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1 Introduction

The conjecture that in the modern era business fluctuations and economic growth are two faces

of the same coin comes back to Schumpeter [71], who pointed out that “wave-like fluctuations in

business ... are the form economic development takes in the era of capitalism.”1 Starting from

this premise, Schumpeter raised the key question of “why is it that economic development does

not proceed evenly ..., but as it were jerkily; why does it display those characteristics ups and

downs?” When searching for an answer, he drew attention to the critical fact that innovations

“appear en masse at intervals”, “discontinuously in groups or swarms,” which “signifies a very

substantial increase in purchasing power all over the business sphere.”

Following the seminal work by Aghion and Howitt [3], Grossman and Helpman [49] and

Romer [67], important developments have been undertaken in the last twenty years addressed

to improve our understanding on the main channels through which innovations promote de-

velopment and growth. Endogenous growth theory is in a fundamental sense Schumpeterian,

since it stresses the critical role played by innovations in the observed growth of total factor

productivity. However, little has been written since then on the relation between innovation and

business fluctuations.

A natural candidate for the study of Schumpeterian wave-like business fluctuations is the

observed long delay elapsed between the realization of R&D activities and the implementation

and adoption of the associated innovations.2 Schumpeter [71]’s description of the periodicity of

business fluctuations is, in this sense, very appealing: “the boom ends and the depression begins

after the passage of the time which must elapse before the products of the new enterprise can

appear on the market.” The argument in this paper is very close to Schumpeter’s description:

waves of innovations arrive en masse, moving the economy to a boom; the associated increase in

productivity raises purchasing power all over the business sphere, inducing research activities to

flourish; but, the new products will take a while to develop; when the new wave of innovations

is eventually implemented, the new products enter the market producing a second boom, which

will generate a third, then a fourth and so on and so for.

It is important to notice that Schumpeterian wave-like business fluctuations as described

in the previous paragraph substantially differ from the type of fluctuations studied in modern

business cycle theory. Inspired on Kydland and Prescott [58], it has focused on the study of

high frequency movements, those between 4 and 40 quarters. Schumpeter, indeed, was more

interested in medium (Juglar) and low (Kondratieff) frequency movements lasting around 10

1Consistently with Schumpeter we have used the term wave-like business fluctuations. This term is, however,

completely unrelated with the concept of wave-like fluctuations used in the partial differential equation literature.
2Comin and Hobijn [33] study the pattern of technology diffusion around the globe and find that countries

on average adopt technologies 47 years after their invention. Comin et al [34] find that, when compared to the

US, lags in the use of technology are measured in decades for most countries. Adams [2] estimates that academic

knowledge is a mayor contributor to productivity growth, but its effects lag roughly 20 years. Mansfield [60]

estimates the mean adoption delay of twelve mayor 20th-century innovations in 8 years. Jovanovic and Lach [53]

estimate at 8.1% the annual diffusion rate of new products.
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and 50 years, respectively. A description of economic fluctuations more in accordance with the

Schumpeterian’s view was recently suggested by Comin and Gertler [31]. They estimate the

medium-term movements of US per capita GDP growth by analyzing frequencies between 40

and 200 quarters, and find that it permanently undulates with a periodicity of around 11 years

and an amplitude of around 8 percentage points from peak to valley. This paper focuses on

Juglar cycles or, equivalently, on medium terms movements.

In this paper, wave-like business fluctuations are modeled in a simple way by adding an

implementation delay to an otherwise textbook endogenous growth model with expanding prod-

uct variety. It shows that the equilibrium path admits a Hopf bifurcation where consumption,

research and output permanently fluctuate. The main mechanism relating growth to wave-like

business fluctuations is based on the assumption that innovations being fundamental for eco-

nomic growth require long implementation and adoption lags. The mechanics is the following.

Let the economy initially react to a permanent positive shock by some concentration of research

activities, which makes new ideas to appear en masse. This is the standard reaction of a dy-

namic general equilibrium model when the initial stock of (intangible) capital is relatively low.

However, the economic effects of this wave of research activity will be delayed in time. When a

swarm of new businesses will become eventually operative, the associated increase in productiv-

ity will inject additional resources to the economy –“a substantial increase in purchasing power”

in Schumpeter’s words. Consumption smoothing makes the rest by allocating the additional

resources to create a second wave of innovation activities. This process will repeat again and

again as time passes. In a simple quantitative exercise, where parameters are set to match some

key aggregate features of the US economy, we show that the model is able to replicate medium-

term movements of similar periodicity and amplitude to those observed by Comin and Gertler.

In this sense, the suggested mechanism relating the sources of growth and business fluctuations

is not only theoretically possible but quantitatively relevant.

Additionally, the paper makes some welfare considerations resulting in a procyclical R&D

policy. Firstly, it shows that detrended consumption is constant from the initial time in an

optimal allocation, and both R&D and output converge by oscillations. Second, it proves that

a procyclical subsidy/tax scheme would restore optimality. This results is due to the fact that

consumption fluctuates less in the optimal allocation, implying that an optimal subsidy has to

generate additional R&D investments during booms than during recessions. Interestingly, the

policy does not affect output in the short run, since for a long while production is determined

by past R&D investments; new investments will eventually become productive after a long

delay. Finally, it quantitatively finds that a procyclical 10% subsidy rate halving consumption

fluctuations will increase the growth rate from 2.4% to 3.4% with a 9.6% increase in welfare.

The model in this paper belongs to the literature on dynamic general equilibrium with time

delays, including vintage capital, time-to-build and demographic theories. Firstly, fluctuations

in the vintage capital literature are the result of machine replacement, as described in Benhabib

and Rustichini [22], Boucekkine et al [27] and Caballero and Hammour [29].3 Following the

3See also Boucekkine and de la Croix [24].
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lumpy investment literature, initiated by Doms and Dunne [40], Cooper et al [35] find robust

evidence on the existence of machine replacement, but little support for the contribution of

machine replacement to the understanding of observed business fluctuations. Second, since the

seminal paper by Kydland and Prescott [58], investment lags have been shown to make the

business cycle highly persistent. Asea and Zak [9] and, more recently, Bambi [10] go further and

prove that time-to-build may generate endogenous fluctuations. However, time-to-build delays

are short relative to Juglar cycles, since they last some few quarters only. Finally, Boucekkine

et al [25] find that in a demographic model with realistic survival probabilities and a vintage

human capital structure, the adjustment of the economy may generate output movements of the

order of a Kondratieff cycle. For all these reasons, implementation delays are more appealing for

understanding Schumpeterian business fluctuations than vintage (human and physical) capital

or time-to-build arguments.

There is an extensive literature on endogenous competitive equilibrium cycles, along the

seminal contributions of Benhabib and Nishimura [19][20], where the raising of these persistent

cycles arrive through a Hopf bifurcation in a multi-sector growth model. In our paper, endoge-

nous cycles still emerge through a Hopf bifurcation, but their main source is the presence of

implementation delays instead of multiple sectors. To clearly state this point, we adopt a partic-

ular version of the expanding product variety model formally equivalent to a one-sector model.

These delays change the equations describing the competitive equilibrium to a system of mixed

functional differential equations. To this extent our contribution shares some similarities with

the one of D’Albis et al. [8]; in fact the raising of competitive equilibrium cycles, in their model,

depends on the presence of delay differential equations pinned down by a learning-by-doing pro-

cess with memory effect. On the other hand, a key difference between our paper and D’Albis

et al. [8] is that in an endogenous growth model, the standard assumptions used to prove the

emergence of Hopf bifurcation do not hold and so, to prove that cyclical behavior arises, one has

to perform a non trivial dimensional reduction4 of the original system of DDE’s (see Section 5)

which we have not found in the current literature.

This paper is also related to Matsuyama [61] and Francois and Lloyd-Ellis [45], among the

few exceptions connecting endogenous growth with cycles. Firstly, Matsuyama [61] shows that,

under some conditions regarding the saving rate, endogenous cycles arrive in a discrete time

Rivera-Batiz and Romer [66] endogenous growth model, where monopoly rents last only one

period and implementing an innovation entails fixed costs. Along the cycle, the economy moves

periodically from a Neoclassical regime to an AK regime. Research activities come en masse as in

Schumpeter’s theory, but they are countercyclical. In our theory, indeed, the economy is always

in an AK regime and innovation activities are procyclical. Second, Francois and Lloyd-Ellis [45]

link growth and cycles combining animal spirits, such as in Schleifer [70], to a Schumpeterian

endogenous growth model. In their framework, a cyclical equilibrium exists because firms are

4The term “dimensional reduction” is used for different purposes in physics and in data analysis; here we simply

mean that the dynamic behavior of the original system of differential equations can be unveiled by studying a

system having smaller dimension.
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interested in delaying implementation to the boom in order to maximize the expected length of

incumbency. In our model, cycles are also related to implementation delays. However, differently

from Francois and Lloyd-Ellis [45], business fluctuations are not the consequence of animal spirits

but result from a Hopf bifurcation, and they materialize as medium-term movements instead of

happening at high frequencies.

The idea that delayed gains in productivity may generate persistence has been deeply studied

in the recent literature on “news shocks” –see Beaudry and Portier [15].5 However, the main

source of fluctuations in this literature remains exogenous. In our theory, indeed, current research

activities and the associated future innovations may be seen as perfectly forecasted, endogenous

news shocks. Endogenous news are at the basis of the the cyclical behavior of our economy,

since more resources are allocated to produce current news when past news realize.

Implementation delays in this paper are indeed very different from the delay elapsing be-

tween the arrival of a general purpose technology (GPT) and its implementation. In fact, GPT

refers to major technology breakthroughs, whose implementation requires costly and very long

restructuring. According to David [37], the implementation of a new GPT may generally take

several decades: for example, the electric dynamos took three decades to attain a fifty percent

diffusion level in the U.S.. Then the consequences of a discovery of a GPT may well reproduce

the low (Kondratieff) frequency movements in the data but not the medium ones which are the

objective of our analysis.

Finally, this paper shares with Comin and Gertler [31] the view that lags of technology

adoption do generate medium-term movements in models of endogenous productivity growth. In

Comin and Gertler’s words, medium-term movements “reflect a persistent response of economic

activity to the high-frequency fluctuations normally associated with the cycle.” They are the

endogenous reaction to a sequence of exogenous shocks. In our theory, indeed, medium-term

movements are endogenous and self-sustained, and they could emerge independently of the

existence of any high frequency exogenous productivity process.

The paper is organized as follows. Sections 2 and 3 describe the economy and define the

decentralized equilibrium, respectively. The balanced growth path and its properties are studied

in Section 4. The next section focuses on the transitional dynamics of the economy. In particular,

it proves the existence of a persistent cycle. In Section 6 the robustness of the results are shown

for a generic innovation externality. Section 7 quantitatively studies the empirical relevance of

the persistent cycle. Section 8 analyzes the optimal allocation and suggests a countercyclical

R&D subsidy as a Pareto improving policy. A counterfactual exercise is performed showing

that a 10% R&D countercyclical subsidy halving consumption fluctuations generates first order

welfare gains. Finally, Section 9 concludes.

5More recently, Comin et al [32] stress the importance of endogenous adoption in the amplification of these

shocks.
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2 The Economy

The economy is populated by a continuum of infinitely lived, identical households of unit mea-

sure, holding a constant flow labor endowment of one unit. There is a sole final good, used for

consumption purposes only. Household preferences are represented by:

U =

∫ ∞

0
log (ct) e

−ρtdt, (1)

where ct is per capita consumption and ρ > 0 represents the subjective discount rate.

In line with the literature on expanding product variety, the final consumption good is

produced by the mean of a CES technology defined on a continuum of intermediary inputs

in the support [0, n]. Differently from the existing literature, we assume that adopting new

technologies requires a time delay d > 0, meaning that varieties discovered at time t become

operative at time t + d. It can be interpreted as an implementation delay which elapses from

the discovery of a new variety to its economic implementation. As usual, the extent of product

variety n is assumed to represent also the aggregate state of knowledge. Knowledge is assumed

to positively affect the productivity of the consumption sector as an externality, i.e., n has a

positive effect on the production of the consumption good. Knowledge produced at time t is

assumed to become public information at the time t+ d, when for the first time the innovation

is produced and sold. Under the previous assumptions, the consumption good technology is

ct = n
ν+1− 1

α
t−d

(∫ nt−d

0
xt (j)

α dj

) 1
α

, 0 < α < 1 (2)

where nt−d represents the extent of operative varieties at time t, and xt(j) is the amount of the

intermediary input j used at time t in the production of ct. This consumption good technology

implies a constant (and equal) elasticity of substitution between every pair of varieties, θ =
1

1−α > 1.

The parameter ν is the elasticity of the externality, but also the return to specialization as

explained extensively in Ethier [43] and Benassy [18]; it will emerge from the balanced growth

path analysis in Section 6 that the growth rate of the main aggregate variables, namely ct and

nt, is the same only when ν = 1. For this reason, we deal with this case in the first instance,

and only later we will check the robustness of our results when ν ̸= 1. It is also worth noting

that in the case ν = 1 we may distinguish between the markup charged by the monopolistic

firms producing x(j) from the degree of returns to specialization.

