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Abstract: This paper presents for the first time the results of a combination of petrographic, 
geochemical and organic residue analyses of early Neolithic ceramics from the Iron Gates 
region of the Danube basin. Eleven early Neolithic potsherds from Schela Cladovei 
(Romania) were analysed in detail. The results of the petrographic analysis show that the 
ceramics were made with the same recipe that was used by Starčevo-Körös-Criș potters 
elsewhere in southeastern Europe. The SEM-EDX analysis shows one of the earliest uses of 
Mn-rich black pigments to decorate Neolithic European ceramics. Organic residue analyses 
detected dairy, non-ruminant and ruminant adipose fats. No evidence of aquatic resources 
was detected. In summary, the early Neolithic potters at the Iron Gates, although able to 
make coarse and more sophisticated painted ceramics, did not make specific vessels for a 
specific use.  

Keywords: early Neolithic, polarised microscopy, SEM-EDX, GC-MS, GC-c-IRMS, ceramic 
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Highlights 

- This is the first time that the same Neolithic sherds were analysed by archaeometric 
and organic residue analyses, to understand whether there is a correlation between the 
paste recipe and the function of the pot 

- The Starčevo recipe for pottery production at the Iron Gates is compared with that of 
the Starčevo-Körös-Criș ceramics from other sites in Romania, Serbia and eastern 
Croatia 

- Organic residue analyses show a range of culinary functions, based on terrestrial food 
sources 

- This is also the first time that SEM BSE images and EDX analyses are used to 
investigate the black paint coatings of early Neolithic pots from the Balkans 
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Introduction 
The earliest Neolithic of the central and northern Balkans is represented by the Starčevo-
Körös-Criș (SKC) culture complex (Fig. 1). Most SKC sites lie north of the Balkan Mountain 
chain (Stara Planina). The terminology used tends to follow modern political divisions – 
‘Starčevo culture’ in Serbia and northern Croatia, ‘Criș culture’ in Romania, and ‘Körös 
culture’ in Hungary. Radiocarbon dates for settlements across the entire SKC geographical 
range span the period from c. 6200–5500 cal BC though few, if any, sites north of the Danube 
have dates earlier than c. 6000 cal BC. Potsherds are the most commonly recovered artefacts 
from Starčevo sites, and perceived changes in vessel form and decoration have been used to 
subdivide the SKC time-range into ‘phases’. Various regional typological sequences have 
been proposed – e.g. Aranđelović-Garašanin (1954), Dimitrijević (1974; 1979), Lazarovici 
(1979; 1984). These chronological schemes are widely used in Serbia, Croatia and Romania, 
respectively.  

In this paper we report on archaeometric analyses of a series of SKC sherds from Schela 
Cladovei in southwest Romania. These are the first archaeometric analyses of early Neolithic 
pottery production from a site in the Iron Gates region, and the first combined analyses of 
pottery production and function at any SKC site.   

Schela Cladovei (44°37’46.36"N, 22°36’0.34"E) is a large late Mesolithic and early Neolithic 
settlement on the left bank of the River Danube in the area known as the Iron Gates (Fig. 1 
inset). Remains of SKC culture settlement at Schela Cladovei extend for at least a kilometre 
along the bank of the Danube, and at least 200m back from the river bank (Boroneanț et al. 
1999). Parts of the site were excavated by the late Vasile Boroneanț between 1965 and 1991. 
Since 1992 the excavations have been conducted as a joint Romanian-British research 
project, initially co-directed by V. Boroneanț and C. Bonsall and latterly (2007-onwards) by 
A. Boroneanț and C. Bonsall. 

The 1992–1996 excavations focused on Area VI, covering c. 55m2 immediately adjacent to 
the Danube (Fig. 2). Early Neolithic finds from this area included nine pits and pit 
complexes, thousands of pottery sherds, hundreds of chipped stone artefacts (of flint, 
obsidian and quartz/quartzite), ground stone and bone artefacts, as well as large numbers of 
mammalian and fish bones and shells of freshwater molluscs reflecting an economy that was 
based on a combination of farming, fishing and foraging – a pattern that appears to have been 
characteristic of SKC culture settlements throughout the Iron Gates region. Pottery was 
recovered from all nine pit features, as well as from the ‘cultural layer’ between the pits. All 
the sherds discussed in this paper come from Area VI. Subsequent work at Schela Cladovei 
has focused on Area VII, located c. 20m from Area VI (Fig. 1) and the river bank. Organic 
residue analyses have been performed on sherds from several early Neolithic pit features in 
this area (Cramp et al. 2019). 

