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Abstract 

The Eemian interglacial represents a natural experiment on how past vegetation with negligible 

human impact responded to amplified temperature changes compared to the Holocene. Here, we 

assemble 47 carefully selected Eemian pollen sequences from Europe to explore geographical 

patterns of i) total compositional turnover and total variation for each sequence and ii) 

stratigraphical turnover between samples within each sequence using detrended canonical 

correspondence analysis, multivariate regression trees, and principal curves. Our synthesis shows 

that turnover and variation are highest in central Europe (47–55°N), low in southern Europe 

(south of 45°N), and lowest in the north (above 60°N). These results provide a basis for developing 

hypotheses about causes of vegetation change during the Eemian and their possible drivers. 
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Introduction 65 

The last interglacial (Eemian, c. 129–116 thousand years ago (ka)) is the most extensively studied pre-66 

Holocene stage of the Quaternary (Tzedakis 2007a). It is characterised during its early part by a 67 

stronger summer insolation anomaly, peak global mean surface air temperatures of ~1°C above pre-68 

industrial values, reaching 3–11°C in the Arctic (Fischer et al. 2018), and by a peak sea-level of 6–9 m 69 

above present (Dutton et al. 2015).  70 

The duration of the last interglacial represents the interval of reduced ice volume, demarcated at 71 

its onset by deglaciation and at its close by glacial inception (Tzedakis et al. 2012) and is broadly 72 

equivalent to Marine Isotope sub-Stage 5e (~132–116 ka) and the Eemian interglacial of north-west 73 

Europe (Kukla et al. 2002). The term Eemian was introduced by Harting (1874) to describe a subsoil 74 

characterised by warm marine molluscs in the Eem valley near Amersfoort in The Netherlands 75 

(Tzedakis 2007a). Integrated palaeoceanographic and pollen analyses from the Portuguese Margin 76 

show that the marine isotopic and terrestrial stage boundaries are not synchronous, with the interval of 77 

temperate forest conditions extending from ~129 to ~111 ka (Shackleton et al. 2003; Tzedakis et al. 78 

2018). Here we use the term ‘Eemian’ informally to refer to the forested interval (protocratic, 79 

mesocratic, and oligocratic/telocratic phases – see Fig. 1a) in last interglacial pollen sequences across 80 

Europe. While the long duration (~18,000 years) of the forest interval in southern Europe is supported 81 

by independent chronologies (Brauer et al. 2007), a shorter duration (~11,000 years) has generally been 82 

applied to north-central European pollen sequences on the basis of a partially annually laminated 83 

record at Bispingen, Germany at 53°N (Müller 1974). However, recent joint palaeoceanographic pollen 84 

analyses from the Bay of Biscay (Sánchez Goñi et al. 2012) and comparisons with pollen sequences in 85 

southern France and southern Germany indicate a long Eemian duration (~18,000 years) at least as far 86 

north as 48°N. It is possible that the unlaminated upper part of the Bispingen sequence represents a 87 

longer time interval than presently assumed and that the duration of the forested interval in northern 88 

Germany was approximately as long as farther south. In the absence of any independent chronology 89 

and duration estimates, the length of the Eemian in Fennoscandia remains unclear. 90 

Ever since the pioneering studies in Denmark and Germany by Jessen and Milthers (1928), many 91 

Eemian pollen sequences have been analysed, focussing mainly on sedimentary settings, stratigraphies, 92 

pollen assemblages, vegetation histories, dating, and climate (e.g. Zagwijn 1996; Kühl 2003; Tzedakis 93 

2007a). Eemian pollen records present a valuable opportunity to study vegetation patterns across 94 

broad spatial and temporal scales without extensive human impact (Kühl 2003; Tzedakis 2007a; Milner 95 

et al. 2013). Ecological questions abound about the Eemian. For example, are Eemian inferred 96 

vegetation patterns similar to Holocene patterns prior to human influence? How similar are Eemian 97 

pollen stratigraphies across Europe? Are there consistent temporal patterns in the appearance, 98 

expansion, and decline of major arboreal taxa across Europe? What are the spatial variations in pollen 99 

compositional change (“turnover”) and total variation across Europe?  100 
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To answer such questions and to study vegetation patterns and trends during the Eemian in 101 