The assumption that the externality operates only through the measure of operative varieties

nt−d is consistent with the love of variety argument as suggested by Dixit and Stiglitz [39].

Technology in the intermediary sector is assumed to be symmetric across varieties

xt (j) = lt (j) , (3)

where lt (j) is labor allocated to the production of variety j. Total labor L allocated to the
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production of the intermediary sector is given by∫ nt−d

0
xt (j) dj = Lt. (4)

Notice that Lt ∈ [0, 1], since the total labor endowment is one.

An efficient allocation of labor to the production of the consumption good, spreading through

the intermediary sector, results from maximizing (2) subject to (4). It is easy to see that an

efficient allocation is symmetric, meaning xt (j) = xt for all j, which implies

ct = nt−dLt and nt−dxt = Lt. (5)

As stated above, labor allocated to the production of the consumption good benefits from a

knowledge externality, n, which comes linearly in the reduced form of the consumption goods

technology (5). In the following sections, we show that optimal and equilibrium allocations are

both efficient in the sense defined above –see Koeninger and Licandro [55].

Finally, R&D activities are also assumed to be linear on labor and addressed to the creation

of new intermediary inputs. The innovation technology creating these new varieties is assumed

to be:

ṅt = Ant−d (1− Lt) , (6)

where 1 − Lt is labor assigned to R&D production, its marginal productivity depending on

parameter A, A > 0. It is also assumed that the R&D sector benefits from a positive externality

depending linearly on the extent of operative varieties.

Note that consumption and R&D technologies, (5) and (6) respectively, collapse to

ṅt = A (nt−d − ct) . (7)

The AK structure of the model, see Rebelo [64], can be easily seen if the extent of product

variety nt−d is interpreted as (intangible) capital. In the following, we will refer to (7) as the

feasibility constraint.6

The fact that equations (5) and (6) collapse into the aggregate technology (7) means that

the model in this paper belongs to the long tradition of one-sector growth models. Even if

consumption and R&D are different goods, since technologies (5) and (6) are symmetric, the

model behaves as if there were only one good. In other words, one unit of the consumption

good may be transformed into an additional new variety at the constant rate A. Consequently,

the assumption ν = 1 is sufficient for the expanding product variety model to become a one-

sector model.7 Our analysis focuses on this case to differentiate from the existing literature on

6Equivalently, it can be assumed that labor is only used to the production of goods, and output is assigned to

both consumption and R&D, with L representing the consumption to output ratio and A the rate at which the

consumption good is transformed into innovations.
7In the general case of ν > 0, the variable change z = nν may be introduced. It does imply that (5) becomes

ct = ztLt. Under the alternative R&D technology żt = Azt(1 − Lt), the aggregate technology (7) collapses

into żt = A(zt − ct). This clearly shows that the critical assumption for the economy to be one-sector is that

technologies producing the different final goods are symmetric.
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permanent cycles in multi-sector growth models (e.g. Benhabib and Nishimura [19][20]) while

Section 6 shows how to extend some of the main results to the multi-sector case, ν ̸= 1.

3 Decentralized Equilibrium

The economy is decentralized in the standard way. The market for the final consumption good is

supposed to be perfectly competitive, so that individuals and firms take the consumption price,

normalized to unity, as given. Innovations are protected by an infinitely lived patent and the

market for intermediary inputs is monopolistically competitive. The R&D sector is perfectly

competitive, implying that research firms make zero profits. Finally, the labor market is also

assumed to be perfectly competitive.

Final Good Firms – A representative firm produces the consumption good by the mean of

technology (2). It takes intermediary prices as given and maximizes profits by choosing xt(j)

for j ∈ [0, nt−d]:

max ct −
∫ nt−d

0
pt(j)xt(j)dj (8)

subject to the consumption good technology (2), while p(j) indicates the relative price of the

intermediate good j. From the first order condition associated to this problem the inverse

demand function

pt(j) = n2α−1
t−d

(
ct

xt(j)

)1−α

(9)

can be easily derived.

Intermediary Good Firms – Firms producing intermediary goods operate under monopolis-

tic competition. They maximize profits subject to the inverse demand function (9) and the

technology constraint (3), which collapses to

πt = max
pt

p
1

α−1

t (pt − wt).

The optimal price rule is

pt =
1

α
wt, (10)

where the real wage w is equal to the marginal cost of production (technology is linear in labor),

and 1
α represents the markup over marginal costs, which depends inversely on the elasticity of

substitution across varieties.

R&D – Successful researchers receive a patent of infinite life. At equilibrium, the patent

value vt is equal to the present value of the associated flow of monopolistic profits. Therefore,

we can write (e.g. Acemoglu [1])

rt =
πt
vt

+
v̇t
vt
. (11)

The value of the patent has at least to cover the innovation cost,

vt ≥
wt

Ant−d
=

wt(1− Lt)

ṅt
. (12)
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Households – The household’s intertemporal maximization problem is

max

∫ ∞

0
log (ct) e

−ρtdt (13)

subject to the instantaneous budget constraint

ȧt = rtat−d + wt − ct (14)

and the initial condition at = āt, for t ∈ [−d, 0], where āt is an exogenously given continuous pos-

itive function defined on the t domain, formally āt ∈ C([−d, 0];R+).
8 Moreover, at−d represents

the value at t of patents produced up to time t−d, which refer to variety already implemented in

the economy; the patents are also assumed to be owned by households. Non consumed income

is then saved in the form of new patents. The households problem is an optimal control problem

with delay. The positivity constraints ct ≥ 0 and at ≥ 0 are implicitly assumed. It is possible,

using the concavity of utility functional and the linearity of the state equation (in line with Freni

et al. [46] among others) to prove existence and uniqueness of the optimal solution for such a

problem.

Following existing theory (see e.g. Kolmanovskii and Myshkis [56] for the finite horizon case

and Agram et al. [5] Theorem 3.1, for the infinite horizon case), a given state-control pair (at, ct)

is optimal if there exists an absolutely continuous costate function µt such that

e−ρt

ct
= µt (15)

−µ̇t = rt+dµt+d, (16)

lim
t→∞

atµt = 0, or, equivalently, lim
t→∞

atct
−1 e−ρt = 0. (17)

The optimality conditions (15)-(16) collapse into the following Euler-type equation

ċt
ct

= rt+d︸︷︷︸
R&D returns

· ct
ct+d

e−ρd︸ ︷︷ ︸
discount factor

−ρ. (18)

The representative household faces then the following trade-off, consuming at time t or buying

new patents which will become operative at time t+ d.

Decentralized Equilibrium – The decentralized equilibrium is symmetric, meaning that (5)

holds, and equation (9) becomes

pt = nt−d. (19)

Recall that the consumption good is the numeraire, which implies that pt is the price of the

intermediary input relative to the price of consumption. An expansion in product variety im-

proves productivity in the consumption sector, inducing an increase in the relative price of the

intermediary input as reflected by (19). From (10) and (19), the wage rate at equilibrium is

wt = αnt−d. (20)

8By C([−d, 0];R+) we mean the space of continuous function from [−d, 0] to R+ := [0,+∞).
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Market power makes the equilibrium real wage equal to a fraction α, the inverse of the markup,

of labor marginal productivity – aggregate technology is in (5). Consequently, the real wage

maps the behavior of current technology.

From (5), (10) and (19), intermediary profits can be written as

πt = (1− α)
ct

nt−d
> 0. (21)

Profits are proportional to total sales per firm, the proportionally factor being directly related

to the markup rate.

Combining the R&D technology (6), the price rule (10), equations (12), (19), and the free

entry condition, we find that the patent value is constant when there is positive research:

vt =
α

A
, with ṅt ≥ 0 (22)

Moreover, R&D returns are equal to

rt+d =
1− α

α

ct+d

nt
A. (23)

Combining equation (18) with (23) leads to the equilibrium Euler equation

ċt
ct

=
1− α

α

ct+d

nt
A︸ ︷︷ ︸

R&D return

e−ρd

(
ct

ct+d

)
︸ ︷︷ ︸
discount factor

−ρ =
1− α

α
A e−ρd ct

nt
− ρ. (24)

The private return to R&D arrives after a period of length d. For this reason, it has to be

discounted using the appropriate ratio of marginal utilities. Moreover, the private return to

R&D is different from the social return, which is equal to A. Under log utility, the term in ct+d

cancels and the Euler-type equation does not depend on it, on the consumption over number of

varieties ratio ct
nt
.

On the other hand the other equilibrium equation can be found from the instantaneous

budget constraint taking into account that the assets’ market clearing condition is

at = vnt ⇒ ȧt = vṅt (25)

since vt is the constant found in equation (22). We then have the following definition.

Definition 1 Decentralized Equilibrium. A decentralized equilibrium is a path (ct, nt), for

t ≥ 0, verifying the feasibility condition

ṅt = A(nt−d − ct), t ≥ 0, (26)

the Euler-type equation
ċt
ct

=
1− α

α
A e−ρd ct

nt
− ρ, t ≥ 0, (27)

the initial condition nt = n̄t, n̄t ∈ C([−d, 0];R++), the transversality condition

lim
t→∞

ntct
−1 e−ρt = 0, (28)

and the irreversibility constraint ṅt ≥ 0 for t ≥ 0.
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Remark 1 The system of the two equations (26)-(27) is composed by one linear DDE, i.e. (26),

and one nonlinear ODE, i.e. (27). For this reason, given any couple of initial conditions (n̄t, c̄0)

with n̄t ∈ C([−d, 0];R++), and c̄0 > 0 such system admits a unique local solution9 (applying e.g.

[38], Theorem 3.1, p.209 and Proposition 6.1, p.233).

It is worth noting that in our setting the Euler equation is an ODE and so the past values of

consumption do not play any role in determining the solutions.10 In particular, at time t = 0,

which is the date at which the first consumption-investment decision is taken, only c(0) enters

the Euler equation. Therefore the history of c(t) for t in [−d, 0) does not affect the solution.

Consequently, a discontinuity at t = 0 in the variable c(t), even when it exists, does not require

any special treatment.

Interestingly enough, this is not always the case as pointed out by d’Albis and Augeraud-

Veron [6] in an overlapping generation framework where the Euler equation in terms of aggregate

consumption (p.464, eq. (15) of [6]) contains also terms referring to the consumption of past

generations. For this kind of problems a discontinuity between c̄t ∈ [−d, 0) and c̄0 may emerge

and has to be accounted for. Therefore more sophisticated existence and uniqueness results,

such as those in d’Albis et al. [7] should be considered.

4 Balanced Growth Paths

A balanced growth path (BGP) is defined as a solution of the system (26)-(27) such that, for a

suitable g ∈ R+,

ct = c0e
gt; nt = n0e

gt

for any t ≥ 0. At a balanced growth path, the transversality condition (28) is automatically

satisfied since ρ > 0, while the positivity of g guarantees that the irreversibility constraint is

satisfied. So, a BGP is an equilibrium according to Definition 1.

From equation (24), for all t ≥ 0, the consumption to knowledge ratio is constant

ct
nt

=
α(g + ρ)eρd

(1− α)A
, (29)

while the growth rate g is the unique real solution of the transcendental equation

Ae−gd − g =
α(g + ρ)eρd

1− α
, (30)

which is found by substituting (29) into (26). Let denote it by ge. Such solution is positive

under the following parametric condition:

A ≥ αρeρd

1− α
=: Ae

min, (31)

9The solution in general is not global: it is defined up to a maximal time t1, is continuous in [−d, t1) and

differentiable in (0, t1). However, in the cases we are interested in (namely when periodic solutions emerge around

a BGP), solutions are global since they stay away from the singular point n = 0.
10When the externality parameter ν is different from one the Euler equation becomes an advanced differential

equation (see Section 6 and Appendix B).
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which we will assume to hold from now on. Note that the strict inequality in (31) implies strict

positivity of ge. Moreover a straightforward application of the implicit function theorem on (30)

shows that ∂ge
∂A > 0, and ∂ge

∂α < 0, implying that both more productive economies and economies

with larger markups grow faster along a BGP. It can be also easily verified that ∂ge
∂d < 0, meaning

that longer innovation delays implies a lower (asymptotic) growth rate.

We summarize the discussion in the following proposition.

Proposition 1 The solution of the system (26)-(27) is a BGP with positive growth if and only

if the conditions below are satisfied:

i) inequality (31) holds;

ii) the growth rate is given by the unique positive solution ge of (30);

iii) the initial condition n̄t has the form n̄t = n0e
get with n0 > 0 and t ∈ [−d, 0];

iv) given n0, c0 is the solution of (29) for t = 0.

For any given n0 > 0 a BGP exists and is unique.

Therefore positive endogenous growth depends, as usual, on the presence of constant returns

to scale in the production function of new varieties and on a productive enough R&D sector.

In the following we describe an alternative equilibrium without R&D and then no economic

growth. If the R&D sector is inactive because the up-front cost are too high, vt < α
A , then

all the labor force is employed in the intermediary sector, Lt = 1, and the number of varieties

remains constant over time, ṅ = 0. From equation (5) we have that ct = nt−d and then the

intermediary firms’ profit becomes πt = 1 − α. Assuming an initial constant history of a0(t),

the Euler equation pins down a R&D returns equal to rt+d = ρeρd; then the rate of return is

constant and greater than the discount factor, namely r > ρ. The solution of the no-arbitrage

condition (11) is

vt =
(
v0 −

π

r

)
ert − π

r
.

