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Abstract

We present the X-ray properties of 108 Dust-Obscured Galaxies (DOGs; F,4 ,,,m/F = > 1000) in the COSMOS
field, all of which are detected in at least three far-infrared bands with the Herschel Observatory. Out of the entire
sample, 22 are individually detected in the hard 2-8 keV X-ray band by the Chandra COSMOS Legacy survey,
allowing us to classify them as AGN. Six (27%) of them are Compton-thick AGN candidates with column
densities Ny > 10** cm ™2, while 15 are moderately obscured AGNs with 102 < Nu < 10** ecm ™2 Additionally,
we estimate AGN contributions to the IR luminosity (8—1000 pm rest-frame) greater than 20% for 19 DOGs based
on SED decomposition using Spitzer/MIPS 24 pm and the five Herschel bands (100-500 pm). Only 7 of these are
detected in X-rays individually. We performed an X-ray stacking analysis for the 86 undetected DOGs. We find
that the AGN fraction in DOGs increases with 24 ym flux and that it is higher than that of the general 24 ym
population. However, no significant difference is found when considering only X-ray detections. This strongly
motivates the combined use of X-ray and far-IR surveys to successfully probe a wider population of AGNs,
particularly for the most obscured ones.
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1. Introduction et al. (2008) put forward color-based criteria to efficiently
define a statistically significant sample of dusty ULIRGs at
z ~ 1.5-3. By taking advantage of the unprecedented sensi-
tivity and angular resolution at IR wavelengths of the Spitzer
Space Telescope, they selected a population of optically faint
(22 < R < 27) and mid-IR bright (F34 ,m > 0.3 mlJy) “Dust
Obscured Galaxies” (DOGs), defined as those sources having
Fa4 um/Fr > 1000.

The efficient selection of dust-obscured sources at high

Pioneering work with the Infrared Astronomical Satellite
and the Infrared Space Observatory (ISO) established that at
low redshifts the most luminous infrared (IR) sources tend to be
increasingly dominated by active galactic nuclei (AGN; Genzel
et al. 1998; Lutz et al. 1998). However, at higher redshifts the
high 1um1nos1ty of ultraluminous IR galaxies (ULIRGS;
Lig > x 10" L.) is not yet fully understood and significant
diversity in the AGN-to-starburst ratio (e.g., Joseph 1999;

Sanders 1999; Desai et al. 2007; Menéndez-Delmestre et al.
2009; Sani et al. 2010; Petric et al. 2011; Pozzi et al. 2012)
remains a critical difficulty in our understanding of these
sources. In an effort to address this and other questions, Dey

22 CAPES /BIT Science Without Borders Postdoctoral Fellow, Brazil.

redshifts also had great impact on the search for hidden AGNs.
Although X-ray surveys are a powerful tool to select
unobscured and mildly obscured AGNs, the current census of
actively growing supermassive black holes remains far from
complete (e.g., Treister et al. 2004; Worsley et al. 2005; Page
et al. 2006; Tozzi et al. 2006; Fiore et al. 2009; Juneau et al.
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2011, 2013). The most obscured AGNSs, in particular the deeply
embedded ones, are mostly absent in X-ray surveys. At these
high column densities, the attenuation of X-rays is mainly due
to Compton-scattering rather than photoelectric absorption;
these sources are the so-called “Compton-thick” (CT) AGNs
(Ng ~ 1.5 x 10**em™2), of which only a few have been
identified in the local universe (Burlon et al. 2011; Ricci et al.
2015, and references therein). At higher redshifts, hundreds of
CT AGN candidates have been identified in X-rays thanks to
XMM and Chandra observations at E < 10keV (e.g.,
Comastri et al. 2011; Feruglio et al. 2011; Brightman et al.
2014; Buchner et al. 2015; Baronchelli et al. 2017) and
NuSTAR data at higher X-ray energies (e.g., Civano et al. 2015;
Mullaney et al. 2015; Lansbury et al. 2017).

While in principle CT sources are just the high obscuration
end of the AGN population, recent studies have shown that
they might represent a different and fundamental stage in
setting up the supermassive black hole (SMBH) growth-galaxy
evolution connection. Indeed, Ricci et al. (2017) shows that
there is a clear excess in the relative number of CT AGNs in the
last stages of major galaxy mergers, consistent with this being
one of the early phases of rapid SMBH growth triggered by a
major galaxy merger. Furthermore, a significant fraction of
missed Compton-thick accretion might hide an important part
of the census of SMBH growth across cosmic history. Indeed, a
significant fraction of heavily obscured and CT sources are
invoked at all redshifts in order to reproduce the observed
Cosmic X-ray Background (CXRB) at 20-30keV (e.g.,
Comastri et al. 1995; Gilli et al. 2001, 2007; Ueda et al.
2003, 2014; Treister & Urry 2005; Ballantyne et al. 2000).
However, the exact number of CT sources required by the
CXRB is still heavily debated and ranges from ~30% (Gilli
et al. 2007) to ~10% (Treister et al. 2009b; Ballantyne et al.
2011). Hence, determining the space density of CT AGNSs
remains a critical open issue in our understanding of the role of
SMBH for galaxy evolution. Although a large proportion of the
obscured AGN population still remains undetected, these
objects can already account for a significant fraction of the
total SMBH growth (~70%; Treister & Urry 2005). Indeed,
AGN synthesis models that can explain the spectral shape and
intensity of the CXRB predict a large volume density of
heavily obscured and CT AGNs to reconcile the “active” and
“relic” SMBH mass functions (e.g., Gilli et al. 2001, 2007;
Marconi et al. 2004; Treister et al. 2004; Treister & Urry 2005;
Akylas et al. 2012).