Europe, we compile an Eemian dataset based on 47 representative pollen sequences. Here, we 102 

consider what the spatial patterns are in pollen turnover and total variation across Europe. We use 103 

compositional turnover and variation to estimate change in pollen-assemblage composition over time 104 

and space (Andersen 1994; Birks and Birks 2004; Birks 2007). With these explorative analyses 105 

presented here, we address the following two questions. Q1) How does compositional turnover change 106 

within Eemian pollen sequences? Q2) What are the spatial variations in total pollen compositional 107 

turnover and total variation across Europe? 108 

As the concept of turnover is rarely used in pollen analysis (see Birks 2007), we summarise what 109 

this concept is. In community ecology, turnover is used to describe and possibly to quantify the 110 

replacement of one species by another in an assemblage in space or time or both. In pollen analysis, 111 

turnover is used to refer to the amount of compositional change of all pollen taxa within a 112 

stratigraphical sequence, namely along a temporal gradient (Birks 2007). Although the concept of 113 

turnover is widely used in ecology (e.g. Baselga 2010; Descombes et al. 2017) and biogeography (e.g. 114 

Buckley and Jetz 2008), little appears to be known about how turnover within an assemblage changes 115 

with time (e.g. Jarzyna et al. 2014). Pollen sequences provide a means of studying biotic turnover over 116 

long time periods. We use compositional turnover (one type of β-diversity sensu Anderson et al. (2011)) 117 

as estimates of change in pollen-assemblage composition along the temporal gradient in a pollen 118 

sequence. This is “directional turnover” (Anderson et al. 2011) or “compositional gradient length” 119 

(Tuomisto 2010). We avoid referring to β-diversity because it now has so many meanings (e.g. 120 

Tuomisto 2010; Anderson et al. 2011) in ecology, biogeography, and palaeoecology. 121 

Based on previous studies of vegetation development during interglacials spanning part of one 122 

precession cycle (e.g. Andersen 1994; Birks and Birks 2004; Tzedakis 2007b; Helmens 2014), we expect 123 

all sequences to show a generally unimodal pattern of compositional change or turnover within the 124 

Eemian reflecting the protocratic, mesocratic, and oligocratic plus telocratic phases (Q1; Fig. 1a). 125 

Additionally, we predict the total amount of turnover to have been highest in northern Europe, 126 

intermediate in central, and lowest in southern Europe, whereas total variation may have been highest 127 

in central Europe and lowest in the north (Q2; Fig. 1b). These hypotheses are based on the assumption 128 

that at a different mix of extrinsic, intrinsic, and neutral processes play out in the different regions. At 129 

the beginning of the Eemian in the south, most taxa would have already been present and 130 

compositional change was likely driven primarily by extrinsic and/or intrinsic processes (sensu  131 

Williams et al. 2011a), such as climatic shifts, competition, and facilitation, along with some neutral 132 

processes such as historical legacies and location of glacial-stage refugia (Jackson and Blois 2015). In 133 

the north, turnover may reflect species spread as driven by extrinsic and neutral processes. In the 134 

mesocratic phase, changes in all regions may have been a result primarily of intrinsic and neutral 135 

processes(e.g. Iversen 1960; Birks 1986) with some extrinsic processes, whereas changes in the 136 
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oligocratic/telocratic phase may have been driven by an interaction of extrinsic, intrinsic, and neutral 137 

processes. 138 

Dataset and methods 139 

Answering the two questions above (Q1, Q2) requires three major components – i) representative 140 

