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ABSTRACT: High-resolution rockfall inventories captured at a regional scale are scarce. This is partly owing to difficulties in mea-
suring the range of possible rockfall volumes with sufficient accuracy and completeness, and at a scale exceeding the influence of
localized controls. This paucity of data restricts our ability to abstract patterns of erosion, identify long-term changes in behaviour
and assess how rockfalls respond to changes in rock mass structural and environmental conditions. We have addressed this by devel-
oping a workflow that is tailored to monitoring rockfalls and the resulting cliff retreat continuously (in space), in three-dimensional
(3D) and over large spatial scales (>104m). We tested our approach by analysing rockfall activity along 20.5km of coastal cliffs
in North Yorkshire (UK), in what we understand to be the first multi-temporal detection of rockfalls at a regional scale. We show that
rockfall magnitude–frequency relationships, which often underpin predictive models of erosion, are highly sensitive to the spatial
extent of monitoring. Variations in rockfall shape with volume also imply a systemic shift in the underlying mechanisms of detach-
ment with scale, leading us to question the validity of applying a single probabilistic model to the full range of rockfalls observed
here. Finally, our data emphasize the importance of cliff retreat as an episodic process. Going forwards, there will a pressing need
to understand and model the erosional response of such coastlines to rising global sea levels as well as projected changes to winds,
tides, wave climates, precipitation and storm events. The methodologies and data presented here are fundamental to achieving
this, marking a step-change in our ability to understand the competing effects of different processes in determining the magnitude
and frequency of rockfall activity and ultimately meaning that we are better placed to investigate relationships between process
and form/erosion at critical, regional scales. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley
& Sons Ltd
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Introduction

Rockfalls are a frequent process initiated when rock blocks
become detached from a rock mass under the influence of grav-
ity (Selby, 1982). They exert a first-order control on the rate of
rock wall retreat on mountain slopes and on rock cliffs (Moore
et al., 2009). Their volumes typically range from ~10-2 to 102

m3, but in some cases they have been known to reach 105 m3

(for example, Wieczorek et al., 1998; Stock et al., 2012). Rock-
fall activity is also a chronic hazard (Evans and Hungr, 1993;
Guzzetti et al., 2003; Wieczorek et al., 2008), often posing sig-
nificant risks to transportation corridors (Guzzetti et al., 2004;
Katz et al., 2011; Blais-Stevens et al., 2012; Michoud
et al., 2012; Ansari et al., 2014), pipelines (Blais-Stevens
et al., 2010; Couture et al., 2010), and to areas beneath (sea)
cliffs (Dewez et al., 2013;Marques et al., 2013). Rockfall activity
has been monitored extensively in these settings, and in some
cases this monitoring has been used to provide hazard and risk
forecasting (Collins and Stock, 2012; Stock et al., 2012; Royán
et al., 2013). Much of the research into rockfall activity has
drawn upon datasets covering relatively small length scales

(~101–102m), often defined by instrument capabilities rather
than by any scientific rationale, in order to infer wider behav-
iour. Two important consequences arise: first, that it is often dif-
ficult to capture a statistically significant number of the largest
rockfalls while also capturing the smallest events in a single
inventory; and second, that data from a single site are likely to
reflect site-specific conditions. For example, in a 10-month
dataset captured across an 8500m2 rock face, only 10 of ~1.8
× 105 rockfall events were >1.0m3 and none exceeded 10.0
m3 (Williams et al., 2018), whereas rockfall with volumes up to
2.5 × 103 m3 are known to have occurred at this site in previous
years (Rosser et al., 2005a).

Rock slope evolution is not uniquely governed by large, infre-
quent events; it instead reflects a continuum of change where
failures can also be small in magnitude and variable in fre-
quency over large areas (Lim et al., 2010). While the smallest
events have been observed to occur at high frequencies, often
resulting in near-continuous mass wasting and therefore
representing a chronic hazard in some areas, the scars and
debris of catastrophic events tend to remain evident in the land-
scape for longer, controlling long-term rates of landform and
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landscape evolution (Hovius and Stark, 2006). Monitoring rock-
fall activity across the full range of potential scales poses a num-
ber of challenges, as data collected at scales sufficient to capture
the largest events are often not sufficiently high in resolution to
capture the smallest events. Upscaling detailed monitoring of
rock slopes is difficult, both in terms of capturing and processing
data, as the topographic complexity of the area monitored inev-
itably increases with scale. This can meanmoving from a single,
near-planar rock face to amore complex series of hillslopes with
variable lithology, geometry, and structure. Upscaling is, there-
fore, very rarely a case of applying local approachesmore exten-
sively. Similarly, increasing the likelihood of capturing a large
event by prolonging the period of monitoring can be prohibi-
tively costly, and, where monitoring intervals do increase, the
data captured are inevitably subject to rockfall coalescence
and superimposition, which decreases the likelihood of detect-
ing small events (Williams et al., 2018). Whether or not ergodic
reasoning (space-for-time substitution) can be applied also
remains to be tested. This has implications for our understanding
of rock slope failure. A fundamental uncertainty, for example, is
whether monitoring 1.0km2 of cliff face over oneyear would
generate a rockfall inventory that is statistically comparable to
that captured from 0.1km2 over 10years, from a set of appar-
ently uniform cliffs. This is unlikely where the timescales of
path-dependent behaviour in rockfall evolution, via brittle frac-
ture growth (Kemeny, 2003) and progressive failure (Stock
et al., 2012), and over longer timescales via changes to
slope-profile form and/or post-glacial or post-incision relaxation
(Cordes et al., 2013; Messenzehl and Dikau, 2017), are com-
mensurate with or exceed those of most monitoring campaigns.
One empirical/statistical approach to compensate for the dif-

ficulty in capturing regional-scale observations is to use the
power law behaviour in rockfall magnitude and frequency to
upscale, in both time and space, and model future rockfalls
and hence cliff erosion, assuming that what is monitored at a
small scale is more widely representative (Lim et al., 2010).
These approaches have inherent assumptions and limitations
that restrict their application, including (1) that they rely on
extrapolating a non-biased, complete portion of an inventory
to predict both larger and smaller volume frequencies, (2) the
need to apply power laws within limits, in order to avoid gen-
erating biased scaling coefficients (Barlow et al., 2012), (3)
the implicit assumption that a single underlying mechanism,
and hence a single form of power law behaviour, transcends
all scales of events under investigation (Brunetti et al., 2009),
and that extrinsic controls are essentially constant, and (4) that
all rockfalls in an inventory are statistically independent of one
another, although it is known that rockfalls exhibit some degree
of spatial and/or temporal path-dependency (Rohmer and
Dewez, 2015). Fundamentally, this approach loses any site
specificity, generating only broad rockfall magnitude probabil-
ities rather than an estimation of what could or will happen at
an individual location.
An increasingly viable alternative, enabled by rapid

advances in (mobile) three-dimensional (3D) data capture on
near-vertical surfaces, is to monitor rockfalls over a larger area
while retaining a high spatial resolution (Lato et al., 2009). To
achieve this, some airborne LiDAR (light detection and ranging)
systems are capable of collecting from oblique as well as verti-
cal view angles, permitting the capture of point cloud data both
on near-vertical surfaces and over much larger extents. How-
ever, the volume and quality of data that can be collected using
airborne LiDAR present their own unique challenges. Such
data require methods that are able to retain the 3D character
of the data while also being able to measure rockfall volumes
that can span over six orders of magnitude, and over spatial
extents that can exceed ~106m2. These settings could include,