Since it is clear then that X-ray surveys are not sufficient to
probe the complete AGN population, alternative selection
techniques have been developed. Recent work by Riguccini
et al. (2015) showed that a subsample of DOGs with far-IR
(100-500 pum) detection have a significant contribution from
AGN activity at higher luminosities (Riguccini et al. 2015).
This is consistent with recent work on mid-to-far-IR Spectral
Energy Distributions (SEDs) of luminous AGNs that have
found that a higher AGN contribution in the far-IR, particularly
at high AGN luminosities (e.g., Symeonidis et al. 2016;
Symeonidis 2017). Because they are selected based on their
far-IR output—i.e., at longer wavelengths than the AGNs
selected by near-through-mid IR surveys—far-IR selected
DOGs can potentially represent a distinctly defined population
of AGN candidates.

Previous studies (e.g., Fiore et al. 2009; Treister et al. 2009a)
have focused on selecting sizable samples of high luminosity
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CT AGNs to measure accurately their volume density and to
understand whether their obscuration properties are similar to
those of lower luminosity AGNs. In this work we adopt the
following approach: based on a far-IR selection of DOGs with
information on their AGN contribution (from a far-IR
perspective) we exploit the Chandra COSMOS Legacy Survey
(Civano et al. 2016) to assess the AGN fraction in DOGs using
the most recent and exquisite combination of far-IR and X-ray
data. Our main aim is to quantify the AGN fraction in this
population of far-IR DOGs using a multiwavelength approach
based on X-ray flux measurements and broadband SED fitting.

The paper is organized as follows: we describe our data in
Section 2 and our results in Section 3. More detailed analysis
and discussion are presented in Section 4 while our conclusions
are summarized in Section 5. Throughout this paper we assume
a ACDM cosmology with Hy = 70kms ', Q,, = 0.3, and
Q24 = 0.7. Unless otherwise specified, magnitudes are given in
the AB system.

2. Data
2.1. Far-IR

As a reference to build our parent sample, we use the
catalogs provided by the PEP and HerMES Herschel surveys
(Roseboom et al. 2010; Berta et al. 2011) to identify far-IR-
selected DOGs in the COSMOS field, detected in at least three
of the five Herschel bands (see Table 1 for a detailed
explanation of the different selections). Those catalogs
calculate source fluxes in each of the five Herschel bands by
performing point-spread function fitting at the positions of the
24 pm detected sources from Le Floc’h et al. (2009). Our total
sample hence contains 108 far-IR detected DOGs.

Among our sample of 108 far-IR selected DOGs, 22 sources
have spectroscopic redshifts from M. Salvato et al. (2019, in
preparation). For the rest of our sample, we use the photometric
redshifts determined by Riguccini et al. (2015) for their 95
DOGs based on SED fitting using the optical catalog of Ilbert
et al. (2009) to access the photometry of these sources in the
optical bands. We reanalyze the AGN contributions for these
22 DOGs using their spectroscopic redshifts, based on the
approach described in Riguccini et al. (2015). Figure 1 shows
the redshift distribution of our sample of 108 far-IR detected
DOGs, which include 22 DOGs with spectroscopic redshifts
and 86 DOGs with photometric redshifts.

2.2. X-Ray Data

We use the Chandra COSMOS Legacy Survey (Civano
et al. 2016) to obtain the X-ray counterparts for the far-IR
sources in our sample. The Chandra COSMOS Legacy Survey
covers a total area of ~2.2 deg?, uniformly covering the ~1.7
deg” COSMOS/HST field at a ~160ks depth, expanding on
the deep C-COSMOS area (1.45 versus 0.44 deg®) by a factor
of ~3 at ~3 x 10"®ergem %s~'. The deeper and wider
coverage of the Chandra COSMOS Legacy survey compared
to previous X-ray observations of the COSMOS field (e.g.,
Brusa et al. 2007, 2010; Salvato et al. 2009) allows us to detect
new X-ray DOGs that have been missed by previous X-ray
surveys.

From a two arcsecond cross-match between the 108 far-IR
detected DOGs and the Chandra COSMOS Legacy data
(Civano et al. 2016) we identify X-ray counterparts for 22 of
the sources in our sample, with a median X-ray flux of
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Table 1
Number of Sources and Characteristics of Each Selection Described in This Paper

108 DOGs with Fa4 ;m > 80 pJy and with a 30 detection in the 2 PACS bands and with a 3¢ detection in at least one of the three SPIRE bands

Sample used for the remainder of the paper
Hereafter far-IR DOGs

19 far-IR AGN DOGs following the far-IR SED-fitting analysis from Riguccini et al. (2015)

83 far-IR DOGs with R — K > 2.79 (e.g., Fiore et al. 2008, 2009)

2 far-JR AGN DOGs but with R — K < 2.79

22 far-IR DOGs with an X-ray detection in the Chandra COSMOS Legacy survey (Civano et al. 2016)

7 far-IR DOGs with an X-ray detection in the Chandra COSMOS Legacy survey (Civano et al. 2016) have been classified as AGN DOGs following the same

procedure than in Riguccini et al. (2015)

6 potential Compton-thick AGN (Nyg > 10%* cm™2) but only two of them are labeled far-IR AGN DOGs

FIR DOG Sample

7
L FIR—AGN DOGs
- X-roy detected

number of sources

redshift

Figure 1. Redshift distribution (22 spectroscopic redshifts and 86 photometric
redshifts) for the Herschel-selected DOG sample (black histogram). The blue
filled histogram shows the subpopulation of DOGs detected in X-rays with the
COSMOS Chandra Legacy Survey, while the red hatched histogram shows the
subpopulation of DOGs classified as AGNs according to the mid-to-far-IR SED
fitting. A KS test performed on these last two distributions indicates that they
are drawn from a different parent population with a probability of 6 x 1077,

~107'0 erg s~ ! in the soft band (0.5-2 keV). From these 22, 9
are detected in X-rays for the first time thanks to the increased
field coverage of the Chandra COSMOS Legacy Survey.
Riguccini et al. (2015) associated Herschel sources with their
optical counterparts using Ilbert et al. (2009) and then had
access to the ID from Capak et al. (2007); see Riguccini et al.
(2015) for details on the matching method. As a sanity check,
we cross-matched our results with the multiwavelength catalog
(X-ray to near-IR) from Marchesi et al. (2016) and found the
same optical ID.