Eemian pollen data across Europe, ii) critical screening to ensure they lack pre- or post-Eemian pollen 141 

spectra or hiatuses, are of comparable analytical standard, and have a consistent pollen nomenclature, 142 

and iii) robust numerical tools for consistent data analysis. Here we describe the methodology followed 143 

to address these components. See Electronic Supplementary Materials (ESM) 1 for details of the 144 

numerical methods and software. 145 

Compiling a European Eemian pollen dataset 146 

We implemented four criteria (Box 1) to select Eemian pollen sequences from different sources, 147 

including Pangaea, the European Pollen Database, and the Polish Pleistocene Pollen Database 148 

(Kupryjanowicz et al. 2018a) (see ESM 2 for details). For sequences in geographically critical areas with 149 

few complete Eemian sequences and the primary data no longer available, published Eemian diagrams 150 

were digitised. Pollen values are expressed as percentages of total pollen excluding pollen of aquatics 151 

and all spores.  152 

 153 

Box 2.  

Assumptions  (see also ESM 3) 
Palynological  
i) Sequences are all Eemian, are complete with no discernible hiatuses, and have roughly constant monotonic 
sediment accumulation rates 
ii) A minimum number of 15 samples in a sequence is adequate to assess variability and turnover. Range of 
sample numbers is 16–213 (mean = 60; median = 52) 
iii) Pollen taxonomy is of a comparable and consistent standard for all sequences, with all major non-arboreal 
taxa identified and recorded for each sequence. Range of taxa is 13–99 (mean = 48; median = 47) 
iv) Digitised data are complete and of sufficient quality for analysis 
v) In the absence of independent chronologies from northern Europe, we assume that the duration of the 
forested interval across Europe was approximately similar 
Numerical  
vi) DCCA provides robust estimates of turnover and variation (see also ESM 1)  
vii) Multivariate regression trees (MRT) and associated cross-validation are robust in identifying the optimal 

Box 1.  

Criteria for including sequences in the Eemian dataset 
1. Must cover the entire Eemian and display signals of protocratic, mesocratic, and oligocratic/telocratic phases 
of an interglacial, allowing for differences in how these phases are reflected in different parts of Europe (Birks 
1986) 
2. Have at least 15 analysed samples 
3. Have no clear evidence of major hiatuses 
4. Have consistent pollen identifications of reasonable analytical standard 
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partition tree, even with small sample numbers (Simpson and Birks 2012) and hence in accessing the amount of 
palynological variation in a sequence 
viii) Numerical results are not overly affected by pollen-count size and hence number of taxa  
ix) Numerical results are not overly affected by the number of samples in a sequence 

Because samples in sequences are in stratigraphical order, numerical analysis should, when 154 

appropriate, take account of this data-property and be constrained by sample order. Ideally, this 155 

constraint should be sample age but age estimates are not available for almost all Eemian sequences. In 156 

the absence of age estimates, we have used depth which reflects sample order within a sequence. Birks 157 

(2007) discusses using either age or depth as external constraints in the ordination of Holocene 158 

sequences and obtains almost identical results irrespective of the type of constraint imposed. The 159 

palynological and numerical assumptions behind our study are summarised in Box 2 and are discussed 160 

more fully in ESM 3. 161 

Estimating compositional turnover within each sequence and total turnover for 162 

each pollen sequence 163 

Compositional turnover is estimated using detrended canonical correspondence analysis (DCCA; 164 

constrained by depth (or order) plus depth2) (Birks 2007; ter Braak and Šmilauer 2012) and principal 165 

curves (PCs) (Simpson and Birks 2012).  166 

DCCA directly scales variables’ (in our case pollen taxa) ordination scores such that their average 167 

within-sample standard deviation is unity along the ordination axes which are here a mix of sample 168 

depth or order. The change in weighted average (WA) sample scores (CaseR sensu ter Braak and 169 

Šmilauer 2012) reflects compositional change or turnover in standard deviation (SD) units. PCs are 170 

more “neutral” than DCCA in that they make fewer assumptions of the data than DCCA does. In the 171 

