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The near wake of the polygonal cylinder with the side number N = 3 ~  is 

systematically studied using particle image velocimetry (PIV) at Re = 1.6×10
4
. The proper 

orthogonal decomposition (POD) analysis is carried out to extract the large-scale coherent 

vortex structures and their evolution. It has been found that the vortex circulation grows to 

the maximum at the vortex formation length by entraining the vorticity from the separated 

shear layer and then undergoes a two-stage decay. The maximum circulation scales with 

the wake width, defined as the vertical distance between the two peaks of streamwise 

velocity fluctuation at vortex formation length. The vortex center trajectory indicates that 

the vortices move towards the centerline first and then away, with the vortex size 

monotonically increasing over the examined streamwise range. The vortex size at the 

maximum circulation also scales with the wake width. The vortex convection velocity 

increases gradually in the streamwise direction, and the ratio of the lateral and streamwise 

components of the vortex convection velocity, when scaled by wake width and vortex 

formation length respectively, approaches asymptotically 0.18 in the downstream, 

irrespective of the cylinder orientation or N. 
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1. Introduction 

Polygonal cylinders have many engineering applications, such as in fluid machineries, 

nuclear power generation systems, architecture and ocean engineering (Szalay 1989; Tang 

et al. 2013). Polygonal cylinders with different side number N can manifest very different 

characteristics in flow separation, vortex formation and vortex convection in the wake, 

which may cause dramatic changes to the fluid forces acting on the cylinders (Apelt et al. 

1973; Chopra & Mittal 2019) and the stability of their wake (Monkewitz & Nguyen 1987; 

Unal & Rockwell 1988). Thus, it is important to understand the vortex shedding 

mechanism and their evolution in the wake behind polygonal cylinders with different side 

numbers. 

While the studies of the wake behind the circular cylinder (N = ∞) amount to 

hundreds in the literature, investigations on the polygonal cylinder wake are rather 

scattered. The square cylinder (N = 4) wake (e.g. Lyn et al. 1995; Vickery 1966; Zhou & 

Antonia 1994) has attracted more attention than other polygonal cylinders (4 < N < ∞). 

Zhou & Antonia (1994, 1995) compared the wakes of triangular (N = 3), square (N = 4) 

and circular (N = ∞) cylinders and noted that, given the same Reynolds number (Re), the 

square cylinder produced larger velocity deficit, Reynolds stresses and vorticity 

magnitudes than that of the triangular and circular cylinders. Further, the Strouhal number 

(St) was different from one cylinder to another. Agrwal, Dutta & Gandhi (2016) discussed 

the effect of the apex angle of a triangular cylinder on the wake and found that the size of 

the reverse flow zone depended on the flow separation angle at the separation point, which 

was very much determined by the apex angle. Khaledi & Andersson (2011) investigated 

numerically the near wake of a hexagonal cylinder for both corner and face orientations at 

Re = 100, 500 and 1000. They found that St was generally higher for the face orientation 

than the corner. The St increased from Re = 100 to 500 but not anymore from Re = 500 to 

1000, irrespective of the orientation. Kim et al. (2015) studied experimentally the 

wind-induced vibration on the straight and helical super-tall buildings of various 

polygonal sections of N = 3 ~ 6, 8, 12 and ∞. They found that vibration was gradually 

suppressed as N becomes larger. The helical cylinders were found to vibrate less than the 

straight cylinders. However, the difference diminished between the two types for N > 5. 
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Xu et al. (2017) systematically studied aerodynamic forces on the polygonal cylinders of 

N = 2 ~ 8, 12, 16, along with N = ∞. They established the dependence of drag coefficient 

CD, St and the flow separation angle on N, and found that CD and St scaled with a 

corrected separation angle ξ. However, in the above mentioned studies, the characteristics 

of the wake and vortex evolution behind those polygonal cylinders and their dependence 

on N were not systematically investigated. 

In this work, we aim to experimentally study the vortex street evolution behind the 

polygonal cylinders and its dependence on side number N using particle image 

velocimetry (PIV) at subcritical regime, Re = 1.6×10
4
. Most of the researches to date on 

the cylinder wake are conducted over this subcritical regime, because of the relatively 

stable vortex shedding behavior (Bearman 1969; Lin et al. 1995; Norberg 2003; Pereira 

2019). The proper orthogonal decomposition (POD) technique is deployed to extract the 

coherent motions from the PIV data. Experimental details are given in Section 2. 

Statistical quantities in the wake of polygonal cylinder are presented in Section 3.1. The 

wake POD analysis is conducted in Section 3.2. Coherent vortex structures and their 

evolution obtained from the POD analysis are shown in Section 3.3, followed by the 

discussion and conclusions in Section 4. 

2. Experimental details 

Experiments were carried out in an open-circuit low-speed wind tunnel with a square 

working section of 0.5m×0.5m×2.0m. The flow speed U∞ within the test section ranges 

from 2m/s to 40m/s and the streamwise turbulence intensity is less than 0.5% for the 

current experimental velocity. The polygonal cylinder was supported horizontally in the 

symmetry plane of the working section, as shown in figure 1(a) where a square cylinder 

was installed. Two end plates were attached at the ends of the cylinder in order to suppress 

the end effect. Figure 1(b) shows the test models of polygonal cylinders with side number 

N = 3 ~ 8, 12, 16 and a circular cylinder (N = ∞). Measurements were conducted for two 

orientations of each polygonal cylinder, corner orientation or face orientation (see figure 

1b for notations and abbreviations). In order to obtain the same Re at the same U∞ and the 

same blockage ratio for all cylinders, two sets of cylinder models were designed for the 
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polygons of even N to ensure projected cylinder width D = 25mm for both corner and face 

orientations. The blockage of all polygonal cylinders is 5%. The cylinder length L between 

the two end plates was 420mm, giving an aspect ratio L/D = 16.8, at which the blockage 

as well as the three-dimensional end effect can be negligible. The Reynolds number, Re = 

U∞D/ν, is set at 1.6×10
4
, where ν is the kinematic viscosity of air, corresponding to the 

subcritical regime of the polygonal cylinder (Xu et al. 2017). 