[Figure 1 here] 

The chronology of the SKC culture settlement at Schela Cladovei currently rests on 10 
single-entity AMS 14C dates on artefacts made from terrestrial animal bone, all recovered in 



the 1992–1996 excavation of Area VI (Bonsall 2008). The dates range between c. 6000 and 
5600 cal BC. Compared to 14C evidence from early Neolithic sites elsewhere in Romania (cf. 
Biagi et al. 2005; Mirea 2011), this broad date range suggests more than one ‘phase’ of the 
SKC culture could be represented by the finds from Area VI at Schela Cladovei. However, 
the dates currently available are too few and unevenly distributed to establish a coherent 
absolute or relative chronology for the various pit features in Area VI. 

[Figure 2 here] 

The pottery from the 1992–1996 excavations at Schela Cladovei showed all of the typical 
traits of a SKC domestic assemblage (Chapman forthcoming). The material was divided into 
four series – dishes, bases, neckless bowls/jars and necked bowls/jars - with vessel sizes 
based upon rim diameters ranging from 5cm to over 45cm (Fig. 2 bottom). Vessels were 
decorated by polishing the leather-dry pottery surface with a tool before firing, slipping 
(coating, usually before the pot is completely dry, with a homogenous suspension of clay in 
water, often coloured with added oxides), painting and/or incised patterns, but others were 
undecorated. The black-on-red painted decoration was typical of late SKC painting 
throughout the region (for the Banat, Lazarovici 1979; for the Alföld, Oross 2007; for 
Slavonia, Dimitrijević 1974; for Moldavia, Ursulescu 1984).  

Sampling and scientific techniques 
The total excavated sample in Area VI amounted to over 7,000 sherds in an area of 52.5m2 
(by volume, c. 84m3) (Chapman, in press). Eleven potsherds with a range of surface 
treatments and decoration, such as black-on-red painted motifs, red-slipped and red-polished, 
incised patterns, and plain undecorated ware were selected (Table 1; Fig. 2 top). Dark 
brown/black painted decorations include curvilinear geometric (SCL6, 9 [a rim sherd of an 
open dish]), spirals (SCL5), parallel linear vertical bands (SCL4), and dark painted vertical 
convergent(?) bands (SCL11). A ceramic fragment (SCL2) had faint traces of possible red-
ochre on the surface. Although small, the sample of 11 sherds represented all of the main 
visually identified fabric types. Only SCL9 was from a sufficiently large sherd that the shape 
of the vessel could be determined with certainty.  

All samples were prepared as polished thin sections without cover slips, and were analysed 
using both a Zeiss Axiophot polarised light microscope and a Hitachi S-3700N variable 
pressure (VP) scanning electron microscope fitted with an Oxford Instruments AZtec energy-
dispersive X-ray spectrometer (SEM-EDX).  

Polarised microscopy analyses of thin sections allow the recognition of certain steps of 
ceramic chaîne opératoire, such as clay provenance and processing (e.g. removal or deliberate 
addition of inclusions, called ‘temper’), surface treatment (polishing, slipping, painting), and 
firing (see Spataro 2017). High magnification backscattered electron (BSE) SEM images 
allow the study of the sample microstructure (ceramic fabrics, slips and painted coatings, and 
firing temperature), and SEM-EDX analyses measure the chemical composition 
(concentrations of major and minor oxides) of samples. Four bulk analyses of areas c. 1.4 × 
1.0 mm were carried out on each sample. Nine elements (Na, Mg, Al, Si, K, Ca, Ti, Mn, Fe) 



were quantified1; the results were converted into oxide percentages, which were normalised 
(oxygen by stoichiometry) (e.g. Spataro et al. 2015, 177–183). Principal component analysis 
(PCA) was used to help interpret the SEM-EDX results. PCA of the correlation matrix was 
performed using PAST v.3.18 (Hammer et al. 2001). All principal components were 
examined. EDX compositional maps were used to examine the elemental concentrations on 
painted layers, interlayers (polished or slipped) and the body paste of three samples (SCL4, 5 
and 11)2. 

All sherds were also sampled for organic residue analyses. Well-established protocols of 
extraction and methylation of lipids were applied in the organic residue analysis (Craig et al. 
2013; Correa-Ascensio and Evershed 2014). The extraction protocol requires the addition of 
methanol (4mL) to 1g of pottery powder and the mixture was ultrasonicated for 15 min. 
Sulphuric acid (H2SO4, 800µL) was used to acidify the suspension, which was then heated 
for 4 hours at 70ºC. Finally, lipids were extracted from centrifuged pottery powder with n-
hexane (3x4 mL). An internal standard (10 µL of hexantriacontane C36:0) was added to all the 
samples to quantify the relative abundance of lipids. The samples were then analysed directly 
by Gas Chromatography-Mass Spectrometry (GC-MS) and Gas Chromatography-
Combustion-Isotope Ratio Mass Spectrometry (GC-c-IRMS). All samples were also 
extracted using 2:1 DCM:MeOH (3x2mL) to produce a total lipid extract (TLE) following 
established protocols (Evershed et al. 1990, Correa-Ascencio and Evershed 2014). The 
extracts were then dried under N2 and derivatised with N,O-
bis(trimethylsilyl)trifluoroacetamide (BSTFA) heated at 70ºC for 1 hour. An internal standard 
(10 µL of hexantriacontane C36:0) was added to all the samples. The derivatised extracts were 
then analysed by High Temperature Gas Chromatography-Mass Spectrometry. 