but are not limited to, a length of coastline (for example,
Teixeira, 2006; Rosser et al., 2007; Marques, 2008; Lim
et al., 2010; Young et al., 2011; Barlow et al., 2012; Rohmer
and Dewez, 2013; Kuhn and Prüfer, 2014; Williams
et al., 2018, 2019), cut slopes along a transport corridor (for
example, Bunce et al., 1997; Hungr et al., 1999; van Veen
et al., 2017), or on montane, alpine or arctic rock walls (for
example, Dussauge-Peisser et al., 2002; Malamud
et al., 2004; Santana et al., 2012;Messenzehl and Dikau, 2017).
Without data obtained at these scales, it remains difficult to
assess whether rockfalls are truly scale invariant across all the
possible volumes of a given distribution, to put limits on
modelled power laws of rockfall magnitude and frequency,
and therefore to test whether rockfalls can be considered sto-
chastic phenomena. It therefore remains difficult to define the
extent of rock face required to capture sufficiently ‘representa-
tive’ rockfall behaviour a priori.

To address these challenges, we present an approach to
monitor both small and large rockfall over large areas of
near-vertical rock face. We monitored changes along a 20.5
km stretch of coastal rock cliffs (~40m height) using a unique,
helicopter-based LiDAR system that captures data on surfaces
both beneath and oblique to the flight path, retaining high 3D
positional accuracy and geometrical detail on surfaces of all
angles. The resulting data were used in the development and
application of a fully 3D workflow for detecting and character-
izing rockfall activity, with the aim of deriving a detailed rock-
fall inventory and assessment of coastal cliff erosion. The
resulting inventory comprised >58000 rockfalls recorded over
four repeat, approximately annual, surveys. We use this dataset
to explore the characteristics of rockfall scaling behaviours that
emerge at a regional scale, and the implications of our findings
for monitoring and modelling rockfall activity.

Study Site

Our study area extends along the North Yorkshire coast (UK) for
24km between Skinningrove and Sandsend, of which 20.5km
is near-vertical rock face (Figure 1). The cliffs are cut into com-
plex, near-horizontally interbedded Lower Jurassic mudstones,
shales, siltstones, limestones and sandstones, much of which is
capped by silty glacial tills (Powell, 2010). In places, headlands
rise up to form cliffs reaching 150m, while embayments are
often characterized by sandy beaches backed by low (<30m)
cliffs. Much of the coastline is fronted by a gently sloping
(<2°) foreshore platform that extends more than 300m seaward
in places and is fully exposed when high atmospheric pressure
systems coincide with the lowest astronomical tides. The tidal
range along the coast is largely macro-tidal, experiencing two
daily tides that cycle between spring and neap highs over a
range of ~6m. When high spring tides coincide with storm
events and high swells, the vertical reach of the tide up the cliffs
can exceed 4.2m (Rosser et al., 2013).

The North Yorkshire coast is shaped by marine, subaerial,
and anthropogenic (mining exploitation and management
intervention) processes, leading to complex patterns of mor-
phological change as the coastline adjusts and retreats
(Lim, 2014). The rate of cliff erosion at Staithes (Figure 1b) has
been estimated at approximately 0.05myr-1 over the last cen-
tury, based on the analysis of cliff top position from historic
maps and photographs (Agar, 1960). This has been derived
from a calculated retreat rate of approximately 0.04myr-1 for
headlands and 0.07myr-1 for embayments. However, when
considered at this scale and monitoring interval, this rate falls
well beneath the minimum achievable mapping precision at
any given point. Measurements of coastal erosion using historic
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map data neglect processes of undercutting and small scale,
iterative failures of localized sections of the cliff face, instead
focussing on the overall recession of the cliff top or toe (see
Lim et al., 2005; Rosser et al., 2005a). The practical implica-
tions of this are that erosion rates determined using these
approaches are associated with very high levels of uncertainty.

Methods

We detail a robust workflow for detecting and characterizing
regional-scale changes in cliff morphology due to rockfall in
full 3D. We applied this workflow to four high-resolution point
clouds derived from approximately annual airborne LiDAR sur-
veys of coastline in North Yorkshire, UK.

Data acquisition and processing

Four airborne LiDAR surveys (Table 1) were captured at
approximately equal intervals (~320days) between August

2014 and March 2017 using a helicopter equipped with a
mobile mapping system. The system (ROBIN + WINGS) com-
prised a RIEGL VQ-450 or RIEGL VUX-1 laser scanner coupled
with an IGI AeroControl III navigation system, which combined
a global positioning system (GPS) receiver with an Inertial Mea-
surement Unit (IMU-IIe) in order to measure the position and
attitude (pitch, roll and yaw) of the helicopter. Uniquely, the
system used a high pulse repetition rate (up to 550kHz)
near-infrared laser and a rotating mirror to return a 180° swath
of data normal to the flight track (RIEGL, 2014). This enabled
both the cliff top, foreshore and near-vertical cliff faces to be
scanned simultaneously with the same ground sample dis-
tance. A downward-looking 36.3 MP Nikon D-800 camera
with a 24mm lens was also used to capture optical imagery.
Ground GPS data were recorded at one sample per second
by 12 Leica 1200 GPS receivers (Table S1, Supporting Informa-
tion). The GPS antennas were mounted on tripods placed over
targets in 13 locations (Figure S1, Supporting Information).
Overlapping flight lines were flown in each survey epoch to
increase point density, where intentional variations in the atti-
tude of the aircraft gave multiple LiDAR incidence angles onto

FIGURE 1. Map of the North Yorkshire coast, showing the cliff areas monitored in this research. The total length of cliff face monitored is approx-
imately 20.5km. A foreshore platform, which in places extends more than 300m seaward, fringes much of the coastline and is fully exposed at the
lowest astronomical tides. Light grey dashed lines indicate the 38 blocks that the data were divided into for processing. Mosaicked orthophotos of
the cliffs at (a) Boulby (~1.5km), (b) Staithes (~1.0km), (c) Kettleness (~0.8km) and (d) Sandsend (~0.8km) are also shown. Figures in brackets repre-
sent approximate image widths. Map produced using shapefiles from Ordnance Survey © Crown Copyright and Database Right 2018. Ordnance
Survey (Digimap Licence). [Colour figure can be viewed at wileyonlinelibrary.com]

Table 1. Summary of the raw airborne LiDAR data collected. Full control data are provided in Table S1

Date

Number of points Average point density Average RMSE

points (m-2) (m)

15 August 2014 381 649 773 30–50 ± 0.025
4 June 2015 422 283 194 40–60 ± 0.053
8 April 2016 476 025 155 50–70 ± 0.032
29 March 2017 555 389 153 60–80 ± 0.010
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the same area of the cliff face, minimizing any occlusions due
to surface roughness. The system was deployed at a mean fly-
ing height of ~100m above ground, providing a spatial resolu-
tion of ~0.01m for the optical imagery (Figure S1) and a mean
point density from ~30 to 80 points m-2, irrespective of surface
angle. Each survey was registered to a global coordinate system
using the ground control points collected. Point cloud data for
each of the four surveys were clipped in plan-view to retain the
extent of the vertical cliff faces. For each survey, the data were
then divided into 38 blocks, with each block 500m in width
at the centreline (Figures 1, S1). To improve the quality of the
alignment between surveys, the data were further aligned
on a block-by-block basis using an iterative closest point
alignment, with a maximum permissible 3D registration error
of 0.10m.

