitive to abscisic acid (Miura and 
Hasegawa, 2010), it may also exhibit a salinity phenotype. The 
mutant phenotypes stand in contrast to the OTS1 overexpres-
sor phenotype, which was shown in both rice and Arabidopsis 
to be more salt tolerant and to accumulate fewer SUMO con-
jugates when exposed to stress (Conti et  al., 2008; Srivastava 
et al., 2016).

SUMO also plays a role in the biotic stress system. Both 
the ots1/2 and the siz1 mutant exhibit increased levels of sali-
cylic acid (Jin et  al., 2008; Bailey et  al., 2016). Salicylic acid 
is involved in the plant defence against biotrophic pathogens 
through the mechanism of programmed cell death. While this 
may confer resistance to Pseudomonas syringae to the ots1/2 
(Bailey et al., 2016), it is not necessarily a desirable character-
istic. Constitutive hyperaccumulation of salicylic acid pushes 
the jasmonic acid–salicylic acid antagonism in one direction, 
leaving the plant unable to mount an effective defence against 
necrotrophic pathogens.

In addition to SUMO, most of these characteristics share 
a connection to gibberellin (GA) signalling. The GA–abscisic 
acid equilibrium mediates germination, the endosperm 
being the key seed layer in the perception of this equilib-
rium (Nambara et al., 2010). The DELLA proteins, which are 
degraded in response to GA, are known SUMOylation tar-
gets and play a role in flower development (Campanaro et al., 
2016), growth repression in abiotic stress situations (Conti 
et al., 2008), shade avoidance, and in the equilibrium between 
growth and defence against biotic stresses mediated by GA and 
jasmonic acid (Pieterse et al., 2014). All this information leads 
us to hypothesize that the key to uncovering the importance of 
SUMOylation in crops may lie in the identification of SUMO 
targets in GA-related proteins.
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A number of cereal-specific SUMO system 
components provide a basis for a more complex 
SUMO system in cereals

Characterization of the SUMO system in cereals has led to 
the discovery of a number of components not present in 
dicots. First, a peptide similar to di-SUMO was identified to 
be expressed at low levels in the maize female gametophyte 
(Srilunchang et al., 2010) and later in the male gametophyte 
(Augustine et al., 2016).

Secondly, the cereal family was found to contain a new 
subclass of SCE proteins. Active site modelling revealed an 
increased proportion of negatively charged amino acids around 
the active site, suggesting that they may exhibit altered specifi-
city (Augustine et al., 2016). However, the number of neither 
class I nor class II SCEs is consistently more elevated in cereal 
crops than in B. distachyon (Table 3).

DeSUMOylation as a mechanism for specificity in the 
SUMO system

Even when the increased numbers of SCE enzymes in cereals 
are taken into account, the ULP SUMO proteases outnum-
ber the SUMOylating enzymes (see Tables  1–3). This raises 
an interesting question with regard to specificity within the 
SUMO system: specificity may be imparted by deSUMOyla-
tion rather than by SUMOylation, especially as the ULP 
SUMO proteases are unlikely to be the only class of SUMO 
proteases in plants. Two other classes of SUMO proteases have 
previously been identified in mammals (Hickey et al., 2012). As 
the PTM process is conserved in eukaryotes, they may also be 
present in plants. Further investigation of these classes in plants 
could turn the ubiquitin-based model of specificity in post-
translational peptide tags upside down.

Conclusion

We used bioinformatics to investigate the number of ULP 
SUMO proteases in crops and their non-crop relatives. Within 
the cereal family, we found a substantial increase in rice and 
maize when compared with Brachypodium. This increase could 
be due to the selection pressures applied during the domesti-
cation and breeding processes heavily involving processes in 
which SUMO is known to be involved. However, most of our 
knowledge about the SUMO system comes from Arabidopsis 

and requires verification in crops. In cereals, the endospermal 
SUMO system in particular must be further characterized.

We further hypothesize that deSUMOylation by the ULP 
SUMO proteases and other as yet uncharacterized SUMO 
proteases could provide a mechanism for specificity within 
the SUMO system alongside the multiple SUMO tags and E3 
ligases. As the ULPs are involved in both yield and stress resist-
ance, they could provide a possible target for the generation of 
high-yielding stress-resistant crops. However, further research is 
needed to characterize the specific targets of each of the ULPs.

Supplementary data

Supplementary data are available at JXB online.
Table  S1. Accession codes of the crop ULP SUMO pro-

teases used in Fig. 3
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