3. Results
3.1. Source Classification

Taking advantage of the far-IR data, the AGN and host
galaxy contributions to the total IR flux have been constrained
by Riguccini et al. (2015) for 95 out of the 108 far-IR selected
DOGs. They use the IDL-based SED-fitting procedure
DecomplR, detailed in Mullaney et al. (2011) and combine

eight host galaxy templates detailed in Riguccini et al. (2011)
with an average AGN template. The validity of this procedure
and of the AGN contributions to the IR luminosity obtained are
discussed in Mullaney et al. (2011) and Riguccini et al. (2011).
Riguccini et al. (2015) found that 75% of the far-IR DOGs are
consistent with being dominated by star formation, while 16%
have a far-IR output with a significant contribution from an
AGN (i.e.,, contribution from an AGN to the host
galaxy >20%). The SED fitting procedure failed for their
remaining nine DOGs (out of their sample of 95 DOGs),
probably due to uncertainties in redshift, even after probing the
different possibilities indicated by the PDF. We note that
Riguccini et al. (2015) focused their work on the subsample of
DOGs a priori associated with star formation, systematically
excluding the <4% of DOGs already-known to be AGNs with
X-ray  detections down to a flux limit of
So05-2kev =95 X loflf’erg em?s~ L. For the remainder of the
paper DOGs that are dominated by star formation following the
SED-fitting decomposition procedure (i.e., labeled “host” in
Table 2) will be named SF-DOGs, while the DOGs with a 20%
contribution to the IR 8-1000 ym luminosity, derived accord-
ing to the SED-fitting decomposition procedure (i.e., labeled
“AGN” in Table 2), will be referred to as far-IR AGN DOGs.

We decompose the far-IR SED of the 22 X-ray detected
DOGs into AGN and host galaxy components following the
procedure described in Riguccini et al. (2015). Among these 22
X-ray DOGs, 9 of them have been included in Riguccini et al.
(2015); however, taking advantage of the recent availability of
spectroscopic redshifts for 22 of these we reanalyzed the SEDs
of these sources. In the case of source DOG11 the reanalysis
allowed for a satisfactory SED decomposition (in contrast with
Riguccini et al. 2015), enabling us to classify it as dominated
by a host galaxy component.

We find that only 7 out of the 22 X-ray detected DOGs are
classified as AGNs based on their far-IR SED, i.e., AGN
fraction >20%, see Riguccini et al. (2015). With the exception
of one source that could not be properly decomposed using this
procedure most likely due to a wrong redshift, the remaining
X-ray detected DOGs (two-thirds of the sample) are all
classified as dominated by a host galaxy SED component.

A summary of the AGN selections and the overlap between
the different AGN criteria can be found on the Venn diagram
presented on Figure 2. The numbers are expressed with respect
to the total number of AGN candidates among the Herschel
DOG population, i.e., the AGN candidates selected from a hard
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Table 2
Herschel-DOGs with an X-ray Detection in the Chandra COSMOS Legacy Survey

DOG ID X-ray ID SED-fitting RA. Decl. Redshift HR Ny Lir

Flag x10* cm ™2 (Ls)
9 lid 3606 host 149.932 1.626 1.42 0.7549% 58.4-927 7.2 x 10"
11 lid 2467 host 149.952 1.744 1.63 —0.367049 0.01-12.7 2.0 x 10"?
42 lid 4354 host 149.478 2.133 1.58 0.1279% 4.46-36.3 9.8 x 10"
56 lid 2346 host 149.733 2.335 1.58 —0.90759% 0.0-0.0 1.1 x 10"
60 lid 3101 host 150.507 2.598 1.27 0.867044 39.9-927 6.9 x 10"
73 lid 319 AGN 150.426 2725 1.20 —0.0473% 5.39-8.69 5.0 x 10"
74 lid 3055 AGN 150.021 2.775 2.09 0.627938 30.0-927 7.3 x 10"
80 lid 3931 AGN 149.562 2.696 1.89 0.65+3:%¢ 36.3-103 1.1 x 10"
81 lid 1806 host 149.682 2.652 2.34 -0.1319% 2.29-20.5 1.5 x 102
95 lid 306 host 150.379 2.735 0.92 0.06790% 3.35-4.90 42 x 10"
96 cid 201 AGN 149.906 1917 1.49 —0.25+9:58 1.07-3.35 6.7 x 10"
97 cid 817 host 150.063 1.945 2.15 —0.197933 0.01-20.5 1.7 x 10'?
98 cid 1467 host 149.837 1.972 1.02 —0.0219:38 0.55-8.69 6.5 x 10"
99 lid 2663 149.779 1.586 1.24 0.0870% 2.08-16.9 —-99
100 cid 1091 host 150.106 2.014 1.88 —0.167933 0.34-16.9 2.8 x 10"
101 lid 1646 AGN 150.787 2.151 1.47 —0.1773%2 3.35-3.68 3.7 x 10"
102 lid 1565 AGN 150.547 1.619 1.59 —0.3079:93 0.88-2.52 6.5 x 10"
103 lid 3587 AGN 149.931 1.735 1.43 07753 30.0-64.3 9.4 x 10"
104 cid 476 host 150.475 2.094 0.56 021739 3.35-3.35 6.0 x 10"
105 cid 593 host 150.472 2324 0.89 0.6470:13 11.6-16.9 33 x 10"
106 cid 92 host 150.288 2.382 1.58 —0.5019% 0.01-2.52 2.9 x 10"
107 cid 1917 host 149.998 2.578 2.42 0.0343¢7 24.8-927 43 x 10"

Note. SED-fitting flag is based on far-IR SED decomposition (see Riguccini et al. 2015 for details).