 

FIGURE 1. Experimental setup (not to scale), (a) one example of the test model, (b) the notations and 

abbreviations for the test models. 

The flow field behind the cylinder was measured using a standard LaVision planar 

PIV system. Flow illumination was provided by a double-pulsed Nd-YAG Laser source 

with a wavelength of 532nm and a maximum energy output of 120mJ per pulse. A high 

sensitivity Imager Pro X CCD camera with a resolution of 2048 pixels × 2048 pixels was 

deployed to capture the particle images. The PIV Δt was set at 85𝜇s. Flow was seeded 

with smoke particles of about 1 μm in diameter, generated from paraffin oil via Laskin 

nozzles. 

The origin of the coordinate system is set at the center of the polygonal cylinder 

(figure 1a). The field of view (FOV) was fixed at 0.7 ≲ 𝑥/𝐷 ≲ 8.0 and -2.0 ≲ 𝑦/𝐷 ≲ 
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2.0. The PIV sampling rate was 4 Hz. The sample size for each testing case was 1000, 

which had been verified to reach a good convergence for all the statistical quantities 

examined in the present study. A careful assessment of the St values reported previously in 

Xu et al. (2017), measured at the same Re, indicates that the present sampling rate has no 

phase-locking issues for all the testing cases. That is, sufficiently random samples were 

acquired at all phases of the vortex shedding cycle. The raw PIV images were processed 

using DaVis 7.2, with a final interrogation window (IW) size of 32 × 32 pixels and 50% 

overlap, resulting in a spatial resolution of 1.85 mm based on the IW size. 

3. Results and discussion 

3.1. Statistical characteristics  

Distributions of the time mean velocity and Reynolds stresses fields in the polygonal 

cylinder wake are studied in this section. First, we introduce two parameters to facilitate 

the analysis and discussion. The vortex formation length Lf
*
 is defined as the streamwise 

position where the root mean square (RMS) value rmsu  of the fluctuating streamwise 

velocity u  on the wake centerline reaches the maxima (Bloor 1964; Alam, Zhou & 

Wang 2011). The wake width Dw
*
 is defined to be the lateral separation between the two 

rmsu  peaks at x
*
 = Lf

* 
(Griffin 1995). In this paper, asterisk denotes normalizations by 

cylinder characteristic width D. These two length parameters are often used to characterize 

the wake size behind a two dimensional bluff body, and are obtained from the streamwise 

component of the Reynolds normal stresses.  

 

FIGURE 2. Dependence on N of the vortex formation length Lf
* and the wake width Dw

* at Re = 1.6×104. 
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cases, Lf
*
 displays a small rise and then a large monotonic drop to the minimum at N = 8. 

Whilst for face cases, Lf
*
 drops initially until N = 5 and then rises above the corner cases, 

reaching its peak at N = 8. For N > 8, Lf
*
 approaches a constant about 1.5 for corner 

orientation and 1.7 for face orientation approximately, and then gradually increase to the 

circular cylinder case at 2.1. On the other hand, Dw
*
 is a strong increasing function of N 

for 3 6N   of the corner cases, but after reaching the peak at N = 6, it declines quickly 

to the minimum value at N = 8. For face cases, Dw
*
 reflects a large drop from the 

maximum value at N = 4 to the minimum at N = 5 and then rises till N = 8. For N > 8, Dw
*
 

also gradually approaches a constant about 0.85. Overall, 8C and 5F cases have the 

smallest Lf
*
 and Dw

*
 for corner and face orientations. 

 

FIGURE 3. Mean streamwise velocity profiles along the transverse direction at different downstream 

distances for different polygonal cylinders, (a) corner orientation; (b) face orientation. 

Figure 3 presents the time mean streamwise velocity U  profiles at various 
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largest at x
*
 = 1 of the corner facing cases and that of 8C is smallest (figure 3a), it stems 

from the different separation point locations for the two cases and is in consistence with 

the transverse distance from the vortex centroid to the wake centerline. In addition, 8C 

shows the fastest velocity recovery in the streamwise direction, which is attributed to the 

relatively small vortex strength of this case (see section 3.3). The face orientation cases 

show similar patterns; see figure 3(b). The width of velocity deficit is largest for 3F and 

smallest for 5F. The latter also corresponds to the fastest velocity recovery. That is, at Re 

= 1.6×10
4
, 8C and 5F are characterized by the smallest wake width, which is consistent 

with figure 2(b). It will be shown later that the two cases correspond to the smallest 

distance between the upper and lower vortex center trajectories and also the weakest 

vortex strength. 