Change detection

Changes were measured between four monitoring epochs;
2014–2015, 2015–2016, 2016–2017 and 2014–2017. For
each epoch, the point clouds n1 and n2 were processed
block-by-block using the M3C2 algorithm (Lague
et al., 2013). M3C2 was implemented in three stages: (1) the
estimation of 3D surface normals (i.e. the direction in which
the surface points) within a user-defined normal diameter, D,
(2) calculation of the average position of each point cloud
within a user-defined neighbourhood diameter or projection
scale, d and (3) measurement of the distance between the aver-
age position of each point cloud along the normal vector
(Lague et al., 2013). A trial-and-error approach was first used
to estimate the normal diameter, D. Surface normals must be

estimated at a scale that is small enough to capture
medium-large scale changes in surface orientation, such as
small indentations or coves, or changes in cliff aspect, but large
enough to avoid fluctuation of the resulting normals due to
small scale changes in roughness, σ, such as overhangs on
the rockface. On this basis, a normal diameter, D, of 2m was
selected as a compromise. Projection scales where d <1m
sample too few points from each point cloud and therefore
exaggerate change, while larger projection scales (d >3m)
cause data smearing and averages out many of the largest
changes recorded (Williams et al., 2018). This effect is most
pronounced on blocky and vegetated surfaces. The diameter
of the projection cylinder, d, was therefore specified as 1m to
ensure that the number of points sampled in each cloud was
>30, while minimizing the effect of averaging.

Cloud-to-cloud distances and the associated statistics were
projected onto both the pre- and post-event point clouds
(Figure 2a), and both point clouds were then filtered to remove
areas of deposition and insignificant change, as defined by a
spatially variable confidence interval (Figure 2b). This is also
known as the Level of Detection (LoD) threshold for a 95%
confidence interval:

LoD95 ¼ ±1:96
σ1d

2

n1
þ σ2d

2

n2
þ reg

 !
(1)

where reg is the user-defined registration error, which is
substituted for the root mean square alignment error for point
clouds n1 and n2 (Lague et al., 2013). For consistency within
and between monitoring intervals, the largest possible registra-
tion error between two point clouds was used (~0.10m). It is

FIGURE 2. Workflow for detecting and characterizing regional-scale change in 3D, presented here using a single rockfall. (a) Acquisition of succes-
sive point clouds, (b) change detection between these point clouds using M3C2, with measured changes projected onto both the pre- and
post-rockfall event point clouds, (c) filtering and merging of the point clouds, (d) clustering of points belonging to each individual rockfall event using
the data clustering algorithm DBSCAN, and (e) reconstruction of a watertight triangular surface mesh around each rockfall using the Power Crust algo-
rithm. [Colour figure can be viewed at wileyonlinelibrary.com]
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assumed that this error is isotropic and spatially uniform across
the dataset, given the manner in which the data was collected
and the generally consistent point distribution and spacing.
Having isolated the areas of erosion, the pre- and post-event
rockfall points were then merged into a single cloud for each
block, for each monitoring period (Figure 2c).

Rockfall identification and characterization

Following pointwise change detection, the data belonging to
each individual rockfall event were grouped using the cluster-
ing algorithm DBSCAN (Density-Based Spatial Clustering of
Applications with Noise), developed by Ester et al. (1996). Con-
tiguous points of change were assumed to belong to a single
event, although the influence of rockfall scar coalescence has
been recognized at intervals beneath the annual timescales
used here (Barlow et al., 2012; Williams et al., 2019). DBSCAN
is the most commonly used single-scan clustering technique
and defines clusters based on the local density of points. The
algorithm requires the user to define the minimum number of
points (MinPts) within a maximum distance (ε) from each
randomly chosen point (p) in the dataset, but does not rely
on a user-defined number of clusters. DBSCAN defines a
neighbourhood of points, Nε, which falls within the circle of
radius ε around a point, p. MinPts is defined as the minimum
number of neighbours of point p to consider p as a core object.
If Nε contains more than MinPts, the algorithm creates a new
cluster with p as the core point, and iteratively collects directly
density-reachable points from p. The process terminates when
no new points can be added to any cluster. If each point is
mapped to the distance from its kth nearest neighbour, the
threshold point p in the k-distance graph can be used to define
ε = kth-dist(p), where MinPts = k. All points with a higher k-dist
value are considered to be noise (Ester et al., 1996). For data-
bases where each point only occurs once, Sander et al.
(1998) propose that MinPts is equal to 2 × the number of
dimensions.
After merging the filtered pre- and post-event rockfall inven-

tories, each block of points was run sequentially using a paral-
lel DBSCAN algorithm (PDSDBSCAN-S) developed by Patwary
et al. (2012) for shared-memory computing. MinPts was set to 6
(2 × the number of dimensions) and ε was determined by plot-
ting the sixth-distance graph for the rockfalls in each block and
averaging the distance at the point of inflection, p, for all blocks
(ε = 0.45m). The results for each block were manually verified,
and any noise objects were filtered out of the dataset. For each
monitoring period, this gave each rockfall point a unique class
identifier (Figure 2d).
The use of triangulated surfaces for surface reconstruction and

the volumetric characterization of objects is well-established,
and some attempts to quantify rockfall volume and shape
have been made using the alpha shapes method at a
site-specific scale (Guerin et al., 2014; Carrea et al., 2015; van
Veen et al., 2017). However, these are often subject to consider-
able post-processing in order to ensure awatertightmesh and fail
to provide error estimates for the calculated volumes. Here, the
Power Crust algorithm was used on an event-by-event basis to
construct a triangular surface mesh for each rockfall (Amenta
et al., 2001; see Figure S2, Supporting Information for a detailed
description). The power crust is a watertight boundary of a 3D
solid described by the approximate medial axis transform (or
‘power shape’), and has the advantage that it eliminates the need
for the polygonization, hole-filling and/or manifold extraction
post-processing steps required in most surface reconstruction
algorithms, including the alpha shapes method (Berger
et al., 2014; Lim and Haron, 2014). The algorithm uses each set

of rockfall points and a tolerance, defined between 0 and 1, as
inputs. The tolerance is used to define the boundary of the power
crust; in the majority of cases, a higher tolerance yields a more
robust fit, although this varies from mesh to mesh. To ensure the
most robust fit ineverycase, each rockfallwasmeshedatninedif-
ferent tolerances and the mesh closest to the average volume of
the nine resulting meshes was chosen (Figure 2e). Volume error
estimation has not traditionally been accounted for in rockfall
magnitude–frequency distributions; uniquely, here we have
determined the lower and upper bounds of the calculated vol-
umes for each rockfall by using the smallest and largest possible
meshes, respectively. A detailed description of this process is
given in Figure S3 (Supporting Information). It should be noted
that small rockfalls will, on average, have a lower error in the
volume estimate, as there are limited meshing configurations for
small numbers of points. If there is only one meshing configura-
tion for a set of points, the error is reported as ± 0.00m3.

