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1 Introduction

Understanding the Higgs particle observed at the LHC requires studies of its properties that

include quantum numbers and couplings to gauge and matter fields. Current experimental

results have relatively small O(10%− 20%) uncertainties in Higgs couplings to electroweak

gauge bosons and larger O(100%) uncertainties in Higgs Yukawa couplings, especially for

light quarks [1]. However, it is quite conceivable that physics beyond the Standard Model

manifests itself in smaller, few percent, contributions to Higgs couplings. Thus, facilitating

further improvements in extracting Higgs couplings to gauge bosons and helping constrain

Yukawa couplings are very important issues in contemporary Higgs physics.

Both of these issues can, at least partially, be addressed by improving the description

of Higgs boson production in gluon fusion. Indeed, since gg → H is the main production

mechanism of Higgs bosons at the LHC, a refined understanding of this process in QCD

perturbation theory will lead to an improved understanding of fiducial cross sections and,

eventually, will allow for a better extraction of various Higgs couplings constants from e.g.

Higgs decays to bosonic final states.

Although the contributions of bottom and charm loops to the ggH coupling and direct

production of a Higgs boson in quark fusion qq̄ → H, q ∈ {c, b} are small in the Standard

Model, if the Yukawa couplings differ from their Standard Model values, these light-quark

effects in Higgs production become much more important. In fact, it was pointed out [2, 3]

that studies of kinematic distributions of Higgs bosons produced in hadron collisions may

lead to interesting constraints on light quark Yukawa couplings, especially at the high-

luminosity LHC.
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A particularly important and highly non-trivial kinematic distribution is the Higgs

boson transverse momentum spectrum. At the LHC, Higgs bosons are produced with very

different transverse momenta, from very small to very large; the p⊥ distribution peaks

at p⊥ ≈ 15 GeV. Depending on the value of the Higgs transverse momentum, the p⊥
distribution is sensitive to different physics, from multiple emissions of soft gluons at small

p⊥ to top quark mass effects at the tail of the spectrum. The difficulty in describing the

Higgs transverse momentum distribution as a whole is related to this point.

Higgs production in gluon fusion receives contributions from top and light-quark loops.

Since Yukawa couplings are proportional to quark masses, top quark loops play the domi-

nant role. For values of the transverse momenta p⊥
<∼mt, top loops can be treated in the

mt →∞ approximation. This leads to enormous technical simplifications since, essentially,

it allows us to “remove” one loop from the computations that involve the ggH vertex. As

the result, the mt → ∞ approximation allowed for the computation of next-to-next-to-

next-to-leading order (N3LO) QCD corrections to the inclusive cross section and basic

kinematic distributions [4–6], as well as next-to-next-to-leading order (NNLO) QCD cor-

rections to the production of Higgs bosons in association with one jet [7–11]. It is also quite

straightforward to compute the O(1/mt) corrections to the mt →∞ approximation; they

are available for the total cross section [12–14] and for the Higgs p⊥ distribution [15–17].

NLO QCD corrections including the top-quark dependence in the full Standard Model have

become available recently either via a high-energy expansion [18, 19] or a direct numerical

calculation [20] of the relevant two-loop virtual amplitudes.

When small transverse momenta p⊥ � mH are considered, radiative corrections to

Higgs production become enhanced by large logarithms lnmH/p⊥. It is possible to resum

these logarithms in case of Higgs production in gluon fusion if the ggH coupling is point-

like, which is the case in the mt →∞ approximation. Such resummations were performed

with ever increasing accuracy through the years [21–24]. The necessary ingredients to

compute the next-to-next-to-next-to-leading logarithmic (N3LL) corrections, apart from

the four-loop cusp anomalous dimension, were obtained in refs. [25–28]. This allowed for a

description of the Higgs boson p⊥ spectrum at N3LL+NNLO [29].1

Resummed computations are usually extrapolated from small transverse momenta,

where they are valid, to large momenta, where they are matched to fixed-order computa-

tions. As we explained in the previous paragraphs, the accuracy of both resummed and

fixed-order computations has been constantly increasing; as a result, the mt →∞ top-loop

mediated contribution to the Higgs transverse momentum distribution is currently known

with a precision of about 10− 15 percent for all values of the Higgs p⊥ [7–11, 29].

Having reached this level of understanding in the mt →∞ limit, it is essential to ask

if additional small effects, that could have been neglected previously, need to be accounted

for at the present level of accuracy and, if so, if they are sufficiently well understood.

Examples of such contributions are corrections to the ggH interaction vertex due to light

quarks and electroweak corrections to the Higgs transverse momentum distribution. Both

of these effects appear at the one-loop level; light-quark contributions change the Higgs

1The numerical impact of the four-loop cusp anomalous dimension is expected to be small [30].
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boson transverse momentum distribution by about −5%. For moderate values of transverse

momenta, electroweak contributions to the Higgs p⊥ spectrum are smaller [31] and we

neglect them in what follows.

Since QCD corrections in gg → H are known to be large for the top quark contribution,

it becomes important to understand if a similar enhancement exists for light quark contribu-

tions as well. Unfortunately, such computations require two-loop calculations with massive

internal particles that are currently hardly feasible. An alternative possibility is to compute

the corresponding two-loop amplitudes in the approximation where all kinematic variables

and the mass of the Higgs boson are considered large relative to the quark mass mq. In this

case, one computes a two-loop amplitude as an expansion in m2
q/m

2
H ,m

2
q/s,m

2
q/p

2
⊥. In this

approximation, the relevant amplitudes have been computed in refs. [32, 33]. For b-quark

loops, such an expansion is valid for transverse momenta larger than O(10− 20) GeV since

corrections to the approximate result for two-loop amplitudes scale like (mb/p⊥)2 ∼ 0.2 for

p⊥ = 10 GeV.

Light-quark contributions develop a peculiar double-logarithmic dependence on the

light quark masses ln2(mH/mq), ln
2(p⊥/mq). Such dependences originate from soft

quark exchanges in the loops that facilitate the ggH couplings. For the processes

gg → H + g, qg → Hq and qq̄ → H + g these terms are sensitive to gluons emitted

from both “inside” and “outside” the loops at finite transverse momentum, i.e. to the

structure-dependent radiation.

Light-quark contributions to Higgs production in gluon fusion make the resummation

of the transverse-momentum distribution difficult [34, 35]. Indeed, since both top and

bottom quark loops contribute to the ggH coupling and since these loops are characterized

by very different intrinsic scales for the structure-dependent radiation (mb and mt), it

appears that one will have to treat them differently. However, this is not possible since the

dominant contribution is given by the interference of the two amplitudes. In addition, since

it is not understood how to resum the potentially large logarithms log(p⊥/mb) that appear

in the light-quark loops, it becomes impossible to treat all the different contributions to

the Higgs p⊥ spectrum on the same footing. The best thing that one can do is to employ a

variety of prescriptions for combining light quark contributions with small-p⊥ resummations

and to study how the resulting uncertainty in predictions compares with other sources of

theoretical error.

The goal of this paper is to study the Higgs p⊥ spectrum including top and bottom-

quark contributions at next-to-leading order combined with next-to-next-to-leading log-

arithmic transverse momentum resummation (NLO+NNLL). A similar study at leading

order combined with next-to-leading logarithmic resummation (LO+NLL) was performed

in ref. [34].2 To this end, we include the recently computed NLO QCD corrections to

light-quark contributions to Higgs production in gluon fusion [32, 33, 36]. We find that the

uncertainty in our matched NLO+NNLL result for the top-bottom interference contribu-

tion to the Higgs transverse momentum distribution in the region 10 GeV <∼ p⊥ <∼ 100 GeV

2Note that this was referred to as NLO+NLL in this reference, while we always use the formal accuracy of

the differential distribution for the fixed order. In the notation of ref. [34] our result would be NNLO+NNLL.

– 3 –



J
H
E
P
0
9
(
2
0
1
8
)
0
3
5

is dominated by ambiguities in the perturbative description of light-quark loops rather than

by uncertainties in the resummation itself. In particular, we do not find large uncertainties

related to the choice of the resummation scale for the b-quark loops.

The paper is organized as follows. In section 2 we briefly review the structure of small-

p⊥ resummation for the case of point-like interactions, and elucidate its main assumptions

and limitations. We also study light-quark contributions, discuss why in this case the

resummation is challenging and describe a possible pragmatic solution to this problem. In

section 3, we explain the implementation of the resummation procedure for the b-quark

contribution and study its ambiguities, and we present our main results for the Higgs

transverse momentum distribution. We conclude in section 4. Some useful formulas and

derivations are collected in the appendix.

2 Resummation of the Higgs transverse momentum distribution

2.1 The standard point-like case

We would like to describe the transverse momentum distribution of Higgs bosons pro-

duced in hadron collisions. This is non trivial and requires a combination of fixed order

and resummed perturbative calculations. Indeed, depending on the value of the Higgs

boson transverse momentum, we can distinguish two regions. For large values of trans-

verse momenta p⊥ ∼ mH , one can compute dσ/dp⊥ in a perturbative expansion in αs
following standard rules of perturbative Quantum Field Theory. For small values of the

transverse momentum p⊥ � mH , the situation is different since emerging large loga-

rithms ln(p⊥/mH) � 1 may compensate the smallness of the strong coupling constant,

αs ln2(p⊥/mH) ∼ 1, and spoil a conventional perturbative expansion. To deal with this

case, one resums the logarithmically enhanced terms to all orders in the coupling constant,

and develops a perturbative expansion on top of the resummed result.

