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Abstract

Enhancement, followed by segmentation, quantification and modelling of blood vessels in retinal images plays an es-
sential role in computer-aided retinopathy diagnosis. In this paper, we introduce the bowler-hat transform method a
new approach based on mathematical morphology for vessel enhancement. The proposed method combines different
structuring elements to detect innate features of vessel-like structures. We evaluate the proposed method qualitatively
and quantitatively and compare it with the state-of-the-art methods using both synthetic and real datasets. Our results
establish that the proposed method achieves high-quality vessel-like structure enhancement in both synthetic examples
and clinically relevant retinal images. The bowler-hat transform is shown to be able to detect fine vessels while still
remaining robust at junctions.
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1. Introduction

Many biomedical images contain vessel-like structures,
such as blood vessels or cytoskeletal networks [1]. Auto-
mated extraction of these structures and their connected
network is often an essential step in quantitative image
analysis and computer-aided diagnostic pipelines. For ex-
ample, automated retinal vessel extraction is used for diag-
nosis, screening, and evaluation in a wide range of retinal
diseases, including diabetes and arteriosclerosis [2].

However, for a multitude of reasons, e.g. noisy image
capture, sample/patient variability, low contrast scenarios,
etc., biomedical imaging modalities may suffer from poor
quality. As such, standard image segmentation methods
are not able to robustly detect vessel-like structures, and
therefore some form of vessel-like structure enhancement
is required [1].

A wide range of vessel enhancement methods have been
proposed (see [2] and [1] for a recent review). These in-
clude Hessian [3, 4, 5], Phase Congruency Tensor [6, 7],
mathematical morphology [8, 5, 9], adaptive histogram
equalisation [10] based approaches and many others [11,
12, 13, 14, 15, 16, 17, 18].

However, many of these methods still have considerable
issues when faced with variations in contrast, high levels
of noise, variation in image features (e.g. lines vs junc-
tions; retention of network connectivity), and complexity
of method parameter space.
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1.1. Contribution and Organisation

In this paper, we introduce a new enhancement method
for vessel-like structures based on mathematical morphol-
ogy, which exploits a key shape property of vessel-like
structures: elongation. The proposed method, called the
bowler-hat transform, has been qualitatively and quantita-
tively validated and compared with state-of-the-art meth-
ods using a range of synthetic data and publicly available
retinal image datasets. The obtained results show that the
proposed method achieves high-quality, vessel-like struc-
ture enhancement in both synthetic examples and clini-
cally relevant retinal images. Retinal vessels can be con-
sidered at dark vessels on a bright background or, when
the image is simply inverted, as bright vessels on a dark
background. For the purposes of clarity in description and
visualisation, we assume, and our methods work for, bright
vessels on a dark background; this is similar to other meth-
ods [3]. The method is suitable for a range of biomed-
ical image types without needing prior training or tun-
ing. Finally, we have made the implementation of our ap-
proach available online, along with source code and all test
functions. The rest of this paper is organised as follows.
In Section 2, we introduce existing vessel-like structure en-
hancement methods and highlight their known limitations.
Section 3 introduces and explains the proposed bowler-hat
transform, Section 4 presents validation experiments and
results on synthetic and real data. Finally, in Section 5,
we discuss the results and future work.
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2. Related Work

In the following section we review existing approaches
for vessel enhancement. We aim to highlight the positives
and the negatives of these methods.

2.1. Multiscale Techniques for Image Processing

Multiscale image processing techniques are motivated
by how the human visual system functions. In order to
capture objects at both low and high spatial frequencies,
images are processed at different scales either by altering
the image size, e.g. in a Guassian pyramid, or by altering
the filter size. By altering this scale in vessel enhancement
different thickness vessels can be successfully enhanced.

In the first case, we are embedding the original image
into a family of increasingly different scales, where the fine-
scale details are successively suppressed. This multi-scale
image representation is generally obtained by use of Gaus-
sian filters or their derivatives defined at different scales, or
by a use of mathematical morphology filters defined with
a varying size of the structuring element.

Multiscale methods cover a wide range of approaches
such as wavelets decomposition based methods, time evolv-
ing snakes, object tracking with increasing smoothing, fixed
scale method [19], hierarchical approximation. There are
many different fields definitions of the multiscale concepts,
such as time [20, 21], information complexity [22], signal
frequency [23] or smoothing degree [24], among others.

2.2. Hessian-based Methods

In [3], Frangi et al. introduce a novel Hessian-based
multi-scale concept for 2D curvilinear/3D tubular struc-
ture enhancement in images. They construct the Hes-
sian matrix using second-order Gaussian derivatives. The
eigenvectors and eigenvalues of the Hessian matrix then de-
fine the principal directions of local image features. These
can then be combined to form different measures of ves-
selness or blobness [1] in biomedical images.

2.2.1. Vesselness

The vesselness measure is proportional to the ratio of
the eigenvalues [3]. If the magnitude of both eigenvalues
is small, i.e. the local image structure is likely to be back-
ground, then the vesselness measure is small. If one eigen-
value is small and the other large then the local structure
is likely to be vessel-like, and the vesselness measure is
large. Finally, if both eigenvalues are high, then the struc-
ture is likely to be blob-like, and the vesselness measure is
again small. Vesselness measurement is also regulated by
two tunable thresholds which control the sensitivity of the
line filter to the blob-like and tubular-like features.

