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ABSTRACT
Knowledge of the optical turbulence profile is important in adaptive optics (AO) systems,
particularly tomographic AO systems such as those to be employed by the next generation of
40-m class extremely large telescopes. Site characterization and monitoring campaigns have
produced large quantities of turbulence profiling data for sites around the world. However AO
system design and performance characterization is dependent on Monte Carlo simulations that
cannot make use of these large data sets due to long computation times. Here we address the
question of how to reduce these large data sets into small sets of profiles that can feasibly be
used in such Monte Carlo simulations, whilst minimizing the loss of information inherent in
this effective compression of the data. We propose hierarchical clustering to partition the data
set according to the structure of the turbulence profiles and extract a single profile from each
cluster. This method is applied to the Stereo-SCIDAR (SCIntillation Detection And Ranging)
data set from ESO Paranal containing over 10 000 measurements of the turbulence profile
from 83 nights. We present two methods of extracting turbulence profiles from the clusters,
resulting in two sets of 18 profiles providing subtly different descriptions of the variability
across the entire data set. For generality we choose integrated parameters of the turbulence to
measure the representativeness of our profiles and compare to others. Using these criteria we
also show that such variability is difficult to capture with small sets of profiles associated with
integrated turbulence parameters such as seeing.

Key words: atmospheric effects – instrumentation: adaptive optics – methods: statistical –
site testing.

1 IN T RO D U C T I O N

In tomographic adaptive optics (AO), multiple wavefront sensors
(WFSs) and deformable mirrors (DMs) are used to measure and
correct the turbulence in the Earth’s atmosphere over a wide field of
view. This wide corrected field has made tomographic AO systems
desirable for both current 8 m class telescopes (see e.g. Neichel
et al. 2014; Esposito et al. 2016) and the next generation of 40-m
class extremely large telescopes (ELTs; see e.g. Diolaiti et al. 2010;
Hinz et al. 2010; Herriot et al. 2014).

In combining the off-axis WFS measurements to reconstruct the
three-dimensional volume of turbulence projected from the tele-
scope pupil through the atmosphere, some knowledge of the ver-
tical distribution of the turbulence is required (Fusco et al. 2001;
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Vidal, Gendron & Rousset 2010). As such the performance of these
systems depends on the optical turbulence profile, usually defined
in terms of distribution of the refractive index structure constant
C2

n(h) with altitude h. In particular, high-altitude turbulence where
the spatial overlap between WFS measurements is small results in
a degradation in AO performance.

The turbulence profile therefore plays a key role in the design of
tomographic AO systems as they must be optimized for a particular
observing site. As a consequence turbulence profiling forms a large
part of site characterization studies (see e.g. Schöck et al. 2009;
Vernin et al. 2011). These studies produce many measurements
of the profile at a particular site. However, the majority of AO
simulations used as part of the instrument design process (see e.g.
Basden et al. 2007; Rigaut & van Dam 2013; Conan & Correia 2014;
Reeves 2016) are Monte Carlo in nature and require long simulation
times and many repeats of the simulation to produce results for a
single set of atmospheric conditions. It is therefore not feasible to
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Representative profiles for ESO Paranal 4031

run simulations on many thousands of turbulence profiles to fully
characterize AO performance for a particular site. Thus the large
data set of measured turbulence profiles must be reduced to a small
set that is in some way representative of the data set as a whole.

If the turbulence profile at a site were to show very little temporal
variation, this task is relatively simple; the average integrated C2

n(h)
values in each altitude bin for example would give a good approxi-
mation of the profile at all times. However for most observing sites
the profile varies greatly on time-scales from minutes to seasons.
In these cases such a method averages out features that are only
present in a subset of the data, resulting in a profile that may never
have been measured and is therefore not representative of the data
set. An instrument optimized to such a profile would not perform
as expected under real world conditions.

Here we put forward a method of obtaining a set of represen-
tative turbulence profiles at such a site by employing hierarchical
clustering to provide a quantitative classification of profiles. This
allows us to separate profiles with different structure and maintain
the features in the profile whilst still reducing a large data set to a
small set of profiles.