Results 
Thin section analyses 
Eleven samples were analysed and three fabric groups were defined. All groups were non-
calcareous and had been tempered (=deliberately added) with plant matter, as abundant 
planar and oriented voids were recognised, and leaves and possible wheat glume bases were 
detected.  

Group 1 (SCL1, 7) is a typical SKC fabric, with a sandwich-core, which is due to firing in an 
oxidising atmosphere, but with insufficient oxygen available at the centre to completely burn 
out the plant matter added as temper (Fig. 3a). The fabric is micaceous, rich in fine quartz 
silt, with some scattered coarser inclusions of metamorphic and (igneous?) rock fragments, 
and sub-rounded to rounded polycrystalline limestone fragments of different sizes. Five 
subgroups, all of which are also chaff-tempered, were distinguished. Group 1 subgroup a 
(SCL3) is like Group 1 with occasional metamorphic rock fragments, but with fewer and 
finer limestone inclusions. Group 1 subgroup b (SCL8) contains fine very well-sorted quartz 
inclusions with fewer scattered coarser inclusions than Group 1 samples (Fig. 3b). Subgroup 

                                                           
1 Phosphorus and sulphur were detected and measured in the pigments. 
2 The carbon peak can be identified by EDX – and it is clearly absent in elemental maps of the paint, which are 
extremely accurate and precise (see also Fig. 7f). 



c (SCL10) is similar to subgroup b but with more abundant limestone fragments and fewer 
quartz inclusions, and no other rock fragments. Subgroup d (SCL11) contains more abundant 
quartz inclusions (slightly coarser than in Group 1) than the other subgroups, and scattered 
granitic rock fragments, which are finer than in Group 1. Subgroup e (SCL2) is slightly more 
micaceous, and it contains finer and less abundant silt than the other fabrics in Group 1, but 
with some limestone fragments.  

Group 2 (SCL4, 6) was probably tempered with both plant material and sand. Group 2 
contains less plant matter than Group 1 and subgroups. The sand includes granitic rock 
fragments and some metamorphic rocks (Fig. 3c). Although it can be difficult to determine by 
petrography whether sand was naturally present or added deliberately to the clay, the rock 
fragments, which are seldom present in SKC pottery (Kreiter and Szakmány 2011; Spataro in 
press), provide a strong indication that the sand in Group 2 was deliberately added. Group 2 
subgroup a (SCL9) was tempered with plant matter and sand, and its sand includes, as well as 
granitic rock fragments, more abundant high-grade metamorphic rock fragments than Group 
2. 

Group 3 (SCL5) is very fine and has fewer limestone fragments than the other groups. It was 
chaff-tempered (Fig. 3d). 

All fabric groups contain fine alluvial silt and some have more or less frequent sub-rounded 
limestone, granitic and metamorphic rock fragments in different percentages. All groups 
contain rather thick lamellae of biotite, which are likely to come from granitic rocks. The 
sand of Groups 1 and 3 is similar and it might come from the same clay basin, as could the 
finer sand in Group 2. However, the sand used to temper Group 2 subgroup a has a higher 
content of high-grade metamorphic rocks, as well as granitic fragments.  

A variety of typical SKC surface treatments were applied to vessels, which in some cases 
were made using the same fabric (see Group 1 and subgroups with no decoration [some red-
coated], with incised decoration and with painted decoration). Painted pots were made using 
all fabric types; both chaff- (Groups 1 and 3) and chaff-and-sand tempered (Groups 2 and 2 
subgroup a) pastes were used.  

Black-on-red ceramics were painted on either polished or slipped surfaces. There is no 
correlation between the choice of slipping or polishing and a specific fabric type (Table 1).  

 

[Figure 3 here] 

[Table 1 here] 

 
SEM-EDX analyses 
All pots were well-fired, as the BSE images show good sintering of the clay but not 
vitrification (see Fig. 4a), but some charred plant remains survive (Fig. 4b). Only one sample 
(SCL8) revealed initial vitrification of the clay filaments at the surface. 



The EDX results show strong similarities in chemical compositions between sherds; in 
particular, magnesium (MgO, 1.4–1.9%), potassium (K2O, 2.0–2.3%), titanium (TiO, 0.8–
1.0%) and iron (FeO, 5.3–6.4%) oxides contents are consistent (Table 2). However, sodium 
(Na2O, 1.1–1.7%) and calcium (CaO, 3.4–6.1%) are more variable, mainly due to differences 
in the abundance of silt (including variable percentages of albite) and limestone fragments.  

In PCA Fig. 5, samples SCL1 and 7 cluster apart from the other Group 1 samples, as they are 
richer in calcium oxide, due to the coarser and more abundant limestone fragments. The other 
samples show some heterogeneity within and between groups. 