This approach, however, leads to a failure at the inter-
section of vessels as both eigenvalues have similarly large
values leading to a vesselness measure close to zero. Thus,
vessel-like structures can be lost at junctions and therefore
vessels network connectivity may be lost [25]. An exten-
sion of this approach can be found in [5] where a multi-
scale morpho-Gaussian filter is combined with multi-scale

Hessian measurement to enhance the curvilinear features
and reduce noise.

2.2.2. Neuriteness

As an alternative to vesselness, Meijering and colleagues
introduce the neuriteness measure to enhance low contrast
and highly inhomogeneous neurites in bioimages [26]. Us-
ing a modified Hessian, with a tuning parameter, and a
different combination of eigenvalues, neuriteness infers a
putative neurite in every pixel of the image that has a
non-zero value. The second derivative reduces the approx-
imation error of the first derivative. The local maximum
where zero crossing of the first derivative, discovered with
a negative value at the second order derivative.

A major failing for the neuriteness measure is that
background noise signals are enhanced as if they are curvi-
linear structures. In the original paper [26] this is solved
with a tracing stage; however, as an enhancer only, this
can cause serious problems for further analysis. The neu-
riteness measure also leads to a failure at the intersection
of vessels as both eigenvalues have similarly large values
leading to a neuriteness measure close to zero. A further
example of their work is found in [27].

2.2.3. Regularized Volume Ratio

Recently, Jerman and colleagues [28] propose a new
Hessian-based vessel enhancement method, which is able
to resolve the drawbacks found in most of the previous
Hessian-based methods: 1. eigenvalues are non-uniform
throughout an elongated or rounded structure that has
uniform intensity; 2. eigenvalues vary with image inten-
sity; and 3. enhancement is not uniform across scales. To
address such drawbacks, a modified volume ratio is intro-
duced to ensure method robustness to low magnitude in-
tensity changes in the image. A major issue of this method
is the false vessel effect, as also shown in Figure 7j in Sec-
tion 4.4.3 noise sensitivity.

2.3. Phase Congruency Tensor-based Methods

Many enhancement methods fail due to contrast vari-
ations on the image. A significant issue is that they de-
pend on image intensity and, therefore, fine vessels may
be missed because of the lower intensity. To address this
issue a contrast-independent concept for image features
representation, based on Phase Congruency (PC), was in-
troduced in [29].

The development of a contrast-independent vessel en-
hancement approach, based on the PC concept, has been
proposed in [6]. The Phase Congruency Tensor (PCT)
combines PC principles with a local tensor representation.
This tensor provides a suitable representation of the lo-
cal image features. Eigenvalues of the PCT tensor can
be used, in the same way as Hessian eigenvalues (see Sec-
tions 2.2.1 and 2.2.2), to define PCT vesselness and PCT
neuriteness measures. An extension of this method into
3D has recently been shown in [30].
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A major drawback of the PC-based concept is the com-
plexity of its parameter space. Moreover, as with Hessian-
based measures, the PCT-based measures also lead to fail-
ure at the intersection of vessels as both eigenvalues have
similar, large values leading to PCT-based vesselness and
neuriteness measures close to zero.

2.4. Adaptive Histogram Equalisation-based Methods

Contrast Limited Adaptive Histogram Equalisation [10]
(CLAHE), originally developed for speculations enhance-
ment in mammograms, is widely used for vessel enhance-
ment. In this simple, histogram-based method an image is
first divided into small regions, each of which then under-
goes a histogram equalisation. To avoid over-enhancement
of noise, a contrast limiting procedure is applied between
regions. Further development of this method is demon-
strated in [31]and where CLAHE is combined with an
anisotropic diffusion filter to smooth the image and pre-
serve vessel boundaries. A major drawback of this method
is the noise sensitivity.

2.5. Wavelet Transform-based Enhancement Methods

Bankhead and colleagues [13] propose the use of wavelets
for vessel enhancement and segmentation. They calculate
an isotropic, undecimated wavelet transform using the cu-
bic B-spline mother wavelet, and employ the coefficients
to the threshold steps for enhancement, followed by vessel
segmentation. Further improvement of this approach is
demonstrated in [32] where multi-orientation and multi-
scale features from the vessel filtering and the wavelet
transform stages are combined and then used for train-
ing the random forest classifier. A major drawback of this
method is the complexity of its parameter space.

2.6. Line Detector-based Enhancement Methods

Vessel-like feature enhancement has also been done us-
ing multi-scale line detectors [15]. The approach is carried
out by changing the length of a primary line detector with
the varying scales. The line response, identified by sub-
traction of average value and the maximum value of each
pixel, is computed at 12 different line directions. The main
idea behind this method is that line detectors with smaller
lengths will avoid the combination of the region of vessel
pixels and therefore, provide correct responses. A ma-
jor drawback of this method is at crossover points, where
the method produces ‘false vessels’ by merging nearby ves-
sels. Further improvement of this method is demonstrated
in [33] where a linear combination of all the line responses
at varying scales is proposed to produce the final enhance-
ment and segmentation.