An example of a site with large variation in the structure of
the turbulence profile is ESO Paranal, Chile. A 20-month long
campaign using a Stereo-SCIDAR (SCIntillation Detection And
Ranging) instrument (Shepherd et al. 2014) mounted on one of the
auxiliary telescopes (ATs) has yielded a set of over 10 000 high-
resolution (250 m altitude bins) measurements of the turbulence
profile at Paranal (Osborn et al. 2018). We apply the clustering
method to this data set to obtain a small set of turbulence profiles that
we validate by comparing distributions of integrated atmospheric
parameters. By ensuring the clustered profiles represent the data set
in terms of these parameters we validate them in an atmospheric
sense without reference to any particular AO system.

We can make the assumption that the free atmosphere turbulence
at Paranal is similar to Cerro Armazones, the site of the planned
European ELTs, since they are separated by only around 20 km
distance and by around 500 m in altitude. As such this work is
relevant to both sites.

In Section 2, we present an overview of hierarchical clustering
and our method of extracting a small set of turbulence profiles from
a large data set. In Section 3, we apply this method to the Stereo-
SCIDAR data set from Paranal to obtain a small set of clustered
profiles, with comparisons to other turbulence profiles for Paranal.
Conclusions are in Section 4.

2 C LUSTERING

Cluster analysis allows underlying structure in large data sets to be
ascertained by partitioning the data into subsets, known as clusters.
There are many different ways to perform clustering on a data set but
here we focus on hierarchical clustering (Everitt et al. 2011, chapter
4). We settle on this particular variety of clustering for two reasons.
First, it allows easy switching and comparison of distance metrics,
specifically non-Euclidean distance metrics that are particularly ef-
fective in this case. Secondly, the clustering can be visualized by
the use of a dendrogram (see Fig. 1). At the lowest level we have
each element in the data set represented by a vertical line, known
as leaves. As we move up the dendrogram to larger distances el-
ements are merged into clusters represented by the joining of two
vertical lines into one. To define a certain number of clusters, we
cut the dendrogram horizontally at a particular distance and count
how many vertical lines (clusters) are intersected. In our case the
dendrogram is most useful as a check that the clustering produces

sensible results, especially when coupled with the data set ordered
according to the leaves as also displayed in Fig. 1.

2.1 Distance metrics

The input to a hierarchical clustering algorithm is the distance matrix
D. For a data set of n observations of p variables (in this case C2

n dh

in p altitude bins), D is an n × n matrix whose components δij

represent the pairwise distances between all the observations using
a given metric. The choice of the distance metric can have a large
impact on the resulting clustering. The most commonly used metric
is the Euclidean distance:

δeuc
ij =

√√√√ p∑
k=1

(xik − xjk)2, (1)

where xik and xjk represent the kth variables in two measurements
of the turbulence profile xi and xj (Everitt et al. 2011, p. 49). This
metric forms the basis of popular clustering algorithms such as K-
means (Hartigan 1975). However for profiling data spanning several
orders of magnitude in C2

n(h) the Euclidean distance proves to be
very sensitive to outliers. As a result, clusters produced using the
Euclidean distance tend contain a small number of extreme but very
similar profiles, while assigning all other profiles (often over half
the data set) to a single large cluster.

As an alternative, we found the cosine or angular distance to
produce favourable results, defined as the normalized dot product:

δcos
ij = 1 − xi · xj

‖xi‖2‖xj‖2
, (2)

where ‖x‖2 denotes the L2 norm of the vector x. For positive
data this metric is bound between 0 and 1. The cosine distance is
less sensitive to outliers in our case and produces more reasonable
clustering for turbulence profiles.