The volume of each rockfall mesh was calculated using the
Divergence Theorem. All rigid bodies, and therefore their
parameters, can be expressed in terms of 3D moments
(Semechko, 2014). Closed-form expressions for the 3D
moments of objects represented by triangular surface meshes
can be derived and used to calculate volume, V, which is equal
to the zeroth moment:

V ¼m0;0;0 (2)

and the position of the centre of mass, which is equal to the
value of the first moments of x, y and z, divided by volume:

x¼m1;0;0

m0;0;0
y¼m0;1;0

m0;0;0
z¼m0;0;1

m0;0;0
(3)

The surface area, width, depth and height of each rockfall
mesh was also calculated. This gave four rockfall inventories
(2014–2015, 2015–2016, 2016–2017 and 2014–2017)
captured across the 24km of the North Yorkshire coastline
between Skinningrove and Sandsend. The properties recorded
in the rockfall inventories are listed in Table S2 (Supporting
Information).

Negative power law estimation

Rockfall magnitude–frequency distributions exhibit a negative
power law scaling and can be modelled as:

f V Rð Þ ¼ sV R
�β (4)

where f (VR) is the frequency density of a rockfall of magnitude
VR, and s and β are empirical constants (for example,
Dussauge-Peisser et al., 2002; Guzzetti et al., 2004; Brunetti
et al., 2009; Barlow et al., 2012; Bennett et al., 2012; see
Table S3, Supporting Information for relationships derived from
previous terrestrial monitoring of rockfalls). These provide an
overall indicator of the level of activity and relative size distri-
bution in an inventory, respectively. For each inventory, rock-
fall magnitude–frequency was plotted on logarithmic axes
using logarithmically spaced bins. Frequency densities were
calculated for rockfalls of differing magnitudes using the for-
mula provided by Malamud et al. (2004):

f V Rð Þ ¼ δNR

δV R
(5)

where δNR is the number of rockfalls with volumes that fall
within the range of δVR, and δVR is the associated bin width.
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Parameter estimation was undertaken using least squares
regression (LSR) on the logarithmically transformed data, as
LSR is considered a robust estimator provided that the input
data is complete through the mid-range (Goldstein
et al., 2004). This is consistent with previous research under-
taken along the coastline and ensures full comparability with
other findings. Due to the high rate of rockfall along the cliffs
monitored here (Lim et al., 2005, 2010; Rosser et al., 2005a,
2005b, 2007, 2013; Barlow et al., 2012; de Vilder
et al., 2017), we also assessed the effect of superimposition
and coalescence of rockfall scars on the form of the
magnitude–frequency distribution by comparing the scaling
coefficients derived from annual inventories to those of a
change detection between the first and last survey only. In all
cases, the data only follow a negative power law for events
greater than ~1 × 10-3 m3, i.e. with no rollover for the smallest
events (Guzzetti et al., 2004). This can be attributed to censor-
ing by under-sampling and other biases, such as the relatively
high threshold that was set for the minimum detectable change
(0.10m) during data processing as well as differences in the
way that direct cloud-to-cloud comparison methods such as
M3C2 identify and treat insignificant change. All parameters
quoted hereafter are for power laws fitted to the uncensored
data only.

Results

Rockfall magnitude, frequency and erosion

Over 58000 rockfalls were captured along 20.5km of cliffs
between August 2014 and March 2017 (32 months), in three
separate, approximately equal intervals. The area monitored
constitutes ~805739m2 of cliff face, with an average cliff
height of ~40m (Table 2). Rockfalls ranged in volume from
<0.0001 ± 0.00m3 to ~15498.05 ± 552.36m3, with a mean
rockfall volume of 2.15 ± 0.24m3 (Table 2). Along the coast-
line, rock yield totalled 124843m3 from August 2014 to
March 2017, representing an average rate of recession of
0.06myr-1 when derived by spatially averaging the observed
rockfall volume over the monitored area. This is the same
order of magnitude as erosion rates derived from previous ter-
restrial monitoring of rockfalls between Boulby and Staithes
(Table S4, Supporting Information). Across the inventories,
the average meshing error for the total eroded volume is
approximately ±10.73%, which is relatively low despite the
conservative approach used to calculate error margins
(Abellán et al., 2014).
The magnitude–frequency distributions for rockfalls captured

over the three monitoring periods were modelled using nega-
tive power law scaling relationships (Figure 3a), where the
magnitude of the exponent β ranges from 1.54 (2016–2017)
to 1.69 (2014–2015). These values fall inside the 1.00–2.00
range commonly found for non-cumulative plots of rockfall
magnitude–frequency density (Table S3). As demonstrated by
Barlow et al. (2012), the superimposition and coalescence of
rockfalls has the effect of lowering the power law coefficient
of the single change detection over a period (2014–2017; three
years) relative to that derived from more frequent sampling over
the same period (annually; Figure 3b). This explains the
decrease in the overall number of rockfalls observed (from 58
032 to 25969), and a corresponding increase in individual
rockfall volumes. Rockfall inventories derived from the annual
change detections were therefore used for further analysis and
for deriving all of the power law scaling coefficients used here.
We recognize that our distributions (captured annually), as
opposed to previous local scale monitoring (captured monthly),

could be prone to under-sampling and other biases, such as the
threshold that was set for the minimum detectable change
(0.10m) during data processing, as well as differences in the
way that cloud-to-cloud comparison methods identify and treat
insignificant change. Previous research has demonstrated the
relative stability and reliability of power laws fit to rockfall vol-
ume probability distributions at monitoring intervals >12hours
(Williams et al., 2019). We therefore consider that any bias in
the data collected most likely relates to rockfalls that were not
captured (e.g. as a result of the level of detection or resolution).

The mean coastal erosion rate varied between years, increas-
ing by an order of magnitude from 0.02myr-1 (2014–2015) to
0.10myr-1 (2016–2017; Table 2). This change is partly driven
by an increase in the density or rate of rockfalls year-on-year,
although the majority of this increase can be accounted for
by the occurrence of eight large (>1000m3), full-scale cliff col-
lapses that occurred along the coast, comprising half of the
total volumetric flux observed during 2016–2017. The mean
rockfall volume more than trebled in this time, from 0.99 ±
0.04m3 (2014–2015) to 3.31 ± 0.28m3 (2016–2017), while
the median (~0.01m3) and mode (~0.2 × 10-2 m3) remained rel-
atively constant. The dominance of larger events is also
reflected in the magnitude–frequency distribution; the expo-
nent, β, of which decreases in magnitude through time
(Figure 3a). Year-on-year, events of all magnitudes increased
in frequency, marking an overall increase in the rate of rockfall
activity along the coastline. Rock yield averaged 2.32m3 per
linear metre of coastline per year, doubling that previously
recorded along seven sites between Staithes and Boulby
(~710m of coastline) over seven years (Rosser et al., 2013). This
totalled 124843m3 (equivalent to the volume of a ~50m cube)
during the monitoring period, despite a low mean erosion rate
of 0.06myr-1 (Table 2).