2.7. Mathematical Morphology-based Enhancement
Methods

Zana and Klein [8] proposed a novel method which
combines morphological transforms and cross-curvature eval-
uation for vessel-like structure enhancement and segmen-
tation. This method relies on the assumption that vessels

are linear, connected and have smooth variations of cur-
vature along the peak of the feature as for all curvilinear
enhancement methods. First, a sum of top hats is cal-
culated using linear structuring elements with the single
size (15-pixels long) at different orientations, and after en-
hancement step, a curvature measure is calculated using
a Laplacian of Gaussian, and finally, both of them are
combined to reduce noise and enhance vessel-like struc-
tures in an image. Further improvement of this method is
demonstrated in [5, 16, 9]. In particular, in [16], an ad-
vanced morphological directional filter called path open-
ings is linked with data fusion based on fuzzy set the-
ory. This approach has four steps; First is preprocessing,
where the image undergoes histogram equalisation, and
then Gaussian filtering to improve the effectiveness of the
second step. The second step involves feature extraction
by detection of local minima and edges in the image. The
third step preserves connected vessels and suppresses noise
by path opening, and the final step combines the features
and possible paths into a fuzzy classification problem -
identifying pixels as likely vessels or likely background.

And most recently, in [9], a multi-scale morphological
top hats transform is combined with Gabor and a matched
filter. A major issue with this method is that it is quite
slow and sensitive to noise.

2.8. Other Approaches

Recently, deep learning approaches have shown great
potential for curvilinear structure enhancement and seg-
mentation [34, 35, 36, 37, 38, 39]. In particular, a new
regression architecture based on the basis of filter banks
learned by sparse convolutional coding is proposed by [38].
The approach is based on a novel initialisation strategy,
using carefully designed hand-crafted filters (SCIRD-TS)
which are modelling appearance properties of curvilinear
structures.

2.9. Limitations and Challenges

Many existing vessel-like structure enhancement meth-
ods still have substantial issues when faced with varia-
tions in contrast (low-accuracy enhancement), high levels
of noise (introduction of ’false vessels’ effect), dealing with
junctions/bends (suppression of disk-like structures; ves-
sels network connectivity is lost), large image size (high
computing time), and complexity of parameter space.

3. Method

In this section, we introduce our novel, mathemati-
cal morphology-based method for vessel-like structure en-
hancement in images: the bowler-hat transform. We high-
light the key concepts that allow this method to address
the major drawbacks of existing, state-of-the-art, meth-
ods.
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Figure 1: Flow chart of the bowler-hat.

3.1. Mathematical Morphology

Morphological operations are a set of non-linear filter-
ing methods formed through a combination of two basic
operators: dilation and erosion.

Dilation, (⊕), for a given pixel in a greyscale image,
I(p), can be described as the maximum of the points in
the weighted neighbourhood described by the structuring
element b(p), and mathematically:

(I ⊕ b)(p) = sup
x∈E

[I(x) + b(p− x)], (1)

where ‘sup’ is the supremum and x ∈ E denotes all points
in Euclidean space within the image [41]. Likewise, we
mathematically describe the erosion (	), as the minimum
of the points in the neighbourhood described by the struc-
turing element:

(I 	 b)(p) = inf
x∈E

[I(x) + b(p− x)], (2)

where ‘inf’ is the infimum [41]. Dilation is able to expand
bright areas and reduce dark areas, whilst erosion expands
dark areas reducing bright areas as detailed in [42]. From

SE

Opening

a. b. c.

Figure 2: An opening of a simple image with the various size of
structuring elements (SE) (the left route in Figure 1). (a) is a result
of after a SE smaller than any curvilinear features, (b) is result of
after a SE bigger than some curvilinear features but smaller than the
other features and (c) is result of after a SE bigger than all curvilinear
features in the input image. Reprinted with the permission from [40].
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Figure 3: An openings with line SEs of various lengths and rotations
of an examplary input image (the right route in Figure 1). (a) is a line
SE longer than the width of some curvilinear features in the input
image. (b) is a line SE longer than the width of most curvilinear
features in the input image. Note how those features aligned with
the SE are not attenuated during the opening. In this extremely
simple case the maximum (right hand column) includes values at all
features. Reprinted with the permission from [40].

these two operators we can define two commonly used mor-
phological filters:

opening : (I ◦ b)(p) = ((I 	 b)⊕ b)(p) (3)

closing : (I • b)(p) = ((I ⊕ b)	 b)(p) (4)

where an opening (◦) will preserve dark features and pat-
terns, suppressing bright features, and a closing (•) will
preserve bright features whilst suppressing dark patterns.

3.2. Proposed Method

Figure 1 presents a flow diagram of the proposed method
which combines the outputs of morphological operations
upon an image carried out with two different banks of
structural elements: one bank of disk elements with vary-
ing radii, and one bank of line elements with varying radii
and rotation. The bowler-hat transform is named after the
bank of disk elements (forming the bowl) and the bank of
line elements (forming the brim). For a given greyscale in-
put image, I, we carry out a series of morphological open-
ings with a bank of disk-shaped structuring elements, bd
of diameter d ∈ [1, dmax] pixels, where dmax is the ex-
pected maximum vessel size and user-defined parameter.
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This produces a stack of images, for all d, such that

{Idisk} = {I ◦ bd : ∀d ∈ [1, dmax]}. (5)

In each Idisk image, vessel segments wider than d remain
and those segments smaller than d are removed.