 

[Figure 4 here] 

[Figure 5 here] 

[Table 2 here]  

 

Slipped and polished surfaces 

Macroscopically (with the naked eye) and microscopically (with the polarised light 
microscope), slipped and polished surfaces are difficult to distinguish: in some instances only 
chemical analyses help to distinguish between polished and slipped layers, on the basis of the 
compositional similarities/dissimilarities of the interlayer between the paint and the body 
paste of the sherds (see Spataro 2016).  

Three sherds were polished and painted (samples SCL6, 9 and 11), three samples were 
slipped (SCL2, 4, 5), and two of these (SCL4 and 5) were also painted.  It is not possible to 
determine whether the plain sherds were from partially decorated vessels. 

Red slips were analysed by SEM-EDX (Table 3). Slipped layers are rich in iron oxides, 
alumina and silica, with occasional fine inclusions of muscovite and quartz. This suggests 
that slips were made of very fine levigated (depurated) clays, to which iron oxides were 
added and mixed with water (see Figs 4c and d; Spataro 2016). One sample (SCL4) had both 
interior and exterior surfaces slipped. Both surfaces were analysed, showing that the same 
pigment was used (see Table 3). 

Black paint 

In four of the five pots decorated with black paint (sample SCL4, 5, 6, 9 and 11) (Figs. 6 
and7a), the paint was visible in thin section and it could be analysed with bulk analyses at 
different magnification by SEM-EDX (e.g. Figs. 7b and 8h; Table 3; the thin section of 
sample SCL4 did not include any paint). The magnification of the analyses varied depending 
on the thickness of paint visible on the thin section. 

BSE SEM images show a painted coating with a mixture of inclusions, including abundant 
nodules, which the EDX results show are rich in manganese (>50%) and iron (>20%) oxides 



(e.g. sample SCL9), or iron-rich grains (e.g. SCL5). In some cases, quartz grains are also 
visible (Fig. 8c). The composition and the microstructure of the painted layers suggest that 
metal oxides (oxidised manganese dioxide) were finely ground and probably mixed with clay 
and water. 

Occasionally, the painted layers have some voids, which might be due to the drying of the 
paint or to the fact that two coatings might have been applied to the surface. Although the 
paint appears to have been fired, as it is compact and sintered (Fig. 9a and b), there is no 
evidence that the pot was fired twice, once before the painting and once after. Thus, the paint 
was probably applied before firing.  

[Table 3 here]  

 
 
EDX elemental mapping 

To visualise the elemental distribution within body fabrics, slips and black painted layers, 
EDX elemental composition maps were run on samples SCL4, 5, 6 and 11 (Figs. 7 and 8). 
The maps confirm the presence of slips with high concentrations of iron (see Fig. 7d) and 
potassium and low calcium contents, and the high iron and manganese contents in the black 
pigment, in contrast with the low iron and absence of manganese in the body paste (Figs. 7e 
and 8e). The black paint has a relatively low concentration of aluminium, silicon and 
magnesium (Figure 8b, c, and g; Table 3). The presence of quartz grains in the painted layer 
is visible in Figure 8a and c.  

 

[Figure 7 here] 

[Figure 8 here] 

[Figure 9 here] 

 

Organic residue analyses 
Potsherds from Schela Cladovei were previously investigated by organic residue analyses 
(Craig et al. 2005; Cramp et al. 2019). New organic residue analyses have been carried out on 
11 samples, also analysed with other scientific approaches (Table 1) to have all the 
mineralogical, chemical (inorganic and organic) and isotopic information of the vessels.  

Sherds yielding lipid residues are summarised in Table 4. All sherds analysed from Schela 
Cladovei contained a concentration >5 μg g−1 and show significant quantities of saturated and 
unsaturated fatty acids, n-alkanes, n-alcohols and dicarboxylic acids (samples SCL 1, 2, 8) 
(Table 4). In contrast with other studies from the same site (Cramp et al. 2019), no aquatic 
biomarkers have been identified. 



GC-c-IRMs analysis of palmitic (C16:0) and stearic (C18:0) fatty acids indicates that molecular 
composition derives from different food sources (Fig. 10). Most of the Δ13C (δ13C18:0- 
δ13C16:0) values are consistent with the references available in Europe for the ruminant 
adipose fats3 (n=6), whose Δ13C ranges from -2.61 to -0.55. Two extracts can be related with 
the processing of mixed ruminant and non-ruminant adipose fats. Three samples reflect the 
processing of dairy products (Table 4; Fig. 10) that has been previously reported at the site 
(Craig et al. 2005).  