Since, eventually, we need to describe the Higgs boson p⊥ distribution for all values of

transverse momenta, the two distinct approaches — resummation and fixed order compu-

tations — have to be combined. This is done by smoothly interpolating between results

derived at small and large p⊥. The region where the transition happens is characterized by

a quantity that we refer to as the resummation scale Q. This scale has the following physi-

cal meaning: for p⊥
<∼Q, the transverse momentum distribution is mostly described by the

resummed result, while for p⊥
>∼Q it is mostly described by the fixed order computation.

In order to discuss these concepts more precisely, we consider the all-order resummation

in a toy model, where we work at leading-logarithmic (LL) accuracy. To this end, we

consider the cumulative distribution

Σ(p⊥) =

∫ p⊥

0
dp′⊥

dσ

dp′⊥
. (2.1)

At low p⊥, we resum the logarithms of ln p⊥/mH and write

Σ(p⊥) = Σresum(p⊥), p⊥ � mH . (2.2)
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In this region, the distribution is dominated by the emission of soft and collinear partons.

In the LL approximation it is sufficient to consider the most singular contribution to the

QCD matrix elements, where all final-state partons are soft and strongly ordered in angle.

In this limit, the squared matrix element for the emission of n extra partons gg → H + n

is given by the product of the matrix element for gg → H times n independent eikonal

factors. More specifically, at LL the partonic p⊥ distribution

dσ̂

dp⊥
= [dpH ]

(
n∏
i=1

[dki]

)
|M(p1 + p2 → H + n)|2

× δ(4)

(
p1 + p2 − pH −

n∑
i=1

ki

)
δ

(
p⊥ − |

n∑
i=1

~k⊥i|

)
(2.3)

can be simplified as

dσ̂

dp⊥
' [dpH ]|M(p1 + p2 → H)|2δ(4)(p1 + p2 − pH)

× 1

n!

n∏
i=1

[dki]|Msoft(ki)|2δ

(
p⊥ − |

n∑
i=1

~k⊥i|

)
, (2.4)

where [dki], [dpH ] are the phase space volumes of the i-th parton ki and the Higgs boson,

and Msoft is the matrix element of the single-emission eikonal current. Note that the reduced

matrix element M(p1 + p2 → H) is evaluated at zero transverse momentum.3

Starting from eq. (2.4) it is possible to show (for details see appendix A) that the

resummed cross section takes the form

Σresum(p⊥) = σ0e
−

∫
[dk]|Msoft(k)|2

∞∑
n=0

1

n!

n∏
i=1

∫
[dki]|Msoft(ki)|2Θ

(
p⊥ − |

n∑
i=1

~k⊥i|

)
, (2.5)

where σ0 is the Born cross section for gg → H. The overall exponential factor contains the

all-order effects of soft-collinear virtual gluons which are encoded in the leading divergence

of the gluon form factor M(p1 + p2 → H).4 The distribution in the small p⊥ region

is governed by two competing mechanisms. In the strict limit p⊥ → 0, the dominant

contribution comes from emissions with finite transverse momentum p⊥ � k⊥i � mH

that mutually cancel in the transverse plane. This collective effect gives rise to a power

suppressed scaling [37]

Σ(p⊥) ∼ O(p2
⊥). (2.6)

As p⊥ increases, but still remains small compared to mH , the distribution is described by

kinematic configurations with p⊥ ∼ k⊥i � mH . As discussed in appendix A.1, in this

region the cumulative distribution features an exponential suppression of the form

Σ(p⊥) ∼ σ0 exp

{
−ᾱ ln2 mH

p⊥

}
, (2.7)

where ᾱ = 2CAαs/π.

3This is valid at all logarithmic orders.
4Clearly, all integrals in eq. (2.5) are divergent in the soft and collinear limits, and require regularization.

However, the final result eq. (2.5) does not depend on the regularization procedure.
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At larger transverse momenta (p⊥ ∼ mH) the approximation that led to eq. (2.5) is not

justified anymore. Therefore, in this region one has to smoothly switch from the resummed

prediction to the fixed-order one, where the effect of the hard radiation is treated correctly.

This can be done for example using the following matching formula

Σ(p⊥) = Σresum(p⊥) +
(

Σf.o.(p⊥)− T f.o. [Σresum(p⊥)]
)
, (2.8)

where we indicate with T f.o.[f ] the fixed-order expansion of f . At small p⊥ the difference

between the fixed-order result and the Taylor expansion of the resummed result is free of

logarithmically-enhanced terms

lim
p⊥→0

(
Σf.o.(p⊥)− T f.o. [Σresum(p⊥)]

)
= const. (2.9)

This allows one to extend the fixed-order description to p⊥ → 0 and, at the same time,

ensures that all terms that contain large logarithms at low p⊥ are resummed.

The precise way to switch from the resummation to the fixed-order description is

ambiguous. One source of ambiguity comes from choosing a particular form for the matched

cross section (in our example, eq. (2.8), we chose to combine the resummed and fixed-order

predictions additively). A second source of ambiguity is connected with the scale at which

the transition from resummed to fixed-order result takes place. Although all of these

effects are formally of higher-order both in the resummation and fixed-order counting,

their numerical impact can be non-negligible. We consider the latter issue in what follows,

while leaving a discussion of the choice of the matching scheme to the next section.

In order to switch off resummation effects at large p⊥, one can modify the resummed

cross section by including controlled power-suppressed corrections. One possible way to do

this is to modify the resummed logarithms in eq. (2.7) as follows5

L ≡ ln
mH

p⊥
= ln

mH

Q
+ ln

Q

p⊥
, (2.10)

where Q is an arbitrary scale of order mH . Moreover, we write

ln
Q

p⊥
→ 1

p
ln

((
Q

p⊥

)p
+ 1

)
≡ L̃, (2.11)

where p is a positive number. The motivation for the transformations described above is

as follows:

• First, we split the resummed logarithm L into the sum of a small logarithm ln(mH/Q)

(with Q ∼ mH) and a large logarithm ln(Q/p⊥). This operation allows us to intro-

duce a generic scale Q which then appears in the resummed result. We can now

expand L around ln(Q/p⊥), retaining all terms with the desired logarithmic accu-

racy. Effectively, this implies that ln(mH/Q) is treated perturbatively at fixed order.

5A more correct prescription is to modify the logarithms ln(mH/k⊥1) where k⊥1 is the transverse mo-

mentum of the hardest emitted gluon. This technicality is avoided here for the sake of clarity, and it will

be discussed in appendix A.
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In our LL example, for p⊥ ∼ k⊥i � mH , this means

Σresum(p⊥) ∼ e−ᾱL
2

= exp

{
−ᾱ

[
ln2 Q

p⊥
+ 2 ln

Q

p⊥
ln
mH

Q
+ ln2 mH

Q

]}
= exp

{
−ᾱ ln2 Q

p⊥
+O (αsL)

}(
1− ᾱ ln2 mH

Q
+O(α2

s)

)
' exp

{
−ᾱ ln2 Q

p⊥

}
, (2.12)

where all terms beyond LL were neglected. This prescription is convenient because

the Q-dependence is always of higher-logarithmic order and, therefore, a Q-variation

probes the size of subleading logarithms that are not considered in the resummation.

• Second, we modify the logarithm ln(Q/p⊥) by including power-suppressed terms that

force L̃ to vanish at large p⊥. These modifications do not affect the small-p⊥ limit.

Indeed, it follows from eq. (2.11) that

L̃ ∼ ln
Q

p⊥
, for p⊥ � Q; L̃ ∼ 1

p

(
Q

p⊥

)p
, for p⊥ � Q. (2.13)

As a consequence, the resummation scale Q and the scaling parameter p must be

chosen in such a way that the high-p⊥ scaling of the resummed component (and its

fixed-order expansion) does not modify the scaling of the fixed-order prediction. This

means that p and Q are to be chosen in such a way that the resummed component

vanishes more quickly than the fixed-order result for p⊥
>∼Q.

The above discussion shows that Q is indeed the scale at which the transition between

resummed and fixed-order results occurs. Similarly to the renormalization and factorization

scales, its choice is ambiguous, although certain conditions should be satisfied. Indeed, it is

clear that (a) Q should not be too different from mH , to ensure that lnQ/mH are not large

and (b) it should approximately correspond to the scale at which the soft and collinear

approximations to the matrix element and kinematics break down. In practice, one can

choose Q by comparing the exact result Σf.o. with the expansion of the resummed result

T f.o.[Σresum], and set Q to the p⊥ scale at which the two start to significantly deviate

from each other. This is illustrated in figure 1, which shows the difference between the

LO differential p⊥ spectrum and the expansion of the resummed result at the same order.