We also produce a similar stack of images using a bank
of line-shaped structuring elements, bd,θ; each line-shaped
is of length d ∈ [1, dmax], with a width of 1 pixel, and
orientation θ ∈ [0, 180), with the angle step defined by
θsep.

As a result, vessel segments that are longer than d and
along the direction defined by θ will remain, and those
shorter than d or along the direction defined by θ will be
removed. For each line length d we produce a stack of
images for all orientations defined by θ ∈ [0, 180). Then,
for each d, we calculate a single image, Iline as a pixel-wise
maximum of the stack such that

{Iline} = {max
θ

({I ◦ bd,θ : ∀θ}) : ∀d ∈ [1, dmax]}. (6)

These two stacks, {Idisk} and {Iline}, are then com-
bined by taking the stack-wise difference, the difference
between the maximum opening with a line of length d
across all angles and an image formed of opening with a
disk of size d, to form the enhanced image. The final en-
hanced image is then formed from maximum difference at
each pixel across all stacks,

Ienhanced = max
d

(|Iline − Idisk|). (7)

Pixels in the background, i.e. dark regions, will have a
low value due to the use of openings; pixels in the fore-
ground of blob-like structures will have a low value as
the differences will be minimal, i.e. similar values for
disk-based and line-based openings; and pixels in the fore-
ground of vessel-like structures will have a high value, i.e.
large differences between longer line-based openings and
disk-based openings.

The combination of line and disk elements gives the
proposed method a key advantage over the existing meth-
ods. Given an appropriate dmax, i.e. larger than any
vessels in the image, a junction should appear bright like
those vessels joining that junction, something that many
other vessel enhancement methods fail to do. This is due
to the ability to fit longer line-based structural elements
within the junction area. As a result, the vessels network
stays connected when enhanced and segmented, especially
at junctions.

In Section 4, we demonstrate, qualitatively and quan-
titatively, the key advantages of the bowler-hat transform
over the existing, state-of-the-art vessel-like structure en-
hancement methods.

3.3. Implementation and Computation Time

All codes were implemented and written in MATLAB
2016b [43] on Windows 8.1 Pro 64-bit PC running an In-
tel Core i7-4790 CPU (3.60 GHz) with 16GB RAM. The
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Figure 4: Cross-sectional profiles of a synthetic vessel input image (at
the up right side (red, dashed line)) and the input image enhanced
with the state-of-the-art (see legend for colours) vessel enhancement
methods and the proposed bowler-hat (black, solid line) vessel en-
hancement method. All the images were normalised such that the
brightest pixel in the whole image has a value of 1 and the darkest
a value of 0.

source code is available in a GitHub repository https://git
hub.com/CigdemSazak/bowler-hat-2d.

The average computation time for the proposed method
is 3.8 seconds for DRIVE image and 4.9 seconds for STARE
image. Please make a note that the proposed method has
been implemented and tested in Matlab, however, C++
implementation could be much faster.

4. Results

In this section, the proposed method is qualitatively
and quantitatively validated and compared with the exist-
ing state-of-the-art methods using synthetic and clinically
relevant, retinal image datasets, with human-annotated
ground truths, and other biomedical images.

As with any image processing method, an understand-
ing of how the parameters involved affect the result is es-
sential.In general, we have found the bowler-hat transform
to be robust, usually requiring 10–12 θ orientations for line
structuring element and the size of the disk/line structur-
ing element d to be greater than the thickest vessel struc-
ture in an image.

The following sections are organised as follows: first,
we visually and qualitatively analyse the bowler-hat trans-
form and compare with alternative methods in Section 4.1,
Section 4.3, Section 4.2. Second, we use real world fun-
dus images, with human-created ground truths, to com-
pare these methods in Section 4.4 and the parameters for
the all methods can be found in the supplementary file
presented in Table 1. We evaluate these results in a quan-
titative and comparable manner using the Receiver Op-
erating Characteristic (ROC) curve and the Area Under
the Curve (AUC) metric. All the images were normalised
after each enhancement approach such that the brightest
pixel in the whole image has a value of 1 and the darkest
a value of 0.
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4.1. Profile Analysis

The effect of the vessel enhancement methods on a sim-
ple vessel-like structure is shown in Figure 4. This repre-
sents the simplest example of a vessel in an image, like
those found in retinal images. Figure 4 illustrates the nor-
malised, intensity profile for images enhanced with each
of the methods. As the Figure 4 clearly shows, the en-
hancement methods tend to expand or shrink the vessel-
like structures. Moreover, while the Hessian-based meth-
ods have an enhanced signal at the center of the vessel, i.e.
a peak value of one at the vessels centre-line, their value
quickly drops off and decreases the perceived thickness of
the vessel. The proposed method has both these benefits:
a maximal peak value at the vessel centre-line and an en-
hanced response to the edges of the vessel. As a result,
reliable vessel thickness can be captured.