PC approach, a PC is fitted to the entire Eemian dataset of 2840 samples. Sample locations along the 172 

final PC are determined and scaled to 0–1. Maximum difference of sample scores within a sequence is 173 

a relative turnover measure (Simpson and Birks 2012). For each sequence, total compositional 174 

turnover is estimated and within each sequence we explore patterns of turnover. Emphasis here is 175 

placed on the DCCA results for both total turnover and changes within a sequence because they are 176 

expressed in ecologically interpretable units of standard deviation (SD) of taxon turnover (Figs. 2–3; 177 

ESM 8). The PC results for total turnover are summarised in Fig. 3b. 178 

Estimating total variation for a sequence 179 

Two contrasting numerical approaches are used to estimate total variation for each sequence: 1) total 180 

inertia (=weighted variance) estimated by correspondence analysis for each sequence in the absence of 181 

any external constraints (ter Braak and Šmilauer 2012) and 2) sequence partitioning using multivariate 182 

regression trees (MRTs) (Simpson and Birks 2012) and cross-validation to estimate the optimal 183 

number of partitions (“zone boundaries”). Optimal partition number depends on the number of 184 

samples in a sequence. We thus express the number of optimal partitions as a proportion of the 185 
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number of samples. This reflects the amount of palynological variation within a sequence. Estimates of 186 

variation are summarised in Fig. 3c and d. 187 

Results 188 

We assemble 47 suitable sequences from 14 countries grouped into three regions (above 60°N, 45–189 

60°N, below 45°N; Fig. 2; ESM 2). The sequences range from 16–213 samples and 13–99 pollen taxa 190 

after basic taxonomic harmonisation (ESM 4). The dataset is chosen to cover as much of Europe as 191 

possible and to contain representative (but not all) Eemian sequences from Europe. Some areas, 192 

however, have many more Eemian sequences than others (e.g. N Germany and Poland compared with 193 

Scandinavia).  194 

There is a distinct temporal pattern of compositional change within each sequence over 195 

geographical space displayed by the individual sample scores (SD units) on DCCA axis 1 (Figs. 2–3; 196 

ESM 8). The observed patterns indicate site-specific changes, but it is also possible to identify two 197 

general patterns where the DCCA sample values show either a gradually changing linear trend or a 198 

unimodal pattern where it reaches a peak and then slowly declines. Of the 31 sequences with a 199 

unimodal pattern, 27 occur in central Europe. Four northern sequences show a unimodal pattern and 200 

no southern sequence shows such a pattern. Linear trends are found in all regions (3 in northern, 8 in 201 

central, 5 in southern Europe) (Fig. 2; ESM 8). 202 

The greatest Eemian turnover and variation are in central Europe, whereas the southern and 203 

northern regions show less change (Fig. 3; ESM 9). Total compositional turnover (DCCA, Fig. 3a; PC, 204 

Fig 3b) and inertia (Fig. 3c) have peaks between 47 and 55°N. Lowest values are above 60°N and are 205 

low south of 45°N. In contrast, the proportion of optimal partitions has highest values in central and 206 

north Europe (Fig. 3d). The null hypothesis that the mean change in optimal partitions does not differ 207 

between regions is not rejected. An analysis of variance indicates a probability >0.05 that the null 208 

hypothesis is true (F = 2.575, p = 0.088). Full analytical results are given in ESM 4–7.  209 

Discussion 210 

We compiled an Eemian pollen sequence dataset from across Europe, based on a set of predefined 211 

criteria and assumptions, to explore the magnitude of compositional turnover and total variation in 212 

Eemian pollen sequences. We show that there is substantial spatial variation in both variables, 213 

presumably reflecting responsiveness to various degrees of extrinsic, intrinsic, and neutral processes at 214 

local and regional scales during the Eemian (Birks 1986; Williams et al. 2011a; Jackson and Blois 2015).   215 

Our Eemian dataset shows that there are important geographical voids of complete Eemian 216 

pollen sequences – none in Ireland and Iberia, few in Britain and France, and, not surprisingly, very 217 

few in much of Scandinavia that was heavily glaciated after the Eemian. Studies focusing on interglacial 218 



9 

dynamics in comparison to the Holocene would benefit from a better geographical coverage of 219 

Eemian sequences to assess all vegetation types and climate conditions of the continent.  220 