 

[Table 4 here] 

[Figure 10 here] 

 

Biomarkers characteristic of aquatic resources, such as ω-(o-Alkylphenyl)alkanoic acids 
(APAAs) (e. g. Hansel et al. 2004, Evershed et al. 2008), or cereals, such as alkylresorcinols 
(Hamman and Cramp 2018; Colonese et al. 2017),  have not been reported in our samples. 
However, aquatic biomarkers have been recently identified in pottery sherds from the site 
highlighting a high diversity in pottery use.  

 
[Table 5 here] 
 
The combination of different analytical techniques has allowed us to explore the relation 
between manufacture techniques (fabric groups) and main functionality of the pots sampled. 
Chi-square test reflects an independence between fabric and Δ13C (Chi-square = 22; gl = 20; 
p-value = 0.341) (Table 5). Due to the fragmentary nature of the pottery, it is not possible to 
detect, or exclude, an association between vessel shape and function. 

 

Discussion 
The ceramic chaîne opératoire at Schela Cladovei was based on the same recipe used by SKC 
potters elsewhere. The potters collected non-calcareous and micaceous-very micaceous clay 
and temper from sources derived from limestone, meta-granite, metamorphic rock fragments, 
which are found locally and regionally. The site is located in an area of extensive alluvial 
deposits composed of unconsolidated gravels sand, silt and clay, and loessic deposits, 
although there are outcrops of sandstone and flysh c. 5km to the northwest (Petrescu and 
Ciobanu 1966). Before reaching the site, the Danube passes through mica schist and granitic 
outcrops, limestone and conglomerates and dolerite (Răileanu et al. 1968). During the Schela 
Cladovei excavations, it was noted that a small percentage of SKC sherds were tempered 

                                                           
3 Data obtained on ruminant, non-ruminant, dairy and marine resources throughout Europe have been 
compiled (Dudd 1999; Spangenberg et al. 2006; Bell et al. 2007; Craig et al. 2011; Spiteri 2012; 
Recio et al. 2013; Cramp et al. 2014; Carrer et al. 2016) to compare isotopic values of the main fatty 
acids.  



with iron pyrite, which was believed to have come from a source within the Iron Gates 
Gorge. These sherds have not been analysed archaeometrically, however, and the precise 
location of the source(s) is unknown. As at other SKC sites, the potters did not process the 
clays carefully, as clay pellets, poorly-mixed and occasional fine bone fragments are present 
in the pastes. The clays were then tempered with cereal chaff, and probably in one case, with 
chaff and sand.  

The SKC communities in the Iron Gates, at Schela Cladovei and at Lepenski Vir (see Perić 
and Nikolić 2004, 181) mainly used alluvial clays, heavily tempered with chaff, to make their 
vessels, like SKC potters throughout Romania, Serbia and Slavonia (e.g. Spataro 2011a; 
2011b; 2017) and in Hungary (see Kreiter et al. 2013, 137). The combination of chaff and 
sand temper, recorded in one of the Schela Cladovei pots, has been detected at several sites, 
in particular in Romania (Spataro in press). As at other SKC sites, plant temper at Schela 
Cladovei was not very finely cut (compared to some of the few Vinča chaff-tempered fabrics 
from Romanian Banat: Spataro 2014; see Fig. 3b) and the size and abundance of plant temper 
seems to be unrelated to whether the clay was also tempered with sand (plant-and-sand 
tempered fabrics have a variable quantity of plant material, generally similar to that present in 
the plant-tempered only fabrics).  

At Schela Cladovei, some ceramics were finely polished, in order to obtain a smooth surface 
on which the paint was applied. Others were slipped, as slipping would have facilitated the 
process of surface polishing, to obtain the same shiny effect (J. Kneisel, pers. comm. 2017). 
Slips were prepared using the same procedure and formula employed to prepare slips for 
monochrome and white-on-red painted ceramics from the earliest SKC phases elsewhere 
(Spataro 2016). Seventy-seven SKC red-slipped pots (including white-on-red and painted on   
surface) from 12 sites were analysed (Spataro 2016, table 1), showing that the same 
knowledge of how to make iron-rich clay slip coatings transmitted over a wide geographical 
area, spanning from Slavonia through Serbia and eastern Transylvania. The slips are very 
fine, uniform layers 0.15–0.20mm thick, composed mainly of alumina and silica (c. 70%), 
mixed with iron oxide (10–25%) and a small content of manganese oxide, which is naturally 
present in ochre (Spataro 2016, 170).  

Parallel linear black-painted ceramics are found throughout the SKC distribution, as far north 
as Slavonia (e.g. Zadubravlije and Galovo, Minichreiter 1992, 70; 2007, 97) and Hungary 
(e.g. Alsónyék-Bátaszék, Bánffy et al. 2010, figs. 11 and 12). Nevertheless, there has been no 
archaeometric analysis of black pigment, except at the site of Sălcuţa in Oltenia, where 
pyrolusite was detected in the one sherd of which the black paint was analysed (B. 
Constantinescu, pers. comm. 2018; Constantinescu et al. 2007, 285, 287). 

