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In brief 

 
A unique case of positive selection for high voices in both sexes of bonobo? Bonobos have loud calls 

with nearly double the fundamental frequency and half the vocal length of those of their sister species, 

chimpanzee, for males and females. Results show partial support of the self-domestication 

hypothesis. 

 
Acoustic signals, shaped by natural and sexual selection, give insight into ecological and social selection 

pressures (e.g. Charlton and Reby 2016). Examining acoustic signals together with morphology can be 

particularly revealing. But this approach has rarely been applied to examine selection pressures in 

primates, where clues to the evolutionary trajectory of human communication may be found. Across 

vertebrate species, a close relationship exists between body size and acoustic parameters, such as 

formant dispersion and fundamental frequency (f0). Deviations from this acoustic allometry usually 

produce calls with a lower f0 than expected for the body size, often due to morphological adaptations in 

the larynx or vocal tract (Charlton et al. 2013). An unusual example of an obvious mismatch between 

fundamental frequency and body size occurs in humans’ two closest living relatives, bonobos (Pan 

paniscus) and chimpanzees (Pan troglodytes). Although these two ape species overlap in body size 

(Morbeck and Zilhman 1989), bonobo calls have a strikingly higher f0 than corresponding calls from 

chimpanzees (de Waal 1988). 

 
Here, we compare acoustic structures of calls from bonobos and chimpanzees in relation to their 

laryngeal morphology. Most populations of bonobos live in lowland forests of the central Congo basin 

whereas chimpanzees inhabit diverse habitats from dense lowland forest to open riverine forest and 

dry savannah. 

 
To assess the extent of between-species differences in f0 we analyzed loud calls with the highest and 

lowest f0 for each species (high hoots and low hoots of bonobos, pant hoots and roars of 

chimpanzees) recorded from wild populations of both species (Table S1, Figure S1). Using linear mixed 

models to test for species and sex differences in the maximum f0 of calls, we found that bonobo 

vocalizations were close to one octave higher than corresponding chimpanzee calls (full vs null 

model results: χ2 = 176.73, df = 3, p<0.0000; Fig. 1, S2 and Table S2). In addition, sex differences were 

evident in the maximum f0 in chimpanzee but not bonobo calls, with chimpanzee males having a 

higher f0 than females (Fig. S3 and Table S2). 



Across species, the strongest determinant of f0 is vocal fold length (Garcia et al. 2017; Titze et al. 

2016). We measured the total vocal fold length tVFL, and effective vocal fold length eVFL (i.e. the 

anterior membranous portion of the VF that oscillates during vocalization) of larynxes from bonobos 

(N=7) and chimpanzees (N=7), obtained from zoo facilities (Fig. 1, Table S3) and compared them 

using unpaired two-tailed t tests. We derived morphometric measures from post mortem µCT scans 

of extracted larynxes (N=12), or from full body scans (N=2) acquired with a medical CT device. In 

bonobos, total vocal fold length as well as effective vocal fold length were significantly shorter than 

those of chimpanzees (tVFL bonobo 22.5 mm ± 2.65 mm versus tVFL chimpanzee 33.7 ± 2.54, 

t(12)=8.1, p<0.001; eVFL bonobo 15.7 mm± 2.00 mm versus eVFL L 26.8 mm ± 2.67 mm, t(11)=8.5, 

p<0.001). 

Yet, eVFL:tVFL ratios were similar in both species (p=0.083) which implies there are no significant shape 

differences in vocal fold anatomy. The f0 of a call is largely defined by the eVFL, the shorter the eVFL 

found in bonobos corresponds well with the higher f0, and both measures deviate markedly from the 

corresponding values of chimpanzees. Given that the relationship between f0 and VFL of other 

African apes is similar to that of the chimpanzees in our study (Garcia et al. 2017) suggests that the 

high f0 and the short vocal fold length of bonobos are derived traits. 

 
Our results do not support several hypotheses that might account for species differences in f0. First, 

differences are unlikely a result of selection for efficient sound propagation in forest habitats where 

transmission of low f0 calls is more efficient than calls with a high f0 (Morton 1977). Whilst 

chimpanzees and bonobos both live in dense forest habitats, chimpanzees live also in more open 

habitat. However, across populations, chimpanzees do not show dramatic differences in maximum f0 

(Mitani et al. 1992). Second, it has been proposed that loud calls with a high f0 may signal physical 

strength and endurance in males (Titze and Riede 2010). While strength may explain sex differences in 

loud calls of chimpanzees (Fedurek et al. 2016), where male calls reach a higher f0 than female calls 

(Fig. S3, Table S2), the f0 in corresponding bonobo calls is similar for males and females (Fig. S3; Table 

S2), suggesting that in bonobos signaling physical strength is not a sexually-selected trait. 