Pollen sequences in central Europe display the expected unimodal pattern (Fig. 2), but 221 

surprisingly, several sequences from across Europe, especially in the north and the south, show a 222 

gradually changing linear trend (cf. Fig. 1b). Less change in the south and the north (Fig. 3) could 223 

imply that the taxa are shifting abundances between a few equally abundant taxa, thereby displaying a 224 

gradual changing pattern of turnover instead of a unimodal pattern (Q1). 225 

We show that the greatest Eemian variation and turnover are in central Europe (Fig. 3), whereas 226 

there are fewer compositional changes in the southern and the northern regions (Q2). This is only 227 

partly consistent with the prior expectation of a unimodal trend in turnover during the entire Eemian 228 

(Fig. 1b). One possible explanation for the greatest change in central Europe is that during the Eemian 229 

there was a great variety and replacement of forest trees and shrubs (e.g. Carpinus, Corylus, Quercus, 230 

Taxus, Tilia, Ulmus) contributing to the regional pollen deposition, thereby providing a greater potential 231 

for palynological compositional turnover to be detected by a technique such as DCCA. Such pollen 232 

taxa have high N2 values where N2 (ter Braak and Verdonschot 1995) is the effective number of 233 

occurrences of a given taxon. DCCA is based on weighted averages, and N2 is effectively determined 234 

by taxa with high abundances (ter Braak and Verdonschot 1995).  235 

An alternative and more convincing hypothesis is that in southern Europe many taxa were already 236 

present at the onset of the Eemian (Bennett et al. 1991; Tzedakis et al. 2013), and the observed pollen-237 

stratigraphical changes there may be mostly a result of intrinsic processes such as facilitation and 238 

competition between species and of neutral processes leading to a gradual shift from a landscape 239 

dominated by evergreen sclerophyll and deciduous-Quercus and Ulmus to a vegetation with later 240 

expansion of Carpinus, Ostrya, and Abies into locally favourable habitats. Such changes may be recorded 241 

palynologically as relatively low turnover (Fig. 3).  242 

An additional related hypothesis for the observed contrasting patterns in southern and central 243 

Europe (Fig. 3) involves a detailed consideration of the pollen records. While a number of southern 244 

European pollen sequences show a pattern of early, middle, and late expanding taxa not dissimilar to 245 

that of central Europe (Tzedakis et al. 2001), the main taxa (e.g. deciduous-Quercus, Ulmus) tend to 246 

persist through most of the Eemian with later expansion of Carpinus, Ostrya, and Abies superimposed 247 

on the existing assemblages. In central Europe, by comparison, there is a replacement of the early 248 

dominant taxa by later arrivals (similar to a relay), leading to a more accentuated and greater turnover. 249 

These patterns (relay vs expansion plus persistence of early taxa) may reflect climate differences. As 250 

climate shifted towards cooler temperatures during the course of the Eemian (Fig. 1a), the early 251 

thermophilous taxa may have declined in central Europe, while in the south, temperature (and 252 

precipitation) may not have become limiting, allowing the persistence of these taxa (e.g. Bennett et al. 253 

1991), resulting in reduced turnover and variation. 254 
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The low palynological turnover and variation in northern Europe (Fig. 3) may reflect the relatively 255 

low pollen richness with few abundant taxa of restricted competitive abilities, especially trees, in the 256 

Eemian. The restricted arboreal flora may simply have been a result of climatic limitations. The 257 

detailed study at Sokli in northern Finland (Salonen et al. 2018) suggests, however, that thermophilous 258 

taxa such as Corylus were present and persisted in the north until the close of the Eemian, perhaps 259 

because of a major decrease in seasonality in the late Eemian with increase in winter insolation. 260 

An alternative general hypothesis for the observed patterns in turnover is “silent palynological 261 

turnover”. North of the Alps today there are only two native Quercus species, one native Pinus species, 262 

one native Abies species, and one native Juniperus species. In contrast, in southern Europe all of these 263 

genera comprise several, if not many (e.g. Quercus), species. The pollen, however, of the various species 264 

within these genera cannot generally be distinguished. This pollen species-morphological limitation 265 

may result in compositional turnover at the species level not being detected. In central and northern 266 