Specifically, we plot ∣∣∣∣ (dσLO

dp⊥
− T LO

[
dσresum

dp⊥

])/
dσLO

dp⊥

∣∣∣∣. (2.14)

We observe that when only the top contribution is included (solid, red curve), the logarith-

mic terms account for about half of the fixed-order result at scales p⊥ ∼ 50−60 GeV. This

suggests that the resummation scale should be of this order. We conventionally choose

Q = mH/2 as a central value. As far as the choice of the parameter p is concerned, we

have to ensure that at large p⊥ the resummed component vanishes faster than the fixed

order. Considering the asymptotic scaling in eq. (2.13), we choose p = 4 which guarantees

that the differential distribution vanishes as fast as 1/p5
⊥ for p⊥

>∼Q. In principle, any value

– 7 –
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Figure 1. Differences between leading-order distributions and their logarithmic contributions,

normalized to the leading-order results. The three curves show the case for top quark (solid/red),

top and bottom quarks (dotted/blue), and top-bottom interference (dot-dashed/green). See text

for details.

of p greater than 3 will equally do, since p only determines how fast the resummation is

turned off above the scale Q. We have indeed checked that by varying p by one unit around

p = 4 the results do not change significantly.

The same figure shows results for the full spectrum where both top and bottom loops

are included (dotted, blue curve), and results for top-bottom interference (dot-dashed,

green curve).6 In this case the situation changes considerably, and this will be the subject

of the next section.

2.2 Issues with b quarks

The “standard” approach to resummation described in section 2.1 becomes problematic in

case of the Higgs boson production in hadron collisions [34, 35, 38–41]. The difficulty is

related to the fact that the ggH vertex is not point-like but, rather, is induced by a quark

loop. The presence of the quark loop implies the existence of structure-dependent radiation

with peculiar properties and has important consequences for the resummation. The key

to the following discussion is the appreciation of the fact that the structure-dependent

radiation is suppressed if p⊥ is smaller than the mass of the quark but it becomes important

otherwise. For p⊥ larger than the quark mass, the soft and collinear approximations that

provide the foundation for small p⊥ resummation become unreliable, as they focus on

emissions off external lines and systematically neglect structure-dependent effects. In this

section we elaborate on this issue.

We consider Higgs boson production in gluon fusion mediated by a quark loop. We

denote the mass of the quark by mq and consider two cases mq � mH and mq � mH .

In the first case, the structure dependence enters at p⊥
>∼mq � mH , so that emissions off

the external lines dominate for transverse momenta up to the Higgs mass and even higher.

Therefore, if we restrict ourselves to values of p⊥ that are comparable to mH , the situation

6We ignore the bottom squared contribution, which is completely negligible in the Standard Model.

– 8 –
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is no different from point-like interaction, and there are no issues in the resummation

procedure described in the previous section. In the Standard Model, this is indeed what

happens with the top loop contribution to the Higgs boson transverse momentum spectrum.

The second case, mq � mH is very different. Indeed, in this case there are three distinct

regions p⊥
<∼mq, mq

<∼ p⊥ <∼mH and mH
<∼ p⊥. In the first region p⊥

<∼mq, the transverse

momenta of the Higgs boson and the recoiling partons are typically small enough not to

resolve the structure of the loop and the extra radiation factorizes. For the bottom-quark

contribution (mq ∼ 5 GeV) the effect of additional QCD radiation is strongly suppressed

in this region by all-order effects, so that its impact on the total cross section is small.7

Note, however, that in this region there are large logarithmic contributions of the type

ln2mH/mb, whose resummation is not fully understood even at the lowest perturbative

order [42, 43].

In the second regionmq
<∼ p⊥ <∼mH the structure-dependent radiation becomes essential

and the ggH vertex does not factorize. In addition to the usual logarithms lnmH/p⊥, the

radiation gives rise to logarithms ln p⊥/mq and lnmH/mq, whose origin and potential

resummation are not well understood.8

The reason why the small-p⊥ resummation is problematic in this region is the following.

Emissions off internal lines can become as important as emissions off external lines, and

together they probe the loop structure of the ggH vertex. It follows that approximating

the small p⊥ region with an on-shell ggH form factor is not justified. In particular, while

form factor effects in the top-quark case only introduce (p⊥/mH)-suppressed corrections,

in this case they both introduce a new logarithmic structure (ln p⊥/mq and lnmH/mq)

and suppress radiation with p⊥
>∼mq. In other words, while in the top case, described in

section 2.1, at finite p⊥, the coefficients of the logarithms differ from the resummed result

by p⊥-suppressed terms, in the b-quark case, this difference contains new logarithmic terms

ln p⊥/mb and lnmH/mb in the region mb
<∼ p⊥ <∼mH .

As a consequence, the collinear approximation should not be expected to work far away

from the b-quark threshold. To quantify this effect, we go back to figure 1. We see that,

while for the top-only case (solid, red line) the collinear approximation to the leading order

accounts for half of the result at about p⊥ ∼ 50− 60 GeV, for the top-bottom interference

this scale is reduced to about 30 GeV. When top and bottom contributions are considered

together, this effect is less dramatic since in the SM the interference accounts for about

∼ 5% of the full result. This can be seen in the dotted blue curve of figure 1.

Because of the above issues, it is clear that constructing a reasonable description of

the b-quark contribution to the Higgs transverse momentum distribution is problematic.

Since, as we already stressed, in this case the resummation of potentially large logarithms is

not entirely understood, the best we can do is to use different ways to interpolate between

regions of small and large transverse momenta and check to what extent the different results

are compatible.

As already stated, the Higgs boson production in the Standard Model is dominated by

the top quark loop; the bottom loop provides a very small contribution that is lifted up to

7This region is also very sensitive to non-perturbative effects.
8For some recent studies, see e.g. refs. [42–44].
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O(−5%) by its interference with the top amplitude. Because of this, a O(20−30%) control

on the top-bottom interference is sufficient to control the Higgs transverse momentum

spectrum at the few percent level. With this in mind, we now study in more detail the

different ways to treat the bottom contribution.

One option is to apply eq. (2.8) with the resummation scale set to Q ∼ mb [34].

This choice is equivalent to employing fixed-order description for all values of transverse

momenta. Indeed, for 1 GeV <∼ p⊥ <∼Q ∼ mb, the resummed logarithms ln(Q/p⊥) never

become large and for p⊥
>∼Q the fixed-order result is adopted anyhow. Since a typical

error made within this approach is provided by uncalculated higher order terms, if we use

a NLO computation for the interference, we make an error of order9 [αs/(2π)]2 ln4(mH/mb)

and [αs/(2π)]2 ln4(p⊥/mH) which both evaluate to 15− 20 percent, for p⊥ ∼ mb ∼ 5 GeV.

The previous option amounts to neglecting the resummation for the top-bottom inter-

ference and to using the fixed-order result for all transverse momenta; the other extreme

alternative consists of extending the resummation beyond its established domain of valid-

ity. We can do this by using the same resummation scale, Q ∼ mH/2, both for the top and

the top-bottom interference contributions [35, 38]. In this case, at low p⊥ we introduce

logarithms ln p⊥/Q in the interference through the resummation prescription which are

not guaranteed to be correct and, by doing that, we effectively introduce errors that are

similar to those discussed above. At higher p⊥ the impact of these logarithms becomes

smaller since at p⊥ ∼ Q the resummation effects smoothly turn off and we recover the fixed

order prediction. Hence, when we under- or over-resum logarithms we expect comparable

O(20%) theoretical errors on the interference contribution to the Higgs p⊥ spectrum. An

important question is whether these different sources of uncertainties pull the predictions

apart or they remain compatible with each other.

Before concluding this section, we mention that within the additive matching scheme

of eq. (2.8) the resummation term, which is proportional to the lowest-order form factor at

zero transverse momentum, is added to the fixed order result. As we mentioned earlier, the

form factor effects lead to a dependence of the leading order amplitude on p⊥, that is not

captured in this approach. To account for this, we also consider a multiplicative matching

scheme, which can be schematically defined as10

Σ(p⊥) = Σresum(p⊥) T f.o.

[
Σf.o.(p⊥)

Σresum(p⊥)

]
. (2.15)

Similarly to eq. (2.8), eq. (2.15) smoothly interpolates between a low p⊥ � Q region, where

resummation dominates, to a large p⊥ � Q region, where the result is obtained from a

fixed order calculation. Clearly, the fixed order accuracy is preserved in the p⊥ → 0 limit.

The main difference with eq. (2.8) is that now the higher order terms induced by the re-

summation in the transition region are weighted with the fixed (lower) order result at finite

transverse momentum. This should at least partially capture the p⊥ dependence of the ex-

act higher order amplitude, and lead to a more realistic description of the physics. Because

9Note that these estimates refer to the top-bottom interference contribution. As we said, the term

proportional to y2b is negligible in the Standard Model.
10The actual implementation of this procedure requires extra care, as described in appendix A.3.
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of this, we choose the multiplicative matching scheme eq. (2.15) as our default matching

scheme. Nevertheless, matching ambiguities are by construction of higher-order nature

and, therefore, any matching prescription is formally equally valid. Differences between

matching prescriptions can be used to estimate the uncertainty in the transition region.