4.2. Response to Uneven Background Illumination

Figure 5 presents the response of the proposed method
to an uneven illumination scenario. Key features such as
junctions are preserved and appear unaffected by even se-
vere illumination problems. This ability to preserve junc-
tions under uneven illumination is important for many
real applications of vessel enhancement and the proposed
method is able to do this, unlike the current state-of-the-
art methods.

a. b. c. d. e. f.

g. h. i. j. k. l. ours

Figure 5: Comparison of the vessel enhancement methods’ abilities
to deal with an uneven background illumination. (a) an input im-
age, (b) vesselness, (c) CLAHE, (d) Zana’s top-hat, (e) neuriteness,
(f) PCT vesselness, (g) PCT neuriteness, (h) wavelet, (i) line detec-
tor, (j) volume ratio, (k) SCIRD-TS, and (l) the bowler-hat.

4.3. Response to Vessels, Intersections, and Blobs

Figure 6 presents a qualitative comparison between the
proposed method and the state-of-the-art methods when
applied to synthetic images and real images with vessel-
like, intersection-like, and blob-like structures. Key issues
that occur across the state-of-the-art methods include de-
fects at junctions (purple arrows), noise enhancement, tip
artefacts (orange arrows) and loss of signal (yellow arrows).
These issues are all absent with our proposed method.
However, a shortcoming of our approach is shown in Fig-
ure 6- row 4, which shows a vessel like an object with
an attached ‘blob’ (green arrow), a perfect vessel enhance-
ment method would enhance all of the linear structure and
none of the blob. While none of the compared approaches
act in this ideal manner, many of the methods show a clear
difference between the blob response and vessel response.

4.4. Real Data - Retinal Image Datasets

In this section, we show the quality of the proposed
method validated on three publicly available retinal im-
age datasets: the DRIVE, STARE, and HRF databases.
These datasets have been chosen because of their avail-
ability and their ground truth data. We have used these
ground truth segmentations to quantitatively compare the
proposed method with the other vessel enhancement meth-
ods.

The Digital Retinal Images for Vessel Extraction [44]
(DRIVE) dataset is a published database of retinal images
for research and educational purposes. The database con-
sists of twenty colour images that are JPEG compressed,
as for many screening programs. These images were se-
lected randomly from a screening of 400 diabetic subjects
between the ages of 25 and 90. The ground truth provided
with this dataset consists of manual segmentation of the
vasculature for each image. Ground truths were prepared
by trained observers, and ’true’ pixels are those for which
observers where > 70% certain.

The STructured Analysis of the REtina (STARE) [45]
dataset is another publicly available database containing
twenty colour images with human-determined vasculature
ground truth. We have compared all these images against
the AH labelling. The High-Resolution Fundus (HRF)
image dataset [46] consists of 45 retinal images. This
dataset has three type of subjects include healthy, diabetic
retinopathy, and glaucoma.

4.4.1. Quantitative Validation - Enhancement

While a visual inspection can give some information re-
garding the effectiveness of the vessel enhancement meth-
ods, a form of quantitative validation is required. There-
fore, as proposed in [47], we have used the Receiver Oper-
ating Characteristic (ROC) curve and we calculated the
Area Under the Curve (AUC) based on ROC curve to
compare the vessel enhancement methods. To derive the
ROC curve and then to calculate the AUC value, each en-
hanced image is segmented at different thresholds ranging
from 0 to 1, andcompared with the corresponding ground
truth segmentation [43]. AUC value is calculated using
trapezoidal approximation of the area under the curve.
The AUC metric measures vessel segmentation accuracy
directly but it also measures the vessel enhanced accuracy
indirectly. Such a procedure is used for Figure 11, Fig-
ure 8, and Table 1.

Please note that, before any quantitative evaluation, all
the enhanced retinal images were masked with the mask
images provided with the retinal image datasets.

4.4.2. Quantitative Validation - Segmentation

To quantitatively evaluate the robustness of the vessel
segmentation methods, sensitivity (SE), specificity (SP),
and accuracy (ACC) metrics are calculated for each seg-
mented image and its corresponding ground truth segmen-
tation, as follows:
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Figure 6: The bowler-hat transform enhances vessels, maintaining junctions and tips while suppressing blobs. A comparison of the enhance-
ment of vessel-like and other structures using the proposed method and the state-of-the-art methods. (a) shows the original images, all
vessels have a thickness of 9 pixels and the ‘blob’ in 4 has a diameter of 21 pixels. The first four rows are synthetic images that indicate
possible vessel-like structures in biomedical images. The last three rows illustrate vessel-like structures from real biomedical images. Row 5
is a cropped region from the DRIVE dataset, while row 6 is vessel section of the healthy images in the HRF dataset. The last row is another
a cropped region from the leaf image [6]. Results for (b) vesselness, (c) CLAHE, (d) Zana’s top-hat, (e) neuriteness, (f) PCT vesselness,
(g) PCT neuriteness, (h) wavelet, (i) line detector, (j) volume ratio, (k) SCIRD-TS, and (l) the bowler-hat. Arrows indicate features of
interest: vessel structures (yellow arrows), junctions (purple), blob-like features (green), and tips (orange).