Rates of cliff retreat along the North Yorkshire coast are
highly variable within a single year (Figure 4a–c), with retreat
rates ranging from as much as 1.12 × 10-5 to 1.63myr-1

(2016–2017). Erosion rates at a number of cliff sections also
sharply increased over the monitoring period, most notably at
Port Mulgrave, which retreated at an average rate of <0.002
myr-1 during 2014–2015 but, due to a number of large rockfalls
and landslips (31943.47m3 in total), this rate increased to 0.04
myr-1 (2015–2016) and then 0.28myr-1 (2016–2017). Counter
to this variability, in many places there are consistent patterns
in the spatial variation of erosion derived from binned (100m
lengths of coast) rockfall over time (Figure 4). A gradual gradi-
ent in erosion rates is common across contiguous 100m sec-
tions of the coast, indicating that the nature of cliff erosion
and rockfall captured here represents a response to controls
that vary systematically over scales >100m. This is in contrast
to a stochastic distribution, which would suggest that erosion
rates vary independently, and hence randomly, between imme-
diately adjacent 100m cliff sections.

The ~3.5km stretch of cliffs between Boulby and Cowbar
Nab retreated at an average rate of 0.02myr-1 during 2014–
2015, increasing to a rate of 0.07myr-1 during 2016–2017.
The highest rates of retreat along the coastline are observed
here, with local erosion rates regularly exceeding 0.05myr-1

and even reaching 1.47myr-1 in the event of a full-scale cliff
collapse (15498.05 ± 552.36m3, 2016–2017). The highest fre-
quencies of both small (≤0.1m3) and large (>0.1m3) rockfalls
also occurred along this stretch of cliffs (Figure 4), with over
11000 of the recorded 58032 rockfalls located along this sec-
tion. This is partly attributable to the fact that the cliffs between
Staithes and Boulby are the highest along the coastline,
reaching up to 150m towards Boulby, and so have a greater
surface area available to release rockfalls. North facing areas
such as Boulby show the highest rates of retreat, most likely
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due to their exposure to easterly and northerly North Sea storm
waves in comparison to sheltered embayments such as
Runswick Bay, which eroded at an average rate of 0.005m
yr-1 between 2014 and 2017. By contrast, erosion rates
remained low at Kettleness throughout the monitoring period,
where the cliffs eroded at a mean rate of ~9.70 × 10-3myr-1.

Spatial variation in scaling parameters

Although the length of time over which rockfall frequency esti-
mates are made is known to exert a profound influence on β
(Barlow et al., 2012; Williams et al., 2019), the length scale, L,
over which power laws can be applied remains poorly
constrained. It is also apparent that many previously reported
observations do not indicate whether power laws derived on a
site-specific basis (e.g. L <102m) can adequately explain
behaviour over larger spatial scales (e.g. L >103m). Given the
emerging need and capability to address this scale of investiga-
tion (Kennedy et al., 2017), we considered the effect of using a

variable length scale, or here the area of coastal cliff monitored,
to calculate β. In order to ensure that the monitored frequency
density of large events was not influenced by a sampling bias
associated with short-term monitoring of a stochastic process
(an infrequent large event captured, or missed, by chance
within a short time window), we considered the size of the lon-
gest rockfall axis across the three inventories (Figure 3a). We
therefore set L to 100m, which also approximates the scale of
site-specific monitoring (for example, Lim et al., 2010), increas-
ing in 100m increments up to a maximum window length of 24
km, which is equal to the length of coastline monitored (Lmax).
For each value of L, we estimated β using a sliding window of
length L, repeating for 240 iterations, I. The sliding distance, S,
of the window is inversely proportional to its length, such that:

S ¼ Lmax � L
I

(6)

The relationship between the β value and the extent or hori-
zontal length scale of monitoring, L, was modelled using a

Table 2. Variations in rockfall activity along the North Yorkshire coast, UK, from 2014 to 2017

2014–2015 2015–2016 2016–2017

Cliff length (m) 20 459 20 459 20 459
Cliff area (m2) 746 539 854 958 815 719
Number of rockfalls (–) 14 460 18 729 24 843
Mean rockfall volume (m3) 0.99 ± 0.04 1.51 ± 0.11 3.31 ± 0.28
Median rockfall volume (m3) 0.02 0.02 0.01
Rockfall density (m-2) 0.02 0.022 0.03
Minimum eroded volume (m3) 11 467 21 600 69 727
Average eroded volume (m3) 14 375 28 291 82 177
Maximum eroded volume (m3) 15 076 30 344 89 223
Dry cliff volume eroded (%) 92 95 97
Wet cliff volume eroded (%) 8 5 3
Annual retreat (myr-1) 0.02 0.04 0.10
Standardized yield (m3 m-1 yr-1) 0.87 1.63 4.13

Note: Monitored cliff area calculated by measuring the surface area of a point cloud-derived mesh. Meshes include holes, which account for the dif-
ference in cliff area between years.

FIGURE 3. (a) Power law scaling and parameter estimations for 2014–2015 (r2 = 0.952), 2015–2016 (r2 = 0.953) and 2016–2017 (r2 = 0.981). Inset:
histogram and corresponding kernel density estimate of the longest axis across all three inventories, and (b) the effect of superimposition of rockfall
scars on power law plots. Rockfall volumes with a ~10-month sampling resolution (r2 = 0.967) are plotted alongside those derived from a ~32-month
sampling resolution (r2 = 0.911). [Colour figure can be viewed at wileyonlinelibrary.com]
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two-term power series model (Figure 5a, b). Over each monitor-
ing period, an inflection occurs around L ≈ 2.5km (Figure 5a),
implying that a magnitude–frequency distribution that is physi-
cally meaningful for modelling longer-term or wider-scale cliff
erosion is captured only at length scales that exceed this dis-
tance (equivalent to ~1 × 105 m2 assuming an average cliff
height of 40m), when surveyed at approximately annual inter-
vals. Where rates of rockfall are low, or where the largest

possible event is larger than that observed here, this length scale
is likely to increase further.

Values of β derived from previous terrestrial monitoring of
rockfalls at a number of sites along the North Yorkshire coast
range between ~0.80 and 2.40 (Figure 5c). These sites were
monitored at total length scales ≤600m and at approximately
equal monitoring intervals (~30days). Rates of erosion derived
from previous monitoring vary between 0.004myr-1 and

FIGURE 4. Rates of erosion monitored along the North Yorkshire coast, UK, from (a) 2014–2015, (b) 2015–2016 and (c) 2016–2017. For each year,
the monitored cliff area is divided into 100m bins and coloured by erosion rate. The frequency of small (≤0.1m3; dark grey) and large (>0.1m3; light
grey) rockfalls along the coast is also shown. [Colour figure can be viewed at wileyonlinelibrary.com]
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0.128myr-1, capturing well the mean rate of retreat along the
coastline but poorly representing the extremes of the distribu-
tion (Figure 6a, b). Given that our data indicate that values of
β converge when the spatial extent of monitoring is increased
beyond L = 2.5km, we also considered the influence of
whether or not monitoring in a continuous section that exceeds
this length scale, or whether an extent of multiple segments that
total the same length derives the same statistical results.
Neighbourhood differences in the erosion rates shown in Fig-
ure 5 indicate that, for years with less variability in erosion rates
(2014–2015, 2015–2016), there is a relatively small difference
in erosion rate between each 100m bin and its neighbours
(Figure 6c).