Since r > ρ the transversality condition limt→∞ vt
nt
ct
e−ρt = 0 holds if vt =

π
r = 1−α

ρeρd
. Combining

this with the fact that the up-front cost are too high, we find the following condition

A <
αρ

1− α
eρd.

In this context all the variables remain constant over time and therefore the economy is at a

steady state. The last inequality is exactly the opposite of inequality (31) necessary for having

positive growth.

5 Transitional Dynamics

The next key step is to analyze the dynamic behavior of the decentralized equilibrium around

a BGP, i.e., when the initial condition n̄t, with t ∈ [−d, 0], is sufficiently close but different
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from those in Proposition 1, point iii). In particular, the objective is to study analytically the

occurrence of periodic orbits through a Hopf bifurcation.

The technique to prove existence of a Hopf bifurcation is well known in the case of finite

dimensional ODEs and has been generalized to infinite dimensional systems (including DDEs’)

starting with Crandall and Rabinowitz [36]. For the case of DDEs’ systems, the main theoretical

results are in Diekmann et al. [38] (Chapter X, in particular Theorem 2.7 p. 291 and Theorem

3.9, p.298) and Hassard et al.[52] (Chapter 4, Section 2).

Existing results (such as Theorem 2.7, p.291 of Diekmann et al. [38]) could be applied to

prove the occurrence of a Hopf bifurcation in the nonlinear system under study, if it were not

the case that the characteristic equation (35) (see Proposition 2, below) has always a zero real

root. This (spurious) zero root emerges from the endogenous growth nature of the model, so

there is an entire line (i.e. a one dimensional vector subspace) of equilibrium points that yields

the existence of the zero eigenvalue. When a zero eigenvalue arises the bifurcation picture is,

usually, much more complex and, to the best of our knowledge, even the specialized literature

did not consider cases, such as the one here, where the dynamical system is 1-homogeneous and

infinite dimensional.

Indeed, even restricting the attention to finite dimensional ODEs systems, there are very

few papers in the endogenous growth literature which have studied the raising of periodic orbits

through a Hopf bifurcation. As far as we know, the main contributions are Benhabib and

Perli [21], Ben-Gad [17], and Greiner and Semmler [48]. All of them prove existence of a Hopf

bifurcation in two steps: firstly, they reduce the dimension of the original (finite-dimensional)

system by a change of variables; the new variables are ratios of the original ones and are constant

on the BGP; secondly they write the Jacobian of the reduced system to find conditions on the

parameters under which a pair of purely imaginary eigenvalues emerges.11

In this paper, we deal with the problem of the spurious zero root and we prove the existence

of a Hopf bifurcation through the following procedure which represents a new contribution to

the existing, previously mentioned, literature. Firstly, we consider the detrended and linearized

version of the system (26)-(27) around a steady state (equations (32)-(33) below).12 Secondly,

we look at the associated characteristic equation and we prove that, under suitable conditions

on parameters, the spectrum of the roots of such equation displays a couple of simple purely

imaginary roots which “crosses transversally” the imaginary axis. In particular, we choose d as

our bifurcation parameter and the purely imaginary roots emerge moving d. Thirdly, we use

the fact that the dynamics of our nonlinear (infinite-dimensional) system (32)-(33), represented

by the function f in equation (96) below, is a homogeneous function of degree one to perform

a suitable dimensional reduction (explained in the proof of Theorem 1 in Appendix E) which

11In these contributions, this check is not always done analytically but, sometimes, only numerically. Also, the

“transversal crossing condition” and the stability of the periodic orbits are not checked, and the dynamics of the

original variables is derived only numerically. Finally the inequalities constraints are checked only numerically.
12This is based on the fact that, under some conditions, the local dynamic properties of the nonlinear system

are strictly related to the behavior of the linearized system.

12



enables us to “throw away” the zero eigenvalue. Then, we apply standard Hopf bifurcation

theory and prove that a Hopf bifurcation generically occurs and that the ratios ct
nt

and
nt−d

nt

are periodic functions.13 Finally, in line with the previously mentioned literature, we show

numerically the existence of persistent cycles in the original variables, ct, and nt, and that the

inequality constraints (in our case ṅt ≥ 0) are indeed respected.14 This quantitative analysis is

done in Section 7 where we show that our model indeed replicates the U.S. medium-term cycles.

A full analytical assessment of the role of the transversality condition is also performed.

It is, indeed, worth noting that the Hopf bifurcation will give rise to admissible equilibrium

trajectories only if the transversality condition (28) is satisfied: this turns out to be true for

every initial condition n̄t close to a BGP if the complex roots “crossing” the imaginary axis are

the ones with biggest real part (except for one which has to be “killed” by the proper choice of

the initial consumption c0).
15

5.1 The Linearized System

We now start writing the detrended and linearized version of the system (26)-(27) around a

steady state. Define x̃t = xte
−get, xt = {ct, nt}, with c̃t, ñt representing detrended consumption

and detrended knowledge capital, respectively. Equations (26)-(27) then become

˙̃nt = A(ñt−de
−ged − c̃t)− geñt (32)

˙̃ct
c̃t

=
1− α

α
A e−ρd c̃t

ñt
− (ρ+ ge). (33)

By linearizing the Euler-type equation (33) around a steady state and using (29), we get

˙̃ct = (ge + ρ)c̃t −
(ge + ρ)2αeρd

A(1− α)
ñt. (34)

Existence and uniqueness of a continuous solution for the linearized system of delay differential

equations (32)-(34) is guaranteed, for example, by Theorem 6.2 page 171 in Bellman and Cooke

[16]. Moreover, the characteristic equation associated to such linearized system is (see e.g.

Kolmanovskii and Nosov [57], p.50, or Hale and Lunel [51], p.198)16

h(λ) := λ2 − ρλ− λAe−(ge+λ)d +A(ge + ρ)e−(ge+λ)d −A(ge + ρ)e−ged = 0. (35)

13Such bifurcation will be called “generic”, meaning that it arises for “almost all” the values of the param-

eters such that purely imaginary roots arise and is obtained moving only one parameter in a neighborhood of

the bifurcation locus, keeping the others fixed. The exact meaning of the word “generic” involves topological

considerations which are described e.g. in the book of Ruelle [69], Section 8.7, p.44, Section 9.2 p.58 and Section

13, p.74.
14Therefore the irreversibility constraint is checked to hold ex post and only numerically. A full analytical

investigation of the role of the irreversibility constraint is left for future research.
15To get this result we have to prove the following: i) under which conditions the transversality condition is

satisfied in the linearized system: this fact is non trivial and is done in Propositions 7 and 8 of Appendix D; ii)

how this result can be transferred to the nonlinear system: this is done in Proposition 9 (the last one of Appendix

D) and used in the proof of Theorem 1.
16To get such form of the characteristic equation we use equation (30).
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The set of roots of such characteristic equation is also called the spectrum of the linearized

system (32)-(34). As explained above the spectrum plays a central role in our analysis and for

this reason we devote the next subsection to investigate its properties.

5.2 The Roots of the Characteristic Equation

We start with the following result.

Proposition 2 Assume that (31) holds. Then the characteristic equation (35) has countably

many solutions described as follows:

(i) two real roots: λ0 > ge + ρ > 0 and λ1 = 0; such roots are simple;

(ii) at most a countable set of complex roots of the form µr ± iηr (r ≥ 2) where µr ∈ R, ηr > 0

for every r ≥ 2. Such roots must have bounded real part and are then ordered taking

µ2 ≥ µ3 ≥ µ4 ≥ . . . . If, for some r0 we have µr0 = 0 (i.e. there exist purely imaginary

roots) then for every other r ̸= r0 we have µr ̸= 0. Moreover, the purely imaginary roots

±iηr0 are simple.

Proof. See Appendix C.

Note that, in the above statement, we prove that a zero root always exists. As previously

explained, this fact is an intrinsic property of our model and standard results in the literature

on the occurrence of a Hopf bifurcation cannot be directly applied.

Now we proceed to study the complex roots of the spectrum under assumption (31). As

already said above what is important for our purposes is to know, depending on the parameters

of the problem, when a couple of complex roots has zero real part. In particular, we want to see

when this happens for the conjugate complex roots with biggest real part.

The parameters of the problem are ρ, α, A and d with the restrictions ρ > 0, α ∈ (0, 1),

d > 0 and (31) holds. Call E the subset of R4
++ where such restrictions are satisfied. Then,

following, for example, Kolmanovskii and Nosov [57], p.55, we define the D-Subdivision Dj as

the set of the points (ρ, α,A, d) ∈ E, such that the characteristic equation (35) has j and only

j roots (counted with their multiplicity) with strictly positive real part. We have the following

result concerning the region of our interest: D1 and D3.

Proposition 3 The subdivisions D1 and D3 are nonempty regions in E with nonempty interior.

Proof. See Appendix C.

Let us choose d as the bifurcation parameter. Proposition 4 shows that, starting from a

“generic” point (ρH , αH , AH , dH) ∈ E which lies on the boundary between D1 and D3, namely

on ∂D1 ∩ ∂D3 with ∂ indicating the boundary of the sets, and moving the parameter d in a

neighborhood of dH , the couple of complex roots with the biggest real part crosses transversally

the imaginary axis, i.e. the real part has nonzero derivative with respect to d in dH .17

17It is worth noting that ∂D1 intersects also with ∂D0 when, for example, A = Amin; for this reason we have

specified the boundary between D1 and D3 with ∂D1 ∩ ∂D3.
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Proposition 4 Consider a point (ρH , αH , AH , dH) ∈ ∂D1∩∂D3 ⊂ E. Let d be in a sufficiently

small neighborhood I of dH and write µr(d), ηr(d) to denote the real and imaginary part of the

complex roots as functions of d ∈ I when ρ = ρH , α = αH and A = AH . Then µ2(d) is C1(I),

µ2(dH) = 0 and, generically,18 we have

µ′
2(dH) ̸= 0.

Moreover we have µ′
2(dH) > 0 if the parameters (ρH , αH , AH , dH) satisfy the inequalities (drop-

ping the subscript H for simplicity of writing)

2η +Ae−ged [(1 + d(ge + ρ)) sin(ηd) + dη cos(ηd)] > 0 (36)

Ae−ged
[
a− (a+ η2) cos(ηd) + ηb sin(ηd)

]
> 0 (37)

where η := η2 is the imaginary part of the purely imaginary root, ge is the unique real solution

of (30) and where

a = (d(ge + ρ)− 1)
∂ge
∂d

+ ge(ge + ρ), b = d
∂ge
∂d

− ρ.

Proof. See Appendix C.

The two inequalities in the Proposition are satisfied if the point (ρH , αH , AH , dH) is taken in

a neighborhood of the specification given in our numerical exercise and precisely set as in (45).

5.3 Hopf Bifurcation

Since prevailing theory cannot be directly applied to the system (32)-(33), existence of a Hopf

bifurcation has to be proved. Theorem 1 below uses the results in the previous section to show

it for the bifurcation parameter d.

Theorem 1 Consider a point (ρH , αH , AH , dH) ∈ ∂D1 ∩ ∂D3 ⊂ E.

(i) A Hopf bifurcation generically occurs in d = dH for the projection of system (32)-(33)

in a subspace of codimension 1, i.e. for such a projected system, there exists a family of

periodic orbits pd(t) for d in a right or left neighborhood of dH . The period T of these

orbits tends to 2π
η2

as d → dH .

(ii) On such orbits the ratios

c̃t
ñt

,
ñt+s

c̃t
, and

ñt+s

ñt
, ∀s ∈ [−d, 0]

are all periodic functions.

(iii) The family of orbits pd(t) satisfies the transversality condition (28).

18Here in the sense that this happens for every point (ρH , αH , AH , dH) ∈ ∂D1∩∂D3 except for a set with empty

interior in the topology of ∂D1 ∩ ∂D3.
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Proof. See Appendix E.

Since we cannot prove directly the occurrence of a Hopf bifurcation using the existing liter-

ature (see e.g. the already quoted Theorem 2.7, p.291 in Diekmann et al. [38]), we developed a

method to “throw away” the zero root of the characteristic equation. We do this by studying

a suitably projected system (which lives in a space of codimension 1) where the above theorem

can be applied; we indeed prove that periodic orbits pd(t) do emerge in this reduced system.

This procedure works heavily using the 1-homogeneity of the dynamic system, f (see (96)).

Moreover, the proof that the periodic orbits satisfy the transversality condition (28) is done

by showing first that this holds for the linear system and then for the nonlinear system as well

by using the theory developed in Diekmann et al. [38] (Chapters VII-VIII-IX). See Appendix D

for details.19

The above result shows that permanent cycles may arise in an endogenous growth model

with implementation delays through a generalization of the Hopf bifurcation theory. In Section

7, we also study the quantitative relevance of this finding, and we show that periodic orbits

arise for realistic parameter values, and that, under this parametrization, the variable ct and nt

persistently oscillate around the BGP. It is in this sense that our results are in line with Schum-

peter’s statement that “wave-like fluctuations in business are the form economic development

takes in the era of capitalism.”