 
 

The high f0 vocalizations and shorter larynxes in bonobos show partial consistency with the self-

domestication hypothesis, which implies the retention of juvenile traits and which has recently been 

applied to bonobos (Hare et al. 2012). However, in bonobos, high f0 is equally prominent in females and 

males, suggesting selection for high f0 has occurred in both sexes. Predictions of the self-domestication 

hypothesis may thus actually apply to both sexes. While acoustic body size exaggeration is well 

documented in various taxa of vertebrates, including primates (Garcia et al. 2017), the results of our 

study are novel in representing a case of positive selection for signaling diminution. 

 
Our results show that high f0 calls in both male and female bonobos correspond to short vocal fold 

length and cannot be fully explained by acoustic hypotheses of environmental influence, sexual 

selection nor the self- domestication hypothesis. Future studies will need to determine what females 

and males gain from signalling with a high f0. One possibility is that high f0 determines physical 

strength and endurance in both sexes and that this gives individuals an advantage when 

communicating within or between groups, and may facilitate co-dominance between males and 

females. If this was the case, achieving higher f0 through strength implies the use of greater lung 

capacity. We suggest that reducing the size of the VFL to achieve higher f0 more likely mimics juvenile 

vocal quality. We suggest another possibility. Bonobos of both sexes are noticeably more tolerant 

and less violent to conspecifics than chimpanzees, both within and between groups. Thus, the high f0 

may signal social tolerance or appeasement within and between groups. 
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Figure 1. Comparison of chimpanzee and bonobo vocalizations and vocal folds. a) distribution of 

maximum fundamental frequency values for chimpanzees and bonobos; b) Measures of vocal fold length 

(VFL) per species: mean of total VFL (tVFL) and effective (anterior membranous) VFL (eVFL) with error 

bars showing a 95% confidence interval; c) Vocal folds shown in a transverse CT scan for female 

chimpanzee KAI and d) female bonobo JAS. Labels indicate the arytenoid cartilages (A) and the 

thyroid cartilage (T). 
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Methods 
 

(1) Sound recordings of loud calls 
 

We included bonobos and chimpanzees from different field sites with existing audio recordings. To 

consider the variation of spectral distribution of the vocal repertoires of both species, we selected loud 

calls that are representative of the highest fundamental frequency (the bonobo high hoot and the 

chimpanzee pant hoot) as well as a loud call representing one of the lowest fundamental frequency (low 

hoot of bonobos and roars of chimpanzees). We followed Mitani and Gros-Louis (1995) to identify 

acoustic features likely to discriminate well between the species-typical loud calls, the bonobo high hoot 

and the chimpanzee pant hoot. 

 
Study sites, subjects, audio recordings: Audio recordings of bonobo calls came from the Eyengo 

community at Lomoko (21o05'E, 00o50'N) collected by GH between 1990 and 1996, and from the West 

community at Lui Kotale (2º45.610'S, 20 º 22.723'E) collected by ZC in 2013 and 2014. At both sites, 

bonobos were fully habituated to the presence of researchers and recordings were made from close 

distances of 7-20m. The Lomako forest is characterised by terra firma with some swamp forest (Boubli 

et al 2004 whereas the LuiKotale forest includes also other forest types such as natural secondary, 

temporarily and permanently inundated forest (Fruth 2011). Both sites are low altitude areas receiving 

high rainfall and moderate seasonal variation in climate (for Lomako see Boubli et al. 2004, for LuiKotale 

see Hohmann et al 2006, and Beaune et al. 2013). Calls from bonobos included those recorded during 

focal follows or ad libitum recordings. Bonobos emit loud calls in various contexts making context 

assignment often difficult (Hohmann and Fruth 1994, .Schamberg et al. 2016). At both sites, emission of 

loud calls increases in the late afternoon when dispersed party members coordinate their travel. The 

recordings from Lomako are biased to this time. However at LuiKotale, calls were collected more evenly 

throughout the day between dawn and dusk. 