3 Results

3.1 Inclusion of bottom-quark loops and matching uncertainties

In this section we describe the practical and technical implementation of the top-bottom

interference in the resummation and matching, and the uncertainty associated with it. As

we described in section 2.2, the rigorous resummation in the presence of the bottom-quark

loop is currently impossible. To remedy this problem, we adopt different approaches to

include this contribution in the matched result. We use the arbitrariness in the choice of

the resummation scale associated with the top-bottom interference and in the choice of the

matching scheme to assess the inherent ambiguity of the resummation procedures.

We start by discussing the resummation scale. We treat separately the contribution of

the top-squared amplitude and the top-bottom interference.11 In particular, we associate

two different resummation scales with the top and the interference contributions, and we

use the following notation to denote the various cumulative distributions

Σt+b(p⊥, Qt, Qb)→ top and bottom, including the interference; (3.1)

Σt(p⊥, Qt)→ only top. (3.2)

As explained in section 2.1, for the top-only contribution we set the resummation scale to

Qt = mH/2. For the interference, instead, we use the following prescriptions to quantify

the associated uncertainty (see section 2.2):

• We choose Qb ∼ mb, effectively switching off the resummation for the interference at

scales of the order of the bottom mass. As it was initially suggested in ref. [34], we

choose Qb = 2mb as our central scale. This is achieved by computing

Σt+b(p⊥,mH/2, 2mb) = Σt(p⊥,mH/2) + Σt+b(p⊥, 2mb, 2mb)− Σt(p⊥, 2mb). (3.3)

This implies that in the region of transverse momenta that we are interested in, the

interference is described only at fixed order and no resummation for this contribution

is performed.

• We consider the opposite situation in which we rely on the collinear approximation

also for mb � p⊥, and simply treat the new logarithmic terms that appear above this

scale as a regular remainder that can be described at fixed order. As a consequence,

the resummation for the interference contribution is switched off, as in the top-only

case, at scales of order 60 GeV. We choose Qt = Qb = mH/2 as our central scale, for

simplicity.

11For our numerical results, we also include the bottom squared contribution, which is however negligible

in the Standard Model.
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In both approaches, logarithms of the ratio p⊥/mb are not resummed. Although in

the region mb � p⊥ � mH these logarithmic terms can be potentially large and therefore

should be included to all orders, recent studies seem to suggest that an accurate prediction

of these terms is achieved by considering the first few terms in the fixed-order perturbative

expansion [42, 43].

As far as the resummation is concerned, the result will be nearly identical to the

mq → ∞ one.12 The only difference is that now the Born squared amplitude and the

hard-virtual correction will contain the full dependence on the top and bottom masses. In

particular, no modification of the p⊥-dependent radiation pattern is introduced. Techni-

cally, we implement the LO and the NLO amplitudes for gg → H with full mass dependence

following ref. [45].

We now study numerically the difference between the two prescriptions for the bottom

resummation scale. We start by introducing the setup that we adopt for our predictions.

We consider proton collisions at the 13 TeV LHC. The Higgs boson mass is taken to be

mH = 125 GeV and the top and bottom pole masses13 are set to mt = 173.2 GeV and

mb = 4.75 GeV, respectively. We work within a fixed flavor-number scheme (nF = 5)

and use the PDF4LHC15 nnlo set of parton distribution functions [46] interfaced through

LHAPDF6 [47]. We use the value of the strong coupling constant αs provided by the PDF

set. As central values for the renormalization and factorization scales we take

µR = µF = MT /2, with MT =
√
m2
H + p2

⊥. (3.4)

In order to estimate the perturbative uncertainties for each prediction, we perform

a 7-point variation of the factorization (µF ) and renormalization (µR) scales around the

central value by a factor of two. Moreover, we vary Qt and Qb by a factor of two around

their respective central values, keeping fixed µR = µF = MT /2. The final uncertainty band

is obtained as the envelope of all above variations. As a default, we adopt the multiplicative

scheme discussed in section 2.2 and described in detail in appendix A.3.

The fixed-order NLO results for the top-bottom interference are based on the calcu-

lation presented in [36], which in turn comprises the two-loop amplitudes for gg → Hg,

qq̄ → Hg and qg → Hq derived in [32, 33] together with corresponding loop-squared real

radiation amplitudes as provided by OpenLoops [48, 49] combined with Collier [50].

For the Monte Carlo integration and subtraction the Powheg-Box-Res is used [51, 52].

We now discuss the dependence on the choice of the resummation scale associated with

the bottom contribution. We start by comparing results for the top-bottom interference

for two values of the resummation scale Qb. The results are displayed in the left plot in

figure 2. The two predictions differ by about 20% for p⊥ ∼ 30 GeV, in line with what

we expected from the discussion in section 2.2. We note, however, that although the two

results are computed for very different choices of the resummation scales, they are still

compatible (although marginally for p⊥
>∼ 25 GeV) within their respective uncertainties.

Only for p⊥
>∼ 50 GeV the two results differ significantly, since the interference obtained

12HEFT in the following.
13We work in the on-shell renormalization scheme as a default.
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Figure 2. Comparison between two resummation-scale prescriptions for top-bottom interference

(left) and full (right) distributions. See text for details.

with Qb = 2mb vanishes faster than the one obtained with Qb = mH/2. However, in this

region the contribution of the interference to the physical spectrum is completely negligible.

Each of the two results has a relative uncertainty of about 15% for p⊥
<∼ 40 GeV. The

variations of the resummation scales around their central value, and the variation of µR
and µF have a similar impact on the final band.

The right plot of figure 2 shows an analogous comparison for the transverse momentum

distribution that includes both top and bottom contributions. Since the interference only

accounts for about 5% of the full result, we find that the two resummation prescriptions

for the top-bottom interference are indistinguishable within the uncertainties of the top

contribution. Indeed, in this case the uncertainty band is dominated by the µR and µF
variation of the top contribution, which amounts to about 10−15% for p⊥

<∼ 40 GeV, while

the resummation-scale uncertainty amounts to about 5% in this region. Note however

that the top-only contribution has been computed one order higher, both in fixed-order

QCD [7–11] and in the resummation framework [29]. In this paper, we focus on the b-quark

effects and hence do not include these results but, as a matter of principle, they can be

used to further reduce the uncertainty on the top contribution.

We now investigate the second source of resummation ambiguity, namely the choice of

the matching scheme. As discussed in section 2.2, besides our default multiplicative scheme

we also consider an additive scheme. Both schemes are precisely defined in appendix A.3.

We remind the reader that, as far as the top-bottom interference is concerned, the main

qualitative difference between the two approaches is that within the additive matching

scheme, the resummation contribution is proportional to the gg → H form factor at zero

transverse momentum whereas in the multiplicative matching scheme it is weighted by the

form factor g∗g∗ → H at finite transverse momentum. In order to study this source of

ambiguity more precisely, we consider the additive matching scheme, with two different

scales (Qb = mH/2 and Qb = 2mb), and compare the results to the multiplicative scheme.

Since in the additive scheme the resummed contribution does not include form-factor

effects, we expect sizable differences between results obtained with Qb = mH/2 and
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Figure 3. Comparison between the additive scheme with Qt = mH/2, Qb = 2mb (left plot) or

Qt = Qb = mH/2 (right plot), and the default multiplicative scheme with Qt = Qb = mH/2.

Qb = 2mb. We recall that this is not the case in the multiplicative scheme (see figure 2)

where form-factors effects are automatically accounted for. We then show, in figure 3, the

comparison between the top-bottom interference in the default multiplicative scheme with

Qb = mH/2 and the additive scheme with Qb = 2mb (left plot) and Qb = mH/2 (right

plot). We observe that the difference between the two schemes is larger when the additive

scheme with Qb = mH/2 is used. Nevertheless, we find that also in this case, the difference

between the two schemes for the interference does not exceed ∼ 20% in the bulk of the

distribution. Again, the full transverse momentum distribution, shown in the left plot of

figure 4, is only mildly affected by this ambiguity.

Finally, in the right plot of figure 4, we show the ratio of the full distribution computed

using the default multiplicative scheme, to the corresponding HEFT result. The default

result, i.e. multiplicative matching scheme with Qt = Qb = mH/2, is in good agreement

with the NLO prediction. For comparison, we also report the other extreme solution

obtained with the multiplicative scheme with Qt = mH/2, Qb = 2mb. We observe that this

choice is in good agreement with both the fixed order and the default matched solution.

In summary, we find that a conservative approach towards the inclusion of bottom-mass

effects in the matched prediction for the Higgs-p⊥ spectrum leads to a ∼ 20% ambiguity

on the top-bottom interference in the region mb
<∼ p⊥. Since the interference provides a

rather small contribution to the Higgs transverse momentum distribution, this ambiguity

translates into a few-percent uncertainty in the Higgs p⊥ spectrum.

In what follows, we will use the result obtained with the multiplicative matching scheme

with Qt = Qb = mH/2 as our central value. To estimate uncertainties, we will consider the

envelope of scale variations and the result obtained either by using the multiplicative or the

additive scheme with Qt = mH/2, Qb = 2mb. In addition to these source of uncertainty,

an additional ambiguity arises from the choice of the renormalization scheme for the quark

masses. This will be discussed in the next section.
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Figure 5. The top-bottom interference contribution for the fixed order (left) and the matched

(right) distributions, for different choices of the mass-renormalization scheme. See text for details.