All the black paint analysed at Schela Cladovei contains high concentrations of Mn and Fe 
derived from earths that were rich in these elements, probably mixed with fine clay (generally 
alumina and silica are less than 50%) and water. This is not the only known case among 
Starčevo black painted ceramics (Spataro in press). Ferromanganese and manganese oxides 
are stable in all firing conditions (Ellis 1984, 119), and were therefore ideal for the SKC 
potters, as the pots were probably fired in bonfires. In Romania, abundant pyrolusite and 



jacobsite can be found in the eastern Carpathians (Vatra Dornei-Iacobeni region); traces of 
pyrolusite, mixed in particular with limonite, are found in the rest of Romania (B. 
Constantinescu, pers. comm. 2018; Rădulescu and Dimitrescu 1966). There may have been a 
source of ferromanganese and manganese oxides close to the site, but this needs to be 
investigated further. 

Manganese-rich ores were also used for the black paint of the Neolithic ceramics at Dimini, 
in Greece (analysed by X-ray fluorescence spectroscopy [XRF]; see Papadopoulou et al. 
2007). Angeli et al. (2018, 179) used XRF analyses and Raman spectroscopy to argue that the 
common form of Mn-rich mineral in black-painted middle Neolithic Apulian figulina ware 
(5000–4500 BC) is pyrolusite, which converts during firing at temperatures above 450°C into 
bixbyite “and then combines with the iron oxide to form the manganese-iron oxide jacobsite 
above 900°C”. On the other hand, the black-painted decoration used on early Neolithic 
Lagnano da Piede-style Apulian ceramics, analysed by Raman and Laser Induced Breakdown 
Spectroscopy, was obtained using carbon black (Angeli et al. 2018, 174). 

In the Eneolithic Cucuteni culture, which flourished east of the Carpathians between c. 4800 
and 3000 cal BC (Monah and Monah 1997), ceramics were profusely painted with red, white 
and brownish-black, respectively using hematite, calcite and manganese oxides (birnesite and 
manganite which were transformed into bixbyite; Ellis 1980, 211–230; see also Bugoi et al. 
2008); pyrolusite and/or jacobsite were also detected by XRD, Raman, FT-IR and Atomic 
Absorption Spectrometry (see Buzgar et al. 2013).  

Manganese oxide was used as a paint in Palaeolithic rock art, e.g. at the caves of Lascaux in 
France and Ekain in Spain (see Chalmin et al. 2003), but its use by the SKC potters seems to 
be the earliest proved in European ceramics. SEM-EDX analyses of ‘dark painted’ pottery 
from the early Neolithic Bulgarian site of Dzhulynitsa (Dzhanfezova et al. 2014, 149) did not 
detect elevated Mn concentrations on black surfaces, and the authors suggest that the colour 
might be due to different oxidation conditions, possibly obtained by the application of water-
insoluble organics material on the surfaces4. In Macedonia and Thrace, manganese and iron-
manganese pigments appear from the late Neolithic onwards (Yiouni 2001, 10). In eastern 
Macedonia, pottery decorated with graphite (a crystalline form of carbon) is also common in 
the same period (op. cit. 25). At Schela Cladovei, firing temperature and conditions for plain, 
impressed, incised, red-slipped and painted ceramics were similar; the ceramics were fired in 
an oxidising atmosphere and at relatively low temperatures, generally not exceeding 650–
700°C, as suggested by the sintered but non-vitrified fabrics and the abundance of charred 
remains. These firing conditions could have been obtained in bonfires; kilns were not 
required (Livingstone Smith 2001, 999). There is little evidence of kilns in SKC settlements 
(see Minichreiter 2004; Nica 1977; Tencariu 2015).  

No correlation between ceramic typology and fabric was detected, as the same recipe was 
used to make vessels with different surface treatments and decorations, including plain, 
incised, slipped, polished and painted ware. The slipped pot (SCL2) and one of the black-
                                                           
4 The authors also suggest that possible graphite or charcoal may have been applied in some cases after firing 
(Dzhanfezova et al. 2014, 149). 

http://www.sciencedirect.com/science/article/pii/S0168900207010054#!


painted ceramics (SCL5) were made with similar but finer fabrics than the other painted pots, 
whereas other polished or slipped and painted ware (SCL4, 6, 9 and 11) was made with 
pastes with coarser inclusions. Both plant and plant-and-sand tempers were used to make the 
sophisticated painted ceramics. Painted ceramics were made with fine and relatively coarse 
fabrics (e.g. SCL5 and SCL11), adding chaff or chaff-and-sand temper.  