 
Chimpanzees calls were recorded from four communities of Pan troglodytes verus, in the Tai Forest, 

Ivory Coast (see Boesch and Boesch-Achermann 2000 for geographic and climate details) between 1998- 

2001 (Period 1 by CC and Ilka Herbinger) and between 2011-2012 (Period 2 by Ammie Kalan), from 

individuals habituated to human presence. For the female analysis, due to low numbers of recordings 

for female pant hoots in Tai, we included female pant hoots from a second population, Sonso 

community, Budongo Forest , Uganda (Pan troglodytes schweinfurthii) collected by CC from 2008-2010 

(see Reynolds 2005 for geographic and climate details). Likewise, due to the low rates at which all 

chimpanzees, especially females, produce low frequency roars, this analysis was conducted on male calls 
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only, and included roars from males from both Tai and Sonso communities. Tai Forest is a high rainfall, 

low altitude, mainly primary forest habitat whilst Budongo Forest is mid rainfall, higher altitude, 

secondary forest. The chimpanzees in all populations in this study are wholly forest-dwelling, suggesting 

that any acoustic adaptation to habitat will have been shaped by the tropical forest environment. 

 
All calls were recorded ab libitum when the identity and context of calling could be clearly identified. To 

limit variability of pant hoot climax screams, CC selected those produced only during one context 

(travelling). Roars were included from two contexts: travel and intergroup encounter. 

 
We included pant hoots from 18 male bonobos (N = 160 total male bonobo calls) and 16 male 

chimpanzees (N = 120 total male chimpanzee calls). For the analyses including females, we included 23 

female bonobos (N = 143 total female bonobo calls) and 29 female chimpanzees (N = 105 total female 

chimpanzee calls). See Table S1 for distribution of calls across groups and individuals. 

 

 
Table S1. Distribution of calls across species, groups and individuals. 

 
Species Bonob

os 
 ID

s 
Calls/I
D 

Chimpanze
es 

  IDs Calls/I
D 

Group Lomak
o 

LK Nort
h 

Sout
h 

Middle Guir Sonso 

 
  Males:  

           

High hoot/Pant 
hoot 

86 75 18 8.9±4.
6 

25 48 34 3
0 

- 17 9.1±8.
5 

  Low hoots/Roars  32 14 13 2±2.3 1 6 - 1 15 10 1±1.47 

  Females:             

High hoot/Pant 
hoot 

94 49 24 6±3.3 65 - 3 - 37 29 3.6±2.
6 

Legend: LK: Lui Kotale; Guir: Guiroutou. Chimpanzees: P. t. versus: Tai Forest Groups: north, south, 

middle, Guiroutou; P. t. schweinfurthii: Budongo Forest Group: Sonso. IDs: number of individuals that 

have contributed calls; Calls/ID: mean±SD calls per individual. 

 
 
 
 

(2) Acoustic analysis 

We selected single call elements from the respective long calls with little background noise and without 

overlap from conspecific vocalisations. Loud calls are emitted as bouts with multiple units and for this 

comparison we selected one call unit per long call. In bonobos, high hoots are often introduced with 

whistles that have a higher fundamental frequency than high hoots (Schamberg et al. 2016). For this 

analysis, we selected the first unit of high hoot within a bout which tends to be lower in frequency than 

the following units (Hohmann and Fruth 1994). In chimpanzee pant hoots, the f0 varies considerably 

within call bouts (Riede et al. 2007). We selected the climax scream with the highest fundamental 

frequency in each recording. Thus, whilst our selection criteria for calls across species was not identical, 

if anything it should minimize rather than accentuate species differences in f0, thus making our 

calculation of species differences in f0 a conservative one. In addition, we also examined the lowest long 

call for each species, in chimpanzees, the roar, and in bonobos the low hoot call. As this call is rare in 

females of both species, this analysis was limited to males (Fig. S1). 

 
Sound recordings at Lomako were taken at a distance between 5 and20 m, using a Sony tape recorder 

(DAT PCM- 2000), Sennheiser directional microphone (ME88, module K3N), and Sony audio tapes (DT- 

60P). Audio-recordings were analyzed with a FFT digital real-time analyzer (MEDAV MOSIP 2000N-2.5) 

using a Hanning 512 window and a 10-kHz frequency scale. Measures of the fundamental frequency 
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were made on a 5-kHz scale with a Hanning 512 window, providing a sampling rate of 12.8 kHz and a 

frequency resolution of 25 Hz. 