In calculating the distance matrix with profile measurement vec-
tors xi we have made the implicit assumption that all the compo-
nents of the vector (altitude bins) are independent. This means that
the height of the turbulent layer is not taken into account in the
clusters and as such layers that are close in altitude are considered
as similar in the distance matrix as layers far apart in altitude. This
is not ideal especially since we are dealing with measurements with
finite altitude resolution. We therefore modify the cosine metric as
described in Sidorov et al. (2014). By introducing a p × p matrix S
describing the similarity between vector components we obtain the
soft cosine distance:

δsoftcos
ij = 1 −

∑p

k

∑p

k′ Skk′ xik xjk′√∑p

k

∑p

k′ Skk′ xik xik′
√∑p

k

∑p

k′ Skk′ xjk xjk′
, (3)

where both k and k
′
run through vector components. For S = 1 this

reduces to the cosine distance described in equation (2). The altitude
resolution of the Stereo-SCIDAR is given by

δh = 0.5

√
λ|h − hconj|

θ
, (4)

where λ is the operating wavelength, taken here to be 500 nm, hconj is
the conjugate altitude of the imaging plane (for the Stereo-SCIDAR
at Paranal hconj = −3 km), and θ is the separation of the double star
used to compute the turbulence profile (Avila, Vernin & Masciadri
1997). We define each row k of S as a Gaussian with mean hk and
full width at half-maximum defined by equation (4). Each row is
normalized such that all Skk = 1. The widths of these Gaussians
correspond very well to the response functions of the instrument
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4032 O. J. D. Farley et al.

Figure 1. Upper: dendrogram representing average linkage agglomerative hierarchical clustering of the ESO Paranal Stereo-SCIDAR data set using the
cosine distance metric. Branches below a cut-off distance of 0.55 (indicated by the dashed red line) are coloured alternately to indicate 18 clusters. Lower: the
turbulence profiles in the data set, ordered according to the leaves of the dendrogram, with the partitioning into 18 clusters indicated by vertical white lines.
Each cluster is assigned a number according to its size, with 1 being the largest cluster and 18 the smallest.

Figure 2. Similarity matrix S between altitude bins for the Stereo-SCIDAR
at Paranal, using an average stellar separation of 12.5 arcsec, wavelength
500 nm, and conjugate altitude hconj = −3 km.

(Shepherd et al. 2014). The similarity matrix S used for the Stereo-
SCIDAR data is shown in Fig. 2. This process ensures that the
distance between profiles as defined by our metric takes into account
the finite altitude resolution of the instrument.

2.2 Clustering process

The second choice that must be made in hierarchical clustering af-
ter the distance metric is the method of defining the intercluster
distance or linkage. Here we use average linkage, where the inter-
cluster distance is defined as the mean pairwise distance between
the members of the two clusters.

A description of the process we employ to perform agglomerative
hierarchical clustering is as follows.

(i) Compute pairwise distance matrix D for the chosen metric.
(ii) Merge the two closest elements.
(iii) Define the new distance from this cluster to the rest of the

elements according to the chosen intercluster distance.
(iv) Repeat (ii) and (iii) until there are two remaining clusters

that are merged into one representing the whole data set.

The clustering was performed in PYTHONusing the hierarchy module
in SCIPY, which for average linkage clustering utilizes the nearest
neighbours chain algorithm (see e.g. Müllner 2011).

2.3 Data pre-processing

The turbulence profiles contain many zero measurements. Usually
these occur when turbulence in an altitude bin is below the sensi-
tivity of the instrument but also can be a result of noise in the data
post-processing pipeline. While it is tempting to treat all zero values
as missing data and remove them from the analysis, this can have
a profound effect on the calculation of distance between profiles.
Thus we choose not to remove these zero measurements before
clustering.
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Representative profiles for ESO Paranal 4033

Figure 3. The effect on the median (solid line) and interquartile range
(shaded areas) of normalization by dividing each altitude bin by its mean
value. Turbulence strength is defined relative to the median value of the first
(0 m) bin.