The use of the same recipe to make both painted and undecorated ceramics, which is a typical 
trait of the SKC culture over a wide territory, from the Iron Gates to Slavonia and through the 
Banat Plain and Transylvania demonstrates that the pottery production was not isolated from 
the SKC society (e.g. Spataro 2011b; 2016). Archaeometric analyses confirm the initial 
impression that strong similarities at the level of shape series, shape types and decorative 
styles can be detected in coeval sites and groups of sites at distances up to 200km, suggesting 
parallel local evolution of potters’ skills and technical preferences, strong inter-regional 
interactions or both. The study of almost 500 early Neolithic pots, with a wide variety of 
shapes and surface treatments, analysed in thin section shows the use of almost the same 
fabric recipe used throughout the central Balkans (Spataro 2011a; 2011b; 2017). In the late 
stages of the early Neolithic, potters still used a formula that their predecessors used at the 
beginning of the 6th millennium BC (Spataro 2011a; 2011b). Nevertheless, they started 
painting their pots with Mn-rich ores, and the painted decorations were independent from the 
ceramic fabrics. 

No correlation between fabric and function was detected in the coarse and/or painted wares 
(Table 5). Although the sample size is too small to draw firm conclusions, it appears that 
potters did not select raw materials with a specific purpose of pottery in mind. 

The identification of different food sources was based on the comparison of carbon isotope 
composition of main fatty acids (palmitic and stearic) to those of modern reference animal 
fats (Fig. 10). All archaeological lipids detected derived from ruminant and non-ruminant 
animal fats and dairy products, in agreement with the main trend observed previously at the 
site (Craig et al. 2005) and at early Neolithic sites in other regions of the Balkans (Ethier et 
al. 2017). Most of the animal fats detected at the sites plot with the range of ruminant adipose 
fats (n= 6) (Fig. 10). Potential contributors of ruminant fats are both wild (aurochs, red and 
roe deer) and domestic (cattle, sheep and goat) animals, all of them well represented in the 
Neolithic archaeological levels (Bartosiewicz et al. 2006). In addition, non-ruminant adipose 
fats can also reflect the exploitation of wild or domestic pig (Bartosiewicz et al. 2006). 
Despite the wide representation of animal species in the Neolithic levels, including different 
fish species, there is no evidence of aquatic resources in the 16 vessels from Area VI with 
significant organic residues (Craig et al. 2005; this paper), in contrast to the identification of 
aquatic biomarkers in 5 of the 11 sherds from Area VII (Cramp et al. 2019). There is 
currently no evidence that pottery from these two excavation areas, 20-25m apart, represents 
different periods.  We detected dairy products only in three polished/slipped and painted 
sherds (SCL4, 6, 11). This seems to reinforce the idea that polished and slipped ware were 
used for drinking, as the compressed surface made the vessels less permeable. Craig et al 
(2005) also found dairy products in a painted bowl and an undecorated amphora. Dairy 
products are often heated or fermented in pottery, so dairy residues should not be restricted to 



serving vessels. Ruminant adipose fats were detected in slipped and painted as well as plain 
ware (see samples SCL2 and 5). This picture is supported by use-alteration analysis of 
pottery from the SKC site of Blagotin in Serbia, where fine polished slipped ware was used in 
the same way, and therefore for similar purposes, as other pottery classes (Vuković 2011, 
210). 

Conclusions 
For the first time, archaeometric and organic residue analyses have been applied to the same 
Neolithic sherds. At Schela Cladovei, plain, slipped, polished and painted SKC ceramics 
were made using similar pottery recipes to those that were in use throughout the SKC world, 
for c. 700 years (e.g. Spataro 2011; 2017; in press), with micaceous clays, chaff temper, and 
low firing in an oxidising atmosphere, regardless of decoration or shape. The potters used raw 
materials that are compatible with the local geology. The dark brown/black linear and 
dynamic geometric motifs, typical of the late Starčevo phases, were painted using a solution 
that contained high concentrations of Mn and Fe ores, mixed with clay and water. The Mn 
and Fe ores might have been found further north in the Carpathians and possibly locally as 
well. The organic residue analyses showed the cooking of dairy products and meat of 
domestic and/or hunted mammals, in contrast to Cramp et al’s (2019) results from a nearby 
area of the site, where aquatic biomarkers occurred in 5 of the 11 pots with sufficient residue 
for analysis, and only one pot held dairy products. This contrast is currently unexplained, but 
our results show no correlation between biomolecular results and fabric, implying that no 
specific type of pot was made for a specific use, given that fabrics and shapes were not 
correlated in SKC pottery overall (Spataro in press). There could be a difference in date 
between our samples and those studied by Cramp et al. (2019), but the fragmentary condition 
of the sherds and lack of direct dating of the organic residues precludes discussion of 
temporal patterns in pottery function.  
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Figure captions: 
Figure 1. Aerial view of the Schela Cladovei site. The yellow boundary line delineates the area that is accessible 
archaeologically and where Mesolithic and/or Neolithic artefacts have been observed eroding from the 



riverbank. Inset map: location of Schela Cladovei within the Starčevo-Körös-Criș culture area (hatched) 
(adapted from Boroneanţ & Bonsall 2013: fig. 4.1). 