5.4 Wave-Like Fluctuations

This section provides an intuitive explanation on the dynamical behavior of the model, in par-

ticular why in some cases the equilibrium paths converge by damping oscillations and in others

permanent fluctuations may arise.20 Let us use (30) to rewrite the equilibrium system (33)-(32)

as

˙̃ct
c̃t

=

(
c̃t
ñt

− Ae−ged − ge
A

)
(ρ+ ge)A

Ae−ged − ge
(38)

˙̃nt

ñt
= −

(
c̃t
ñt

− Ae−ged ñt−d/ñt − ge
A

)
A. (39)

From (30), Ae−ged − ge > 0, implying that the sign of ˙̃ct/c̃t (resp. ˙̃nt/ñt) depends positively

(negatively) on the right hand side parentheses. Notice that both parentheses differ only on

the ñt−d/ñt term, reflecting the fact that current changes in technology take a delay d to be

adopted.

19Our analysis has focused on the existence of a Hopf bifurcation and therefore of periodic orbits. However our

results also imply local determinacy of the steady state as long as (ρ, α,A, d) ∈ D1. Bambi and Licandro [12]

investigate the possibility of local indeterminacy in a time-to-build setting.
20Damping oscillations happens when the economy is too far from the frontier between D1 and D3 in the sense

previously explained; on the other hand, permanent fluctuations refer to the periodic orbits which emerge through

a Hopf bifurcation when the economy is sufficiently close to the frontier between D1 and D3.
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Figure 1: Phase diagram d = 0

We begin the analysis looking at the endogenous growth economy without implementation

delays, i.e. the case d = 0. In this case, the right hand side parentheses on (38)-(39) become(
c̃t
ñt

− A− ge
A

)
,

the same in both equations. Figure 1 represents the behavior of the economy for any feasible

(A, ρ, α), with ge given by (30) under d = 0. The loci ˙̃ct = 0 and ˙̃nt = 0 are identical and the

system diverges when (nt, ct) is not in these loci. As well-know in endogenous growth theory,

for a given n0, the initial consumption has to be c0 making the economy jump to steady state

at the initial time t = 0.

When d is strictly positive, the system (38)-(39) changes its nature and a phase diagram

cannot be used to study global dynamics – see the Appendix D for a formal analysis of the

linearized system. However, the phase diagram in Figure 2 will help us understanding the

oscillatory behavior of the economy. Notice that, ñt−d/ñt in (39) is usually different from unity.

It means that depending on the state of the cycle, ˙̃nt = 0 may be above or below ˙̃ct = 0. When it

is below, a third region shows up in Figure 2, in which the system moves south-west. Notice that

for a given nt−d, the fact that nt is reducing, tends to move the ˙̃nt = 0 locus up. In the opposite

case, the system moves north-east and the ˙̃nt = 0 locus tends to move down. An equilibrium

path, for given initial conditions, will tend to move then cyclically.

Existence of permanent cycles crucially depends on the implementation delay. For a relatively

small d, the ratio ñt−d/ñt tends to be close to unity, implying that oscillations dump and the
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Figure 2: The behavior of the system under d > 0

economy converges to its steady state. As far as d increases, converging to dH , fluctuations

persist for a longer time and they tend to be permanent. In a permanent fluctuation equilibrium,

the economy moves around its steady state.

Of course, the choice of the implementation delays has to respect the conditions found in

the previous theorems. If this is not the case, then the economy faces explosive fluctuations and

the irreversibility constraint will be violated in a finite time.

Initial conditions determine the amplitude of the cycle. In the extreme case where the

detrended initial conditions are constant, the term ñt−d/ñt is one irrespective of the value of

parameters and the economy will behave as in Figure 1, meaning that it will jump to steady

state at the initial time. In the general case of initial conditions close to but different from

those, putting the economy on a BGP, the economy presents a cycle in the variable ct
nt

which

correspond, as it is shown in the quantitative exercise, to a persistent cycle of (ñt, c̃t) whose

amplitude depends on the amplitude of the initial conditions.

6 Robustness of our results for externality parameter ν ̸= 1

In this section, we extend our previous results to the case of ν ̸= 1, but close to one. Notice that

it corresponds to a two-sector economy, where c and n are produced by the mean of different

technologies. The first step to accomplish this task consists in rewriting equations (26) and (27)

and the transversality condition (28) for ν in [0,+∞). The procedure to do it is sketched in
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Appendix B. The resulting equations are

ṅt = Ant−d

(
1− ct

nν
t−d

)
, (40)

ċt
ct

=

[
1− α

α
A

ct
nν
t

+ (ν − 1)
ṅt

nt

ct
ct+d

]
e−ρd − ρ, (41)

with the transversality condition

lim
t→+∞

nν−1
t−d nt c

−1
t e−ρt = 0. (42)

Clearly, in this more general case, the definition of decentralized equilibrium (Definition 1 above)

is the same after having substituted equations (26), (27) and (28) with (40), (41) and (42),

respectively.

The first relevant difference with the case ν = 1 is that a balanced growth path may exist

but now consumption and the number of varieties do not grow at the same rate anymore.21 In

particular a balanced growth path (BGP) is now defined as a solution of the system (40) and

(41) such that, for a suitable g ∈ R+

ct = c0e
νgt nt = n0e

gt ∀t ≥ 0.

As for the case ν = 1 any BGP is an equilibrium (according to Definition 1 suitably modified

as explained just above) since the positivity of g guarantees that the irreversibility constraint

is satisfied and the transversality condition (42) is automatically true by performing a simple

substitution.

From the Euler equation (41)

ct
nν
t

=
α

(1− α)A

[
(νg + ρ)eρd − (ν − 1)ge−gνd

]
. (43)

Evaluating equation (40) at a BGP and substituting it into the last equation, allow us to find

the following equation for a BGP growth rate

−g +Ae−gd − (νg + ρ)α

1− α
e[g(ν−1)+ρ]d +

α(ν − 1)

1− α
ge−gd = 0. (44)

We have the following result concerning the solutions of (44).

Lemma 1 Assume that (31) is satisfied. Then for any ν ≥ 0 equation (44) has exactly one

positive root ge,ν ≥ 0. This root is zero if and only if (31) holds with equality.

Proof. See Appendix F.

The above discussion and the result of Lemma 1 allows us to restate Proposition 1 as follows.

21On the other hand, consumption, output, and investment (i.e. ȧt = v̇tnt+vtṅt) continue to grow at the same

pace. For this reason we will continue to use the term balanced growth path.
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Proposition 5 The solution of the system (40)-(41) is a BGP if and only if the conditions (i)–

(iv) of Proposition 1 holds with (30) and (29) replaced respectively by (44) and (43). Moreover

if (31) holds then for any given n0 > 0 a BGP exists and is unique.

Proof. It follows immediately from Lemma 1 and the definition of a BGP.

Moreover a straightforward application of the implicit function theorem on (44) shows that
∂ge
∂ν < 0 i.e. the positive growth rate of the economy decreases if the externality increases; this

result is not surprising because a higher externality implies higher return on investment and

then higher future consumption. Therefore in front of a high externality the agents have an

incentive to invest less with an obvious negative effect on the growth rate of the economy.

We now look at the robustness of our main result on the existence of periodic solutions

(Theorem 1) when ν ̸= 1.22

Theorem 2 There exists a neighborhood J of ν = 1 such that, for every ν ∈ J , one can define

two nonempty regions D1,ν , D3,ν ⊂ E. Given a point (ρH , αH , AH , dH) ∈ ∂D1,ν ∩ ∂D3,ν we have

that:

(i) A Hopf bifurcation generically occurs in d = dH for the projection of the detrended version

of system (40)-(41) in a subspace of codimension 1, i.e. there exists, for such such projected

system, a family of periodic orbits pνd(t) (of period T which tends to 2π
η2,ν

as d → dH) arising

for d in a right or left neighborhood of dH .

(ii) On such orbits the ratios

c̃t
ñν
t

,
c̃t+s

c̃t
, and

ñt+s

ñt
, ∀s ∈ [−d, 0]

are all periodic functions.

(iii) The family of orbits pνd(t) satisfies the transversality condition (28).

Proof. See Appendix F.

It is worth mentioning that the structure of the method to prove Theorem 2 is very similar

to the one for the case ν = 1. Let us write the detrended and linearized version of the system

(40)-(41), study the associated characteristic equation, and then apply the same arguments used

to prove Theorem 1. The big differences with the case ν = 1 are two: first the dynamics of the

system is not any more a homogeneous function; second the Euler equation becomes an advanced

differential equation and so the characteristic equation admits infinitely many complex solutions

with positive real parts. In the Appendix F we briefly explain how to get rid of such difficulties.

22Since a complete proof of Theorem 2 requires a lot of space (several very hard technical difficulties emerge in

this case), Appendix F only gives a sketch of the proof.
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7 Quantitative Analysis and Medium-Term Movements

In this section, we undertake a quantitative exercise to show that the conditions required for our

economy to be on a permanent cycle equilibrium are quantitatively sensible. For this purpose,

we set the model parameters to

d = 8.2, ρ = 0.03, α = 0.9, ν = 1 and A = 0.786, (45)

which allows us to replicate some key features of the US economy. The adopted value of d is

consistent with Mansfield’s estimations, and α = .9 is in line with estimated markups in Basu

and Fernald [14], implying a markup rate of 11%. By setting ρ = .03, A was chosen for the

growth rate ge to be equal to 2.4% as in Comin and Gertler [31]. Crucially, the model not only

matches the US long run growth but the economy is in D-Subdivision D1, very close to the Hopf

bifurcation.

We use the software DDE-BIFTOOL developed by Engelborghs and Roose [42] to compute

the subset of the rightmost roots of the characteristic equations (35). The spectrum of roots is

represented in Figure 3. As said above, the detrended system has a spurious zero root and a

strictly positive real root, the latter being ruled out by the transversality condition as proved

in Theorem 1. Under this parametrization, the spectrum shows two conjugate complex roots

very close to the imaginary axis, all the other conjugate roots having strictly negative real part.

According to our parametrization, we have that η2 = 0.57 and the numerical value of the two

inequalities (36) and (36) of Proposition 4, is respectively 0.1135 and 0.0264.

A slight increase of the innovation delay d and these two roots cross the imaginary axis;

when this happens a periodic orbit of the projected system, and so of ct
nt
, emerges through a

Hopf bifurcation, consistently with Theorem 1. To quantitatively simulate the dynamics in the

original variables, ct and nt, we need to specify the initial condition.

To set the initial conditions, we assume that during the years 1948 to 1959 the US econ-

omy faced medium term movements similar to those estimated by Comin and Gertler for the

same period. We interpret it as the US adjusting to the new economic environment emerging

after World War II. Initial (detrended) conditions are represented by the trigonometric function

n̄te
−get = 1+ a cos (bt/π) , where parameter a is set to 0.0375 and parameter b to 20/11 for the

amplitude be close to 8%; the simulated path is a persistent cycle of periodicity 11 years; this

value is close to period T in point (i) of Theorem 1; using the information on the spectrum of

roots, we have indeed found a T = 11.21.23

To compute the numerical solution, we use the strategy proposed by Collard et al [30], which

combines the method of steps suggested by Bellman and Cooke [16] with a shooting algorithm

–see Judd [54]. We apply this strategy to the nonlinear system (33)-(32). The solution for

detrended output, measured as Añt−d and normalized to turn around zero, is represented in

23The particular choice n0 = 1 comes without any loss of generality, since the profile of the solution does not

depend on the level of the state variable, as usual in endogenous growth models, but on the profile of the initial

conditions.
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Figure 3: Spectrum of Roots.

Figure 4. The decentralized equilibrium converges to a regular Juglar cycle with periodicity

close to 11 years and an amplitude of around 8 percentage points.24 The periodicity of the

cycle depends on the model’s parameters, in particular on the implementation delay d, but

the amplitude of the cycle crucially depends on the amplitude of the initial conditions. Given

that initial conditions are periodic with a periodicity close to the permanent cycle period, the

economy converges to it very fast. The first recession and boom reflect the behavior of initial

conditions, and maps on the following regular recessions around 1973, 1984, 1995 and 2006.

As can be observed in Figure 4, the approximately 11-years period of the solution is larger

than the 8.2-years implementation delay. In facts, it is easy to see that the implementation delay

has to be close to three fourth of the cycle period. Figure 5 represents the stationary solution

for a period just larger than a cycle. Let for example the economy be at the boom at time t,

with ct at its maximum level. Consequently, ˙̃c/c̃ has to be zero at time t. From the Euler-type

equation, to ˙̃ct be zero, ct/nt has to be at its stationary value. As can be observed in Figure

5, equilibrium output crosses zero around t + d, meaning that ct+d/nt is around its stationary

value. Consequently, d has to be close to 3/4 of the the 11-years cycle period.