3.2 Mass-scheme uncertainty and final results

In this section, we present our final results for the NNLL+NLO matched distribu-

tions. We use as default the multiplicative matching scheme with resummation scales

Qt = Qb = mH/2. We renormalize the bottom-quark mass in the on-shell scheme. To esti-

mate the uncertainty we change the details of the resummation and matching as explained

in the previous section. In addition, we consider a different renormalization scheme for the

bottom quark mass to estimate the related uncertainty. To this end, we employ the MS

renormalization scheme. We take the mass renormalization scale to be 100 GeV, and use

mb = mMS
b (100 GeV) = 3.07 GeV as an input parameter.14

In figure 5 we display the results for the top-bottom interference contribution. The

fixed order result is presented in the left plot. We show the uncertainty band for the on-shell

14We calculated this value using the program RunDec [53, 54] with the input value

mMS
b (mMS

b ) = 4.2 GeV.
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Figure 6. The full top plus bottom distribution for the fixed order (left) and the matched (right)

results, for different choices of the mass renormalization scheme. See text for details.

mass-renormalization scheme and the central value for the MS scheme. The uncertainty

band is calculated from a 7-point scale variation. We see that the scheme ambiguity is

larger than the scale variation, as already observed in ref. [36]. The right plot shows our

results for the matched distributions with the two different mass schemes. The difference

between the two bottom-mass schemes is similar to the fixed order case, but since now the

matched prediction has a smaller uncertainty, the separation between the two results is

more significant. As follows from figure 5, the top-bottom interference contribution has an

ambiguity of about 15−20% down to p⊥ ∼ 10 GeV. In order to improve on this, one would

need a NNLO calculation for the top-bottom interference, which is currently out of reach.

The analogous plots for the full distribution that includes both top and bottom ampli-

tudes are shown in figure 6, for the fixed order (left) and resummed (right) results. Unlike

for the top-bottom interference contribution, in this case the difference between the two

results for the bottom-mass schemes are much smaller, at the level of a few percent. This

is because the top-bottom interference contributes to just O(−5%) of the full spectrum.15

Our best current predictions for the top-bottom interference and full p⊥ spectrum

including all the relevant uncertainties are shown in figure 7. As discussed earlier, the

uncertainty bands are obtained as an envelope of:

• a 7-point renormalization and factorization scale variation;

• resummation scale variation Qt = Qb ∈ {mH/4,mH/2,mH} for µR = µF = MT /2;

• multiplicative matching scheme with Qt = mH/2, Qb = 2mb for µR = µF = MT /2;

• additive matching scheme with Qt = mH/2, Qb = 2mb for µR = µF = MT /2.

In addition, if the default matched result but in the MS renormalization scheme for the

bottom-quark mass is outside the uncertainty band estimated as described above, we extend

15Although the bottom-mass scheme ambiguity has a very moderate impact on the SM Higgs p⊥ spectrum,

this effect might be more significant for specific BSM scenarios. A dedicated study of such scenarios is

necessary in order to assess the theory uncertainties precisely.
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Figure 7. The distributions for the top-bottom interference contribution (left) and the full NNLL

matched result (right), using the multiplicative scheme with resummation scale Qb = Qt = mh/2

as central values. See text for details.

the uncertainty band to accommodate the mass scheme ambiguity. In fact, as shown

in figure 5, the latter ambiguity is the major source of uncertainty for the top-bottom

interference for transverse momenta below 30 GeV.

The top-bottom interference is shown in the left plot of figure 7. The qualitative

features of the fixed-order result are unchanged by the resummation, which however has

a noticeable effect on the shape of the distribution. Our final result has an uncertainty of

about ∼ 20%, and is compatible with the fixed-order one. In the right plot of figure 7 we

present the results for the full spectrum. At large values of the Higgs p⊥
>∼ 30 GeV the fixed

order result is contained in the error band of the resummed result. However at smaller

values, p⊥
<∼ 30 GeV we observe a marked difference between the two results. The error for

the full matched result is close to 10% for p⊥
<∼ 30 GeV and close to ∼ 20% at larger p⊥.

We stress however that the uncertainty on the dominant top contribution can be further

reduced by employing the results of refs. [7–11, 29, 55].

4 Conclusions

In this paper we performed a detailed study of the Higgs transverse momentum distribu-

tion, focusing on the region of intermediate values of transverse momenta, mb
<∼ p⊥ <∼mH .

Indeed, a precise theoretical control of the Higgs p⊥ distribution in this region is essential

to test the Higgs sector of the Standard Model. In particular, it provides a rare opportunity

to probe the Yukawa couplings of light quarks, which are currently poorly constrained. In

fact, although the main contribution to the Higgs production cross section is due to the

coupling of the Higgs to top quarks, the coupling to bottom quarks has a non-negligible

impact on the total cross section through its interference with the top, decreasing the cross

section by about O(5%).

The theoretical description of the Higgs p⊥ distribution for mb
<∼ p⊥ <∼mH in QCD is

particularly challenging since, once the contribution of bottom quarks is included, the per-

turbative cross section for small p⊥ suffers from the presence of potentially large logarithms
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ln (p⊥/mb), ln (mH/mb), which can spoil the convergence of the perturbative expansion.

The physical origin of these large logarithms is not yet fully understood, and their all-order

resummation remains currently out of reach.

Given these conceptual limitations, we provided our best theoretical description of the

Higgs p⊥ distribution at NNLL+NLO QCD for moderate values of the transverse momen-

tum, including dependence on the bottom mass. An important part of our study was a

proper assessment of the theory uncertainty of our results. The NLO result for the top-

bottom interference suffers from scale uncertainties, which amount to around 15%. On top

of this, a non-negligible source of uncertainty is provided by the renormalization scheme

ambiguity for the bottom-quark mass, which we estimated by varying from the on-shell

to the MS scheme. This amounts to an uncertainty of up to 20% and it dominates the

error budget of our prediction for the top-bottom interference at small values of the Higgs

p⊥. Together with the uncertainties associated with the fixed order calculation, we also

performed a detailed study of the ones associated with the resummation procedure in the

presence of bottom quarks. In order to estimate these ambiguities for the top-bottom

interference, we matched the fixed order NLO predictions with the NNLL resummed cross-

section using two different schemes, an additive and a multiplicative one, and two very

different choices of the resummation scale, Qb = 2mb and Qb = mH/2. This leads to an

uncertainty between 15− 20% on the top-bottom interference contribution to the p⊥ spec-

trum. Since the interference amounts to about 5% of the full p⊥ spectrum, we conclude

that unknown higher order b-quark mass effects can modify the Higgs transverse momen-

tum distribution by few percent. All ambiguities associated with the resummation in the

presence of bottom quarks produce consistent results within the NNLL+NLO uncertainty

band, which is however driven by uncertainties in the (NLO) top quark contribution. The

latter is currently known to higher N3LL+NNLO accuracy [7–11, 29, 55]. It would be

interesting to combine these results with the ones presented in this article. We leave this

for future investigations.

In conclusion, we presented a description of the Higgs p⊥ spectrum at NNLL+NLO

QCD including both top and bottom quark contributions. We found that the uncertainty

on the top-bottom interference is O(20%) in the region of interest mb
<∼ p⊥ <∼mH . Given

the intrinsic ambiguities from scale dependence and, in particular, from the choice of the

bottom-mass renormalization scheme and matching scheme, any improvement in this de-

scription will inevitably require the computation of the NNLO QCD corrections to the

bottom-quark contribution to gg → H and gg → H + jet.
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A Resummation and matching: details

In this appendix we briefly derive the resummation formula in the toy model described

in the main text, report the final NNLL formulas that we eventually used in our results

and describe in details the matching procedure we employ. We follow the approach of

refs. [29, 55], and we refer the reader to these publications for the details.

A.1 The LL case

We consider the p⊥ distribution of a Higgs boson in pp → H in the p⊥ → 0 limit, at

leading-logarithmic accuracy. In this approximation, one must only control the leading

singularity of the n-emissions matrix element at all perturbative orders. This is done by

approximating the process with an ensemble of independent soft-collinear gluons emitted

off the two incoming legs.

To set up the notation we introduce two reference light-like momenta along the beam

direction that will serve to parametrize the radiation16

p̃1 =
mH

2
(1, 0, 0, 1) , p̃2 =

mH

2
(1, 0, 0,−1) . (A.1)

We now consider a real emission k1 collinear to p̃1 that can be expressed as

k1 =
(

1− z(`1)
1

)
p̃1 +

(
1− z(`2)

1

)
p̃2 + κ⊥1 , (A.2)

where κ⊥1 is a space-like four-vector, orthogonal to both p̃1 and p̃2 such that κ2
⊥1 = −k2

⊥1.

Note that since k1 is massless

k2
⊥1 =

(
1− z(`1)

1

)(
1− z(`2)

1

)
m2
H =

2(p̃1 · k1)2(p̃2 · k1)

2(p̃1 · p̃2)
.