 

FIGURE 4. Non-dimensional mean velocity deficit profiles based on the wake width Dw, (a) corner 

orientation; (b) face orientation. 
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The normalised mean velocity deficit based on the wake width Dw is shown in Figure 

4, where Ucl being the mean streamwise velocity on the wake centerline. It can be seen 

that the profiles collapse reasonably well especially for x ≤ 2D. Further downstream, 

Wygnanski, Champagne & Marasli (1986) suggests that the momentum defect Θ is an 

important characteristic length scale in a small-deficit wake, i.e., the far wake. The 

momentum defect Θ is defined as 

                             
2

2
1 .

D

D

U U
dy

U U



 

 
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 
                       (1) 

The Θ normalised velocity deficit is presented in Figure 5 for x ≥ 3D. It is evident that Θ 

is indeed a suitable length scale for the far field wake width and is independent of the 

polygonal cylinder side number N. Closer to the cylinders, the premise of small-deficit 

wake breaks and therefore the normalisation fails to work. 

Figures 4 and 5 thus suggest that Dw works well for the near wake with large velocity 

deficit where x ≤ Lf, whilst Θ is a better scaling parameter for x Lf. 

 

FIGURE 5. Non-dimensional mean velocity deficit profiles based on the momentum defect Θ, (a) 

corner orientation; (b) face orientation. 
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FIGURE 6. Profiles of the streamwise Reynolds normal stress 2/u u U
   for different polygonal cylinders, 

(a) the corner orientation; (b) the face orientation. 
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*
 < 2 

indicates the enhanced velocity fluctuation during the separated shear layer rollup process. 

For the corner orientation cases (figure 6a), the two peaks in u u   exhibit the largest 
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2
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face orientation (figure 6b), case 4F has the strongest u u  . The streamwise variation of 

u u   shows its maximum value at x
*
 = 1 for 8C and 5F, resulting in the smallest Lf

*
 of all. 

This is consistent with figure 2(a). 
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FIGURE 7. Profiles of the Reynolds normal stress 2/v v U
   for different polygonal cylinders, (a) the corner 

orientation; (b) the face orientation. 
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FIGURE 8. Profiles of the Reynolds shear stress 2/u v U
   for different polygonal cylinders, (a) corner 

orientation; (b) face orientation. 

Figure 8 presents the Reynolds shear stress 
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6C and 4F cases have the highest 
2/u v U
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direction (x
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 > 1), corresponding to the widest wake width Dw
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 (figure 2b). On the other 

hand, 8C and 5F cases have the lowest magnitude and narrowest the distribution, in line 

with the shortest vortex formation length Lf
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and wake width Dw

*
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Muralidhar 2019; Qu et al. 2017). It has also been used to reconstruct the lower order flow 

structures to reflect the dominant flow dynamics with the least number of modes (Bai et al. 

2019; Shi & Feng 2015; Tang et al. 2015).  

Due to the quasi-two dimensional nature of the flow field, the information captured 

by the current experimental arrangement is a good reflection of the true total energy 

content in the flow, which is then decomposed into orthogonal modes via POD. 

Constructing an auto covariance matrix M, 

 ,TM U U  (2) 

where U = [u1, u2…uNs], with subscripts Ns representing the total snapshot number and u 

the instantaneous velocity vectors in each snapshot reorganized into a single column, a 

standard eigenvalue problem is solved  

 ,i i iMA A  (3) 

to obtain the eigenvalue λi, which represents the energy content in mode i and the 

eigenvector Ai. The associated POD mode i can be calculated as 

 
,1

,1

,     1,2,..., ,

s

s

N

i n nn
i sN

i n nn

A u
i N

A u
 



 



 (4) 

Sorting the eigenvalue λi in descending order ranks the energy level contained in the 

corresponding POD modeφi. Then the first few modes having higher energy content can 

be used to reconstruct the flow field containing only the coherent components; the higher 

order modes (with higher λi ranks) have lower energy level and represent incoherent 

structures or noise. For a detailed mathematical discussions about POD, readers are 

referred to Sirovich (1987); Berkooz, Holmes & Lumley (1993); Chatterjee (2000). 

Note that using the instantaneous velocity u or the fluctuating velocity  to 

construct M leads to similar results (Meyer, Pedersen & Ozcan 2007). If u  is used, the 

reconstruction of the instantaneous flow field can be written as equation (5), otherwise, the 

mean velocity term U(x) will be taken into account in the summation term. 

 
1

( ) ( ) ( ) ( ) ( ),
sN

n n

n

u x U x u x U x a x


     (5) 

whereφn(x) is obtained from equation (4), n being the order number of the POD mode. 

u



13 

The POD coefficient an is obtained by projecting the velocity field (either the fluctuating 

part as shown in equation 5 or the instantaneous) onto the POD modes, i.e. 

 1 2  ... 
s

T

n N na u      ， (6) 

Reduced order reconstruction of instantaneous fields is realized by taking n < Ns in 

equation (5), depending on the desired proportion of energy content. 

 

FIGURE 9 Percentage of the cumulative POD mode energy to the total energy. Mode 0, viz. the mean flow 

field, is excluded. 

Figure 9 shows the cumulative percentage (proportion) of the mode energy 
MuE  

based on the fluctuating velocities (both u  and v ) which is calculated according to the 

sorted eigenvalues λn: 

 
1

/ 100%
s

M

N

u n n

n

E  


   (7) 

Evidently, the first two modes take ≳ 40% of the total fluctuating (or turbulence kinetic) 

energy for all the cylinders. In particular, the energy summation of the first two modes of 

6C is the largest among corner orientation cases, about 50% and 8C is the least, about 

37.5%. Since the first two modes mainly represent the asymmetric Karman vortex 

shedding process (Feng, Wang & Pan 2011; Shi & Feng 2015), it indicates that the vortex 

shedding process of 6C case is the most energetic, which is in agreement with the 

distribution of 
2/u u U

   in figure 6 and 
2/v v U

   in figure 7, bearing in mind that POD 

takes into account the entire FOV, viz. 0.7D ≲ 𝑥 ≲  8D. For face orientation, the 

distribution of modal energy is less scattered, with 4F having the largest summation of the 

energy from the first two modes of 49.5% and 5F the least about 40%, also in consistent 
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with the Reynolds stresses. 