Total AGN candidates (34
sources) among the 108 Herschel
DOGs in the COSMOS field

X-ray
22 DOGs
(64%) FIR

19 DOGs
(55%)

14
(41%)

Figure 2. Venn diagram showing the distribution of AGN selections within the
DOG population detected with Herschel in the COSMOS field: X-ray selected
AGN DOGs in green, FIR selected AGN DOGs (based on SED-fitting) in red
and R — K cut in blue. The numbers and percentages are given with respect to
the whole AGN population considered in this work (i.e., X-ray + FIR).

X-ray detection and from the SED-fitting decomposition using
FIR data.

3.2. X-Ray Properties

The X-ray properties of the 22 DOGs individually detected
by Chandra are described in Table 2. Given the faint X-ray
fluxes, which yield a relatively low number of counts, detailed
fitting to the observed X-ray spectrum is not possible for the
majority of these sources. However, we can estimate the neutral
hydrogen column density along the line of sight (NVy) from the

observed X-ray count rate, following the procedure described
by Treister et al. (2009a). Briefly, this is done by assuming that
the intrinsic spectrum is a power law with spectral index
I' = 1.9—in agreement with the observed average AGN
spectrum (e.g., Nandra & Pounds 1994)—and computing the
expected hardness ratio (HR). In the case of Chandra, the
observed HR is defined as (H — S)/(H+S), with S defined as
the count rate in the soft X-ray band (0.5-2 keV) and H as the
count rate in the hard band (2-8 keV). The expected HR is
computed for each source individually considering the redshift
of the source and a range in photoelectric absorption
parameterized by the Ny value. The corresponding Ny value
is then obtained by comparing the observed HR with the
predicted ones. For mildly obscured sources, this is the same
procedure followed by Marchesi et al. (2016) when there are
fewer than 30 counts detected. For heavily obscured and CT
sources, the observed X-ray spectrum can be more complicated
than the simple power law and photoelectric absorption
assumed before (e.g., Matt et al. 2000; Arévalo et al. 2014;
Bauer et al. 2015). Hence, we further consider the predicted
Ny-HR relations using the physically motivated X-ray spectral
libraries from Murphy & Yaqoob (2009), the so-called
MYTorus models, which were not considered by Marchesi
et al. (2016). The hence-derived Ny values are presented in
Table 2 and Figure 3.

As can be seen, there are no major differences between the
simple obscured power law and the MYTorus models for
moderately obscured sources, Ny < 103 cmfz, up to z ~ 2,
where most of our sources are located. However, as is
expected, MYTorus predict in general lower HR values (softer
X-ray spectra) for CT sources. This implies that just using the
HR it is hard to discriminate a heavily obscured
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Figure 3. Neutral hydrogen column density (Ny) as a function of hardness ratio
(HR) for the X-ray detected DOGs. The blue region (with Ny > 10%* cm™?)
represents the Compton-thick (CT) population, while the orange one shows the
location of heavily obscured sources with Ny ~ 5 x 10% cm 2 and the green
region situated right below corresponds to the moderately obscured sources,
with Nyg(cm™?) > 10?2, The dashed lines show the expected relation between
Ny and HR for sources at z = 1, 2, 3, and 4 assuming an intrinsic power law
plus photoelectric absorption (red lines) and the MYTorus models (blue lines).
The black solid segments show the location for the sources in Table 2
considering the observed HR and their uncertainties and assuming the simple
power-law model.

Ny > 5 X 102 cm™2 from a CT, Ny > 10°* cm™2, source.
However, given the low number of counts detected for the
X-ray sources in our sample, this procedure is the best we can
do to attempt to identify CT AGNs.

According to the X-ray classification based on the derived
Ny values, 6 out of the 22 X-ray detected DOGs (i.e., 27%) are
plausible CT AGNs, namely DOG# 9, 60, 74, 80, 103, and
107. This is strictly an estimate, since as shown in Figure 3,
sources with an HR in the ~0.6-0.8 range can either be
moderately /heavily obscured at Ny ~ few X 102 ecm ™2 or
CT. Further, using this classification scheme, 15 are considered
as moderately obscured AGNs, while only one of the X-ray
detected DOGs has a low HR (DOG 56) consistent with being
unobscured. The fraction of CT AGNs that we find in our
sample is in good agreement with previous reports. For
example, Georgakakis et al. (2010) found that the X-ray
spectral properties of a sample of “low-redshift DOGs analogs”
are consistent with moderate levels of obscuration and found in
their sample a similar fraction of moderately obscured AGNs as
in our work. Ricci et al. (2015) found that 27% =+ 4% of their
sample of 834 AGNs selected from the 70 month Swift/BAT
catalog in the local universe corresponds to CT AGNSs. This is
somewhat larger than the value predicted by Aird et al. (2015)
at low redshifts but still in good agreement with the report by
Burlon et al. (2011) using a smaller sample of 200 AGNs. It
would have been reasonable to expect that DOGs should have a
higher fraction of CT sources because by definition they have
dustier host galaxies. However, these results, combined with
the evidence presented in Section 4.4 appear to indicate that
there is no significant difference with the general AGN
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population. Thus, we can speculate that the obscuration, at
least in the most extreme cases has to be nuclear and roughly
independent of the properties of the host galaxy, as also
concluded by Ricci et al. (2017) for a hard X-ray selected AGN
sample and using statistical arguments by Buchner &
Bauer (2017).

3.3. X-Ray Stacking

Previous studies have shown that stacking in the X-ray is a
powerful technique that allows the detection of emission from
objects lying below the formal detection limit for individual
sources (e.g., Brandt et al. 2001). Chandra is particularly well
suited for this thanks to its very low and stable background. We
perform X-ray stacking for the DOGs in the area covered by
the COSMOS Chandra Legacy data using the web-based
CSTACK code™ developed by Takamitsu Miyaji. Stacking
was performed in two bands independently: soft (0.5-2 keV)
and hard (2-5keV). Chandra internal background being
dominated by strong emission lines above 7keV, we limit
the high energy band threshold to 5keV to limit the internal
background. Prior to stacking, we removed all the sources that
were individually detected by Chandra; this reduced our
sample from 108 far-IR detected DOGs to 86. After removing
DOGs that are too close to an X-ray source, the stacking with
CSTACK was performed on 76 objects. The radius of the
exclusion region varies with the off axis angle, corresponding
to the 90% encircled counts fraction radii, with a minimum of
1.0 arcsec and a maximum of 7.0 arcsec. We obtain a mean
count rate on the soft band of 8.56 + 1.89 x 10 °ctss™". In
contrast, no significant detection is obtained in the hard band
using a ~30 threshold. We provide for different stacking
approaches an estimate for the flux only when the detection is
above 30 (see Table 3).