Moreover, if k1 is collinear to p̃1 one has (from (1− z(`1)
1 ) > (1− z(`2)

1 ))

z
(`1)
1 < 1− k⊥1

mH
. (A.3)

An analogous limit on z
(`2)
1 as in eq. (A.3) holds when k1 is collinear to p̃2. Subsequent

emissions off leg `1 can be parametrized analogously to eq. (A.2), replacing the reference

momentum p̃1 with

p̃1 →

 k∏
i=1
`i=`1

z
(`i)
i

 p̃1 ' p̃1, (A.4)

16We remind the reader that we are working in the soft approximation. As a consequence the kinematics

is much simplified.
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where the product runs over all emissions off leg `1 that occur prior to the emission we are

parametrizing, and we used the fact that in the soft limit z
(`i)
i ' 1. A similar parametriza-

tion holds for emissions off leg `2.

The transverse recoil of the radiation is absorbed entirely by the Higgs boson that

acquires a transverse momentum

p⊥ = |
∑
i

~k⊥i|. (A.5)

In order to predict the p⊥ → 0 limit, we need to sum emissions at all orders in the strong

coupling. With LL accuracy, the squared amplitude for n emissions can be approximated

by a product of n independent splitting kernels, as the soft correlation between emissions

starts contributing at NLL order. The physical picture corresponding to this approximation

is given by a set of independent emissions off legs `1 and `2. In this approximation, the

differential partonic distribution can be written as

dσ̂

dp⊥
' [dpH ]|M(p̃1 + p̃2 → H)|2δ(4)(p̃1 + p̃2 − pH)

× 1

n!

n∏
i=1

[dki]|Msoft(ki)|2δ

(
p⊥ − |

∑
i

~k⊥i|

)
, (A.6)

where the eikonal squared amplitude for a single emission reads

[dk]|Msoft(k)|2 =
∑
`=1,2

2CA
αs(k⊥)

π

dk⊥
k⊥

dz(`)

1− z(`)
Θ
(

(1− z(`))− k⊥/mH

) dφ
2π
. (A.7)

In eq. (A.7), the coupling is evaluated at k⊥ to account for the leading-logarithmic contri-

bution of the gluon branching into either a pair of soft quarks or gluons, see e.g. [56] for a

detailed explanation.

The resummation is naturally performed at the level of the cumulative distribution,

defined as

Σ(p⊥) =

∫ p⊥

0
dp′⊥

dσ

dp′⊥
. (A.8)

Indeed while the differential spectrum involves plus distributions in p⊥, Σ(p⊥) is a regular

function. From eq. (A.6), it follows that the cumulative distribution with LL accuracy can

be written as

Σ(p⊥) ' [fg(µF )⊗ fg(µF )] (mH
2/s)×

∫
dσ̂Θ

(
p⊥ − |

∑
i

~k⊥i|

)
, (A.9)

where fg(µF ) is the gluon parton density evaluated at the factorization scale µF , and the

convolution is defined as usual

[f ⊗ g] (x) ≡
∫ 1

0
dy dz δ(x− yz)f(y)g(z). (A.10)
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Since p⊥ only constrains the transverse momentum of the emissions, we can perform the

integrals over the z
(`i)
i components inclusively. It is therefore convenient to introduce

the functions

R′1 (p⊥) =

∫
[dk]|Msoft(k)|2 (2π)δ(φ− φ̄) p⊥δ (p⊥ − k⊥) Θ(z(2) − z(1)) ,

R′2 (p⊥) =

∫
[dk]|Msoft(k)|2 (2π)δ(φ− φ̄) p⊥δ (p⊥ − k⊥) Θ(z(1) − z(2)) .

(A.11)

This notation allows us to parametrize the real-emission matrix element and phase space as

[dki]|Msoft(ki)|2 =
dk⊥i
k⊥i

dφi
2π

∑
`i=1,2

R′`i (k⊥i) =
dζi
ζi

dφi
2π

∑
`i=1,2

R′`i (ζik⊥1) , (A.12)

where we defined ζi = k⊥i/k⊥1.

We now discuss the purely virtual corrections, which are encoded in the gluon form

factor |M(p̃1 + p̃2 → H)|2. We write it as

|M(p̃1 + p̃2 → H)|2 = H(mH)|MB(p̃1 + p̃2 → H)|2, (A.13)

where the function H contains all the IRC singularities and the constant finite corrections

of the form factor, and MB denotes the Born amplitude. Since we are working with LL

accuracy, we are only interested in the leading singular term of H at all orders (while

neglecting all finite terms) which can be written as

H(mH) ' exp

{
−
∫

[dk]|Msoft(k)|2
}
. (A.14)

Note that the integral in eq. (A.14) is divergent and is to be considered as regularized.

In order to cancel the IRC divergences of the real emissions (A.6) against the ones in the

virtual corrections (A.14) at all orders, we introduce a small slicing parameter ε > 0 such

that all emissions with a transverse momentum k⊥i smaller than εk⊥1 can be ignored in the

computation of the observable p⊥, in the limit ε→ 0. The real emissions with k⊥i < εk⊥1,

hereby denoted as unresolved, can be directly combined with the virtual corrections at all

orders. Their combination gives rise to an exponential suppression factor of the type

H(mH)
∞∑
m

1

m!

m∏
i=1

[ ∫
dk⊥i
k⊥i

dφi
2π

∑
`i=1,2

R′`i (k⊥i) Θ (εk⊥1 − k⊥i)
]

= exp

−
∫
dk⊥
k⊥

dφ

2π

∑
`=1,2

R′` (k⊥) Θ (k⊥ − εk⊥1)

 ≡ e−R(εk⊥1). (A.15)

On the other end, emissions with k⊥i > εk⊥1, that we denote as resolved, are con-

strained by the observable’s measurement function and therefore cannot be integrated over

inclusively. The resummed LL cross section thus reads

Σ(p⊥) 'σB
∫
dk⊥1

k⊥1

dφ1

2π
e−R(εk⊥1)

∑
`1=1,2

R′`1 (k⊥1)

×
∞∑
n=0

1

n!

n+1∏
i=2

∫ 1

ε

dζi
ζi

dφi
2π

∑
`i=1,2

R′`i (ζik⊥1) Θ

(
p⊥ − |

∑
i

~k⊥i|

)
, (A.16)
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where σB is the Born cross section. The above formula, in the limit ε → 0 exactly repro-

duces the LL corrections to the p⊥ distribution, see ref. [29] for a formal proof. Eq (A.16)

can be further simplified by observing that in the resolved radiation one always has ζi ∼ 1,

since configurations in which ζi � 1 are automatically canceled against the exponential

Sudakov factor e−R(εk⊥1). Therefore, one can expand the functions R′ (ζik⊥1) in powers of

ln(1/ζi) as

R′`i (ζik⊥1) = R′`i (k⊥1) +R′′`i (k⊥1) ln
1

ζi
+ . . . , (A.17)

and retain terms that contribute at a given logarithmic order. In particular, at LL, only

the first term in this expansion contributes, and higher-order terms matter at higher loga-

rithmic orders (see refs. [29] for details).

Similarly, we can consistently expand out the ε dependence of the exponential Su-

dakov as

e−R(εk⊥1) = e−R(k⊥1)e−R
′(k⊥1) ln 1

ε
+..., (A.18)

where the ε dependence manifestly cancels against the one in the resolved contribution,

and we defined

R′ (k⊥1) ≡
∑
`1=1,2

R′`1 (k⊥1) . (A.19)

Therefore, with LL accuracy, eq. (A.16) becomes

Σ(p⊥) 'σB
∫
dk⊥1

k⊥1

dφ1

2π
e−R(k⊥1)εR

′(k⊥1)
∑
`1=1,2

R′`1 (k⊥1)

×
∞∑
n=0

1

n!

n+1∏
i=2

∫ 1

ε

dζi
ζi

dφi
2π

∑
`i=1,2

R′`i (k⊥1) Θ

(
p⊥ − |

∑
i

~k⊥i|

)
. (A.20)

Equation (A.20) is suitable for a numerical implementation, as explained in ref. [29] in

detail. The dependence on ε is at most power suppressed (i.e. O(εp⊥)) and it vanishes in

the limit ε → 0. This limit can therefore be taken safely numerically, and the result is

absolutely stable for very small values of ε.17

We now introduce the resummation scale Q as a possible way to switch off the resum-

mation at large transverse momentum. This is defined with a procedure similar to the one

discussed in the text. We first break the logarithm as follows

L ≡ ln
mH

k⊥1
= ln

mH

Q
+ ln

Q

k⊥1
. (A.21)

The above operation will allow us (as explained shortly) to have an additional handle

(namely the scale Q) to estimate the size of subleading logarithmic terms. Moreover, we

also slightly modify the phase space available for the radiation, by introducing power-

suppressed contributions that ensure that at large p⊥ the resummation effects completely

17In our implementation we use ε = e−20, although any value below ε = e−6 does not lead to any

appreciable differences.