24The inequality constraint, ṅt ≥ 0 has been checked numerically to hold both at the initial conditions and on

the simulated equilibrium path. It is also worth noting that the numerical exercise is consistent with the presence

of a stable periodic orbit, i.e. the Hopf bifurcation being supercritical.
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Figure 5: Periodicity of the cycle and the implementation delay.
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8 Optimal Allocations and R&D Subsidies

An optimal allocation solves the following social planner problem

max

∫ ∞

0
log(ct)e

−ρtdt

subject to the feasibility constraint

ṅt = A (nt−d − ct) , (7)

the irreversibility constraint ṅ ≥ 0 and the initial condition nt = n̄t, n̄t ∈ C([−d, 0];R+), with n̄t

the same as in the decentralized equilibrium. Notice that for d = 0 the variable change ĉ = Ac

renders this problem formally identical to the AK model in Rebelo [64].25

Following Kolmanovskii and Myshkis [56] and operating as in the decentralized economy,

optimality requires the Euler-type condition

ċt
ct

= Ae−ρd ct
ct+d

− ρ, (46)

and the transversality condition

lim
t→∞

ntc
−1
t e−ρt = 0, (47)

The social planner faces a trade-off between consuming at time t or saving and consuming at

t + d. For this reason, in (46) the R&D productivity, A, is weighted by the ratio of marginal

utilities of consuming at t+ d and t, which multiplied by e−ρd represents the discount factor on

a period of length d. It is useful to observe that, as in the AK model, the Euler-type mixed

functional differential equation (46) does not depend on the state variable n. Consequently, since

the social return to R&D is constant, the planner may allocate consumption over time without

caring about the path of knowledge n. So the optimal consumption path is in its balanced

growth path from time zero.26 However, since initial conditions affect production from zero to

time d, R&D has to adjust to fulfill the feasibility condition. This mechanism will repeat again

and again making the optimal allocations to fluctuate, converging by damping oscillations under

reasonable restrictions on parameters. This will be precisely shown in Proposition 6 below.

An optimal allocation is then a path (ct, nt), for t ≥ 0, verifying the mixed functional

differential equations system (7) and (46), the transversality condition (47), the initial condition

nt = n̄t, n̄t ∈ C([−d, 0];R+), and the irreversibility constraint ṅ ≥ 0. At a balanced growth

path, from (46), consumption grows at the constant rate g solving

g + ρ = A e−(g+ρ)d. (48)

25We implicitly assume that the solution is interior, meaning that the inequality constraint holds. Bambi el al

[11] in a similar framework explicitly states the needed parameters’ restriction.
26To be more precise the path n only influence the choice of the initial consumption c0: this affect the size of

the optimal consumption path but not its exponential form.
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It is not difficult to show that the transcendental equation (48) has always a unique real solution

which is strictly positive if and only if the following condition holds

A > ρeρd ≡ A∗
min. (49)

Note that, when d = 0, this condition collapses to the standard assumption in the AK model

that A > ρ.

To study the transitional dynamics we need to look at the complex roots of the characteristic

equation (which is a translation of the above (48))

h0(z) := z −Ae−zd = 0 (50)

This analysis is done in Bambi et al. [11], Proposition 1. In particular, we use the fact that

such equation has only one real root z0 = g+ ρ and infinitely many simple complex roots whose

real part is always negative if and only if Ad < 3π
2 . The next proposition presents the main

properties of the transitional dynamics.

Proposition 6 Assume that A > A∗
min, then the optimal equilibrium paths for nt and ct are

n∗
t = aLe

gt +

+∞∑
j=1

aje
zjt (51)

c∗t = c0e
gt (52)

where g is the unique real solution of (48), aL and {aj}+∞
j=1 are the residues associated to the

complex roots {zj}+∞
j=1 of the characteristic equation (50),

aL = A

+∞∑
j=0

c∗0
(zj − g)h′(zj)

, aj =
n̄0 + zj

∫ 0
−d n̄se

−zjsds

h′(zj)
− Ac∗0

(zj − g)h′(zj)
(53)

and the initial value of consumption, c0, equals to

c∗0 =
ρ

A

(
n̄−d +

∫ 0

−d

˙̄nse
(g+ρ)sds

)
. (54)

Moreover if we assume Ad < 3π
2 or Ad > 3π

2 and g > max{Re(zj)}∞j=1, then nt−aLe
gt converges

to 0 by damping oscillations.

Proof. See Appendix F.

Under log utility, consumption equals the return on wealth, the latter being represented by

the term within brackets at the right hand side of (54) divided by the relative productivity A –see

(7). Notice that initial wealth is the sum at time zero of the value of operative varieties n−d plus

the value of produced but still non operative varieties, i.e., those produced between −d and zero.

The factor e(g+ρ)s, multiplying the mass of varieties ˙̄ns created at time s, s ∈ [−d, 0], discounts

the varieties’ value for the period still remaining until those varieties will become operative. The

set of initial conditions which make the irreversibility constraint hold is characterized in Bambi

et al [11].
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8.1 Comparing Centralized and Decentralized Allocations

Optimal and equilibrium allocations differ in at least two dimensions. First, consumption is

perfectly smoothed in the optimal allocation, but fluctuates at equilibrium. Second, the growth

rates are different at the balanced growth path. We develop these two arguments below, before

suggesting an optimal R&D policy.

The fact that consumption does not fluctuate at the optimal allocation comes from the same

analytical argument used in Bambi [10] and Bambi et al. [11] while a deep discussion on the

consumption smoothing mechanism can be found in Bambi et al. [11]. It is also worth noting

that in the social planner case the system of MFDE describing the economy is a block recursive or

triangular system where the advance and the delay parts are split. Therefore the social planner

may and will decide a smooth path of consumption because the risk adverse agents always prefer

a smooth consumption path to a path which alternates periods of high consumption to periods

with low consumption.

Therefore consumption does not fluctuate at the optimal allocation. This is not the case at

equilibrium, since the private return to R&D depends on future profits, which are a negative

function of the future market share; this implies that the Euler equation depends also on the

number of varieties and therefore the system describing the economy is no more block recursive.

On the balanced growth path we have that

ge

(
e−ρd +

α

A(1− α)

)
+

αρ

A(1− α)
= A e−(ge+ρ)d, (30)

g + ρ = Ae−(g+ρ)d (48)

where ge and g represent the equilibrium and optimal growth rates, respectively. As shown in

Appendix, there exist cutoff level for α,

α ≡ g + ρ− ge−ρd

2(g + ρ)− ge−ρd
, (55)

α ∈ (0, 1/2), such that the equilibrium growth rate, ge, is equal to the optimal growth rate,

g, iff α = α. Equilibrium growth is smaller than optimal growth, i.e. ge < g, iff α < α < 1.

Otherwise, it is larger. Remind that equilibrium profits are declining in α, which represents the

inverse of the markup, and optimal growth does not depend on it.

This result is consistent with Benassy [18], who shows for d = 0 that the equilibrium growth

rate is smaller than the optimal rate if and only if the knowledge externality, ν in equation (2),

is small enough or, equivalently, the elasticity of substitution α is large enough. Since in our

framework ν is assumed to be unity, let argue in terms of the elasticity of substitution for a given

knowledge externality. For d = 0, α =
(
1 + A

ρ

)−1
, meaning that there is a range of parameters

for which the optimal growth rate is smaller than the equilibrium growth rate at the balanced

growth path. Increasing α makes goods more substitutable, reducing markups, the return to

R&D and the growth rate. Consequently, there is a degree of substitutability beyond which the

optimal growth rate is larger than the equilibrium rate.
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Since returns to private R&D are different from public returns, optimality may be restored

by the mean of a time dependent subsidy/tax scheme imposed on current R&D investments or,

equivalently, on the return to R&D. By comparing the equilibrium (24) and the optimal (46)

Euler-type conditions, it is easy to see that private and public returns equalize when the subsidy

rate is

1 + st =
α

1− α

nt

ct+d
=

α

1− α

n

c︸ ︷︷ ︸
constant

nt/ct+d

n/c︸ ︷︷ ︸
procyclical

,

where the stationary ratio n/c is defined in (29).

An optimal policy has two components. First, as in the expanding product variety model,

it has to equalize the (average) private return to the (average) social return. The magnitude of

it corresponds to the constant term in the equation above, which depends negatively on both

the markup, 1/α, and the average market share of intermediary firms, c/n. Second, it has

to compensate for the countercyclical fluctuations in the private return. The social return to

R&D is constant and equal to A, but the private return fluctuates countercyclically, being small

than the mean during expansions and large during contractions –due to consumption smoothing,

market shares are small during booms. To render the equilibrium allocation optimal, the subsidy

has to move procyclically to balance fluctuations in the private return.27

8.2 Welfare Gains

This section suggests a R&D policy designed to partially remedy the distortions underlined in

the previous section, with the purpose of undertaking some counterfactual exercise around the

equilibrium computed in Section 7 and evaluate the corresponding welfare gains. The model is

then extended to study a time varying R&D subsidy addressed to increase the average return

to R&D and reduce the volatility of consumption. Let assume the R&D policy follows

1 + st = (1 + s)

(
ct
nt

)σ−1

,

where s is a constant rate and σ < 1 represents the additional smoothing introduced by the

R&D policy. The equilibrium Euler-type equation (24) becomes

ċt
ct

=
1− α

α
(1 + s)A e−ρd

(
ct
nt

)σ

− ρ.

Notice that an equilibrium without R&D policy requires s = 0 and σ = 1.

In order to make welfare comparisons, we compute a consumption equivalent measure defined

as the constant rate at which consumption in the decentralized equilibrium should increase all

over the equilibrium path to make equilibrium welfare equal to the corresponding welfare of the

equilibrium path with subsidies. Since utility is logarithmic, our welfare measure collapses to

ω = eρ (WR&D−We) − 1,

27The policy described in this section shares some similarities with the one introduced by Reichlin [65]. In fact,

in both cases the policy is welfare enhancing and at the same time implies a smooth consumption path.
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Figure 6: Consumption paths with and without subsidy.

where WR&D and We measure welfare, as defined by the utility function (1), evaluated at

equilibrium with and without subsidies, respectively.

When the R&D policy pays a 10% average subsidy, s = .10, and the subsidy rate moves in

order to smooth consumption, with a smoothing parameter σ = 1/2, the growth rate increases

from 2.4% to 3.4%. In Figure 6, detrended consumption paths, relative to initial consumption,

are represented for the economies with and without subsidies. The smother corresponds to

the economy with procyclical subsidies. As can be observed, the subsidy halves consumption

fluctuations. There are welfare gains of 9.6% as measured by ω. The order of magnitude is

consistent with the findings in Barlevy [13]. If the 10% subsidy were constant, the growth

rate would be 2.8% and the welfare gains 3.3%. Consequently, a 6.3% welfare gain may be

attributed to consumption smoothing alone, however consumption smoothing affects welfare

mainly through the raise in the growth rate.

9 Conclusions

This paper studies the relation between Schumpeterian wave-like business fluctuations and eco-

nomic development in an endogenous growth framework with implementation delays. The paper

shows that the equilibrium path admits a Hopf bifurcation and that consumption and the num-

ber of varieties persistently fluctuate around a balanced growth path. The main mechanism

relating growth to wave-like business fluctuations is based on the assumption that innovations

being fundamental for economic growth require long implementation and adoption lags. A

simple quantitative exercise shows that such an endogenous mechanism relating the sources of

growth and business fluctuations is not only theoretically possible but quantitatively relevant.
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Additionally, the paper makes some welfare considerations. Firstly, it shows that detrended

consumption is constant from the initial time in an optimal allocation, and both R&D and

output converge by oscillations. Second, it proves that a procyclical subsidy/tax scheme would

restore optimality. Finally, it quantitatively find that a procyclical 10% subsidy rate halving

consumption fluctuations will increase the growth rate from 2.4% to 3.4% with a 9.6% increase

in welfare.
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Appendix

A More on Equilibrium

For completeness, we now present the theorem giving the optimality conditions for the uncon-

strained households problem who maximize (13) subject to the instantaneous budget constraint

(14), the control constraint ct ≥ 0 (t ≥ 0) and the initial condition nt = n̄t, for t ∈ [−d, 0], where

n̄t is a known continuous positive function defined on the t domain. For brevity we will call this

problem (UHP).

Theorem 3 Assume that the function rt is bounded and that the function wt is such that

wt ≤ k1e
k2t, ∀t ≥ 0,

for suitable constants k1, k2 > 0. Then an admissible state control path (nt, ct) for the problem

(UHP) is optimal if there exists an absolutely continuous costate function µt such that

e−ρt

ct
= µt (56)

µ̇t = −rt+dµt+d, (57)

and, for every other admissible path (ât, ĉt), the transversality condition

limt→∞(ât − at)µt ≥ 0, (58)

holds. The conditions (56) and (57) above are also necessary.

Proof. It is a special case of Theorem 3.1 of [5].

A straightforward consequence of such result (that, we recall, holds only for the unconstrained

problem) is that, if we find a solution (at, ct, µt) to the system of equations (14)-(56)-(57) satis-

fying the new transversality condition

lim
t→∞

atµt = 0, or, equivalently, lim
t→∞

atct
−1 e−ρt = 0, (59)

then such solution is optimal. If, moreover, the state constraint at ≥ 0 is satisfied for every

t ≥ 0, then the such solution is optimal for the constrained problem, too.