In order to convert count rates into fluxes we use the
Portable, Interactive Multi-Mission Simulator (PIMMS) tool
for the Chandra Observatory.”* Assuming the corresponding
Chandra-Cycle 14/ACIS response functions, an intrinsic
power-law syectrum with ' = 1.9, a Galactic absorption value
of 2.6 x 10°°cm™2 (Willingale et al. 2013), and a representa-
tive intrinsic absorption of 10%> cm 2 at 7 = 2 (median redshift
of our sample of X-ray undetected DOGs), we find a
conversion factor from counts-per-second to flux of
5.2 X lOflzerg cm 2 sfl/(cts s~ ') in the soft band. We find
that the average observed X-ray flux for the X-ray undetected
DOGs is Spsokey = 4.4 x 107V erg cm s~ ! in the soft
band, a factor of 10 lower than the average value for the X-ray
detected DOGs. The stacked signal in the hard band is below a
30 detection (cf. Table 3).

4. Discussion
4.1. X-Ray Stacking of Specific Population Subsamples

In this section, we study the possible dependence of our
X-ray stacking results on other parameters of the DOGs such as
AGN activity, star formation, redshift, and 24 ym flux. Our
results are described in this section and summarized in Table 3.

2 hup: //cstack.ucsd.edu/ or http://lambic.astrosen.unam.mx /cstack /
24 http: / /cxc.harvard.edu /toolkit/pimms.jsp
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Table 3
Characteristics of the Different Subsamples of Herschel-DOGs from Riguccini et al. (2015) on Which X-Ray Stacking Has Been Performed with the C-STACK
Procedure
Subsample Number of Number of Median Flux® Median Flux®
Sources Used FIR-AGN DOGs Count Rate Soft Band Count Rate Hard Band (2-8 keV)
for stacking used for stacking Soft band (erg s 'em™?) 2-5keV (erg s lem™?)
(le—06) (le—17) (le—06) (le—17)
All Undetected 76 10 8.56 + 1.89 4.43 6.01 +2.24
SF Undetected 59 0 7.39 £ 2.05 3.82 6.52 +2.55
AGN Undetected 10 10 10.5 + 6.45 424 + 643
R—-K > 279 69 10 8.94 + 2.02 4.62 7.24 £ 241 1.76
SFR > 200 55 6 8.83 +2.18 4.57 5.03 +2.63
SFR > 300 38 5 10.1 £ 2.86 5.65 4.72 £+ 3.16
SFR > 400 23 4 5.63 £ 3.40 1.94 + 3.86
z< 19 28 0 9.53 + 3.01 4.94 7.18 £ 3.91
19<z<23 24 2 10.5 +3.42 5.43 8.70 + 4.17
23<z<3 25 8 7.57 £ 341 7.22 £+ 3.63
0.09 < F24 < 0.36 30 1 7.14 £2.77 7.20 £ 3.56
0.36 < F24 < 0.60 26 1 5.58 £ 3.27 4.08 + 3.76
0.60 < F24 < 4.74 21 8 15.6 £ 4.19 8.08 3.81 + 445
Note.

 Fluxes are computed using PIMMS only when a detection >3¢ significant is achieved.

4.1.1. Effect of AGN Activity on X-Ray Stacking

Following the far-IR classification of Riguccini et al. (2015),
we stacked the subsample of “star-forming” DOGs (those
dominated by a host SED component) and that of far-IR AGN
DOGs. Out of the DOGs that are not detected in the X-rays, a
total of 66 are classified as “host” DOGs by Riguccini et al.
(2015) and 12 are classified as AGNs; note that only 10 sources
of the latter were used to perform the stacking after eliminating
two due to proximity to an X-ray source. The stacked signal in
the soft band for the “host” DOGs is reported in Table 3. Most
likely due to the low number of sources, no signal was detected
either in the soft nor the hard band of the AGN far-IR DOGs.

Fiore et al. (2008, 2009) and Treister et al. (2009a) showed
that imposing a color cut of R — K >2.79 on a DOG sample
increases the probability of selecting AGN DOGs. It is worth
noting that we find similar results with our X-ray stacking
analysis. Indeed the only subsample where we obtained a
stacked emission in the hard band (i.e., with detection >30) is
for the DOG population with R — K > 2.79, underlying a
higher AGN activity in this subsample. Based on this result, we
estimate the HR of the stacked signal for the R — K cut sample
and obtain a value of 0.02 £ 0.29. Considering this result and
the redshifts of the sources that went into the stacking, we can
see from Figure 3 that this contribution is likely associated with
moderately obscured AGN activity.

4.1.2. Effect of Redshift and Star Formation Activity on X-Ray
Stacking

In order to gauge the impact that redshift may have on our
results, we divide our sample of 86 X-ray undetected DOGs
roughly evenly into three redshift bins and perform X-ray
stacking independently on these three subsamples: 30 sources
at z < 1.9, 27 sources with 1.9 < z < 2.3 and 29 sources with
2.3 < z < 3. After excluding DOGs that are too close to an
X-ray source the stacking was performed on 28 sources at
z2<19, 24 at 1.9 <z< 23 and 25 at 2.3 < z < 3, with
corresponding median redshifts of (z) ~ 1.75, 2.0 and 2.7,

respectively. Table 3 displays our findings, where quoted fluxes
are calculated assuming a conversion factor of
5.18 x 10 "?ergem *s ' /(cts s~ '). The X-ray stacking pro-
cedure yielded significant detections (i.e., >30) in the soft band
for the two lower redshift bins, but not for the higher redshift
bin probed in this study. We found no significant detections in
the hard band for any of the redshift bins. Based on these
results we do not find any evidence for a significant redshift
evolution in the average soft X-ray flux of the sample.