The dynamic range of C2
n measurements in the data poses a

problem in clustering. The distance between profiles tends to be
dominated by strong turbulence since these measurements can be
up to 100 times stronger than weak or moderate turbulence (see
Fig. 3). We are more interested in the significance of turbulence,
i.e. whether turbulence is high or low relative to the average level
of turbulence at a particular height. The C2

n measurements in each
altitude bin are lognormally distributed but the censored nature of
the data, where measurements below a sensitivity limit are recorded
as zeros, means that we cannot log transform the data and perform
the common procedure of subtracting the mean and dividing by the
standard deviation for each altitude bin. Instead we find that simply
dividing by the mean of each altitude bin is effective in ‘flatten-
ing’ the profiles, reducing the importance of strong ground layer
bins and effectively increasing the importance of weak high layer
turbulence such that turbulence at all heights is considered approx-
imately equally in the clustering. The effect of this normalization
on the distance matrix can be seen in Fig. 4. Note that the profiles
are additionally L2 normed when the cosine distance is used.

2.4 Determining the number of clusters

We seek to cluster turbulence profiles until they are separated ac-
cording to their structure, such that we can extract a profile from
each producing a representative set of profiles. To quantify this we
employ two metrics, the within cluster variance and the silhouette
score.

We define the within cluster variance as the sum of the distances
of the members of each cluster to the profile we extract as the centre
of that cluster. We determine the distance with the same soft cosine
metric used in the clustering:

WN =
N∑

m=1

nm∑
i=1

δsoftcos(Xim,X∗
m), (5)

where nm is the number of profiles in cluster m, N is the total
number of clusters, the Xim are all the profiles in cluster m, and
X∗

m is the centre of cluster m. The quantity WN is analogous to
the within cluster sum of squares that is minimized in K-means
clustering, with the squared Euclidean distance substituted for the
cosine distance and the cluster centroid X̄m substituted for our more
general cluster centre X∗

m. As we increase the number of clusters N,

Figure 4. Pairwise distance matrices calculated using the cosine metric
defined in equation (2) for the Paranal Stereo-SCIDAR data set of over
10 000 turbulence profiles. Top: raw C2

n measurements. Bottom: profiles
normalized by dividing by the mean value in each altitude bin.

WN will decrease rapidly at first with the gradient falling off as the
clustering becomes less effective. It is at this point that we define
the number of clusters, a technique known as the Elbow method.

The second metric is the silhouette score (Kaufman & Rousseeuw
2005, chapter 5). This metric is defined for a single measurement i
as

si = bi − ai

max {ai, bi} , (6)

where ai and bi are quantities dependent on the distance matrix D.
ai represents the average distance between measurement i and all
the other members of the cluster i is assigned to. Conversely, bi

represents the average distance between i and all the members of

MNRAS 481, 4030–4037 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/481/3/4030/5101457 by D
urham

 U
niversity user on 18 O

ctober 2018



4034 O. J. D. Farley et al.

every other cluster. If ai > bi resulting in si < 0, then this profile
is on average closer to members of other clusters and is probably
assigned to the wrong cluster. If bi > ai then si > 0 and the profile is
probably assigned to the correct cluster. A more positive silhouette
score is therefore indicative of better clustering. si is by definition
bounded in the range −1 < si < 1. By taking the mean silhouette
score over all members of the data set s = 1

n

∑
i si , we gain insight

into the quality of clustering over all clusters.
These two metrics are chosen since, while not completely in-

dependent of one another, they incorporate distinct parts of the
clustering process. The silhouette score depends solely on pairwise
distances between profile measurements described in the distance
matrix, whereas the within cluster variance also includes our chosen
centre for each cluster X∗. This allows us to draw a more robust
conclusion as to the number of clusters in the data set.

2.5 Cluster centres

After performing the clustering and partitioning our data set we must
extract a single turbulence profile from each cluster. The resulting
profiles can vary greatly depending on the method used, so we
present two methods and hence two sets of turbulence profiles here.