B Derivation of the key equations when ν ̸= 1

To show how the equations (40) and (41) arise we quickly run over the procedure used to write

(26) and (27) showing what changes when ν ̸= 1. First of all equation (5) becomes:

ct = n1+ν
t−d xt and ct = nν

t−dLt. (60)
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Then equation (26) in our paper becomes

ṅt = Ant−d(1− n−ν
t−dct) (61)

A bit longer is to find the new Euler equation. We start rewriting equation (9) which now is

equal to

pt(j) = n
α(ν+1)−1
t−d

(
ct

xt(j)

)1−α

Substituting (60) into this last expression give us the price pt at the symmetric equilibrium

pt = nν
t−d (62)

while the wage rate is now determined by the following equation

wt = αnν
t−d (63)

and then equation (22) becomes

vt =
α

A
nν−1
t−d ⇒ v̇t

vt
= (ν − 1)

ṅt−d

nt−d
(64)

Then the profit of the intermediary firm is equal to:

πt = ptxt − wt
Lt

nt−d
= (1− α)

ct
nt−d

while combining this with (64) leads to the returns

rt =
1− α

α
A

ct
nν
t−d

+ (ν − 1)
ṅt−d

nt−d

and therefore the new Euler equation at equilibrium will be

ċt
ct

=

[
1− α

α
A
ct+d

nν
t

+ (ν − 1)
ṅt

nt

]
ct

ct+d
e−ρd − ρ (65)

Therefore the two key equations (26) and (27) becomes respectively (61) and (65) for a generic

externality.

Now we see how the transversality condition (28) should be modified. We start from the

initial transversality condition (17). Now, when ν ̸= 1, we still have as in (25) that at = vtnt

but with vt which is not constant and is indeed equal to

vt =
α

A
nν−1
t−d

So, substituting into (25) we get

at =
α

A
nν−1
t−d nt

which implies that (17) becomes

lim
t→+∞

α

A
nν−1
t−d ntc

−1
t e−ρt = 0

which is equivalent to (42) since α
A > 0.
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C Proof of the properties of the solutions of the characteristic

equation

Proof of Proposition 2.

Proof of (i). To prove this statement we study the function h(λ) for λ ∈ R. It is easy to

check that

h(0) = 0, lim
λ→+∞

h(λ) = +∞, lim
λ→−∞

h(λ) = +∞.

Moreover

h′(λ) = 2λ− ρ+Ae−(ge+λ)d [−1 + d(λ− ge − ρ)]

with

h′(0) = −ρ+Ae−ged [−1− d(ge + ρ)] < 0, lim
λ→+∞

h′(λ) = +∞, lim
λ→−∞

h′(λ) = −∞.

and

h′′(λ) = 2 +Ade−(ge+λ)d [2− d(λ− ge − ρ)] .

with

h′′(0) = 2 +Ade−ged [2 + d(ge + ρ)] > 0, lim
λ→+∞

h′′(λ) = 2, lim
λ→−∞

h′′(λ) = +∞.

By simple computations it is easy to prove that the function h′′(λ) has a minimum point at

λ̄ = ge + ρ + 3
d and that the value of the minimum is 2 − Ade−(2ge+ρ)d−3. We have now two

cases.

• If 2 − Ade−(2ge+ρ)d−3 ≥ 0 then the minimum value of h′′(λ) is positive so h′′(λ) ≥ 0

for every λ ∈ R. This implies (since h′′ is zero in at most one point) that h′ is strictly

increasing and there exists a unique point λ̂ > 0 such that h′(λ̂) = 0. The claim follows

from the fact that h(0) = 0 and limλ→+∞ h(λ) = +∞.

• If 2 − Ade−(2ge+ρ)d−3 < 0 then the minimum value of h′′(λ) is negative so there exists

an interval (λ̄1, λ̄2) (with 0 < λ̄1 < λ̄ < λ̄2 < +∞) such that h′′(λ) < 0 iff λ ∈ (λ̄1, λ̄2).

Since h′′
(
ge + ρ+ 2

d

)
= 2 > 0 then λ̄1 > ge + ρ + 2

d . Now this means that h′(λ) is

strictly increasing on (−∞, λ̄1) and on (λ̄2,+∞) and strictly decreasing on (λ̄1, λ̄2). Since

h′(0) < 0 and h′
(
ge + ρ+ 2

d

)
= 2ge + ρ + Ae−(2ge+ρ)d−2 > 0 then h′ has a unique zero

in the interval
(
0, ge + ρ+ 2

d

)
. Moreover from the expression of h′ it easily follows that,

for every λ > ge + ρ + 2
d it must be h′(λ) > 0. So, as before, there exists a unique point

λ̂ > 0 such that h′(λ̂) = 0. The claim follows again from the fact that h(0) = 0 and

limλ→+∞ h(λ) = +∞.

Finally, the fact that λ0 > ge + ρ follows since, by simple computations, we have

h(ge + ρ) = (ge + ρ)[ge −Ae−ged] = − α

1− α
(ge + ρ)eρd < 0,
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where in the last equality we used the fact that ge is the unique positive solution of the equation

(30).

Proof of (ii). It follows from part (i) that all the other roots of (35) are not real. By the

standard spectral theory for delay equation (see e.g. [38], Theorem 4.4 p.29 and Theorem 4.18,

p.120) it follows that the roots are at most countable and that they must live in a left half plane.

Since the coefficients of the characteristic equation are real it is clear that given any complex

root µr + iηr also its conjugate µr − iηr is a root.

To find the complex roots we need to solve the following system when the real and imaginary

part of h(µ+ iη) are equal to zero.
µ2 − η2 − ρµ−Ae−ged (ge + ρ) +Ae−(ge+µ)d [(ge + ρ− µ) cos(ηd)− η sin(ηd)] = 0

2µη − ρη −Ae−(ge+µ)d [(ge + ρ− µ) sin(ηd) + η cos(ηd)] = 0.

(66)

Assume now that for some r0, µr0 = 0 and ηr0 > 0. then we have that ηr0 satisfy the following

system, where we omit, for simplicity, the subscript r0,
η2 +Ae−ged (ge + ρ) = Ae−ged [(ge + ρ) cos(ηd)− η sin(ηd)]

ρη = −Ae−ged [(ge + ρ) sin(ηd) + η cos(ηd)] = 0.

(67)

Squaring each equation of the above system and summing them up28 we get[
η2 +Ae−ged (ge + ρ)

]2
+ ρ2η2 = A2e−2ged

[
(ge + ρ)2 + η2

]
which simplifies to

η2
[
η2 + ρ2 + 2Ae−ged (ge + ρ)−A2e−2ged

]
= 0. (68)

Clearly such equations can have only one positive solution, so there cannot be two couples of

purely imaginary roots.

Finally assume that the purely imaginary roots are not simple. Then the number ηr0 must

solve the equations h(iηr0) = h′(iηr0) = 0. We show that this is impossible dropping, again for

simplicity, the subscript r0. Indeed putting h′(iη) = 0 we get
ρ = Ae−ged [−(1 + d(ge + ρ)) cos(ηd) + dη sin(ηd)]

−2η = Ae−ged [(1 + d(ge + ρ)) sin(ηd) + dη cos(ηd)] = 0.

(69)

From (69) above and (67) we easily get then that it must be sin(ηd) < 0 and cos(ηd) < 0. This

implies, in particular, that

ηd > π (70)

28We thank an anonymous referee for suggesting us to use this method to simplify the proof.
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Now, as we have done for the system (67) we square each equation of (69) and sum them,

obtaining

ρ2 + 4η2 = A2e−2ged
[
(1 + d(ge + ρ))2 + d2η2

]
(71)

Now from (68) we get that it must be

η2 = A2e−2ged − 2Ae−ged (ge + ρ)− ρ2 (72)

so, substituting in (71) (in the left hand side only) we get

ρ2 + 4
[
A2e−2ged − 2Ae−ged (ge + ρ)− ρ2

]
= A2e−2ged

[
(1 + d(ge + ρ))2 + d2η2

]
.

Now, summing and bringing the term 4A2e−2ged from the left to the right hand side we get

−3ρ2 − 8Ae−ged (ge + ρ) = A2e−2ged
[
−4 + (1 + d(ge + ρ))2 + d2η2

]
.

Since the left hand side is negative we must have

(1 + d(ge + ρ))2 + d2η2 < 4

which contradicts (70).

Proof of Proposition 3. We use classical results on the roots of analytic functions. To apply

them we need first to reduce our problem to avoid the presence of the root λ = 0. To do so we

consider the function h1 : C → C defined as

h1(λ) :=
h(λ)

λ
= λ− ρ−A(ge + ρ)e−(ge+λ)d +A(ge + ρ)e−ged · e

−λd − 1

λ
, λ ̸= 0,

while, for λ = 0

h1(λ) := −ρ−A(ge + ρ)e−ged − dA(ge + ρ)e−ged < 0.

Clearly the roots of h1 are exactly the nonzero roots of h so D1 and D3 can be defined in term of

the roots of h1. Since h1 is analytic on C we can apply to it the theorems concerning the zeros

of analytic functions. By [38][Theorem 4.4, p.29] we know that the real part of all the roots

of h1 is bounded from above and that in each vertical strip the root of h1 are a finite number.

Then, by continuous dependence theorems (see e.g. [63] discussion before Theorem 1, p.97) we

know that the roots of h1 in a given vertical strip depend equicontinuously on the parameters

ρ, α,A, d.

Now we prove that D1 and D3 are non empty.

As a first step, we take the parameters in the wider region

E1 := (0,+∞)× [0, 1)× [0,+∞)× (0,+∞) ⊃ E

and consider the regions D1 and D3 in E1. For simplicity of writing we set from now on α̂ = α
1−α ;

when α ∈ [0, 1) we have α̂ ∈ [0,+∞) and we have a one-to-one strictly increasing correspondence

between the values of α and the values of α̂.
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If we take A = Ae
min then ge = 0 and so the right hand side of the characteristic equation

(35) becomes

h(λ) = λ2 − ρλ− λe−λdα̂ρeρd + e−λdα̂ρ2eρd − α̂ρ2eρd (73)

so

h1(λ) = λ− ρ− e−λdα̂ρeρd + α̂ρ2eρd · e
−λd − 1

λ
(74)

It is clear that, if we set α̂ = 0 (i.e. α = 0), then also Ae
min = 0 and the above (74) reduces to

h1(λ) = λ− ρ.

Since this function has only the root ρ, it follows that, for any ρ > 0 and d > 0 the point

(ρ, 0, 0, d) belongs to D1. Now we can apply Theorem 2.1 and Corollary 2.3 of [68]. So, if we

take a parameters’ region B1 ⊆ E1, with B1 closed bounded and connected, such that, for every

point in B1, h1 has no zeros on the imaginary axis, then if one point of B1 belongs to D1 we

must have B1 ⊆ D1.

From formula (67) we get that, if there exists a couple of purely imaginary roots ±iη (with

η > 0) it must be sin(ηd) < 0 so ηd > π. Moreover from (72) we get that it if such couple exists

it must be

η2 = A2e−2ged − ρ2 − 2Ae−ged (ge + ρ)

which implies

A2e−2ged > ρ2 + 2Ae−ged (ge + ρ) +
π2

d2
. (75)

This condition, if we take A = Ae
min, becomes

α̂2ρ2e2ρd > 2α̂ρ2eρd + ρ2 +
π2

d2
⇐⇒ ρ2(α̂2e2ρd − 2α̂eρd − 1) >

π2

d2

which is clearly not satisfied when α̂ ∈ [0, e−ρd(1 +
√
2)]. Since the terms in (75) are continuous

functions of the parameters ρ, α,A, d then we can use Theorem 2.1 of [68] to conclude that,

given any ρ0 > 0, d0 > 0, for (ρ, α,A, d) in a neighborhood of (ρ0, 0, 0, d0) we remain in D1. The

set of such points intersected with E is a subset of E with nonempty interior.

Now we prove that D3 is nonempty. To do this we fix A = Ae
min and d > 0 and we find

when purely imaginary roots appear. The system (67) becomes
η2 + α̂ρ2eρd = α̂ρeρd [ρ cos(ηd)− η sin(ηd)]

ρη = −α̂ρeρd [ρ sin(ηd) + η cos(ηd)] = 0.

(76)

Now we find α̂ and ρ above as functions of η. From the second equation we get

α̂ =
−η

eρd [ρ sin(ηd) + η cos(ηd)]
(77)
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when η cos(ηd) + ρ sin(ηd) < 0; then substituting (77) into the first equation leads, with easy

computations, to

ρ2 =
η2 cos(ηd)

1− cos(ηd)
, i.e. ρ =

√
η2 cos(ηd)

1− cos(ηd)
. (78)

This implies that cos(ηd) > 0. Since we already know that sin(ηd) < 0, then it must be

ηd ∈
((

2k − 1

2

)
π, 2kπ

)
, k = 1, 2, . . .

Now substituting (78) into (77) we see by simple computations that for such values of ηd the

right hand side of (77) is strictly positive so also α̂ > 0. This means that, for every fixed

k = 1, 2, . . . , for η running over
((
2k − 1

2

)
π
d , 2k

π
d

)
, the equations (77) and (78) define a curve in

the positive quadrant of the plane (ρ, α̂). For values of ρ and α̂ on such curve (once we fix d > 0

and set A = Ae
min) we have occurrence of pure imaginary roots (e.g for k = 1 and η = 7

4
π
d ). It is

not difficult to see, by straightforward computations, that on such curves, when η →
(
2k − 1

2

)
π
d

then ρ → 0+ and α̂ → +∞ while, when η → 2k π
d then ρ → +∞ and α̂ → 0+. So such curves

are in E; moreover they do not intersect for different values of k and they increase29 with k. So,

if we take a point (ρ1, α̂1) belonging to the region between the curve for k = 1 and the curve

for k = 3, we have that the point (ρ1, α1, A
e
min, d) (where α1 is the value corresponding to α̂1))

belong to D3 and is in E. This shows that D3 is not empty. Using the same argument as for

D1 we also see that D3 has nonempty interior.