– 22 –



J
H
E
P
0
9
(
2
0
1
8
)
0
3
5

vanish. This can be done, as a first step, by modifying the resummed logarithms as follows

ln
Q

k⊥1
→ 1

p
ln

(
Qp

kp⊥1

+ 1

)
≡ L̃, (A.22)

where p is a positive real parameter which is chosen such that the resummed differential

distribution vanishes as 1/pp+1
⊥ at large p⊥. The above prescription essentially amounts to

the following

1. First, we split the resummed logarithm L into the sum of a small logarithm ln(mH/Q)

(with Q ∼ mH) and a large one ln(Q/k⊥1). This operation allows one to introduce

a generic scale Q which appears in the resummed logarithms. One can now expand

L about ln(Q/k⊥1), retaining all terms with the desired logarithmic accuracy. Effec-

tively, this implies that ln(mH/Q) is treated perturbatively at fixed order. Moreover,

we replace ln(Q/k⊥1) by the modified logarithm L̃. In our LL example this means

R(k⊥1)→ R̃(k⊥1) +O(lnmH/Q); R(k⊥1)→ R̃′(k⊥1) +O(lnmH/Q), (A.23)

where R̃ and R̃′ are functions of the modified logarithm L̃ only.

2. eq. (A.22) comes together with the following prefactor J in eq. (A.20)

J (k⊥1) =

(
Q

k⊥1

)p(
1 +

(
Q

k⊥1

)p)−1

. (A.24)

This corresponds to the Jacobian for the transformation (A.22), and ensures the

absence of fractional (although power suppressed) αs powers in the final distribu-

tion [29]. This factor, once again, leaves the small k⊥1 region untouched, and only

modifies the large p⊥ region by power-suppressed effects. This is effectively mapping

the limit k⊥1 → Q onto k⊥1 →∞. Although this procedure seems a simple change of

variables, we stress that the observable’s measurement function (i.e. the Θ function

in eq. (A.20)) is not affected by this prescription. As a consequence, the final result

will depend on the parameter p through power-suppressed terms.

The difference between the above prescription and what was introduced in the text is

that the argument of the (modified) logarithms is now k⊥1 instead of p⊥. This prescription

is technically more correct, since in the small k⊥1 region, which governs the p⊥ → 0 limit,

the modified logarithms leave eq. (A.20) untouched. Conversely, at large k⊥1, where one

has k⊥1 ∼ p⊥, the above prescription reduces to what was defined in the text, i.e. the

modified logarithms of k⊥1 in this region are formally equivalent to modified logarithms in

p⊥. To see this, we observe that when k⊥1 � Q the function R′(k⊥1)� 1. Therefore, the

probability of having any emission after the first one in eq. (A.20) is strongly suppressed.

As a consequence, at large k⊥1, the only relevant event is the one that involves a single

emission k1, for which the cross section reads

Σ(p⊥) ∼σB
∫
dk⊥1

k⊥1

dφ1

2π
J (k⊥1)e−R̃(k⊥1)

∑
`1=1,2

R̃′`1 (k⊥1) Θ
(
p⊥ − |~k⊥1|

)
= e−R̃(p⊥).

(A.25)
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It is easy to see that, if eq. (A.25) were evaluated without the factor J , it would lead

to additional power-suppressed terms with fractional power of the coupling, which are

clearly spurious.

A.2 Final formulas for NNLL resummation

Beyond LL, eq. (A.20) is corrected to account for the description of the real-emission matrix

element and phase space in less singular configurations, as well as higher perturbative

corrections. To NNLL order it can be expressed as [29]

Σ(p⊥) =

∫
dk⊥1

k⊥1

dφ1

2π
J (k⊥1)

εR̃′(k⊥1)
∞∑
n=0

1

n!

n+1∏
i=2

∫ 1

ε

dζi
ζi

dφi
2π

∑
`1=1,2

R̃′`1 (k⊥1)


×

{
d

dL̃

[
−e−R̃(k⊥1)L(k⊥1)

]
Θ

(
p⊥ −

∣∣∣∣∣
n+1∑
i=1

~k⊥i

∣∣∣∣∣
)

+ e−R̃(k⊥1)R̃′(k⊥1)

×
∫ 1

ε

dζs
ζs

dφs
2π

 ∑
`i=1,2

(
δR̃′`i(k⊥1) + R̃′′`i(k⊥1) ln

k⊥1

k⊥s

)
L̂(k⊥1)− dL̂(k⊥1)

dL̃


×

[
Θ

(
p⊥ −

∣∣∣∣∣
n+2∑
i=1

~k⊥i

∣∣∣∣∣
)
−Θ

(
p⊥ −

∣∣∣∣∣
n+2∑
i=1
i 6=s

~k⊥i

∣∣∣∣∣
)]}

, (A.26)

where ζi = k⊥i/k⊥1. In this formula, the Sudakov radiator R̃(k⊥1) is corrected with respect

to its LL expression by higher-order corrections of both soft and collinear origin. The same

comment applies to the function R̃′`i which we decided to split into the old R̃′ (derivative

of the LL radiator defined above), plus a correction that contains all subleading effects,

therefore replacing R̃′ with

R̃′`i → R̃′`i + δR̃′`i . (A.27)

The correction due to δR̃′`i is only relevant to NNLL order for one of the resolved emissions.

This special emission is denoted by the subscript s in eq. (A.26). After expanding to

first order the corresponding term proportional to δR̃′`i arising from the initial εR̃
′

factor,

one ends up with the second term in the curly bracket in eq. (A.26), see ref. [29] for

a full derivation. The same manipulations apply to the R̃′′ correction coming from the

expansion (A.17) discussed above.

Moreover, we introduced the following generalized luminosity coefficient

L(k⊥1) = |MB|2
∑
i,j

∫
dx1dx2

∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2
fi

(
µF e

−L̃,
x1

z1

)
fj

(
µF e

−L̃,
x2

z2

)

× δ(x1x2s−mH
2)

[
δgiδgjδ(1− z1)δ(1− z2)

(
1 +

αs(µR)

2π
H̃(1)

(
µR,

Q

mH

))

+
αs(µR)

2π

1

1−2αs(µR)β0L̃

(
C̃

(1)
gi

(
z1, µF ,

Q

mH

)
δ(1−z2)δgj+{z1 ↔ z2; i↔ j}

)]
,

(A.28)
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and its NLL approximation

L̂(k⊥1) = |MB|2
∫
dx1dx2fg

(
µF e

−L̃, x1

)
fg

(
µF e

−L̃, x2

)
δ(x1x2s−mH

2). (A.29)

We now report all the various ingredients entering the above formulas. The O(αs)

correction to the collinear coefficient functions reads

C̃
(1)
gi

(
z, µF ,

Q

mH

)
= −P (0),ε

ij (z)− δijδ(1− z)CA
π2

12
+ P

(0)
ij (z) ln

Q2

µ2
F

(A.30)

where P
(0)
ij are the LO Altarelli-Parisi splitting functions

P (0)
qq (z) = CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
,

P (0)
qg (z) = TR

[
z2 + (1− z)2

]
,

P (0)
gq (z) = CF

1 + (1− z)2

z
,

P (0)
gg (z) = 2CA

[
z

(1− z)+
+

1− z
z

+ z(1− z)

]
+ 2πβ0δ(1− z), (A.31a)

with β0 = (11CA − 2nf )/(12π) and P
(0),ε
ij (z) are given by

P (0),ε
qq (z) = −CF (1− z) , (A.32a)

P (0),ε
gq (z) = −CF z , (A.32b)

P (0),ε
qg (z) = −2TRz(1− z) , (A.32c)

P (0),ε
gg (z) = 0. (A.32d)

The function H̃(1)
(
µR,

Q
mH

)
is defined as

H̃(1)

(
µR,

Q

mH

)
= H(1) −

(
B(1) +

A(1)

2
ln
mH

2

Q2

)
ln
mH

2

Q2
+ 4πβ0 ln

µ2
R

mH
2
, (A.33)

where H(1) denotes the finite one-loop virtual correction to the gg → H process and

A(i), B(i) are reported below. For the top contribution in the mt → ∞ approximation,

H(1) reads

H(1) = CA

(
5 +

7

6
π2

)
− 3CF = 11 +

7

2
π2 . (A.34)

The result including full quark mass dependence has been computed analytically in refs. [45,

57, 58].18

We expand the Sudakov radiator as

R̃ = L̃g1(λ) + g2(λ) +
αs(mH)

π
g3(λ), (A.35)

18In our implementation we take both the Born amplitude and the virtual corrections from ref. [45].
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where

λ = αs(µR)β0L̃. (A.36)

We introduce

xQ =
Q

mH
, (A.37)

and write

g1(λ) =
A(1)

πβ0

2λ+ ln(1− 2λ)

2λ
, (A.38)

g2(λ) =
1

2πβ0
ln(1− 2λ)

(
A(1) ln

1

x2
Q

+B(1)

)
− A(2)

4π2β2
0

2λ+ (1− 2λ) ln(1− 2λ)

1− 2λ

+A(1)

(
− β1

4πβ3
0

ln(1− 2λ)((2λ− 1) ln(1− 2λ)− 2)− 4λ

1− 2λ

− 1

2πβ0

(2λ(1− ln(1− 2λ)) + ln(1− 2λ))