SE =
TP

TP + FN
, (8)

SP =
TN

TN + FP
, (9)

ACC =
TP + TN

TP + TN + FP + FN
, (10)

where TP is the true positive count, FP the false positive
count, TN the true negative and FN the false negative
counts of the segmented pixels. We used these metrics
in Table 2 and Table 3.

4.4.3. Healthy Subjects

Figure 7 shows the results of the proposed and state-of-
the-art methods applied to a sample image from the HRF
dataset (results for DRIVE and STARE datasets can be
found in Supplementary Materials).

We can see that the proposed method is able to enhance
finer structures as detected by the human observer but not
emphasised by many of the other methods (see arrows).

We can also see that, whilst the connectivity seems to

be maintained (unlike in Figure 7b), ‘false vessels’ are not
introduced (c.f. Figure 7e).

Finally, Figure 8 and Table 1 present ROC curves and
mean AUC values for the enhancement results of the pro-
posed and state-of-the-art methods applied to all images
across the DRIVE, STARE and HRF datasets by using
the quantitative validation as described Section 4.4.1.

4.4.4. Unhealthy Subjects

Figure 9 presents a visual comparison of the enhance-
ment methods applied to sample images of subjects with
diabetic retinopathy and with glaucoma from the DRIVE,
STARE and HRF datasets. As we can notice in Figure 9i,
the proposed method is sensitive to noisy regions. This
issue can be addressed by the use of a line-shaped mor-
phological structuring element with a varying thickness.
Even so, the proposed method achieved a highest overall
score on the HRF unhealthy images as illustrated in Ta-
ble 1

4.4.5. Enhancement with Global and Local Thresholding

Figure 10 demonstrates the vessel segmentation re-
sults obtained by the proposed and the state-of-the-art
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Figure 7: A comparison of the vessel-like structure enhancement results for a sample image from HRF dataset. (a) an input image. The
zoomed in region (2) shows enlarged image ROI in the square of the raw image. The arrows point to key areas of interest, such as junctions,
fine tips and vessels not captured by all methods. Respectively, (b) vesselness, (c) CLAHE, (d) Zana’s top-hat, (e) neuriteness, (f) PCT
vesselness, (g) PCT neuriteness, (h) wavelet, (i) line detector, (j) volume ratio, (k) SCIRD-TS, and (l) the bowler-hat.
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c. HRF

Raw image Vesselness CLAHE Zana’s top-hat Neuriteness PCT vesselness

PCT neuriteness Wavelet Line detector Volume ratio SCIRD-TS Bowler-hat

Figure 8: ROC curves calculated for sample images from the (a) DRIVE, (b) STARE, and (c) HRF datasets enhanced by the proposed and
the state-of-the-art methods (see legend for colours). Corresponding mean AUC values can be found in Table 1.

vessel-like structures enhancement methods followed by
the same global and local thresholding approaches pro-
posed in [48, 49] when applied to the HRF dataset images.
The quantitative comparision of the vessel segmentation
results obtained is presented in Table 2.

4.4.6. Comparison with Other Segmentation Methods

To highlight the effectiveness of the proposed vessel en-
hancement method (combined with the local thresholding
approach [49]) for a full vessel segmentation, we compared
the performance of our method with seventeen state-of-
the-art vessel segmentation methods reported in the liter-
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Enhancement
Method

AUC (StDev)

Year/Ref DRIVE STARE HRF(healthy) HRF(unhealthy)

Raw image - 0.416 (0.064) 0.490 (0.076) 0.530 (0.075) 0.541(0.073)

Vesselness 1998 [3] 0.888 (0.243) 0.898 (0.215) 0.913 (0.020) 0.904 (0.020)

CLAHE 1998 [10] 0.862 (0.068) 0.880 (0.087) 0.867 (0.025) 0.835 (0.023)

Zana’s top-hat 2001 [8] 0.933 (0.015) 0.956 (0.021) 0.943 (0.010) 0.91 (0.016)

Neuriteness 2004 [26] 0.909 (0.022) 0.927 (0.039) 0.896 (0.024) 0.879 (0.059)

PCT vesselness 2012 [6] 0.890 (0.037) 0.899 (0.056) 0.888 (0.011) 0.837 (0.030)

PCT neuriteness 2012 [6] 0.817 (0.121) 0.827 (0.165) 0.901 (0.029) 0.777 (0.022)

Wavelet 2012 [13] 0.891 (0.024) 0.867 (0.042) 0.802 (0.022) 0.740 (0.026)

Line detector 2013 [15] 0.828 (0.024) 0.856 (0.042) 0.820 (0.022) 0.734 (0.026)

Volume ratio 2016 [28] 0.934 (0.024) 0.939 (0.042) 0.926 (0.022) 0.823 (0.026)

SCIRD-TS 2016 [38] 0.925 (0.468) 0.946 (0.021) 0.956 (0.012) 0.0.692 (0.035)

Bowler-hat - 0.946 (0.032) 0.962 (0.034) 0.968 (0.015) 0.944 (0.016)

Table 1: Mean AUC values calculated as described in Section 4.4.1, for the images across the DRIVE, STARE and HRF datasets enhanced
by the bowler-hat and the state-of-the-art methods. Best results for each dataset are in bold. Individual ROC curves can be seen in Figure 8.

ature [44, 50, 51, 52, 53, 54, 55, 56, 57, 58, 12, 15, 13, 59,

1
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2
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3
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d. e. f.
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Figure 9: The bowler-hat applied to the unhealthy subjects from
(a) DRIVE, (b) STARE and (c) HRF. (d, g, j) are the input images
with the region of interest. (e, h, k) illustrate the green channel
of input image (f, i, l) demonstrate the enhancement result of the
vessel-like structure on the abnormal area.