Europe with only one or two species in these genera, turnover is at or near the species level and is thus 267 

more visible palynologically. “Silent turnover” could thus contribute, at least in part, to the observed 268 

patterns within Europe as a whole (Fig. 3). It could also suggest the apparent persistence of some 269 

genera in southern European sequences and result in a potentially misleading record of the amount of 270 

ecological turnover that actually took place during the Eemian.   271 

These contrasting hypotheses as explanations for the patterns detected in our study (Fig. 3) 272 

highlight how much there is to be discovered about the palaeoecology and vegetation dynamics of the 273 

Eemian. 274 

The DCCA compositional turnover for the Eemian is higher than for the Holocene (11 ka) in 275 

over 40 sites in Scandinavia and Britain (Birks, unpublished data; Birks 2007). Future studies include 276 

extending the geographical coverage of Holocene turnover estimates into central and southern Europe 277 

so as to compare Eemian and Holocene turnover for nearby sites.  278 

Conclusions 279 

We have compiled a dataset of 47 representative Eemian pollen sequences from across Europe. We 280 

have consistently analysed the sequences using multivariate numerical methods to estimate total pollen 281 

compositional change (turnover) and total variation for each sequence and to explore how 282 

composition turnover changes within each sequence and between sequences. The turnover and 283 

variation estimates show coherent but unexpected geographical and temporal patterns. They provide a 284 

basis for developing hypotheses about palynological changes during the Eemian and their possible 285 

causes. This demonstration that numerical analysis of our Eemian dataset produces robust and 286 

ecologically interpretable patterns gives confidence in our dataset. Further questions about Eemian 287 

vegetation dynamics and history will be explored using this dataset in subsequent studies. 288 

_______________________________________________________________________________ 289 
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Figure captions 1 

 2 

  3 

Fig. 1 Hypothetical responses of an ecosystem in the last interglacial (Eemian) in terms of biomass and 4 

fertility (modified from Birks & Birks, 2004). a The three phases of Eemian vegetation history, namely 5 

protocratic, mesocratic, and oligocratic plus telocratic, in response to changing temperature (outer 6 

circle). b Hypothetical model of compositional change (turnover) within an Eemian pollen sequence 7 

with expected patterns of turnover in each geographical region and an indication of total palynological 8 

turnover and total palynological variation expected in north (above 60°N), central (45–60°N), and 9 

south (below 45°N) Europe. The turnover axis can be, for example, an ordination axis. 10 

 11 

 12 

 13 
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 15 

Fig. 2 Map of the 47 analysed Eemian pollen sequences and individual sample scores (standard deviation 16 

units) of selected detrended canonical correspondence analysis (DCCA) axis 1 plots for 18 sequences 17 

(the remaining 29 sequences are in ESM 8). Colours of locations indicate assigned region (blue = north; 18 

green = central; salmon = south). The number at each location corresponds with sequence numbers in 19 

ESM 2. The sample scores are plotted with the oldest (bottom) at the far left and the youngest (top) at 20 

the far right. The individual sample scores are weighted averages of the response (pollen taxa) variable 21 

scores (also applies to ESM 8). 22 

 23 

 24 
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 25 

Fig. 3 Total compositional turnover in each sequence plotted against latitude estimated by a detrended 26 

canonical correspondence analysis (DCCA; in standard deviation units) and b principal curves (PC; 27 

proportional distance); c total inertia or variation for each sequence estimated by DCCA; and d the 28 

proportions of optimal partitions to total number of samples in a sequence for each region. The fitted 29 

lines in a, b, and c are a fitted generalised linear model with a Gaussian distribution with a second-order 30 

polynomial (grey shading is the 95% confidence interval). The DCCA-based turnover for each sequence 31 

is estimated as the range in sample scores (weighted averages of the taxon scores) within the sequence. 32 
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