1− 2λ
ln

µ2
R

x2
QmH

2

)
, (A.39)

g3(λ) =

(
A(1) ln

1

x2
Q

+B(1)

)(
− λ

1− 2λ
ln

µ2
R

x2
QmH

2
+

β1

2β2
0

2λ+ ln(1− 2λ)

1− 2λ

)

− 1

2πβ0

λ

1− 2λ

(
A(2) ln

1

x2
Q

+B(2)

)
− A(3)

4π2β2
0

λ2

(1− 2λ)2

+A(2)

(
β1

4πβ3
0

2λ(3λ− 1) + (4λ− 1) ln(1− 2λ)

(1− 2λ)2
− 1

πβ0

λ2

(1− 2λ)2
ln

µ2
R

x2
QmH

2

)
+A(1)

(
λ
(
β0β2(1− 3λ) + β2

1λ
)

β4
0(1− 2λ)2

+
(1− 2λ) ln(1− 2λ)

(
β0β2(1− 2λ) + 2β2

1λ
)

2β4
0(1− 2λ)2

+
β2

1

4β4
0

(1− 4λ) ln2(1− 2λ)

(1− 2λ)2
− λ2

(1− 2λ)2
ln2 µ2

R

x2
QmH

2

− β1

2β2
0

(2λ(1− 2λ) + (1− 4λ) ln(1− 2λ))

(1− 2λ)2
ln

µ2
R

x2
QmH

2

)
. (A.40)

The expressions of R̃′, δR̃′, and R̃′′ used in eq. (A.26) are defined as

R̃′ = − d

dL̃

(
L̃g1(λ)

)
, δR̃′ = −dg2(λ)

dL̃
, R̃′′ =

dR̃′

dL̃
. (A.41)

The β function coefficients read

β0 =
11CA − 2nf

12π
,

β1 =
17C2

A − 5CAnf − 3CFnf
24π2

, (A.42)

β2 =
2857C3

A + (54C2
F − 615CFCA − 1415C2

A)nf + (66CF + 79CA)n2
f

3456π3
. (A.43)
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Finally, we have

A(1) = 2CA,

A(2) =

(
67

9
− π2

3

)
C2
A −

10

9
CAnf ,

A(3) =

(
−22ζ3 −

67π2

27
+

11π4

90
+

15503

324

)
C3
A +

(
10π2

27
− 2051

162

)
C2
Anf

+

(
4ζ3 −

55

12

)
CACFnf +

50

81
CAn

2
f ,

B(1) =− 11

3
CA +

2

3
nf ,

B(2) =

(
11ζ2

6
− 6ζ3 −

16

3

)
C2
A +

(
4

3
− ζ2

3

)
CAnf + CACF . (A.44)

A.3 Matching to fixed order

In this section we discuss the matching of the resummed and the fixed-order results. We

work at the level of the cumulative distribution Σ, that at NNLO reads

ΣNNLO(p⊥) = σNNLO
tot −

∫ ∞
p⊥

dp′⊥

[
dσ

dp⊥

]NLO

. (A.45)

We stress that in the main text we only show results for the differential p⊥ distribution,

therefore we label them as NLO. This corresponds to what we label as NNLO at the

integrated level in this appendix. Since the total gg → H cross section is not known in the

full SM beyond NLO, we approximate the NNLO correction to σNNLO
tot by multiplying the

exact NLO result by the NNLO/NLO K factor as computed in the mt →∞,mb → 0 limit.

We stress, however, that at the level of the differential distributions we are interested in,

this approximation is formally a N3LL effect, and it is beyond the accuracy considered in

our study.

In order to assess the uncertainty associated with the matching procedure, we consider

here two different matching schemes. The first scheme we introduce is the common additive

scheme discussed in the main text defined as

Σadd(p⊥) = ΣNNLL(p⊥) + ΣNNLO(p⊥)− T NNLO
[
ΣNNLL(p⊥)

]
. (A.46)

Since the O(α2
s) (relative to the Born) collinear coefficient functions and virtual corrections

are unknown in the full SM, in the additive scheme we approximate them by multiplying

the HEFT ones by the exact Born squared amplitude.

The second scheme we consider belongs to the class of multiplicative schemes. In the

text, we schematically defined it as

Σmult(p⊥) = ΣNNLL(p⊥) T NNLO

[
ΣNNLO(p⊥)

ΣNNLL(p⊥)

]
. (A.47)

We recall that we indicate with T NNLO[f ] the fixed-order expansion of f to NNLO. The

two schemes (A.46), (A.47) are equivalent at the perturbative order we are working at, as
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they only differ by N3LO and N3LL terms. The main difference between the two schemes is

that, in the multiplicative approach, unlike in the additive one, higher-order corrections are

damped by the resummation factor ΣNNLL at low p⊥. One advantage of the multiplicative

solution is that the NNLO constant terms, of formal accuracy N3LL, are automatically

extracted from the fixed order in the procedure. Furthermore, as we explained in the text,

in this case higher order effects introduced by the resummation follow the same scaling in

p⊥ of the fixed-order result, which at least partially mimics higher order form-factor effects.

However, there is a drawback in using eq. (A.47) as is. Indeed, ΣNNLL does not tend

to one for p⊥ � Q, but rather to the luminosity factor defined in eq. (A.28) evaluated at

L̃ = 0. Therefore, the fixed-order result ΣNNLO at large p⊥ receives a relative spurious

correction of order α3
s

Σmult(p⊥) ∼ ΣNNLO(p⊥)
(
1 +O(α3

s)
)
. (A.48)

Despite being formally of higher order, these effects can be moderately sizable in processes

with large K factors such as Higgs production. There are different possible solutions to

this problem. In ref. [29] the resummed factor (and the relative expansion) was modified

by introducing a damping factor as

ΣNNLL →
(
ΣNNLL

)Z
, (A.49)

where Z is a p⊥-dependent exponent that effectively acts as a smoothened Θ function that

tends to zero at large p⊥. This solution, however, introduces new parameters that control

the scaling of the damping factor Z (see section 4.2 of ref. [29] for details). In this article

we adopt a simpler solution, which avoids the introduction of extra parameters in the

matching scheme. We therefore define the multiplicative matching scheme by normalizing

the resummed prefactor to its asymptotic value for at L̃→ 0. This is simply given by

ΣNNLL
asym. = lim

L̃→0
L(k⊥1). (A.50)

We obtain

Σmult(p⊥) =
ΣNNLL(p⊥)

ΣNNLL
asym.

T NNLO

[
ΣNNLL

asym.

ΣNNLO(p⊥)

ΣNNLL(p⊥)

]
, (A.51)

where

ΣNNLL(p⊥) −−−−→
p⊥�Q

ΣNNLL
asym. . (A.52)

This ensures that in the p⊥ � Q limit eq. (A.51) reproduces by construction the fixed-order

result, and no large spurious, higher-order, corrections arise in this region. The detailed

matching formulas for the two schemes considered in our analysis are reported below.

We start by introducing a convenient notation for the perturbative expansion of the

various ingredients. We define

σNNLO
tot =

2∑
i=0

σ(i), ΣNNLO(p⊥) = σ(0) +

2∑
i=1

Σ(i)(p⊥), (A.53)
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where

Σ(i)(p⊥) = σ(i) + Σ̄(i)(p⊥), Σ̄(i)(p⊥) ≡ −
∫ ∞
p⊥

dp′⊥
dΣ(i)(p′⊥)

dp′⊥
. (A.54)

Moreover, we denote the perturbative expansion of the resummed cross section ΣNNLL as

T NNLO
[
ΣNNLL(p⊥)

]
= σ(0) +

2∑
i=1

Σ
(i)
NNLL(p⊥). (A.55)

With this notation, the additive scheme of eq. (A.46) becomes (for simplicity we drop the

explicit dependence on p⊥ in the following)

Σadd =ΣNNLL +
{
σ(1) + Σ̄(1) − Σ

(1)
NNLL

}
+
{
σ(2) + Σ̄(2) − Σ

(2)
NNLL

}
, (A.56)

where the three terms in curly brackets denote the NLO, NNLO and N3LO contributions

to the matching, respectively.

For the multiplicative scheme we need to introduce the perturbative expansion of the

asymptotic value ΣNNLL
asym. , defined in eq. (A.50). We write

ΣNNLL
asym. = σ(0) + Σ(1)

asym.. (A.57)

With this notation the matching formula (A.51) reads

Σmult(p⊥) =
ΣNNLL

ΣNNLL
asym.

[
σ(0) +

{
σ(1) + Σ̄(1) + Σ(1)

asym. − Σ
(1)
NNLL

}
+

{
σ(2) + Σ̄(2) − Σ

(2)
NNLL +

Σ
(1)
asym.

σ(0)
(σ(1) + Σ̄(1)) +

(Σ
(1)
NNLL)2

σ(0)

−
Σ

(1)
NNLL

σ(0)
(σ(1) + Σ̄(1) + Σ(1)

asym.)

}]
, (A.58)

where, as above, we grouped the terms entering at NLO, and NNLO within curly brackets.
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