 

FIGURE 10 The first and second POD modes of polygonal cylinders. Contours are based on u  only. 

The first two POD modes of u  are shown in figure 10 to visualize their coherent 

structures related to the vortex shedding patterns, using the special cases discussed in 

section 3.1. The first two modes display an antisymmetric pattern, which represents the 

alternative vortex shedding process. The patterns of the first and second modes are similar, 

despite a about 1/4 wavelength 𝜆 advection in the streamwise direction when +/- signs 

are neglected, with the wavelength meaning the streamwise distance between two 

successive packets of the same sign at one side of the centerline within one mode. On the 

one hand, the downstream distance of the first antisymmetric packet pair in mode 1 has a 

qualitative indication of the vortex formation length, which means 8C and 5F has shorter 

formation length compared to other cases. On the other hand, the size of the first packet 

pair is qualitatively proportional to the peak circulation of the shed vortices, which will be 

quantified later. 

The distance between the first pair in the transverse direction in mode 1 is related to 

the wake width. The cases 8C and 5F have smaller wake width, which is consistent with 

the discussion in section 3.1. The streamwise development of this distance can be used for 

an estimation of the wake width growth rate. It must be emphasized that the centroids of 
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these packets shown in figure 10 are not the centroids of the vortices shed from the 

cylinders, which is investigated next. 

3.3. Evolution of vortex structures 

3.3.1 Vortex detection and quantification method 

Due to the relatively high Re, instantaneous vortices appear distorted and fragmented, 

as shown in figure 11(a), especially in the wind tunnel experiments, which increases the 

difficulty in identifying their centers. This problem is tackled as follows. Firstly, for each 

instantaneous snapshot, the spanwise vorticity ωraw field is reconstructed based on the first 

few energetic POD modes such that the reconstructed vorticity ωrd field contains 95% of 

the total energy in the ωraw field. Here subscripts raw and rd stand for the PIV-measured 

raw data and the POD reduced order reconstruction, respectively. The number of 

snapshots n required to achieve this percentage varies from one case to another, but for 

most cases n = 3. As such, the vortices appear better defined, as illustrated in figure 11(b). 

Secondly, to discriminate the rollup shear layers, which may contaminate the detection of 

vortices, from the ωrd data (see the most upstream two vorticies in figure 11b as 

examples), the λci method proposed by Zhou et al. (1999) is applied, where λci is the 

imaginary part of the complex eigenvalue of the POD-reconstructed velocity gradient 

tensor. The λci provides a measure for the swirl strength to allow shear layers to be 

excluded from detections, as illustrated in figure 11(c), where a low level threshold of 

λciD/U∞= 0.13 (λci = 50s
-1

) is applied to the snapshot. Thirdly, a standard watershed 

segmentation algorithm is applied on the λci fields to identify the boundary of each vortex 

(figure 11d). Following Sung & Yoo (2003), we can then determine the vortex center (xc, 

yc) by the λci-weighted centroid. Symbol ★ in figure 11(a) illustrates the identified 

centroid or the ‘center of swirl’. The results appear to be reasonable. 
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FIGURE 11. Procedure of centroid determination for individual vortices, where case 5F is used as an 

example. (a) Instantaneous raw vorticity (ωraw) field; (b) corresponding reduced order reconstructed 

vorticity (ωrd) field; (c) λci-contours; (d) identified vortex boundaries. 

The mean vortex strength, which is quantified by the circulation Γ, can be calculated 

from a conditional averaging process. In particular, the ωraw distribution along the 

streamwise and lateral directions, r(x) and r(y), centered at each (xc, yc) are conditionally 

averaged based on the xc values. A bin size of ± 0.1D is used to ensure a good sample size 

at each station, which is typically between 70 ~ 80. The sample size is found to be similar 

at all stations, reassuring that the current PIV sampling rate is not locked at a certain phase 

of the wake during measurements. Figure 12(a) presents the wake behind 5F to illustrate 

the result of conditional averaging when xc of a negative-sensed vortex is found in the bin 

centered at x = 2.5D. The two (xc, yc) trajectories of vortex centroid, obtained from the 

conditional averaging of individual centroids, are also presented together with the wake 

half width 1/2 as reference, which is the vertical distance between the two points where 

the mean streamwise velocity falls to half of the maximum deficit. 

-1

0

1

0 0.2 0.4 0.6 0.8 1.0 1.2

x*
1 2 3 4 5 6 7

-1.5

-1

-0.5

0

0.5

1

1.5

x/D

y
/D

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

x/D

1 2 3 4 5 6 7

-1.5

-1

-0.5

0

0.5

1

1.5

1 2 3 4 5 6 7 1 2 3 4 5 6 7
x*

-1

0

1
y*

1 2 3 4 5 6 7 1 2 3 4 5 6 7

ωrawD/U∞
ωrdD/U∞

(a) (b)

(c) (d)

λciD/U∞

0 1 2 3 4 0 1 2 3 4-1-2-3-4-1-2-3-4

y*

x* x*



17 

 

FIGURE 12. Estimation of circulation for the vortex at x = 2.5D behind the 5F case. (a) The 

conditional averaged raw vorticity field, --, the trajectory of the detected vortex centroid (xc, yc), -- 

the wake half width 1/2 ; (b) the conditional averaged 
z  profiles in both streamwise r(x) and 

lateral r(y) directions. 