The simplest way to extract a profile from a cluster is to take
an average of each altitude bin in a cluster. More specifically, we
take the mean profile in our normed space, then unnormalize this
profile and adjust it such that the integrated strength of the profile
coincides with the median seeing for the cluster. This results in any
features of the clustering common to all profiles in a cluster being
retained while features belonging only to a subset of profiles will be
averaged out as described earlier. The profiles thus produced will
be an unrealistic but conservative description of the variability in
profile and will represent the profile in the majority of cases.

Alternatively, we have already defined a metric that describes
how well a profile fits into a particular cluster – the silhouette score.
The profile in each cluster with the maximum silhouette score is
therefore the best-fitting profile for that cluster according to our
distance metric. In this way we can select an individual turbulence
profile as the cluster centre. We therefore select the N profiles from
the data set that represent the centre of each of the N clusters. These
profiles will not be ‘typical’ in the sense that they represent the
majority of measurements, but will describe a greater amount of
variability that would also be useful for AO simulation.

3 A PPLICATION TO ESO PARANAL DATA SET

We use the 2018A Stereo-SCIDAR data release described in Osborn
et al. (2018). The data set consists of 10 691 turbulence profile
measurements taken over 83 nights between April 2016 and January
2018. The profiles have 100 equally spaced altitude bins between
the ground and 25 km.

The metrics for selecting the number of clusters are shown in
Fig. 5. There is a clear peak in the silhouette score at 17–19 clusters.
After 19 clusters the silhouette score drops off indicating that further
clustering does not improve the quality of the resulting clusters. The
within cluster variance in the average centre case shows no clear
elbow but a transition from steep to shallow gradient at 15–20
clusters. In the single profile centre case, however, there is a clearer
flattening of the gradient at 18 clusters, corresponding to the centre
of the peak in the silhouette score. We therefore choose 18 as our
number of clusters.

The magnitude of the silhouette score is only around 0.17 at
the peak which is indicative of structure in the data that has not

Figure 5. Within cluster variance (orange) and silhouette score (blue) for
the Paranal Stereo-SCIDAR data set with increasing numbers of clusters.
The two within cluster variance lines represent the two methods of defining
the centre of a cluster: average (solid, circular markers) and single profile
(dashed, cross markers). Within cluster variance in both cases is normalized
to the value at 2 clusters. The dashed vertical line is at 18 clusters.

been captured in the clustering. Indeed we can see from the full
set of extracted profiles shown in Fig. 6 that members of some
clusters, especially those containing large numbers of profiles, are
fairly inhomogeneous in structure. However, the clustering has for
the most part selected and separated profiles with turbulence in
strong single layers. This strong single layer is common to almost
all profiles in a cluster. The lowest turbulent layers (e.g. clusters
14, 16, and 18) tend to be thinner and stronger whereas high layers
(e.g. clusters 2, 4, and 5) tend to be more spread out and weaker.
This may be an instrumental effect due to the reduction in native
altitude resolution of the Stereo-SCIDAR with increasing height as
described by equation (4) and included in the clustering by our use
of the soft cosine distance. In total, clusters with significant high-
altitude (h ≥ 10 km) layers contain around 55 per cent of all profiles.
We also have separated one ground-layer-dominated cluster (18)
representing only 1.4 per cent of profiles. This propensity towards
high-altitude turbulence is expected from atmospheric parameter
statistics for this data: a median isoplanatic angle of 1.75 arcsec and
fraction of turbulence below 600 m of 0.4 (Osborn et al. 2018).

3.1 Comparison profiles

The most conventional way to reduce a large turbulence profile data
base to a small set of representative profiles is to first bin the profiles
according some integrated parameter, then take an average profile
from each bin. The most common parameter used is the integrated
strength (seeing), either measured from the profile itself or a con-
temporaneous measurement from a dedicated seeing monitor such
as a Differential Image Motion Monitor (DIMM; Sarazin & Rod-
dier 1990). This is the case for the ESO 35-layer profiles for Paranal
(Sarazin et al. 2013), consisting of a profile associated with median
seeing and four profiles associated with seeing quartiles. We also
produce 18 profiles by binning the Stereo-SCIDAR data set into 18
seeing bins to provide a more equal comparison to our 18 clustered
profiles.