Rockfall shape

We explored the self-similarity of rockfalls by considering their
3D shape. This provides evidence for changes in detachment
mechanism with rockfall scale, and hence the applicability of
a single power law. Rockfalls were classified in relation to the
aspect ratios of the principal length axes (a, b, and c) to give
one of three end-member shapes, either equant (blocky), platy
(slabs) or elongate (rods), which themselves are divided into 10
sub-categories (Sneed and Folk, 1958). We observe a clear
scaling effect across the 58032 rockfalls captured along the
coast between 2014 and 2017 (Figure 7), which, importantly,
is a trend that is consistent year-on-year irrespective of overall
rockfall or erosion rate (Figure S4, Supporting Information).
Rockfalls occurring at the tails of the distribution (<10-3 m3

and >101 m3) present approximately equal proportions
of equant, platy and elongate shapes, with a tendency
towards very platy and elongate forms, particularly where VR

>102 m3. However, there is a clear peak in the distribution
for rockfalls of volume 0.002m3 to 0.064m3 (n = 30766), the
majority of which (>70%) are blocky in shape. This equates to
a cube of dimensions between ~0.13m and ~0.40m, which is
of a similar order to discontinuity-defined structural control on
block size and shape at this scale (see de Vilder et al., 2017).
This observation also suggests that the larger rockfalls are not
just larger versions of small events, and therefore that different
detachment mechanisms may operate at different scales of
rockfall.

Discussion

The ability to precisely quantify and subsequently understand
rockfall behaviour is critical for successfully modelling the
present and future dynamics of actively failing rock slopes.
The reliability and efficiency of rockfall hazard protection mea-
sures depends on the outcome of these modelling practices
(Crosta et al., 2015). However, quantifying rockfall activity
has proven problematic, particularly at the regional scale, with
a range of approaches currently used to measure the retreat,
area or volume of changes in rock slopes (Abellán
et al., 2014). These approaches often resort to gridding the data
into erosional cells in order to reduce processing time and
complexity (see for example, Leyland et al., 2017). We have
presented a novel workflow, from data collection through to
analysis, that is applicable to object-based change detection
on extensive near-vertical surfaces, such as cliffs, riverbanks,
canyon walls and transport corridors. We used this workflow
to detect and characterize regional-scale rockfall activity from
airborne LiDAR data, giving an inventory of >58000 rockfalls
along 20.5km of coastal cliffs over 32months. We discuss the
insights that this dataset generates, and the implications of our
findings for monitoring and modelling rockfall activity.

Implications for monitoring rockfall activity

Our data show that a full 3D treatment of new forms of
high-resolution airborne LiDAR provides a robust means to
monitor rockfall activity and the resulting cliff retreat continu-
ously (in space), in 3D, and over large spatial scales (>103m).
When mounted on a helicopter, continuous swaths from this
type of airborne LiDAR can be used to collect data along nar-
row corridors even with steep, near-vertical slopes, presenting
a considerable advantage over mobile terrestrial LiDAR when
scanning areas that are often limited by range, view direction,
and can feature extensive occlusion (Lato et al., 2009; Dunham
et al., 2017). Point cloud data obtained from LiDAR gives pre-
cision on slope angle, aspect, and, on bare rock faces, linea-
ments and other structural features, while multi-return and
intensity data can be used during segmentation and classifica-
tion routines (Axelsson, 1999; Sithole and Vosselman, 2004;
Vosselman et al., 2005) as a means for biomass filtering and
assessment of slope stability (see Chen, 2013, 2015, for a

FIGURE 5. Relationships between the magnitude of the β value scaling coefficient and the along-coast length scale of monitoring, L. (a) Relationship
for each epoch 2014–2015 (r2 = 0.966), 2015–2016 (r2 = 0.981) and 2016–2017 (r2 = 0.988), (b) confidence intervals for the relationships in (a)
modelled using a two-term power series model, and (c) β values plotted alongside those derived from previous terrestrial monitoring of rockfalls along
the North Yorkshire coast (Table S5, Supporting Information). [Colour figure can be viewed at wileyonlinelibrary.com]
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review), as well as for identifying vulnerable buildings and
structures.
The workflow developed and used to process airborne

LiDAR data here is semi-automatic and, uniquely, provides a
means of analysing regional-scale variations in rockfall activity
along rock slopes with a non-linear planform geometry. The
approach outlined here gives a 3D watertight mesh, centre of
gravity, principal axes, volume, and volumetric uncertainty
for each rockfall. Information such as rockfall shape, volume,
source area location and cliff surface geometry are required
by 3D models used for rockfall susceptibility mapping (Leine
et al., 2014). These models are advantageous over their
two-dimensional (2D) equivalents as they allow for calculating
both the onset (or triggering) probability as well as modelling
trajectories (Crosta and Agliardi, 2003; Lambert et al., 2013;
Macciotta et al., 2015; Fanos et al., 2016), meaning that their
outputs can be used for optimizing maintenance and remedia-
tion works, as well as for designing countermeasures. Although
the effect of rockfall size on runout length is well-known (for
example, Statham, 1976; Evans and Hungr, 1993; Okura
et al., 2000; Copons et al., 2009), the importance of rockfall
shape for determining runout distance and the depositional pat-
terns of debris has only recently been quantified (for example,

Sellmeier, 2015). The 3D nature of the rockfall inventory
derived here would permit real observed rockfall detachments
to be introduced into rockfall modelling on a regional scale,
allowing for a true representation of the natural variability of
rock shapes and sizes with relation to their geological prove-
nance. This gives the potential to link cliff geology and struc-
ture to rockfall shape and geometry on a regional scale.

Our results show that the probability distribution of rockfall
shape as a function of volume is broadly predictable, and, cru-
cially, that rockfall shape is not scale invariant. While a much
greater proportion of very small (<10-3 m3) and very large
(>101 m3) rockfalls tend towards very platy and elongate forms,
the majority of rockfalls (>70%) of volume 0.002m3 to 0.064
m3 (n = 30766) are blocky or ‘equant’ in shape. This pattern
is consistent and occurs year-on-year, marking a transition from
rockfall as a structurally-defined process to rockfall as either
small scale consequences of incremental weathering (VR <
10-3 m3), or fracturing-related mass-movements that break
through rock bridges to generate larger, predominantly cliff
face-parallel rockfall (VR >102 m3). The relationship between
rockfall shape and volume that we observe along the North
Yorkshire coast holds important consequences for modelling
future cliff erosion, both along cliffed shorelines and in