Figure 12(b) shows the conditional averaged vorticity z  profiles based on ωraw 

and ωrd, respectively. A number of observations can be made. Firstly, the reduced order 

reconstruction yields a less pronounced vorticity peak, which is not surprising. It is for this 

reason that the subsequent Γ calculation is based on ωraw rather than ωrd. It can also be 

inferred that the shape of the vorticity distribution based on ωraw is different from that 

based on ωrd. Secondly, a threshold λT, set at /z D U 
 = 0.1, is applied when 

calculating Γ for all the vortices detected, where z  denotes the conditional averaged 

vorticity. The intersections of λT with ( )z x  and ( )z y , denoted as rx and ry 

respectively, set the two principal radii of an ellipse (the white solid line in figure 12a). 

The circulation Γ can then be estimated as:  

  
0 0

 = ( ) ( ) ,
x yr r

T z z
L

d x x dx y y dy      
    u l =  (8) 

where the path L is the boundary of the ellipse. Thirdly, Zhou & Antonia (1993) used a 

Lamb-Oseen (LO) vortex model to describe the vorticity distribution of vortices in a 

circular cylinder wake, which is examined presently. The LO vorticity distribution, 

equation (9), is found to be between the ( )z x  and ( )z y  distributions based on 

ωraw in figure 12(b). 

 2 2( / ),z zp cEXP r r    (9) 
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where 
zp  is the local peak z  and rc is the characteristic core radius. Γ for the LO 

model can be readily integrated as 

 2 2 2(LO) 1 ( / ) ,c zp T cr EXP r r         (10) 

where  (the dashed line in figure 12a) is determined by λT. It seems plausible from 

figure 12(b) that equation (8), based on the model of elliptical vortex shape, may provide a 

more reasonable estimate for vortex strength than the LO model or equation (10). For 

comparison, another method to estimate Γ based on λci is proposed below, 

  (11) 

where area B is enclosed by the contour of λci = 50s
-1

 (figure 11c).  

Figure 13(a) compares the downstream variations in Γ calculated from equation (8) 

with z  based on ωraw and ωrd, respectively, denoted as T  and 
,T rd , and equations 

(10) (based on ωraw(y)) and (11), denoted as LO and λci. The downstream variation in the 

equivalent diameter Dt is shown in figure 13(b), where Dt = rx+ry for the elliptical model, 

rx = ry =  for the LO model, and Dt =  for the λci method. Figure 13(c) shows 

the aspect ratio rx/ry and the centroid scattering ratio /
c cy x  , where 

cx and 
cy denote 

the standard deviation of xc and yc from the conditional averaging process, respectively. 

The fact that 
cy <

cx for the entire range is ascribed to the finite bin size in the x 

direction during conditional averaging. 

It is evident in figure 13(a) that Γ(λT) and Γ(λci) agree reasonably well with each other. 

The former is consistently larger because of a relatively high threshold set for λci to 

minimize erroneous detections. Both Γ(λT) and Γ(λci) decrease with x, which is expected. 

On the other hand, Dt changes little, when estimated from the λci method, but increases 

slowly when estimated by the λT method (figure 13b). The increase in Dt captured by the 

λT method is consistent with our perception of downstream vorticity diffusion, thus 

suggesting a superiority, in this respect, to the λci method. 

 

Tr

   , ,ci raw
B
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Tr 4 /B 
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FIGURE 13. Downstream evolution of vortices for case 5F. (a) Comparison of circulation calculated by 

equations (8), (10) and (11); (b) equivalent vortex diameter Dt; (c) ratios rx/ry and /
c cy x  where solid 

lines are polynomial fits to the raw data. 

The predicted Γ from the LO model tends to exceed those from other methods and its 

downstream variation exhibits appreciable difference from others (figure 13a). The 

observation is attributed to the unreasonable circular model of the LO method. This can be 

inferred from rx/ry in figure 13(c). The excess range of Γ, compared to Γ(λT) and Γ(λci), 

coincides with the range of rx < ry which indicates a vortex elongation along the y 

direction (cf. figure 12a). The result implies that the LO model may result in an 

overestimate of Γ. The POD-reconstructed Γ(λT,rd) is consistently larger than Γ(λT) because 

some areas of low vorticity are embraced as part of the coherent structure, as confirmed by 

the larger Dt (figure 13b). The conditionally averaged vortex structure from the POD 

reconstruction displays a more circular shape throughout the measured x range. That is, 

the (rx/ry)rd is closer to unity (figure 13c). As a result, the lateral elongation of actual 

vortices may have been under-represented in the POD-reconstructed model. In conclusion, 

Γ(λT) is considered to provide a better surrogate for the true Γ. 
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3.3.2 Strength, size and path of spanwise vortices 

 

 

FIGURE 14. Trajectories of vortex centers: (a), (b) x and y scaled by D; (c), (d) x and y scaled by Lf and Dw, 

respectively, where the abscissa is shifted by the virtual origin x0. 