 
Sound recordings from LuiKotale bonobos were taken at distances of 7–20 m using a Marantz PMD661 

solid-state recorder and a Sennheiser MKH816T directional microphone and (Microphone frequency 

response: 50–20,000 Hz, ±3.5 dB; sampling rate of 44.1 kHz, 16 bits accuracy). Structural analyzes were 

conducted with Praat acoustic analysis software (v 6.0.16; Boersma & Weenink 2006) optimized for 

voice analysis with a Gaussian window, analysis window length 0.05s, 250 frequency steps, dynamic 

range 70 dB, 10kz frequency scale with a spectrogram view window 0–10 kHz). We performed pitch 

analysis using a script (SourceEditor) written by M. Owren (personal communication), and verified the 

generated values using the harmonic cursor. Spectral measurements were taken from the fundamental 

frequency (f0). 

 
 

Figure S1. Spectrogams showing typical examples of loud call types from each species and sex used in 

the analysis. 

 

Legend: Bonobo loud calls (left) and chimpanzee loud calls (right): a) bonobo male high hoots and 

chimpanzee male pant hoot climax respectively; b) bonobo female high hoot and chimpanzee female 

pant hoot climax respectively; c) bonobo male low hoot and chimpanzee male roars. a) frequency 

windows of 20,000Hz; b) and c) frequency windows of 10,000 Hz. Time (s) is shown on each X axis. 

For chimpanzee male and female calls in a) and b) the last vocal element is the climax element in 

each case (also visible are other phases of the pant hoot- the initial build up phase and then buttress 

drums overlapping with the climax phase in each case). 

 
 

(3) Statistical Analysis 
 

To determine the discriminatory impact of species and sex differences on variation in the maximum 

fundamental frequency (f0), we ran linear mixed models for both high and low frequency loud calls. The 
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acoustic variable was the response variable in each model. The test predictor was species or sex. To 

control for the model containing more than one call per individual, individual identity was entered as a 

random factor (Schielzeth & Forstmeier 2009). To control for variation that may occur from individuals 

belonging to different groups, we also entered group as a random factor. Another reason to control for 

variation at the group level is that for some groups the acoustic measures were derived using slightly 

different methods. We used LMMs with Gaussian error structure and identity link using R version 3.2.5 

(Team RC 2017) and function glmer of the package lme4 (Bates et al. 2014). We tested the significance 

of each fixed effect by comparing the full model (comprising all fixed and random effects) with a 

respective reduced model (not comprising the test predictor) using likelihood ratio tests (Dobson 2002). 

We only considered model estimates if the full-null model comparison was significant. We assessed 

model stability for all models by excluding the random effects one at a time and then comparing the 

estimates for these data with those for the full data set. This showed no influential subjects or groups. 

 
 

Table S2. LMMs showing species and sex differences with respect to maximum fundamental 

frequency for high and low frequency loud calls. 

  
Predictor variable 

Bonobo
 B

 

Chimp
 
C 

ß SE χ2 p 

  mean sd mean sd  

High Hoots/Pant hoot screams 

Across Species:      

Maximum F0 (Hz) 2478 466 1488 29
0 

Intercept     2401 122 - - 

Species 
(chimpanzee) 

    -1380 139.
4 

19.9 <0.000
0 

Sex (male)     118.3 70.3 2.7 0.099 

Bonobo only 

Intercept 

     

 

2421.
7 

 

 

51 

 

 

- 

 

 

- 

Sex (male)     82.2 73.7 1.12 0.54 

 
Chimpanzee only 

        

Intercept     887.2 75.6 - - 

Sex (male)     479.1 79 23.1 <0.000
0 

 
Low Hoots and 
Roars 

        

Max F0 425 86 289 49     

Intercept     427.3
1 

18.2
9 

  

Species 
(chimpanzee) 

    -
127.9
8 

28.5
8 

-
4.48 

0.0001 

Acoustic variables approximated normal distributions without requiring transformation. Full v null 

model results: High hoots and Pant hoot climax screams Maximum F0: 1) across species: Max F0: χ2 

= 176.73, df = 3, p<0.0000; 2) Bonobos only: χ2 = 1.24, df = 2, p<0.543; Chimpanzees only: χ2 = 

26.57, df = 2, p<0.0000. Subject and group identity were included as random factors in each model. 



Low Hoots and Roars: Max F0: χ2 = 13.97, df = 1, p < 0.0000; Call Duration: χ2 = 0.45, df = 1, p = 0.5. 

Bold indicates P values below 0.05. 
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Figure S2. Low f0 loud calls comparison between bonobos (low hoots) and chimpanzees (roar). 
 