ACC (Std)

Enhancement
Method

Global Local

Year/Ref HRF HRF

Vesselness 1998 [3] 0.936(0.006) 0.951(0.006)

CLAHE 1998 [10] 0.668(0.101) 0.859(0.009)

Zana’s top-hat 2001 [8] 0.925(0.016) 0.946(0.008)

Neuriteness 2004 [26] 0.948(0.005) 0.953(0.006)

PCT vesselness 2012 [6] 0.892(0.015) 0.926(0.007)

PCT neuriteness 2012 [6] 0.916(0.013) 0.900(0.008)

Wavelet 2012 [13] 0.672(0.137) 0.946(0.006)

Line detector 2013 [15] 0.902(0.008) 0.957(0.006)

Volume ratio 2016 [28] 0.936(0.012) 0.947(0.011)

SCIRD-TS 2016 [38] 0.947(0.008) 0.951(0.010)

Bowler-hat - 0.960(0.005) 0.961(0.005)

Table 2: Mean ACC values with the standard deviation for vessel
segmentation results obtained by the proposed and the state-of-the-
art vessel-like structures enhancement methods followed by the same
global thresholding approach proposed in [48] and local thresholding
approach proposed in [49] when applied to the HRF dataset images.

60, 61, 46] applied to DRIVE, STARE and HRF datasets.
Table 3 shows the reported results of the seventeen seg-

mentation methods compared with the proposed method.
From Table 3, it can be seen that the proposed bowler-
hat transform outperforms several common or state-of-the-
art methods from the field. In cases where the proposed
method does not outperform, but still performs to a simi-
lar quality, it is worth keeping in mind that many of these
methods combine multiple stages, of which enhancement is
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Figure 10: Vessel segmentation results obtained by the proposed and the state-of-the-art vessel-like structures enhancement methods followed
by the same local thresholding approach proposed in [49] when applied to the HRF dataset images. (a) vesselness, (b) CLAHE, (c) Zana’s
top-hat, (d) neuriteness, (e) PCT vesselness, (f) PCT neuriteness, (g) wavelet, (h) line detector, (i) volume ratio, and (j) the bowler-hat.
Colours indicate true positive (white), false positive (red) and false negative pixels (green). Corresponding mean AUC values can be found
in Table 2.

Method
DRIVE STARE HRF

SE SP ACC SE SP ACC SE SP ACC
Staal et.al [44] - - 0.946 - - 0.951 - - -
Soares et.al [50] - - 0.946 - - 0.948 - - -
Lupascu et.al [51] 0.720 - 0.959 - - - - - -
You et.al [52] 0.741 0.975 0.943 0.726 0.975 0.949 - - -
Marin et.al [53] 0.706 0.980 0.945 0.694 0.981 0.952 - - -
Wang et.al [54] - - 0.946 - - 0.952 - - -
Mendonca et.al [55] 0.734 0.976 0.945 0.699 0.973 0.944 - - -
Palomera-Perez et.al [56] 0.660 0.961 0.922 0.779 0.940 0.924 - - -
Matinez-Perez et.al [57] 0.724 0.965 0.934 0.750 0.956 0.941 - - -
Al-Diri et.al [58] 0.728 0.955 - 0.752 0.968 - - - -
Fraz et.al [12] 0.715 0.976 0.943 0.731 0.968 0.944 - - -
Nguyen et.al [15] - - 0.940 - - 0.932 - - -
Bankhead et.al [13] 0.703 0.971 0.937 0.758 0.950 0.932 - - -
Orlando et.al [59] 0.785 0.967 - - - - - - -
Azzopardi et.al [60] 0.766 0.970 0.944 0.772 0.970 0.950 - - -
Odstrcilik et.al [46] 0.784 0.951 0.934 0.706 0.969 0.934 0.786 0.975 0.953
Zhang et.al [61] 0.774 0.972 0.947 0.779 0.975 0.955 0.797 0.971 0.955
Proposed method 0.718 0.981 0.959 0.730 0.979 0.962 0.831 0.981 0.963

Table 3: Performance of different vessel segmentation methods have been reported in the literature with the proposed method, regarding
mean sensitivity (SE), specificity (SP), accuracy (ACC) on the all over the DRIVE, STARE and HRF datasets.

just one, whereas our approach is able to achieve such high
quality results with just an enhancement process. The re-
sults on both datasets demonstrate that the sensitivity of
the proposed method is not in top three respectively for
DRIVE (SE = 0.616) and STARE (SE = 0.730). How-
ever, the proposed method has the highest score with the
specificity (SP = 0.991) for DRIVE and (SP = 0.979)
for STARE. Most importantly, our method has the accu-
racy (ACC = 0.960) and (ACC = 0.962) for DRIVE and
STARE respectively; the highest compared to other vessel
segmentation methods. Finally, the proposed method has
the highest score for HRF dataset, with (SE = 0.831),
(SP = 0.981) and (ACC = 0.963).