The trajectories of the conditionally averaged vortex centroid (xc, yc) are presented in 

figure 14(a, b) for various polygonal cylinders. In general, yc decreases first to a minimum 

during the vortex formation process and then increases gradually. A similar observation 

was reported in Kim, Yoo & Sung (2006) and Shi & Feng (2015) for the circular cylinder 

wake. The minimum yc occurs at x ≈ Lf for N ≤ 8, but consistently at a downstream 

position beyond Lf for N > 8. As Lf and Dw are the characteristic length scales related to 

the vortex formation, it is physically meaningful to re-scale the ordinate and the abscissa 

y/
D

w

x*

(x/Lf )- x0 (x/Lf )- x0

(a)

(b)

(c) (d)

Corner orientation Face orientation

k1 = 0.18

y*
y*

x*

-1 0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

 3C

 4C

 5C

 6C

 7C

 8C

 12C

 16C

 Cir

 

 

k2 = 0.18

-1 0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

x/L
f
-x

0

 3F

 4F

 5F

 6F

 7F

 8F

 12F

 16F

 Cir

 

 

1 2 3 4 5 6 7 8

0.5

1.0

Corner orientation  3C

 4C

 5C

 6C

 7C

 8C

 12C

 16C

 cir

 

 

y/
D

x/D

1 2 3 4 5 6 7 8

0.5

1.0
Face orientation  3F

 4F

 5F

 6F

 7F

 8F

 12F

 16F

 cir

 

 

y/
D

x/D

-1 0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

 3C

 4C

 5C

 6C

 7C

 8C

 12C

 16C

 Cir

 

 

-1 0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

x/L
f
-x

0

 3F

 4F

 5F

 6F

 7F

 8F

 12F

 16F

 Cir

 

 

y/
D

w

x*

(x/Lf )- x0 (x/Lf )- x0

(a)

(b)

(c) (d)

Corner orientation Face orientation

k1 = 0.18

y*
y*

x*

-1 0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

 3C

 4C

 5C

 6C

 7C

 8C

 12C

 16C

 Cir

 

 

k2 = 0.18

-1 0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

x/L
f
-x

0

 3F

 4F

 5F

 6F

 7F

 8F

 12F

 16F

 Cir

 

 

1 2 3 4 5 6 7 8

0.5

1.0

Corner orientation  3C

 4C

 5C

 6C

 7C

 8C

 12C

 16C

 cir

 

 

y/
D

x/D

1 2 3 4 5 6 7 8

0.5

1.0
Face orientation  3F

 4F

 5F

 6F

 7F

 8F

 12F

 16F

 cir

 

 

y/
D

x/D

-1 0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

 3C

 4C

 5C

 6C

 7C

 8C

 12C

 16C

 Cir

 

 

-1 0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

x/L
f
-x

0

 3F

 4F

 5F

 6F

 7F

 8F

 12F

 16F

 Cir

 

 



21 

by Dw and Lf, respectively. Furthermore, the origin of the abscissa is shifted to the virtual 

origin, x0, which is the intersection point between the asymptotic straight line of the vortex 

center trajectory and the abscissa in the far field. As shown in figure 14(c, d), yc/Dw 

declines initially and the scaled rate ( / ) / ( / )w fdy D dx L  (negative) is similar for all 

cases, regardless of N and the orientation. Further downstream, yc/Dw increases, the 

trajectories collapse together on the curve y/Dw = 0.18(x/Lf - x0) whose slope k1 = k2   

0.18. That is, the ratio of the scaled lateral to streamwise components of the vortex 

convection velocity approaches 0.18 asymptotically after the vortex formation. 

 

FIGURE 15. The evolution of Γ(λT): (a), (b) raw data scaled by the constant U∞D; (c), (d) Γ(λT) scaled by the 

maximum value Γ(λT)max, the abscissa is shifted by the formation length Lf
*. 

The evolution of the vortex strength Γ(λT) on x
* 
is similar for all cylinders (figure 15a, 

b). At the early stage, Γ(λT) rises rapidly until reaching its maximum at x ≈ Lf. This initial 

development corresponds to the shear layer rollup process, during which the vorticity in 

the shear layer is continuously entrained into the leading vortex; see figure 15(a). For 
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, that is, their Lf
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smallest, which is consistent with figure 2(a). After that, the vortices quickly detach from 

the shear layer and are convected downstream at a velocity in the order of U∞, forming the 

Karman vortex street, At the same time, Γ(λT) decays under the combined effect of viscous 

dissipation and cancellation between opposite sensed vortices (figure 15a, b). The decay 

rate of Γ in the circular cylinder wake agrees qualitatively well with Cantwell & Coles’ 

(1983) observation at Re = 1.4×10
5
. Their measured Γ is appreciably larger than the 

present estimate for the circular cylinder wake. The magnitude of Γ and its decay rate are 

influenced by the threshold levels set to define the vortex boundary, which was 

/z D U 
 = 0.03 in Cantwell & Coles (1983) but 0.10 presently. Therefore, the 

difference between the two studies is not unexpected. 