In addition we compare to the good, high, and low profiles com-
puted using the method defined in Sarazin et al. (2017). Rather than
binning by the total integrated turbulence strength, the data set is
split into three cases: good seeing, high-altitude dominated, and

MNRAS 481, 4030–4037 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/481/3/4030/5101457 by D
urham

 U
niversity user on 18 O

ctober 2018



Representative profiles for ESO Paranal 4035

Figure 6. The set of 18 full atmosphere turbulence profiles for Paranal extracted through our hierarchical clustering method. Black lines represent every
measurement of the turbulence profile in the given cluster. The two methods of obtaining the centre of each cluster are shown as blue (average profile) and
orange (single profile) lines. Each cluster is numbered in descending order of the number of profiles in the cluster along with the percentage of all profiles
contained in that cluster. Note that these profiles are not normalized.

low-altitude (ground layer) dominated profiles. The average from
each of these cases is taken to produce three reference turbulence
profiles for Paranal. We also include a profile ‘all’ defined as the
average of all profiles in the data set.

3.2 Validation and comparison

Whether or not the clustered profiles represent the data set as a
whole is a difficult question to answer since the concept of ‘repre-
sentativeness’ can be defined in many different ways. The ultimate
aim of this study is to produce a set of turbulence profiles that can be
used in AO simulation with the knowledge that they reflect the vari-

ability in the turbulence profile seen in reality in some meaningful
way.

The most direct method of validating the clustered profiles would
be using fast analytical AO simulation (see e.g. Neichel, Fusco &
Conan 2009) by comparing relevant AO metrics (e.g. tomographic
error) over the data set to the clustered profiles. However, these
metrics will depend strongly on the particular system simulated and
are therefore beyond the scope of this paper.

In the interest of maintaining generality, rather than validating
our profiles with AO simulation of one or several specific systems,
we choose integrated atmospheric parameters as our metrics for
validation and comparison to other profiles. While this general at-
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4036 O. J. D. Farley et al.

mospheric validation will not necessarily agree with a tomographic
AO simulation, these parameters serve as reasonable indicators for
AO performance and are therefore a good compromise given the
aforementioned sensitivity of AO metrics to the design of the par-
ticular system simulated. We choose the Fried parameter r0 (Fried
1966) describing the strength of turbulence and isoplanatic angle
θ0 (Roddier 1981) describing angular correlation of turbulence, de-
fined, respectively, as

r0 =
(

0.423k2
∫ ∞

0
C2

n(h) dh

)−3/5

, (7)

θ0 =
(

2.91k2
∫ ∞

0
C2

n(h)h5/3 dh

)−3/5

, (8)

with k = 2π /λ the wave vector of light considered (we take
λ = 500 nm). We calculate these parameters for the entire data
set and for our small sets of profiles and the results are shown in
Fig. 7.

We can see that splitting the data set into 18 seeing bins and
taking an average profile from each produces a set of profiles that
by design fits very well with the distribution of r0. However little
of the variability in θ0, a better indicator of the distribution of
the turbulence, is described by these profiles. The ESO 35-layer
median and quartile profiles behave in the same way. In particular,
small values of θ0 indicating significant high-altitude turbulence
are poorly represented. The good, high, and low profiles provide
a better description of the variability θ0 but are slightly skewed
towards larger values of r0 indicating weaker turbulence. The ‘all’
profile lies in approximately the centre of both distributions as one
would expect.