4.5. Response to Noise

To test how the state-of-the-art enhancement methods
and the proposed method behave with the different level
and type of the noise, a noisy synthetic image that includes
a single vessel-like structure was used. We generated such
noisy image by optimising the noise generation parameters
to achieve a target PSNR by using a genetic optimisation
algorithm proposed in [62].

We then examine the enhancement methods by increas-
ing the noise level and then calculating the AUC values for
each level of noise and each comparator method. Figure 11
shows the effect of three different noise types on the pro-
posed and state-of-the-art methods. Given that the pro-
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c. Salt and Pepper Noise

Raw image Vesselness CLAHE Zana’s top-hat Neuriteness PCT vesselness

PCT neuriteness Wavelet Line detector Volume ratio SCIRD-TS Bowler-hat

Figure 11: The bowler-hat transform is robust against additive Gaussian noise but susceptible to speckle and salt&pepper. Mean AUC for
the input image and the image enhanced by bowler-hat and by the state-of-the-art methods with different peak signal-to-noise ratios (PSNRs)
for three different noise types: (a) additive Gaussian noise, (b) multiplicative Gaussian noise, and (c) salt and pepper noise (see legend for
colours).

posed method has no built-in noise suppression, it is un-
surprising that the effect of noise on the enhanced image
is in-line with the raw image. We note that the method is
weakest in response to speckle noise (multiplicative Gaus-
sian) and also weak in response to salt and pepper noise.
This follows from the noise-sensitivity in morphological
operations and should be taken into consideration when
choosing an enhancement method.

4.6. Other Biomedical Data

While we have demonstrated the proposed method on
the enhancement of vessel-like structures, the approach is
feasible for a wide range of biomedical images, see Fig-
ure 12.

5. Conclusion and Discussion

A wide range of image processing methods have been
proposed for vessel-like structure enhancement in biomed-
ical images, see section Section 1. Most of them, however,
suffer from issues with low-contrast signals, enhancement
of noise or when dealing with junctions.

In this paper, we introduce a new enhancement method
for vessel-like structures based on mathematical morphol-
ogy, which exploits the elongated shape of vessel-like struc-
tures. The proposed method, the bowler-hat transform,
was qualitatively and quantitatively validated and com-
pared with the state-of-the-art methods using a range of
synthetic and real image datasets, including retinal image
collections (DRIVE, STARE and HRF). We showed the
effectiveness of the bowler-hat transform, and its superior
performance on retinal imaging data, see Figure 8, Ta-
ble 1, and Table 2. Furthermore, experimental results on
the unhealthy retinal images have shown that the vessels
enhanced by our bowler hat transform are continuous and
complete in problematic regions as illustrated in Figure 9.

As with any image processing technique, our proposed
method has limitations. Basically, morphological opera-
tions are renowned for their large computational require-
ments. Another limitation of the proposed method is dis-
played in Figure 6 row 4, which shows a vessel-like struc-
ture with an attached ‘blob’ (green arrow), a perfect vessel
enhancement method would enhance all of the linear struc-
ture and none of the blob. Whilst none of the comparison
methods act in this ideal manner many of them show a
clear difference between the blob response and vessel re-
sponse, our proposed method shows some difference, but
this difference impacts the signal of the vessel.

Moreover, as we note in Figure 7, the proposed method
is sensitive to noise such as susceptible to speckle and
salt&pepper, as is the PCT neuriteness method in Fig-
ure 7g. In the future, we will investigate introducing a
line-shaped morphological structuring element with vary-
ing thickness to address this issue. Nevertheless, our im-
plementation demonstrates an improved and easy to use
vessel enhancement alternative that can be used in a wide
range of biomedical imaging scenarios [63]. Whilst one
would expect the lack of noise suppression to be a major
issue with regard to quantified measurements of vessel en-
hancement, we find that the proposed method gives the
best enhancement of all methods on the DRIVE, STARE
and HRF datasets (see Table 1 and Figure 8).

In this paper, we have demonstrated the ability of the
proposed bowler-hat transform to effectively enhance and
segment vessel-like structures in the retinal images. In ad-
dition, to illustrate the robustness of the proposed bowler-
hat transform enhance, we have matched it with the sev-
enteen state-of-the-art methods previously tested on the
DRIVE, STARE and HRF image datasets, see Table 3.

Future extensions of this work will include the devel-
opment of a three-dimensional equivalent, exploration of
blob-like structures enhancing variants of this method, and
an analysis of parameter sensitivity for different modali-
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d. e.

Figure 12: Results of the vessel-like structure enhancement using the bowler-hat on biological images of (a–b) cytoskeletal networks, (c)
endoplasmic reticulum, and (d–e) macro-scale networks . (a) provided by Prof. R. Leube, RWTH Aachen University, Germany. (b) provided
by Dr T. Hawkins, Durham University, UK. (c–e) provided by Prof. M. Fricker, Oxford University, UK.

ties.
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