Figure 15(c, d) shows Γ(λT), normalized by its maximum Γmax, against x
*
 - Lf

*
, which 

displays a reasonably good collapse, irrespective of N and the cylinder orientation. Several 

common features may be extracted from the collapsed data. Firstly, the vortex reaches its 

maximum strength at the formation length x ≈ Lf. Secondly, the vortex exhibits two stages 

of decay after reaching its maximum. The first stage is an almost linear decay, which 

extends to slightly beyond 4D and near 5D behind Lf for the corner and face orientations, 

respectively. The slopes of the linear decay are very close to each other for all the cases, 

that is, the decay rate is almost independent of N and the orientation. It might imply a 

decay process mainly driven by the vorticity diffusion and dissipation, also reflected by 

the decline of the peak vorticity at the vortex center. Further downstream, the decay rate 

becomes appreciably larger and is more sensitive to N. It is possibly owing to the 

combined effects of vorticity diffusion, dissipation and vigorous interactions and 

cancellation between neighboring vortices which grow to a significant size. More 

discussion on the latter point will be given later. To the authors’ best knowledge, the 

two-stage decay in the vortex strength and their turning point have not been reported 

previously. Finally, the fact that Γ(λT)max occurs at Lf
*
 suggests that Lf is a suitable scaling 

factor for the streamwise length scale in the near wake. 
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FIGURE 16. Dependence of *

max  on (a) N and (b) Dw
*. The dashed line in figure (b) is the straight line 

least-square-fitted to the data of all polygonal cylinders, excluding the 3C case. 

*

max max( / ( ))U D    depends on N and the cylinder orientation, as shown in figure 

16(a). It can be found that 6C and 4F cases has the maximum vortex circulation in the 

wake for corner and face orientation respectively, 8C and 5F cases are the opposite, which 

is consistent with the analysis of the Reynolds normal stress (figure 6) and POD mode 

energy (figure 9). Figure 2(b) indicates that 
*

wD  distribution with N is similar with 
*

max  

distribution; this prompts us to plot *

max  against 
*

wD , as shown in figure 16(b). 

Interestingly, *

max  and 
*

wD  of the polygonal cylinders are indeed correlated linearly, 

except 3C case that are characterized by the largest flat leeward surface (lack of aft-body). 

The result points out that the maximum circulation of the vortices should scale with U∞ 

and 
*

wD . 

While the vortices decay in their strength downstream, their size grows due to 

vorticity diffusion. The characteristic size of the vortices may be represented by Dt. 

Although dependent on N and the cylinder orientation, Dt increases monotonically over 

the streamwise range examined (figure 17a, b). Furthermore, its growth rate is similar, 

albeit dropping slowly as x increases. Use Dt0 to denote Dt at Γ(λT)max (figures 15a, b and 

17a, b) and shift the ordinate by *

0tD , as shown in figure 17(c, d). Since Γ(λT)max occurs at 

Lf
*
 (figure 15c, d),

 
the abscissa in figure 17(c, d) is shifted by Lf

*
 accordingly. We see 

immediately that the evolution of Dt is approximately the same for all N and the two 

orientations. The data scattering is more appreciable at x > 2Lf, especially with the corner 

orientation, and the cylinders of smaller N, i.e. 3C~6C for the corner orientation and 

0 4 8 12 16 20 24
1.5

2.0

2.5

3.0

3.5

4.0

Cir

 Corner orientation 

 Face orientation


m

a
x

U
0
D

 

 

N

0.7 0.8 0.9 1.0 1.1 1.2 1.3
1.5

2.0

2.5

3.0

3.5

4.0

 

 


m

ax
U

0
D

D
*

f

3C

* *

max =3.050 0.108wΓ D 
* m

ax
Γ

(a) (b)

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
0.0

0.4

0.8

1.2
 Least squares fit without 3C, 4F

 Least squares fit with all datas

 3F

 4F

 5F

 6F

 7F

 8F

 12F

 16F

 3C

 4C

 5C

 6C

 7C

 8C

 12C

 16C

 Cir.

Re=1.6× 10
4

 

 

C
L


D
*

f

4F

*

wD

Least squares fit 

without 3C



24 

3F~4F for the face orientation, are associated with smaller growth rate of Dt. For x < Lf, 

the growth of Dt is owing to the entrainment of shear layer vortices and, as is evident in 

figure 15(c, d), this effect is essentially the same for all cases, as is expected. 

 
FIGURE 17. The evolution of the equivalent vortex diameter Dt. (a), (b) Dt /D (Dt

*); (c), (d) the ordinate and 

the abscissa are shifted by *

0tD  and Lf
*, respectively. 

Figure 18(a, b) presents the dependence of *

0tD  on N and Dw
*
, respectively. The 

latter points out unequivocally that *

0tD  is linearly related with Dw
*
, which is fully 

consistent with the conception that the characteristic width of the wake is linked to the 

vortex size. At the location where the circulation reaches its maximum, the vortex size Dt0 

≈ 1.6Dw when the threshold is set at /z D U  = 0.1. Case 3C is the exception, which is 

similar with 
*

max  vs. Dw
*
 in figure 16(b). 
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The deviation of 3C could be explained as follows. The flow separation points for 3C 

occurs at the most rear position compared to the other cases, according to the flow 

visualization in Xu et al (2017). This results in a very small Dw
*
 amongst all the cases as 

shown in figure 2. Furthermore, because of the location of the separation points, the 3C 

case lacks of an aft-body, which minimizes the effect of the cylinder body on the vortex 

formation process. 

 

FIGURE 18. Dependence of *

0tD  on (a) N and (b) Dw
*. The dashed line in figure (b) is the straight line 

least-square-fitted to the data of all polygonal cylinders, excluding the 3C case. 

3.3.3 Convection velocity of vortices 

In this section, we present the dependence on N of the convection velocity of vortices 
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particular phase. The local vortex is then convected at this resultant velocity. 

 

FIGURE 19. (a), (b) The variation of the streamwise vortex convection velocity Uc for all cylinders, (c), 

(d) The variation of the scaled Uc  by maxU , the abscissa is rescaled by Lf.  