FIGURE 6. (a) Distribution of the rates of erosion monitored along the North Yorkshire coast, with rates derived from previous terrestrial monitoring
at the sites shown in (b) also plotted (Table S4, Supporting Information), and (c) pairwise differences in erosion rate between each 100m bin and its
two neighbours, plotted for each year. Map produced using shapefiles from Ordnance Survey © Crown Copyright and Database Right 2018. Ord-
nance Survey (Digimap Licence). [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 7. Rockfall shape, derived for all 58032 rockfalls in the inventory. (a) A stacked bar graph of Sneed and Folk (1958) classes, with the prob-
ability density of rockfall frequency as a function of volume overlaid in white. (b) A schematic diagram showing the colour scheme used in (a), where
each colour corresponds to the 10 sub-categories of shape, defined by Sneed and Folk (1958). (c) Examples of the shapes, adapted from Figure 3 in
Blott and Pye (2008, p. 36). [Colour figure can be viewed at wileyonlinelibrary.com]
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non-coastal settings, as such relationships could be used to
place approximate bounds on the dimensions of modelled
rockfall, and the step-back events that result (for example,
Dong and Guzzetti, 2005; Young et al., 2011), using rockfall
magnitude–frequency relationships.
A key finding of the analysis presented here is that localized

estimates of rockfall activity captured over small extents (<103

m2) do not generate stable magnitude–frequency distributions,
and so cannot be upscaled for the purpose of modelling
wider-scale or longer-term cliff evolution. We show that mon-
itoring at length scales <2.5km (equivalent to a minimum area
of ~1 × 105 m2 assuming an average cliff height of 40m) has a
significant effect on the frequency estimates of the largest
events, potentially giving rise to considerably higher (where,
by chance, a large event is captured) or lower (where no large
event occurs) frequencies than is actually the case. Here, the
surface area of the largest recorded event is ~7.5 × 103 m2,
equating to 7.5% of this ‘minimum’ area. Along the North
Yorkshire coast, this figure represents ~12% of the total cliff
length or area monitored. This extent, which is a function of
the probability of being able to capture a statistically valid
sample of the largest possible events, is likely to vary between
settings based on differences in weathering and other environ-
mental conditions (for example, precipitation, temperature,
and the frequency of triggering events), triggering mechanisms,
and lithological characteristics, each of which are thought
to influence the power law scaling of rockfalls (Barlow
et al., 2012).
The relatively small difference in erosion rate between each

100m bin of coastline and its neighbours (Figure 6c) indicates
that there is likely to be more structure (or less variation) in the
erosional signal if contiguous cliff sections are monitored. Our
data therefore show that, in order to increase the likelihood
of capturing a stable magnitude–frequency relationship and
therefore a complete distribution of rockfall activity, monitor-
ing of the cliffs under examination here should be undertaken
at multiple sites totalling at least 2.5km in length. This is at
odds with previous site-specific monitoring undertaken here
and in other settings. We argue that this would act to over-
come local (~102m) structure in the data and allows an assess-
ment of the general behaviour of the wider coastline. The
length scale that we have found for the North Yorkshire coast,
~2.5km, is likely to vary between settings based on, for exam-
ple, variability in rock strength and structure, and ideally
should be constrained elsewhere. Assuming that the patterns
of erosion observed form part of a longer-term cycle of cliff
failure and profile-form adjustment that is not fully captured
by the relatively short duration of monitoring undertaken here
(twoyears and sevenmonths), then neighbouring bins are more
likely to be at a similar stage of this process than more distal
sites. Previous research has demonstrated that the propagation
of instability and failure along these cliffs operates at 101year
timescales. For example, Rosser et al. (2013) estimated an
average resurfacing time of 28.1years along ~710m of cliffs
at sites A–G (Figure 6) based on extrapolating the spatial foot-
prints of failures derived from monthly monitoring over a
seven-year period. The assumption of similarities between
neighbouring bins can be justified given the longer wave-
length variations of rock mass structure along the coastline
(~103m), which are likely to moderate the erosional effects
of shorter wavelength variations in wave loading (<102m). If
this cyclical nature of cliff erosion and retreat does exist, and
it is characterized by time-dependent failure processes (for
example, incremental oversteepening leading to large-scale
failure), then a stable magnitude–frequency relationship can
only be observed over a longer total duration of monitoring,
or over a more widely-distributed area of monitoring.

Moreover, sampling in a distributed manner is more likely to
capture the erosional response of the cliffs to a wider variety
of controls and, by inference, at different stages of the
longer-term failure cycle. However, it is important to note that
this space-for-time substitution might yet break down and
under-sampling could remain if environmental extremes pro-
moting rockfall occurrence are not adequately represented in
a given monitoring period.

Implications for modelling rockfall activity and
coastal cliff erosion

Given the increasing tendency towards collecting large inven-
tories on potentially hazardous geomorphic processes (Korup
et al., 2012), our findings attest to the importance of collecting
a dataset that is both temporally and spatially complete.
Although large pools of data were previously thought to enable
a statistically robust analysis of magnitudes, frequencies and
the formulation of exceedance probabilities for hazard
appraisals (Korup et al., 2012), we argue that this is only the
case if the quantitative input for these is complete over a large
enough spatial scale relative to the scale of the events experi-
enced. This is pertinent for research using terrestrial LiDAR to
monitor rockfall activity, as such approaches typically operate
at short length scales (see Abellán et al., 2014, for a review).
More widely, our analysis has considerable implications for
modelling the evolution of non-coastal slopes, where
magnitude–frequency scaling is often used to inform hazard
assessment and mitigation (Abellán et al., 2011; Dewez
et al., 2013), and where accurately defining rockfall recurrence
intervals is essential (for example, Budetta and Nappi, 2013;
Budetta et al., 2016; Moos et al., 2017).

The literature on coastal cliff behaviour and evolution often
categorizes cliffed coastlines into perceivably stable ‘hard’ rock
cliffs and actively retreating ‘soft’ rock cliffs, with the implica-
tion of this distinction being that soft rock coasts are considered
more vulnerable to instability and rapid change (Allison, 1989;
Sherman and Gares, 2002). Along the North Yorkshire coast,
erosion rates ranged from as much as 1.12 × 10-5 – 1.63myr-1

over the monitoring period of this study. This reflects wider
trends across the British Isles, where rates of landward retreat
range from <0.001myr-1 in what are apparently the most resis-
tant rocks, to >10myr-1 where cliffs are composed of soft, con-
formable glacial tills (Brooks and Spencer, 2012). The
susceptibility of soft rock coastlines to erosion and retreat has
meant that they are often prioritized in coastal management
schemes (Lee and Clark, 2002), leaving the binary distinction
implying some level of uniformity of behaviour or erosion
within each sub-category. The results of our analysis demon-
strate that local (102m) erosion rates along stretches of perceiv-
ably ‘hard’ rock coastline can reach approximately the same
order of magnitude as the highest rates of erosion occurring
on soft rock coastlines, even over the annual timescales consid-
ered here. Along the North Yorkshire coast, almost half (~53
722m3) of the total (~124843m3) volume eroded by rockfalls
between August 2014 and March 2017 accrued in only 12
large (>1000m3) cliff collapses, eight of which occurred
between April 2016 and March 2017, resulting in an instanta-
neous step-back of the coastline by up to 6m in places. Assum-
ing that the longest axis of these events is cliff-parallel
(representing rockfall width) and the shortest axis is
cliff-normal (representing rockfall depth), then these events
alone caused an average step-back of ~1.92m over 972m of
the coastline, equating to approximately 4.8% of the total cliff
length monitored over a period of twoyears and sevenmonths.
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Present models of cliff retreat fail to capture the timing and
scale of episodic events, and, at present, little is known of
how the long-term rates of erosion derived by these models
arise from the accumulation of individual, instantaneous
events. Rising global sea-levels in conjunction with projected
changes in winds, tides, precipitation, storm events, and wave
climate are expected to accelerate coastal cliff retreat and
threaten coastal populations in many areas (Sunamura, 1988;
Bray and Hooke, 1997; Dickson et al., 2007; Nicholls et al.,
2007; Trenhaile, 2010, 2014), resulting in a pressing need to
understand and model the erosional response of hard rock
coastlines like the North Yorkshire coast to these processes
(Trenhaile, 2011). We see the approach presented here as being
fundamental to this, as it shifts focus to a regional scale and
allows variability in drivers to be considered at scales previ-
ously not possible.