 
 

 
Figure S3. Variation in maximum f0 across sexes shown for a) bonobos and b) chimpanzees. 

 

 
a) b) 

 

 
. 

 

(4) Laryngeal Morphology 

 

We selected parameters based on their putative functional relevance for registers (Figure 1). The 

cardinal parameter that has an immediate effect on register is the effective vocal fold (VF) length, that 

is, the anterior membranous portion of the VF (mVF). The anterior membranous VF length determines 

the effective oscillating tissue mass (Titze, 2000). Following similar studies on human larynx morphology 

e.g. by Eckel et al. (1994) and Jotz (2014) we included anterior and posterior vocal fold length as length 

of the entire glottis. Vocal fold length measures were taken always in the transverse plane with 
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reference to the base of the arytenoid cartilage as level between processus vocalis and insertion at the 

interior thyroid wall. 

 
 

 
(4) Subjects and samples 

 

Analyses of laryngeal morphology are based on data from corpses of 7 chimpanzees (3 male /4 female) 

and 7 bonobos ( 5 male / 2 female). Measures were taken either from samples that were stored frozen 

in the collections of the respective zoo facility, or from scans that had been produced by the zoo for 

other purposes. After extraction of the larynxes and before scanning, they were stored in Bouin’ 

solution or in 4% Formaldehyd. All measurements were done by means of the Avizo visualization 

software (version 9.3 by FEI Visualization Sciences Group). If available the measures were taken from 

both sides (left/right), repeated twice for consistency and averaged over all for providing one measure 

per specimen. 

 
Table S3. Information on the subjects used in this study. 

 

Individual Species Sex Provenance Weight (kg) Age (years) 

HER Paniscus female Stuttgart 35.5 38.00 

JAS Paniscus female Planckendael 26.7 8.00 

KAK Paniscus male Twycross 43.0 36.00 

KID Paniscus male Planckendael 35.0 25.00 

KIR Paniscus male Romagne NA 24.00 

LUD Paniscus male Frankfurt 53.3 32.00 

LUS Paniscus male Wuppertal 42.0 34.00 

BRI Troglodytes female Leipzig 60.7 49.00 

CHO Troglodytes female Twycross 41.0 46.00 

KAI Troglodytes female Planckendael NA 27.00 

NIK Troglodytes female Gossau NA NA 

FLI Troglodytes male Planckendael NA 45.00 

KAR Troglodytes male Magdeburg 34.9 37.00 

MON Troglodytes male Twycross 59.0 21.11 

Legend: Figures in the second last column are mean values of adult body weight (in kg) 

that were taken prior to the death and represent body weights when subjects were in 

healthy conditions. Figures in the last column refer to the chronologic age (in full years) of 

the subject at the time of death, or at the time when the scan was taken. 

For specimens KAR and NIK, we used full body scans (voxel size 1mm) which were taken for medical care 

reasons. With the exception of one subadult female bonobo (JAS), all remaining subjects were adult 

when they died (age at time of scan: 32.47± 11.4 yrs ). Out of the 14 specimens available for this study, 

11 scans were carried out on post mortem excised larynxes as 3D micro-CT-scans (18-42µm resolution) 

using diondo d3 at MPI EVA, Leipzig. 
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Figure S4. Vocal fold length by sex per species. Same plot as shown in Fig. 1, here with individual eVFL 

measures illustrated in addition: Black triangles: males. Open circles: females. 

 
 

 
 

 
(5) Statistical Analysis 

The current sample size allows only for statistical testing at the species level. The distribution of total 

VFL values in chimpanzees (33.7±2.54 mm) seems to be concordant with that presented by Garcia et al. 

(2017), although their specimen (38.25mm) appears at the upper tail of our sample. After visual 

checking for normality, mean comparisons were done by means of an unpaired Students t-test assuming 

similar variance based on Levene test. In order to adjust for multiple testing we report adjusted p-values 

using the family-wise error rate correction by Bonferroni, i.e. division by number of tests. (s. Table S3). 

 
 

 
Table S4: Vocal fold measures compared across species using unpaired t-tests. 

 

 
Measure 

 
df 

Chimp 

mean 

chimp 

sd 

bonobo 

mean 

bonobo 

sd 

 
t value 

 
adj p-val 

eVFL 11 26.8 2.67 15.7 2.00 8.501 < 0.001 

tVFL 12 33.7 2.54 22.5 2.65 8.122 < 0.001 
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