We include in the upper panel of Fig. 7 the distribution of inte-
grated parameters for clustering with some different parameters to
those presented above. We find that if we use the Euclidean dis-
tance instead of the soft cosine distance, the resulting clusters are
heavily skewed towards smaller values of both r0 and θ0. Without
normalization, the clustering produces profiles that better describe
the distribution of θ0 whilst being skewed towards larger values
of r0. Combining the soft cosine distance with the normalization
described above (shown in the middle panel of Fig. 7), we produce
profiles that accurately reflect the distributions of both parameters.
However, the two methods of defining the centre of a cluster dis-
play very different results here. By taking an average profile for
each cluster we produce a set of profiles whose integrated param-
eters are grouped tightly around the centre of the distribution for
the data set. In the case of the r0 distribution this is somewhat by
design since we are not sensitive to changes in integrated strength
(r0) in our clustering, therefore we produce clusters whose individ-
ual distributions of r0 follow approximately the distribution of r0

for the entire data set. When we set the integrated strength of each
of these clustered profiles to the median seeing for that cluster the
values will tend to group around the median for the entire data set.
In the distribution of θ0, however, we see a similar tight grouping,
with less of the bias towards larger values.

In contrast, if we take a single profile with the maximum silhou-
ette score as our cluster centre, we produce a set of profiles that are
spread more widely around parameter space. These profiles there-
fore describe more extreme variability. Again in the case of r0 this
is somewhat by design – since the clustering is not sensitive to r0 we
have essentially randomly sampled the distribution with 18 points,
resulting in a wider spread around the parameter space.

Thus we have produced two sets of profiles that are both repre-
sentative in different ways. Our average profiles are ‘typical’ since

Figure 7. Distribution of integrated parameters r0 and θ0 for the entire data
set (contours) and small sets of profiles. Upper: bad clusterings generated
through our clustering method with suboptimal parameters. One outlier
profile in the no normalization case with r0 = 33 cm is indicated by an
arrow. Middle: the two sets of 18 representative clustered profiles with
cluster centres defined as average and single profiles. Lower: comparison
profiles as discussed in Section 3.1.
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Representative profiles for ESO Paranal 4037

they can be used to represent the profile most of the time. The single
profiles are not typical since they represent a single measurement at
a single time that is unlikely to represent the profile in the majority
of times. However, these profiles exhibit more extreme variabil-
ity in the atmosphere that would be useful in characterizing the
performance of an AO system.

The turbulence profiles presented here are available on request to
the author.

4 C O N C L U S I O N S

We have outlined a method for obtaining a small set of representative
turbulence profiles from a large data set, where all steps of the
process are informed by quantitative analysis of the clustering and
resulting profiles.

We applied this method to the Stereo-SCIDAR data set from ESO
Paranal, partitioning over 10 000 measurements into 18 clusters. We
have used two methods to obtain the centre of each cluster resulting
in two sets of 18 high-resolution full atmosphere turbulence profiles
with 100 altitude bins between 0 m and 25 km. While the clustering
has not preserved all the structural variation in the turbulence profile
at Paranal, each cluster is dominated by a single strong turbulent
layer, the height of which varies over the full range of altitudes.

Through analysis of integrated turbulence parameters it has been
shown that the two sets of profiles are two distinct forms of ‘repre-
sentative’ profile. Taking the average profile for each cluster results
in typical profiles grouped around the centre of parameter space and
representing the profile in the majority of cases. Conversely defin-
ing a single profile as the cluster centre produces a set of profiles
that represent more extreme variability in the data set. Validation of
these profiles for specific instruments using tomographic AO sim-
ulation remains for a future publication. Additionally, it would be
possible to produce a set of profiles representative of the variability
in profile for a particular instrument by performing the clustering
on AO metrics relevant to that instrument (e.g. tomographic error).

Future work will focus on the temporal statistics of these clus-
tered profiles, on both short time-scales of minutes to hours and
longer seasonal time-scales. Analysis of seasonal variability in par-
ticular will require more data from the Stereo-SCIDAR to ensure
statistically significant results.

More generally in the context of site characterization and mon-
itoring, clustering methods can be applied not only to large data
bases of turbulence profiles but also to any multivariate data (e.g.
wind, humidity, and temperature) in order to extract small sets of
representative conditions. Data from existing instruments such as
AO telemetry or point spread functions could also be used either
as input to the cluster analysis or as validation for representative
atmospheric conditions.
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