Proof of Proposition 4. First of all by definition ofD1 andD3 for (ρ, α,A, d) = (ρH , αH , AH , dH)

it must be µ2 = 0, η2 > 0 and µr < 0 for r ≥ 3. We apply the implicit function theorem (IFT)

to the characteristic equation (35) taking now h as function of (λ, d). First of all we observe

that, since every purely imaginary root must be simple, we have ∂h
∂λ(iη2(dH), dH) ̸= 0 so IFT

says that, for d in a sufficiently small neighborhood I of dH , µ2 and η2 must be C1 functions of

d. Moreover it must be

µ′
2(dH) = −

(
Re

∂h
∂d
∂h
∂λ

(iη2(dH), dH)

)
= −

(
Re∂h∂d

) (
Re∂h∂λ

)
+
(
Im∂h

∂d

) (
Im∂h

∂λ

)∣∣∂h
∂λ

∣∣2 (iη2(dH), dH)

For our purposes it is enough to compute the numerator of such fraction. By (69) we have, at

any purely imaginary root λ = iη,

Re
∂h

∂λ
= −ρ+Ae−ged [−(1 + d(ge + ρ)) cos(ηd) + dη sin(ηd)] (79)

and

Im
∂h

∂λ
= 2η +Ae−ged [(1 + d(ge + ρ)) sin(ηd) + dη cos(ηd)] . (80)

29In the sense that for fixed ρ the values of α̂ corresponding to increasing k, increase, too. The same if we

exchange the role of ρ and α̂.
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Moreover, by direct computation we have

∂h

∂d
(λ) = Ae−ged

[
a+ e−λd

(
λ2 + bλ− a

)]
,

where

a = (d(ge + ρ)− 1)
∂ge
∂d

+ ge(ge + ρ), b = d
∂ge
∂d

− ρ

where, by applying IFT to (30),

∂ge
∂d

= −geAe−ged + ρα̂eρd(ge + ρ)

dAe−ged + 1 + α̂eρd
< 0.

So

Re
∂h

∂d
= Ae−ged

[
a− (a+ η2) cos(ηd) + ηb sin(ηd)

]
(81)

and

Im
∂h

∂d
= Ae−ged

[
(a+ η2) sin(ηd) + ηb cos(ηd)

]
. (82)

Using the expressions (79), (80), (81) and (82) above we can then compute the numerator of

µ′
2(dH) and see when it can become zero. For our purposes it is enough to show that, on

∂D1 ∩ ∂D3 we have µ′
2(dH) ̸= 0 except at most for a set with empty interior. First of all we

characterize the points of ∂D1 ∩ ∂D3 with suitable equations. This region is a manifold of

dimension 3 in R4. Then we show that, on this manifold, the set of points where µ′
2(dH) = 0

can be at most a set with empty interior in ∂D1 ∩ ∂D3.

By (67) we have, for every purely imaginary root λ = iη,

cos(ηd) = eged · geη
2 +Ae−ged(ge + ρ)2

A(η2 + (ge + ρ)2)
, sin(ηd) = −ηeged · η

2 + ρ(ge + ρ) +Ae−ged(ge + ρ)

A(η2 + (ge + ρ)2)
(83)

As already noted in the proof of Proposition 3 the above implies that, at every pure imaginary

root, it must be sin(ηd) < 0 and cos(ηd) > 0 so ηd ∈
((
2k − 1

2

)
π, 2kπ

)
, for some k = 1, 2, . . . .

Moreover, by adapting the argument of the proof of Proposition 3, it is not hard to see that it

must be η2(dH) ∈
(
3π
2 , 2π

)
. By (72) we also know that, again for every purely imaginary root

λ = iη,

η2 = A2e−2ged − ρ2 − 2Ae−ged (ge + ρ) ,

which rewrites, using (30), as

η2 = (ge + ρ)2
(
α̂2e2ρd − 2α̂eρd − 1

)
,

from which we see that we must have α̂2e2ρd − 2α̂eρd − 1 > 0. Calling for simplicity c2 :=

α̂2e2ρd − 2α̂eρd − 1 we can rewrite (83) as

cos(ηd) = eged · c
2ge +Ae−ged

A(1 + c2)
, sin(ηd) = −ceged · ρ+ c2(ge + ρ) +Ae−ged

A(1 + c2)
. (84)
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or, using (30), as

cos(ηd) =
eged

A
·
[
ge +

ge + ρ

α̂eρd − 2

]
, sin(ηd) = −c

eged

A
(ge + ρ) ·

[
1 +

1

α̂eρd − 2

]
. (85)

So the points in ∂D1 ∩ ∂D3 are characterized by the relations

c > 0, d(ge + ρ)c ∈
(
3π

2
, 2π

)
and one of the following two30:

cos(d(ge + ρ)c) = eged · c
2ge +Ae−ged

A(1 + c2)
∈ (0, 1),

sin(d(ge + ρ)c) = −ceged · ρ+ c2(ge + ρ) +Ae−ged

A(1 + c2)
∈ (−1, 0). (86)

Now we can compute −
[(
Re∂h∂d

) (
Re∂h∂λ

)
+
(
Im∂h

∂d

) (
Im∂h

∂λ

)]
substituting there the relations (84)

and η = (ge + ρ)c. The expression we find is an analytic function in the four parameters

(ρ, α,A, d) which is not identically zero on ∂D1 ∩ ∂D3. Thanks to the properties of analytic

functions (see e.g. [4], Lecture 26) such function can be zero at most on the set with empty

interior in ∂D1 ∩ ∂D3.

The last statement of the proposition follows by observing that we always have

Re
∂h

∂λ
(iη2(dH), dH) < 0, Im

∂h

∂d
(iη2(dH), dH) < 0

so a straightforward condition for the positivity of µ′(dH) is to ask that

Re
∂h

∂d
(iη2(dH), dH) > 0, Im

∂h

∂λ
(iη2(dH), dH) > 0

Substituting the numerical values of (45) and using continuity we get the claim.

D The linearized system and the transversality conditions

Proposition 7 The series expansion of the Laplace transform solution of the system (32)-(34),

given the initial conditions ñt = n̄te
−get, n̄t ∈ C([−d, 0];R+]), and c̃0 = c0, is

ñt =

+∞∑
r=0

pr(t)e
λrt (87)

c̃t =
1

A

+∞∑
r=0

(
Ae−(ge+λr)dpr(t− d)− (ge + λr)pr(t)− p′r(t)

)
eλrt (88)

30The other will follow by the fundamental trigonometric identity cos2 β + sin2 β = 1 for all β ∈ R.
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where {λr}+∞
r=0 are the roots of the characteristic equation (35) and {pr(t)}+∞

r=0 are polynomials

of degree k − 1 where k is the multiplicity of λr. When k = 1 we have

pr =
ϕ(λr)

h′(λr)
(89)

where

ϕ(λ) = −Ac0 + (λ− ρ− ge)

[
n̄0 +Ae−(ge+λ)d

∫ 0

−d

n̄te
−(ge+λ)tdt

]
.

Proof of Proposition 7. The fact that the system (32)-(34) admits a solution with a

series expansion follows e.g. from Corollary 6.4 (p.168) of [38]. Here we explicitly compute the

coefficients of such solutions by using the Laplace transform. We first differentiate equation (32)

and then substitute there ˙̃ct from (34) and c̃t from (32). We the find the following second order

delay differential equation for ñt

¨̃nt − ρ ˙̃nt −Ae−ged ˙̃nt−d −
(
ge(ge + ρ) +

α(ge + ρ)2eρd

1− α

)
ñt +A(ge + ρ)e−gedñt−d = 0, (90)

where the initial data, in terms of the initial data of the system (32)-(34), are ñt = n̄te
−get for

t ∈ [−d, 0] and ˙̃n0 = A(n̄−d−c0)−gen̄0. Recalling that the Laplace transformation of a function

f (with subexponential growth at infinity) is defined as L(f)(λ) =
∫∞
0 f(t)e−λtdt, observing that

the solution of (90) satisfies such subexponential growth (see e.g. Theorem 5.4, p.34 of [38]), we

have, for λ sufficiently big,

L( ˙̃nt)(λ) = −ñ0 + λL(ñt)(λ)

L(¨̃nt)(λ) = − ˙̃n0 + λL( ˙̃nt)(λ) = − ˙̃n0 − λñ0 + λ2L(ñt)(λ)

L(ñt−d)(λ) = e−λd

[∫ 0

−d
ñte

−λtdt+ L(ñt)(λ)

]
L( ˙̃nt−d)(λ) = −ñ−d + λL(ñt−d)(λ) = −ñ−d + λe−λd

[∫ 0

−d
ñte

−λtdt+ L(ñt)(λ)

]

So applying the Laplace transform to the equation (90) we have

L(ñt)(λ) · h(λ) = ϕ(λ)

where h(λ) is the left hand side of the characteristic equation (35) and

ϕ(λ) = ˙̃n0 + ñ0(λ− ρ)−Ae−gedñ−d +Ae−(ge+λ)d(λ− ge − ρ)

∫ 0

−d
ñte

−λtdt

or, in terms of n̄t and c0,

ϕ(λ) = −Ac0 + n̄0(λ− ρ− ge) +Ae−(ge+λ)d(λ− ge − ρ)

∫ 0

−d
n̄te

−(ge+λ)tdt.
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Since ñt is a continuously differentiable function in [0,+∞),31 and therefore certainly continuous

and of bounded variation on any finite interval, then we can use the inversion formula for the

Laplace transformation to obtain that, for t > 0, (see e.g. [16], Theorem 6.3, p. 175-176)

ñt =

∫ a+i∞

a−i∞

ϕ(λ)

h(λ)
eλtdλ. (91)

Then one can compute such complex integral by means of the Residue Theorem as in [16],

Section 6.7 (in particular Theorem 6.5) obtaining

ñt =
∞∑
r=0

pr(t)e
λrt (92)

where {λr}r∈N is the sequence of the roots of the characteristic equation (35) and the pr(t) are

polynomials of degree less or equal to k(r)−1 where k(r) is the multiplicity of λr. More precisely

they are given by (setting for simplicity k(r) = k in the formula below)

e−λrt · lim
λ→λr

1

(k − 1)!

dk−1

dλk−1

(
(λ− λr)

ϕ(λ)eλt

h(λ)

)
,

so, when k(r) = 1, pr is independent of t and is given by pr = ϕ(λr)
h′(λr)

. Finally the solution of c̃t

can be derived from (87) and (32).

Proposition 8 Assume that the parameters belong to the nonempty region D1. Then for any

exogenously given nondecreasing initial condition n̄t ∈ C([−d, 0];R+) there exists a unique c0 > 0

such that the solution path (nt, ct) of the system (32)-(34) satisfies the transversality condition.

Such c0 is given by

c0 = (λ0 − ge − ρ)

[
n̄0

A
+ e−(ge+λ0)d

∫ 0

−d

n̄te
−(ge+λ0)tdt

]
> 0. (93)

Moreover the path (nt, ct) is

nt = p1e
get +

+∞∑
r=2

pr(t)e
(ge+λr)t (94)

ct =
1

A

[(
Ae−ged − ge

)
p1e

get +

+∞∑
r=2

(
Ae−(ge+λr)dpr(t− d)− (ge − λr)pr(t)− p′r(t)

)
eλrt

]

Proof. Given our assumptions, the only positive root to be ruled out in order to have conver-

gence to the balanced growth path is λ0. To do that we have to specify c0 as in (93) so that

p0 = 0. Uniqueness of the equilibrium path is a direct consequence of the fact that (93) is the

only choice of the initial condition of consumption which rules out λ0. Oscillatory convergence

follows from the properties of the spectrum of roots as discussed in the previous proposition.

31See the previously mentioned theorem of existence and uniqueness of solution in Bellman and Cooke [16].
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Finally the general equilibrium path converges to the balanced growth path and for this reason it

respects the transversality conditions. In fact, convergence implies that limt→∞
nt
ct

= (1−α)A
α(ge+ρ)eρd

and then limt→∞
nt
ct
e−ρt = 0.

Proposition 9 Let us fix α, ρ,A, d such that they belong to the nonempty region D1 or to a

sufficiently small neighborhood of a point in ∂D1∩∂D3 where, for the projected system introduced

in Theorem 1, a Hopf bifurcation occurs moving parameter d. Then for any exogenously given

nondecreasing initial condition n̄t ∈ C([−d, 0];R+), close enough to the BGP, there exists a

c0 > 0 such that the solution path (nt, ct) of the system (26)-(27) satisfies the transversality

condition (28). Such c0 converges to the one defined in the linearized system - see equation (93)

in Proposition 8 above - as the distance supt∈[−d,0] |n̄t − n̄0e
get| tends to 0.