The variation in Uc with x is given in figure 19(a, b) over 3 ≤ x/D ≤ 8, over which the 

vortices are completely detached from the shear layer under the influence of the 

convective instability. Apparently, Uc < U∞, though they are in the same order of 

magnitude. One observation can be made, that is, Uc increases monotonically, with a 

gradually reducing dUc/dx, irrespective of N and the cylinder orientation. The result 

conforms to previous reports on Uc for N =  (Cantwell & Coles 1983) and the 4F case 

(Hu, Zhou & Dalton 2006). In the near field, Uc is largely related to the local velocity 

deficit, which is strongly dependent on N and the orientation. Cases 4C and 3F are 

associated with the lowest Uc, while 8C and 5F with the largest. This is internally 

consistent with the larger velocity deficit for the cases of 4C and 3F and smaller velocity 

deficit for the cases of 8C and 5F for the same x
*
 range (figure 3). On the other hand, cases 

4C and 3F correspond to the largest dUc/dx, while 8C and 5F to the smallest. Further 

downstream, the velocity deficit shrinks and Uc recovers. Near the end of FOV, Uc rises to 
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(0.72~0.82)U∞, with the largest Uc in the circular cylinder wake; its dependence on N and 

the orientation becomes weaker. 

With Uc and x normalized by maxU  (the maximum mean streamwise velocity value 

near the cylinder in the wake) and Lf, respectively, the scattering in the normalized Uc is 

greatly reduced, as shown in figure 19(c, d). This allows us to extract one common feature 

of Uc for all the cases, that is, the variation rate of Uc exhibits a clear change at x ≈ 2Lf, 

which correspond two stages of convection velocity evolution. At x < 2Lf, Uc/ maxU  

increases dramatically because of the quick recovery of the velocity deficit in the near 

wake. At x > 2Lf, Uc/ maxU  keeps a constant value basically, because the mean streamwise 

velocity increases very slowly in the wake. It is also noticeable that the 3C case differs 

most in Uc/ maxU  from the other cases, which is attributed to its large *

max  (figure 16b). 

4. Conclusions 

The wakes behind various polygonal cylinders are systematically studied at 

subcritical regime, Re = 1.6×10
4
. The side number N of the polygonal cylinder is 3 to 16, 

along with N = ∞ (a circular cylinder) which acts as a reference for comparison. Two 

orientations are investigated for each cylinder: the corner or flat surface facing incoming 

flow. The dependence on N and the cylinder orientation of the mean velocity, the Reynolds 

stresses, and the coherent structures of the near wake are examined carefully. Vortices in 

the wake are extracted from POD and phase averaging and are characterized in terms of 

their strength, path, size and convection velocity. Some conclusions can be drawn below. 

(1) The near-wakes of the polygonal cylinders exhibit a significant dependence on N and 

the cylinder orientation, as reflected by the mean velocity profiles, Reynolds stress 

distributions and the vortex formation length Lf and wake width Dw. Cases 8C and 5F 

show the smallest Lf, Dw and lowest Reynolds stress magnitude, with the smallest 

velocity deficit and fastest velocity recovery in the near wake. It is believed to relate 

to the smallest circulation Γ of the shed vortices behind these cylinders. That is, 8C 

and 5F have the smallest Γ and the fastest Γ saturation among the cylinders in the two 

orientations (figure 13a, b), resulting in the shortest vortex formation and weakest 



28 

Reynolds stresses. 

(2) The vortex circulation grows to the maximum at the vortex formation length (x ≈ Lf) 

and then decays downstream. The decay may be divided into two stages. The first 

stage, up to 5Lf
*
, is characterized by a linear decay rate almost independent of N and 

orientation, and is probably dominated by vorticity diffusion and viscous dissipation. 

The second stage, beyond 5Lf
*
, is featured with a faster decay rate, which differs from 

one cylinder to another, probably resulting from the combined effect of diffusion, 

dissipation and vigorous vortex interactions. To our best knowledge, the two stage 

decay in the vortex strength and their turning point at x
*
 ≈ 5Lf

*
 have not been reported 

previously. The maximum vortex strength *

max  in the wake is found to be linearly 

related to Dw
*
 (figure 16b).  

(3) The conditionally averaged vortex path indicates that the vortices move towards the 

centerline first and then away. In the normalized coordinate system (x/Lf, y/Dw), the 

ratio of the lateral and streamwise components of the vortex convection velocity is 

fixed at (dy/Dw)/(dx/Lf) ≈ 0.18 (as / /c cdy dx V U ) for x > 2Lf, irrespective of the 

cylinder orientation and N. The equivalent diameter, Dt, of vortices grows 

monotonically downstream for all cylinders. While Dt is clearly dependent on N and 

the cylinder orientation, its growth rate scaled by Lf is approximately the same for all 

the cases (figure 17c, d). Dt
*
 corresponding to Γ(λT)max is linearly correlated with Dw

*
 

(figure 18b). which is fully consistent with the conception that the characteristic width 

of the wake is linked to the vortex size. The streamwise component Uc of the vortex 

convection velocity, scaled by maxU , displays two distinct growth rates, separated at x 

≈ 2Lf. Uc is influenced by the background averaged velocity. As inferred from figure 3, 

the streamwise averaged velocity recovers rapidly for x < 2Lf in the near wake, 

contributing to the high growth rate of Uc and then approaches to a constant for x > 

2Lf. accounting for the lower growth rate.  
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