We consider three bins of increasingly intense star formation
activity—SFR > 200 M, yr ' (55 sources),
SFR > 300 M. yr ' (38 sources) and SFR > 400 M, yr '
(23 sources)—neither of which present a signal in the hard
band. We merely find a detection in the soft band for the bins
with  sources  displaying ~ SFR > 200M,yr '  and
SFR > 300 M., yr '. Based on these results we are unable to
probe for any trends with respect to star formation activity.

4.1.3. Effect of 24 ym Flux on X-Ray Stacking

To analyze the effect of the 24 yum flux on the X-ray
properties of the DOGs, we split our sample into three 24 ym
flux bins: 0.09 < F24(uJy) < 0.36, 0.36 < F24(uJy) < 0.60,
0.60 < F24(pJy) < 4.74 with mean redshifts of (z) ~ 2.1, 2.1
and 2.2 respectively. We performed X-ray stacking on these
three subsamples independently and only find a > 30 detection
for the brightest 24 ym in the soft band. However, based on
tentative detections (<30) for the fainter 24 um bins, the soft
band stacking results suggest a dependence on the 24 ym flux,
with higher X-ray fluxes associated with brighter 24 pm
sources. This is an expected trend, as earlier works (e.g.,
Treister et al. 2006; Riguccini et al. 2015) have shown that the
AGN fraction increases strongly with 8 pm luminosity and
hence with the 24 um flux as well.

4.2. AGN Fraction

We show in Figure 4 the fraction of far-IR detected DOGs
that are classified as AGNs as a function of the 24 ym flux,
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Figure 4. Fraction of Herschel-DOGs classified as AGNs as a function of
24 pm flux. The green diamonds show the combination of far-IR and X-ray
selected AGNs, while the red triangles show only the X-ray selected AGNs.
The horizontal error bars show the size of the flux bins, while vertical error bars
show the 1o Poissonian errors on the number of sources. As a comparison we
show the fraction of sources classified as AGNs in the GOODS field (filled
black circles) and the fraction corrected by the AGNs expected to be missed by
X-ray selection, as estimated using an AGN population synthesis model (open
black circles), as described by Treister et al. (2006).

considering only X-ray classification (red triangles) and the
combined X-ray and far-IR SED-based classification (green
diamonds). We can see that the AGN fraction increases rapidly
toward higher 24 ym fluxes, particularly when considering the
combined far-IR and X-ray detected analysis. Brand et al.
(2006) found that at the brightest 24 um fluxes, 74% =+ 21% of
their sample of LIRGs with z > 0.6 have their mid-IR emission
dominated by an AGN. Compared to the entire 24 ym
population in the GOODS field (see also, e.g., Treister et al.
2006), we only see a significant difference between the DOGs
and the wider 24 um population at the lowest 24 um fluxes.
However, the X-ray-based AGN fraction shown in Figure 4 is
strictly based on considering merely those AGN DOGs with
individual X-ray detections. In the light of our X-ray stacking
results, we note that AGN activity is not limited to this sample
of individually X-ray detected DOGs, but that a mix nature
(AGN and star formation) exists within the population of the
individually X-ray undetected DOGs. In an effort to constrain
the contribution to the AGN fraction from the X-ray undetected
population, we compared our stacked point with results from
X-ray normal galaxies from Lehmer et al. (2016) and with our
X-ray detected DOGs and found a contribution of 20% from
AGN activity for the stacked sample. Considering that the
X-ray undetected DOG sample in question is comprised of 76
DOGs, this translates into a potential increase of the AGN
fraction by 15 significantly obscured DOGs.

Our stacking analysis showed that X-ray fluxes increase with
24 pm flux. This is consistent with the observed trend within
the X-ray detected DOG population, with an observed increase
of the total AGN fraction in the brightest 24 um bins (see
Figure 4), as previously reported by, e.g., Dey et al. (2008) and
Fiore et al. (2009). Taking into account the potential
nonnegligible fraction of highly obscured AGNs missed even
with our (X-ray+far-IR) combined analysis but revealed within
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Figure 5. AGN bolometric luminosity as a function of the infrared luminosity
for the 21 X-ray detected DOGs (CT candidates: blue stars; moderately
obscured AGNSs: green triangles) with an FIR SED-decomposition fit that led to
the determination of the IR luminosity. Error bars in luminosities are obtained
directly from the errors in the fluxes, accounting for the observed spread in
bolometric correction in X-rays. The numbers next to the symbols correspond
to the DOG ID # from Riguccini et al. (2015), also listed in Table 2. The lower
and upper solid lines represent 10% and 50% of the infrared luminosity,
respectively.

our undetected DOG sample, we expect that the AGN fraction
traced by the DOG population may be even higher within the
brightest 24 ym bins. Combined with the observed difference
in AGN fraction at the faintest 24 yum bins between the DOG
population and the GOODS 24 pym population as a whole from
Treister et al. (20006), these results point to the DOG population
as an effective means of selecting AGNSs, particularly so in the
case of high obscuration.