Conclusions

The results presented here provide unique insight into rockfall
dynamics and how they vary on a regional scale. Using
high-resolution, multi-temporal airborne LiDAR data we have
explored regional-scale variations in rockfall magnitude and
frequency, to what extent these relations are sensitive to
the spatial scale of monitoring, and the implications of our
findings for modelling cliff evolution, both in coastal and
non-coastal settings. Our main conclusions are summarized
as follows:

1. High-resolution airborne oblique LiDAR provides a robust
means to monitor rockfall activity continuously over large
spatial scales (>103m). The workflow presented here is
semi-automatic, providing a 3D mesh, principal axes and
volumetric uncertainty for each rockfall, and, uniquely, it
takes into account spatial variations in both cliff profile-
and plan-form. Given that rockfall shapes, volumes, source
area locations and cliff surface geometry are known to influ-
ence rockfall trajectories, our research provides a point of
reference for future investigations concerned with regional
scale rockfall hazard modelling.

2. Rockfall magnitude–frequency relationships are highly sen-
sitive to the spatial scale of monitoring, such that monitor-
ing at length scales <2.5km significantly increases the
frequency estimates of the largest events observed on this
coastline. This has profound implications for research using
approaches that measure rockfall scars to generate invento-
ries, such as structure-from-motion or terrestrial LiDAR,
both in coastal and non-coastal environments, as any scal-
ing relationships derived may be subject to significant bias
as a function of spatial monitoring extent.

3. Rockfall shape is not scale invariant, and the relationship
between rockfall volume and block shape is persistent
year-on-year, giving the potential to predict rockfall future
shape distributions using magnitude–frequency distribu-
tions. Variations in mean rockfall shape with volume also
imply a systemic shift in the underlying mechanisms of
detachment with scale, questioning the validity of applying
a single probabilistic model to the full range of observed
rockfall volumes at these sites.

4. Local (102m) rates of coastal cliff erosion can vary over six
orders of magnitude along a 20.5km stretch of hard rock
cliffs. This erosion is marked by the widespread occurrence
of episodic step-back events, 12 of which accumulated
an average step-back of ~1.92m over nearly 5% of the
cliff length monitored. Our findings dispel the concept that
hard rock coastlines are relatively stable and highlights the

importance of understanding and modelling the erosional
response of hard rock coastlines under a changing climate.

Our findings have demonstrated the importance of sea cliff
retreat as an episodic process, where sudden, large (>1000
m3) rockfall events punctuate periods of relative stability.
How the erosional work done by episodic, large-scale events
accumulates into a long-term rate of erosion remains to be
seen, with present models of cliff retreat failing to capture the
timing, scale or drivers of these events. Uniquely, the method-
ologies and data presented here mark a step-change in our abil-
ity to understand the competing effects of different processes in
determining the magnitude and frequency of rockfall activity,
meaning that we are therefore better placed to investigate rela-
tionships between process and form/erosion at critical
(regional) scales.
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Supporting Information
Additional supporting information may be found online in the
Supporting Information section at the end of the article.

Figure S1. Map of the North Yorkshire coast, showing (a)
ground control points used in the four airborne LiDAR surveys
undertaken. Red points denote sites that were repeated in all
four surveys, while blue points denote those that were used in
the first survey only, (b) orthophoto tiles, which cover the full
extent of the surveyed area, and (c) the 38 blocks that the data
were divided into for processing. Map produced using
shapefiles from Ordnance Survey © Crown Copyright and
Database Right 2017. Ordnance Survey (Digimap Licence).
Figure S2. Principles of the Power Crust algorithm, depicted on
a two-dimensional object for simplicity. For a given group of
points, S, the Power Crust algorithm is able to extract a simpli-
fied skeletal shape, or the medial axis, which is then used to
produce a surface representation of the points. The medial axis
transform (MAT) represents a solid by the set of maximal balls
completely contained in its interior (a). The MAT is approxi-
mated by a subset of Voronoi vertices of S, called poles, which
lie near the medial axis (b). The balls surrounding the poles are
known as polar balls (c), the radius of which determines the

weighting of each pole. An inverse transform is approximated
by using a power diagram of the weighted poles. This acts like
a weighted Voronoi diagram by dividing space into polyhedral
cells (d). These are then divided into interior and exterior faces,
where the boundary of separation of these subsets forms the
output surface, or power crust (e). The power crust is therefore
a watertight boundary of the three-dimensional solid described
by the approximate MAT (or power shape), and eliminates the
need for the polygonalization, hole-filling, or manifold extrac-
tion post-processing steps required in other surface reconstruc-
tion algorithms. Diagram adapted from Amenta et al. (2001).
Figure S3. Three three-dimensional triangular surface meshes
generated using the Power Crust algorithm. The minimum,
average and maximum possible mesh sizes for the given rock-
fall are shown. The algorithm uses each set of rockfall points
and a tolerance, defined between 0 and 1, as inputs. The toler-
ance is used to determine the inner and outer poles of the
power diagram, which defines the boundary of the power crust
(Figure S2d). In the majority of cases, a higher tolerance yields a
more robust fit, although this varies from mesh to mesh. To
ensure the most robust fit in every case, each rockfall was
meshed at nine different tolerances and the mesh closest to
the average volume of the nine resulting meshes was chosen.
The lower and upper bounds of the calculated rockfall volumes
were then determined for each rockfall by using the smallest
and largest possible meshes, respectively.
Figure S4. Rockfall shape monitored along the North Yorkshire
coast, UK, from (a) 2014–2015, (b) 2015–2016, and (c) 2016–
2017. The results are plotted as a stacked bar graph, with col-
ours corresponding to the 10 sub-categories shown in Figure
7b, defined by Sneed and Folk (1958). Histograms show the fre-
quency of rockfalls in each volume bin.
Table S1 Summary statistics of the ground control data for each
of the four airborne LiDAR surveys undertaken.
Table S2 Summary of the properties recorded for each rockfall
in the inventory.
Table S3 Absolute β/ρ values derived from previous terrestrial
monitoring of rockfalls, sorted by β. Values in bold are those
reported in their respective studies.
Table S4 Erosion rates derived from previous terrestrial monitor-
ing of rockfalls between Boulby and Staithes. Data are used in
Figure 6(a).
Table S5 Absolute β values derived from previous terrestrial
monitoring of rockfalls along the North Yorkshire coast. Data
are used in Figure 5(c).
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