Proof of Proposition 9. First of all we observe that, thanks to Diekmann et al. [38],

Theorem 6.8 p.240, since the characteristic equation admits a strictly positive real root λ0,

then all equilibrium points of the detrended system (32)-(33) are unstable. Moreover thanks

to Theorem 6.1 p.257 and to Theorem 5.3 p.266 the detrended system (32)-(33) admits, in

a neighborhood of any equilibrium point, a stable manifold WS and a center manifold WC

which contains the set of initial conditions (n̄t, c0) which gives rise to a BGP (i.e. that satisfy

Proposition 1).

Assume first that parameters are in the D1-subdivision. If the initial conditions (n̄t, c0)

belong to the linear stable manifold then there exists a small real number δ (which goes to zero

when the distance between n̄t and the BGP goes to zero) such that (n̄t, c0+δ) belong to WS (see

Theorem 6.1 (ii) in Diekmann et al. [38]). Now, given an initial datum n̄t, choose c0 as in (93).

If we start the linearized system (32)-(34) from such (n̄t, c0) then we know that the solution

converges to a BGP so (n̄t, c0) belongs to the linear stable manifold. Thanks to the Theorem

6.1 (iv), p.257 in Diekmann et al. [38], we get that, if n̄t is sufficiently close to a BGP, then for

suitable small δ as above, the solution of the nonlinear detrended system (32)-(33) converges to

a BGP, too. This in particular implies that the transversality condition

lim
t→∞

ñtc̃
−1
t e−ρt = 0, (95)

holds. As a conclusion, if we prove that the solution of the nonlinear detrended system (32)-(33)

satisfies the irreversibility constraint ˙̃nt+geñt ≥ 0 (t ≥ 0), then this is an equilibrium associated

to n̄t.

If the parameters are in a sufficiently small neighborhood of a point in ∂D1∩∂D3 where, for

the projected system introduced in Theorem 1, a Hopf bifurcation then all the above considera-

tions remain true except for the fact that we have two purely imaginary elements (±iη2) of the

spectrum coming out when we move the parameter d crossing ∂D1 ∩ ∂D3. In this case, given

any n̄t, the linearized detrended system (32)-(34) starting from (n̄t, c0) where c0 is given by (93)

has a solution whose principal components (the one coming from the eigenvalues crossing the

imaginary axis) oscillates around a BGP with oscillations possibly unbounded when, moving d,
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we enter in D3. However, thanks to the Hopf bifurcation, even in this case, the corresponding

component of the nonlinear system must keep the ratio ct
nt

periodic and so bounded. Concerning

the component on the unstable manifold we can argue exactly as above to get that, for a suitable

small δ, the solution of the nonlinear detrended system with datum (n̄t, c0 + δ) stays out of the

unstable manifold and so it remains bounded and satisfies the transversality condition (95).

E Proof of Theorem 1

Proof of Theorem 1. Proof of (i). The statement (i) should follow from Theorem 2.7 p.291

in Diekmann et al. [38] if zero were not a root of the characteristic equation. In fact, all the

other assumptions of the theorem are verified thanks to Proposition 4. Therefore, we will show

here that it is still possible to prove the emergence of periodic orbits by a suitable reduction

procedure that we outline below.

Consider the nonlinear detrended system (32)-(33). For notational purposes, we denote by

f the dynamics of such system, i.e. the function on the right hand side

f(n·, c) =

(
A(n−de

−ged − c)− gen0
1−α
α Ae−ρd c2

n0
− (ρ+ ge)c

)
(96)

This function is defined on the space C0([−d, 0];R++) × R++ with values in R2 and is pos-

itively homogeneous of degree 1 in the sense that, for every a > 0 and for every (n·, c) ∈
C0([−d, 0];R++) × R++ we have f(an·, ac) = af(n·, c). We already know (see Section 4) that,

calling v̄ the element in C0([−d, 0];R++)× R++ given by

v̄ :=

(
ege·,

α̂

A
(g + ρ)eρd

)
then we have f(v̄) = 0, so also f(av̄) = 0 for every a > 0. Introducing a suitable infinite

dimensional formalism, as in [38], in [52] or in [23], Df can be considered as a linear operator

on the space C0([−d, 0];R)×R (or on the space R× L2([−d, 0];R)×R) and its eigenvalues are

exactly the solutions of the characteristic equation (35). In this context the above facts implies

that Df(v̄) has always a zero eigenvalue with eigenvector v̄.

Call now, for simplicity, x0 := (n̄·, c0) the generic initial datum of our system and x(t;x0)

the associated solution. Call K the Banach space C0([−d, 0];R) × R and H the Hilbert space

R×L2([−d, 0];R)×R. Clearly K ⊆ H with continuous embedding. Take a given vector u ∈ H,

u > 0 and consider the new variables

r(t) =< u,x(t) >H, z(t) :=
x(t)

r(t)
.

Using the 1-homogeneity of f we have, by simple computations, that

r′(t) = r(t) < u, f(z(t)) >H (97)
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z′(t) = f(z(t))− z(t) < u, f(z(t)) >H (98)

By the definition of z(t) we clearly have that < u, z(t) >H= 1 for every t ≥ 0. This means that

the variable z(t) lives in the affine hyperplane

E := {z ∈ H : < u, z >H= 1} ⊂ H.

If we choose u such that < u, v̄ >H= 1 then, calling

E0 := {z ∈ H : < u, z >H= 0} ⊂ H.

we get that any z ∈ E can be written as

z = v̄ +w, w ∈ E0.

Now we set w(t) = z(t)− v̄; by (98) the variable w(t) satisfies the equation

w′(t) = f(v̄ +w(t))− (w(t) + v̄) < u, f(v̄ +w(t)) >H=: g(w(t)). (99)

By what said above, the variable w(t) always remains in E0 which is an hyperplane in H. Now

we show that, choosing appropriately u, such equation admits a Hopf bifurcation in E0. First of
all the point 0 is clearly an equilibrium point of such system in E0. Moreover32

Dg(0) = Df(v̄)− [Df(v̄)∗u]⊗ v̄

so, if we choose u such that Df(v̄)∗u = 033 then we get

Dg(0) = Df(v̄).

This means that, when we restrict the system (99) into E0 its characteristic equation is exactly
h(λ)
λ = 0 where h is given by (35). So, thanks to the analysis done in Subsection 5.1, we get that

a Hopf bifurcation occurs for the system (99) in E0 in a neighborhood of the equilibrium point

0. This concludes the proof of (i).

Proof of (ii).

From the definition of z(t), calling z1(t)(·) its first component (infinite dimensional) and

z2(t) its second component, we easy obtain that

ct
nt

=
z2(t)

z1(t)(0)

nt+s

ct
=

z1(t)(s)

z2(t)

nt+s

nt
=

z(t)(s)

z1(t)(0)

so the periodicity of such ratios immediately follows from the periodicity of z(t).

Proof of (iii). The statement (ii) follows from Proposition 9 above.

32Given x,y ∈ H we call x⊗ y the linear functional in H given by:

x⊗ y(z) =< x, z > y.

Moreover given a linear operator A : H → H we denote by A∗ the adjoint of A.
33This is always possible as λ = 0 is an eigenvalue of Df(v̄)∗ and it implies that < u,vi >H= 0 for every other

eigenvector of Df(v̄).
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F Other proofs

Proof of Lemma 1. Fix ν ≥ 0. Let us define φν : R → R as

φν(g) := −g +Ae−gd − (νg + ρ)α

1− α
e[g(ν−1)+ρ]d +

α(ν − 1)

1− α
ge−gd (100)

Then, as for the case ν = 1 we have, by simple computations,

φν(0) = A−Ae
min and lim

g→+∞
φν(g) = −∞, ∀ν > 0.

This implies the existence of a positive root of (44) when (31) is satisfied. Concerning uniqueness

we divide the proof in two cases. First take the simpler case when ν > 1. Then

φ′
ν(g) = −1− dAe−gd − α

1− α
e−gd

{
e(gν+ρ)d [(ν − 1)d(gν + ρ) + ν]− (ν − 1)(1− gd)

}
and we can easily observe that, for g > 0 the term in the big braces is always positive because

it is clearly bigger than νe(gν+ρ)d − (ν − 1) > 0.

More complicated is to deal with the case ν ∈ [0, 1). In this case, indeed, it is not difficult

to see that, in some cases, φ′
ν(g) can be positive for some g > 0. So we proceed as follows:

(i) we first set ν = 0 and prove that the function φ0 has a unique positive root g0e .

(ii) we prove that, for every ν > 0 and for every g > 0 we have

φν(g) < φ0(g)

(iii) we finally prove that, on the interval (0, g0e) the derivative φ′
ν(g) is negative.

The above three facts give, as a straightforward consequence, the uniqueness of the root gνe .

We prove first (i). Setting ν = 0 we have

φ0(g) = −g +Ae−gd − α

1− α
ρe(−g+ρ)d − α

1− α
ge−gd =

so, using the definition of Ae
min in (31)

φ0(g) = −g + e−gd

[
A−Ae

min − α

1− α
g

]
(101)

Differentiating twice we have

φ′
0(g) = −1 + e−gd

[
α

1− α
(gd− 1)− (A−Ae

min)d

]
and

φ′′
0(g) = dAe−gd

[
α

1− α
(2− gd) + (A−Ae

min)d

]
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Now it is easy to see that

φ′′
0(g) > 0 ⇐⇒ α

1− α
(2− gd) + (A−Ae

min)d > 0

⇐⇒ g <
1

d

[
2 +

(1− α)(A−Ae
min)d

α

]
=: g0

So φ′
0(g) is strictly increasing in (0, g0), strictly decreasing in (g0,+∞) and has a maximum

point at g0. The value of the maximum is

φ′
0(g0) = −1 +

α

1− α
e
−
[
2+

(1−α)(A−Ae
min)d

α

]

and it can be positive for values of α close to 1. If φ′
0(g0) ≤ 0 we have that φ0(g) is always

strictly decreasing (since φ′
0(g) would be 0 in at most one point) so uniqueness of g0e immediately

follows. Assume then φ′
0(g0) > 0. In this case we have that there exists two values g1 and g2

such that 0 < g1 < g0 < g2 where φ′
0(g1) = φ′

0(g2) = 0. So φ0 is strictly decreasing in (0, g1)

and in (g2,+∞) and is strictly increasing in (g1, g2). Now we have, by simple computations,

φ0(g0) = −g0 −
2

d
· α

1− α
e−g0d < 0.

Moreover, since g2 > g0, then

α

1− α
g2 >

α

1− α
g0 > A−Ae

min

so also φ0(g2) < 0. This implies that φ0(g) must be strictly negative on [g1,+∞). Since it is

strictly decreasing in (0, g1) we get uniqueness of g0e which must also belong to (0, g1).

Now we prove (ii). Rewriting (100) we have

φν(g) = −g + e−gd

[
A−Ae

mine
gνd +

α

1− α
g
(
ν − 1− νe(gν+ρ)d

)]
So, using (101) we have

φν(g)− φ0(g) = e−gd

[
Ae

min(1− egνd) +
α

1− α
gν
(
1− e(gν+ρ)d

)]
< 0, ∀g > 0.

Finally, to prove (iii) it is enough to differentiate φν(g)−φ0(g) getting the claim by straight-

forward computations.

Proof of Theorem 2 (Sketch). We give only the main ideas on which the proof can be

built.

The key point is to observe that the solutions of the system (40)-(41) when ν is close to 1

are close to (and have the same topological behavior of) the ones when ν = 1 when the data are

bounded away from 0. This is due to the fact that the terms containing ν depends analytically on

ν, nt, nt−d, ct, ct−d (when they are bounded away from 0) and on the parameters (ρ, α,A, d) ∈ E.

The main problems in the proof are the following.
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First of all, since the dynamics f is not any more an homogeneous function one has to

generalize the argument used to prove (i) of Theorem 1. The idea is to define the new variable

z(t) in a different way, as a nonlinear function (depending on ν) of the starting variable x(t).

Second, the characteristic equation associated to the corresponding linearized system is close

to (35) when ν is close to 1 but , due to the advanced term in the Euler equation (41) complex

roots with positive real part may arise. To get rid of them, one can follow an argument suggested

in Boucekkine et al. [28], which uses the transversality condition (42). Then we remain with

the other roots, which are continuous and infinitely differentiable functions of the parameter ν,

hence all the properties stated in Proposition 4 and used Theorem 1 remain true by a simple

perturbation argument, for ν sufficiently close to 1.

Proof of Proposition 6. The proof follows from the maximum principle approach developed

by Bambi [10] and the dynamic programming approach in Bambi et al. [11], Proposition 1 and

Theorem 4.

Proof of the results based on equation (55). Let’s assume g = ge. Combining (30) and

(48) to solve for α gives α as defined above. Notice that from (48), g does not depend on α,

meaning that α in (55) only depends on the other three parameters A, d, ρ. It is straightforward

to observe that α is always smaller than 1/2. Finally ge < g iff α > α, since from (30)

dge
dα

= −
(ge+ρ)eρd

(1−α)2

1 + dAe−ged + α
1−αe

ρd
< 0,

and g in (48) does not depend on α.
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