4.3. Star Formation Rates

In order to identify a potential AGN contribution to the IR
luminosity used to infer star formation rates, we first derive the
AGN bolometric luminosity for the 22 X-ray detected DOGs
(0.5-10keV), estimating it from the intrinsic (i.e., absorption-
corrected) X-ray luminosity and assuming a fixed factor of 10
for the bolometric correction, as reported by, e.g., Rigby et al.
(2009) and Vasudevan & Fabian (2009). While a luminosity
dependence of the bolometric correction has been claimed in
the past (e.g., Marconi et al. 2004), more recent work (Lusso
et al. 2012) shows that in the luminosity range spanned by our
sample the expected changes in luminosity are relatively small,
a factor of ~2, and consistent with the observed dispersion, as
can be seen in Figure 8 of Lusso et al. (2012), thus justifying
our conservative choice of a constant bolometric correction.
We then conclude that in most cases the AGN accounts for less
than 50% of the IR luminosity, as can be seen in Figure 5 for
the 21 X-ray detected DOGs with an FIR-fit. This conclusion
holds even considering a bolometric correction that is
~2x higher for the most luminous sources. Hence, even in
sources that contain an AGN, the nuclear emission does not
make a significant contribution to the IR luminosity, which is
most likely due to processes related to the star formation
activity. In particular, we find that ~60% of all moderately
obscured AGNs and all CT candidates display a <10% AGN
contribution to the IR luminosity.
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Figure 6. Logarithm of the X-ray luminosity (0.5-10 keV) per unit SFR vs.
sSFR for the 21 X-ray detected DOGs (CT candidates: blue stars; moderately
obscured AGNSs: green triangles) with FIR SED-decomposition fit. The black
solid curve represents the best-fit solution from the results of Lehmer et al.
(2016) for 116 X-ray detected normal galaxies and the two dotted lines show
the error bars on this fit. The blue dashed line shows the results from Mineo
et al. (2014) for z < 1.3 X-ray and radio detected galaxies. The red dotted—
dashed line is the median value for the X-ray detected sources and we are
showing the median error bars with the two red dotted lines. The black
rectangle shows the logarithm of the X-ray luminosity (0.5-10 keV) per unit
SFR vs. sSFR for the X-ray undetected sample (see Section 3.3).

Figure 6 displays the X-ray luminosity per unit of star
formation rate, in units of ergs ™' /(M. yr '), as a function of
the specific SFR (sSFR) for the 21 X-ray detected sources with
FIR SED-decomposition fit. The stellar masses are taken from
SED-fitting analyses using 30 bands in COSMOS from Ilbert
et al. (2009). The SFR is obtained using the Kennicutt (1998)
relation with IR luminosity. We use the IR luminosity obtained
in this work with SED-fitting taking into account the
contribution of an AGN component to the host galaxy. We
are confident in our stellar masses and SFR estimates because
they are in very good agreement with the recent work of Suh
et al. (2017) on Type 2 AGN host galaxies in the Chandra
COSMOS Legacy Survey. Our stellar masses (median log
M, = 11.26 = 0.07) agree within the error bars with their
value (median log My sy = 11.00 £ 0.20) and our median
SFR (131 £39 M yr— i) agrees with their median value as well
(17385 M. yr™"). The black dotted lines in Figure 6 delimit
the area populated by normal galaxies from Lehmer et al.
(2016, orange area). The fact that all of the sources in our
sample are above the line found for normal (i.e., non-AGN)
galaxies, as reported by Mineo et al. (2014), in most cases by
more than an order of magnitude indicates that the X-ray
emission is most likely dominated by the AGN emission, even
if the IR is not.

We further include in Figure 6 the results of our stacking
analysis for all X-ray undetected DOGs. In order to do this, we
used the PIMMS tool to convert the flux of the X-ray
undetected DOGs stacked sample from Table 3 into the
extrapolated 5-10 keV X-ray luminosity with a median redshift
of z=2. The stacked sample has a median sSFR of
442 4+ 0.88 x 1077 (yr"). We are quantifying the AGN
contribution to the X-ray undetected DOG population using
the stacked point in this figure. If the stacked sample was only
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Figure 7. Redshift evolution of the specific SFR (sSFR = SFR/M,,) detected
in the infrared (black and red circles) and in X-rays (CT candidates: blue stars;
heavily obscured AGNs: green triangles). The SFR rate is calculated from the
infrared luminosity obtained from the SED-fitting procedure described by
Riguccini et al. (2015), i.e., removing the AGN contribution. The solid line
represents the star-forming main sequence from Elbaz et al. (2011), while the
dashed lines are a factor 2 above and below this fit. Most of the CT AGN (blue
stars) are within the MS. The upper part of the plot corresponds to the starburst
regime while the lower part corresponds to the quiescent phase. The black
rectangle shows the location of the X-ray undetected DOG population (i.e., the
stacking analysis, see Section 3.3 for details) with respect to the MS.

star formation activity, it would be located on the black solid
curve with log (Lx/SFR) = 39.93 (ergs '/M.yr ') at the
median sSFR of the X-ray undetected sample. If it was only
coming from AGN activity (i.e., 100% contribution) it would
be located on the red dashed—dotted line (i.e., log
(Lx/SFR) = 41.28 (erg s e yrfl)). We then estimate the
AGN contribution of the stacked sample at ~20%. We note
here that we found a similar AGN contribution using the
R — K > 2.79 X-ray undetected DOGs sample.

4.4. Specific Star Formation Rate of the DOG Population:
Where Do the AGN DOGs Lie with Respect to the Main
Sequence (MS)?

Recent studies have pointed to the existence of a so-called
“MS” of star-forming galaxies up to z ~ 2.5 where galaxies
undergoing star formation activity typically lie within a well-
defined region in the SFR-stellar mass diagram (e.g., Daddi
et al. 2007; Elbaz et al. 2011; Whitaker et al. 2012; Genzel
et al. 2015; Tacconi et al. 2018). Riguccini et al. (2015)
showed, based on the MS definition of Elbaz et al. (2011), that
far-IR AGN DOGs mainly lie on or below the MS, while
DOGs dominated by a host component lie on the MS and
above it, within the starburst regime. These results underline
the diversity found in the DOG population. Taking advantage
of the Herschel data, we can derive, using SED-fitting at far-IR
wavelengths, reliable IR luminosities and hence star formation
rates, and potential AGN contributions in the IR for the DOGs
in our sample.