Figure 2.  Schela Cladovei: top: samples analysed and discussed in this paper (photo by M. Spataro); bottom: 
other Starčevo-Criş ceramics from the site: a, rim sherd with finger/tool impressions on the rim and an appliqué 
band on its lower part, which is also decorated with finger impressions; b, body sherd with nail impression 
decoration; c, body sherd with pinched decoration; d, body sherd decorated with rows of incised parallel lines in 
herringbone motif; e, sherd with appliqué band decorated with ‘alveoli’ (finger impressions); f, body sherd with 
organised barbotine decoration; g, rim sherd with finger/tool impressions on the rim and thin incised lines 
crosshatched on the body (mesh or net pattern) (drawings by E. Rayner).  

Figure 3. Photomicrographs of thin sections of ceramic samples from Schela Cladovei: showing (a) limestone in 
a non-calcareous matrix and some voids left by vegetal temper (sample SCL1); (b) fine well-sorted quartz and 
vegetal matter (sample SCL8); (c) vegetal matter and scattered coarser sand (sample SCL6); a slip and a painted 
layer are also visible (d) matrix with well-sorted and fine quartz and some clay pellets and a slip (sample SCL5). 
All photomicrographs were taken in cross polarised light (XPL), except photomicrograph c which was taken in 
plane polarised light (PPL) (photos by M. Spataro). 

Figure 4. SEM BSE images of sample SCL11, showing (a) non-vitrified paste and (b) charred plant remains still 
present in the voids. (c) Optical microscopy image of traces of red coating still visible on sample SCL2; and (d) 
SEM BSE image of SCL2 showing the red coated layer on the surface, which is rich in fine iron oxides (bright 
spots) (photos by M. Spataro). 

Figure 5. Principal Components Analysis output (Components 1 and 2), based on SEM-EDX compositional data 
of ceramics from Schela Cladovei. PCA was carried out using Past v. 3.18 (Hammer et al. 2001). Legend: (dot) 
Fabric group 1; (triangle) Fabric group 2; (square) Fabric group 3. Each point represents the average of four 
bulk analyses. 

Figure 6. Sample SCL5: an image of its surface (left) and (right) optical microscopy image of the painted 
surface, slip and body paste (photos by M. Spataro). 

Figure 7. Sample SCL5: optical microscopy image of painted surface (a) and (b) of the thin section (with the 
painted are, dark coating at the top, the slip (red interlayer) and the body paste); (c) SEM-EDX elemental x-ray 
map, mapped area of sample SCL5 (x150), including painted layer (bright area) and slipped area (between the 
paint and the body paste); (d) elemental map of iron; e) elemental map of manganese; f) elemental map of 
carbon. Colours representing abundance, from absent (black) to very abundant (white) (for colour scale, see 
legend) (photos by M. Spataro). 

Figure 8. SEM-EDX elemental x-ray map of sample SCL6 in polished thin section: a. BSE image of the mapped 
area (black paint [bright area] and body paste); concentrations of six elements (b. aluminium, c. silicon, d. iron, 
e. potassium, f. magnesium, and g. calcium), colours representing abundance, from absent (black) to very 
abundant (white) (for colour scale, see legend); h. polarised light micrograph, showing the mapped area. (Photos 
by M. Spataro). 

Figure 9. SEM BSE images of (a) sample SCL6, showing the body paste and the painted layer (bright area in the 
centre) and some post-depositional material on the painted layer and (b) sample SCL9, showing the black 
painted layer at high magnification (photos by M. Spataro), Scales in microns. 

Figure 10. δ13C values of C16:0 and C18:0 n-alkanoic acids extracted from pottery sherds from Schela Cladovei 
(Area VI: Craig et al., 2005; this study; Area VII: Cramp et al., 2019). The 68% confidence ellipses are based on 
modern reference fats (ruminant, non-ruminant, dairy and marine resources) from the European continent 
(Dudd, 1999; Spangenberg et al., 2006, 2010; Craig et al., 2011, 2012; Spiteri, 2012; Cramp et al., 2014; Carrer 
et al., 2016) corrected for the Suess Effect taking into consideration the date of collection (Hellevang and 
Aagard, 2015). 

 



Table captions: 
Table 1. Schela Cladovei: list of fabric groups, clays and temper types, surface treatment, analyses carried out 
and year of excavation and sherd label.  

Table 2. Compositional data from SEM-EDX analysis of the fabrics of Schela Cladovei samples (grey rows, 
mean of four bulk analyses) and standard deviation (white rows). Results are reported as normalised oxides; - 
indicates below detection limit. 

Table 3. Compositional data from SEM-EDX analysis of the pigments identified on the surfaces of the Schela 
Cladovei samples. Shaded rows: slips/red coatings; white rows: paint. Results are reported as normalised oxides; 
- indicates below detection limit. 
 
Table 4. Molecular and isotopic information from pottery sherds from Schela Cladovei. 

Table 5. Fabric vs main function of the samples analysed in this study.   
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