Figure 7 shows the evolution of the specific SFR (sSFR) of
DOGs with cosmic time. The AGN DOGs (both X-ray and far-
IR) appear to present a lower sSFR than SF-DOGs. We run a
KS test to verify how distinct the distributions in sSFRs are and
find a low probability of 1.6 x 10~* that they arise from the
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same parent distribution. The majority of the AGNs-DOGs
(both far-IR and X-ray) populate the area around and below the
MS, with only two sources lying well above it: one CT
candidate and a moderately obscured AGN.

We do not see clear differences in behavior between the CT
candidates and the moderately obscured AGNs in Figure 7.
According to the evolutionary scenario of Treister et al. (2010),
the highly obscured CT AGNs correspond to the early, very
dust-enshrouded, SMBH growth phase in a major galaxy
merger; moderately obscured AGNs correspond in turn to a
later stage in this evolutionary scenario, when the energetic
feedback related to the SMBH accretion have already started
heating up the dust and gas of the galaxy, shutting down star
formation activity. In this picture, we expect the CT candidates
to lie slightly above the moderately obscured AGNs in the
sSFR-redshift diagram, which does not appear to be the case.
This surprising result that CT AGNs are not preferentially
found above the MS has been found as well in spectro-
scopically selected CT sample (e.g., Georgantopoulos et al.
2013; Lanzuisi et al. 2015). Hence, this further confirms the
scenario presented in Section 3.2, suggesting that at least for
the most extreme sources, the obscuration has to be nuclear and
thus not directly connected to the evolutionary stage of the host
galaxy.

We note that the large uncertainties on the Ny determinations
make it hard to discriminate between CT and moderately
obscured AGNs. This in turn also affects the derivation of the
AGN contribution and has an impact in Lz and SFR estimates.
This could potentially explain the lack of an observed
difference of behavior between the two populations of X-ray
detected AGNs. However, we have to consider the detectability
of those sources. Assuming that the far-IR AGNs have the
same X-ray luminosity as the X-ray detected ones but they are
lying at higher redshifts and hence have lower fluxes, we run
C-stack on 19 random undetected DOGs to check if those far-
IR AGN DOGs would have been detected by X-ray stacking,
finding no significant detection.

5. Conclusions

Searching for obscured AGNss is of main importance because
AGN synthesis models for the Cosmic X-ray background
(CXRB) predict a large number of obscured AGNs including
CT AGNs. However, even the deepest Chandra and XMM-
Newton surveys were able to detect only a few of them until
now. Our study combines exquisite new Chandra data with far-
infrared Herschel data to catch obscured AGNs at z ~ 2. In this
work we aimed to characterize the X-ray properties of the DOG
(Fa4 um/Fr > 1000) population with far-IR detections by the
Herschel Space Telescope. Our sample is composed of 108
DOGs in the COSMOS field and we relied on the Chandra
COSMOS Legacy Survey X-ray and on the Herschel
Observatory data to undertake our analysis.

Out of 108 DOGs, 22 (i.e., 20% of the sample) are
individually detected in the X-ray soft and hard bands thanks to
the increased coverage in area and sensitivity of the Chandra
COSMOS Legacy Survey observations. Based on our estimates
of the corresponding neutral hydrogen column density along
the line of sight (Ny), we find that 6 of these X-ray detected
DOGs (i.e., 27%) are CT candidates, 15 (68%) are moderately
obscured AGNs and one is consistent with being unobscured.
Our results are in excellent agreement with previous reports (
i.e., Ricci et al. 2015) that found a fraction of CT AGNs of
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27% =+ 4%. This suggests that the fraction of CT sources is not
different from that of the general AGN population and hence
the obscuration, at least in the most extreme cases, appears to
be independent of the amount of dust in the host and hence is
most likely nuclear.

We study the SED of the 22 X-ray detected DOGs, based on
(rest-frame) optical-through-IR data, and find that only 7 are
classified as AGNs following the SED-fitting method described
in Riguccini et al. (2015). We note that out of the 19 far-IR
AGN DOGs identified by Riguccini et al. (2015), these 7 are
the only ones with Chandra X-ray detection. This clearly
shows how using far-IR to select obscured AGNs is crucial to
complement an X-ray analysis, allowing us to probe a wider
range of AGNs.

Our main results are the following:

1. We find that the X-ray detected AGN DOGs and the far-
IR AGN DOG:s typically display similar near-IR and mid-
to-far-IR colors. Both populations are also typically
found on the MS of star-forming galaxies or below it. The
main difference these populations appear to display is in
their redshift distributions, with the far-IR AGN DOGs
being typically found at larger distances. Together, these
results suggest that the two populations share most of
their physical properties and that the lack of detection in
the X-ray band for the bulk of far-IR AGN DOGs is
explained by the difference in redshift distributions. This
strongly underlines the critical need of multiwavelength
studies in order to obtain a more complete census of the
obscured AGN population out to higher redshifts.

2. Based on earlier findings by Fiore et al. (2008, 2009) and
Treister et al. (2009a), who showed that a color cut of
R — K> 279 on a DOG sample increases the prob-
ability of selecting AGNs, we stacked all individually
undetected DOGs above this color cut. This resulted in
the strongest stacked signal from our subsample stacking,
pointing to a higher AGN fraction, likely associated with
moderately obscured AGN activity.

3. We demonstrate that the combined population of X-ray
detected and far-IR DOG:s is effective at selecting AGNss,
compared to the 24 um population as a whole (as done
within the GOODs field by, e.g., Treister et al. 2006).
Moreover, X-ray stacking of individually undetected
DOGs points to a mix between AGN activity and star
formation. We want to stress here how much our AGN
far-IR Herschel SED-based classification is important.
Indeed, if only considering X-ray detections, DOGs
would have the same AGN fraction or even lower than a
24 pm selected population. This shows the critical need
of deep far-IR surveys to probe AGN activity in star-
forming galaxy samples.

This work emphasizes the important role that the DOG
population, in particular, the combined X-ray and far-IR
detected DOG population, plays in the effort to get a more
complete census of the AGN population at high redshift,
particularly for the highly obscured population.
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