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Author summary 
 
 Improvements in technology often drive scientific discovery. Therefore, research 
requires sustained investment in the latest equipment and training for the researchers 
who are going to use it. Prioritising and administering infrastructure investment is 
challenging because future needs are difficult to predict. In the past, highly 
computationally demanding research was associated primarily with particle physics and 
astronomy experiments. However, as biology becomes more quantitative and 
bioscientists generate more and more data, their computational requirements may 
ultimately exceed those of physical scientists. Computation has always been central to 
bioinformatics, but now imaging experiments have rapidly growing data processing and 
storage requirements. There is also an urgent need for new modelling and simulation 
tools to provide insight and understanding of these biophysical experiments. Bioscience 
communities must work together to provide the software and skills training needed in 
their areas. Research-active institutions need to recognise that computation is now vital 
in many more areas of discovery and create an environment where it can be embraced. 
The public must also become aware of both the power and limitations of computing, 
particularly with respect to their health and personal data. 
 
Overview 
 
Research computing is the innovative use of computer hardware and software to 
enhance scientific research. Here, we discuss the exciting progress in the biosciences that 
can be made by embracing computation, in particular because of the recent upsurge in 
the use of cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET) 
for structure determination at multiple biological length-scales. Breakthroughs in 
experimental biophysical tools for automated data collection are providing the 
biosciences, from molecular biology up to the level of cells and tissues, with a torrent of 
microscopy and informatics data that needs robust software and fast hardware for data 
processing and a suite of new simulation and modelling tools. The computational 
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challenge of image processing and of integrating experimental information from diverse 
sources may prove to be the major bottleneck to gaining scientific understanding. As 
computation becomes ubiquitous, bioscience researchers will need stronger 
computational skills, which has implications for provision of training. The rapid pace of 
growth of computation in the biosciences requires that our research community urgently 
address these issues. We conclude by making predictions about the directions of 
bioscience computing and the actions required to secure its future. 
 
 
Introduction 
 
 Until recently, only physical scientists routinely needed expertise in supercomputing and 
the management of large datasets. Bioinformatics and bioimaging are now providing the 
biological sciences with a torrent of data. New simulation and modelling tools, 
underpinned by computation, are essential to provide insight and understanding. Given 
this key principle, we describe the exciting scientific discoveries and understanding that 
computation will inspire within the biosciences. Although computation also plays a vital 
role in areas such as ecology, evolution, and population dynamics, here, we focus on 
molecular biology, bioinformatics, and biomaterials, as these areas are arguably 
experiencing the most rapid current expansion. We conclude with speculations on the 
future directions of computing in the biosciences, which highlight the urgent importance 
of long-term investment in people and infrastructure for bioscience computation. 
 
Scientific background 
  
Building on the past: The ‘omics’ revolution 
 
 Genomic DNA sequencing (genomics), quantification of RNA expression levels 
(transcriptomics), microbiome characterisation, and metabolomics studies are providing 
increasingly more information about how molecular-level changes affect organisms. 
Omics data present a particular challenge concerning their size and in allowing open 
access to a global research community. To be searchable and readily accessible, these 
datasets require the very highest standards of curation. For example, the Encyclopedia of 
DNA Elements (ENCODE) database now contains approximately 13,000 datasets from 
nematodes, flies, mice, and humans, totalling over 500 TB of data [1], and the European 
Molecular Biology Laboratory–European Bioinformatics Institute (EMBL–EBI), run 
collaboratively across 16 partner countries, currently totals 120 PB in size. This figure is 
projected to reach the exabyte scale in 2022 [2]. These resources represent an invaluable 
shared global resource and thus require new international agreements between 
government funding agencies to safeguard their capture, curation, and maintenance over 
the long term [3]. 
Such a wealth of resources brings new challenges: How do researchers find (and trust) 
the information that they need, and how do they combine different datasets to make 
connections that can answer biological questions? A survey of the 2018 online molecular 
biology database collection reported 82 new databases and 84 updates to previously 
published computational biology database resources, whereas only 47 databases were 
discontinued [4]. These databases span biological disciplines as diverse as genomics, 
transcriptomics and proteomics, evolutionary analysis, metabolomics, and chemical 
biology. Recent updates to the Reactome Pathway Knowledgebase [5], which contains 
molecular details of all known signal transduction and transport pathways, have focused 
on providing users with diagrammatic and graphical representations of their queries so 
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that complex metabolic relationships can be more readily understood and 
communicated. The design of interactive software tools that enable exploration of 
massive datasets will continue to be an active area of research in bioscience computation. 
For informatics, datasets are presently maintained by a mature network of international 
collaborations with a robust community infrastructure. For nascent experimental tools, 
however, such as those under development for bioimaging, this is not always the case. 
 
Current challenges: The imaging revolution 
 
One of the notable challenges for the biosciences today is to connect from the omics 
(molecular) level through to the whole organism. Although omics quantifies which 
molecules are present, it does not show where they are. New imaging tools, such as cryo-
EM, cryo-ET, and superresolution light microscopy, now allow us to visualise biological 
systems from the level of a single protein molecule to cells and tissues. This will allow us 
to connect the molecular and cellular levels for the first time, revealing details of 
processes such as assembly and disassembly of cellular structures, the operation of 
enzyme-controlled chemical factories, the protein transport network, and cell regulation 
strategies. The Electron Microscopy Database (EMDB), which provides a public archive 
of 3D electron microscopy reconstructions, grew from 640 entries in 2015 to 4,431 by 
the end of 2016 and is projected to contain 10,000 entries by 2020 [6]. For comparison, 
there are already over 139,000 atomic models for biological macromolecules in the 
Protein Data Bank (PDB). The complementary Electron Microscopy Public Image 
Archive (EMPIAR) database contains raw electron microscopy images [7], and 
discussion of the need for equivalent archives for emerging 3D cellular imaging 
techniques, including 3D scanning electron microscopy and soft X-ray tomography, have 
been initiated [8][9][10]. The provision of these resources builds on best practice 
acquired through the curation of omics and atomistic structural data (e.g., the PDB). The 
importance of gaining an international consensus on common file formats, which is vital 
for software interoperability (as is nonproprietary software), functionality, and usability, 
has already been established. The bioimaging community faces additional challenges 
owing to the large size and multiscale nature of the datasets. Curating, sharing, and 
integrating these data will require new storage, networking, software, and skills 
infrastructure. 
 
Single-particle cryo-EM imaging is now providing atomic-resolution structural data for 
macromolecular complexes that have eluded X-ray crystallography [11][12]. Processing 
and curating this wealth of information requires robust, user-friendly software [6], high-
performance computing (HPC), and bespoke data storage facilities [6]. Cryo-EM facilities 
can generate over 10 Tb of image data per day per microscope, and potentially > 160 Tb 
each year will need archiving for 10 years (see S1 Supporting Information) to satisfy the 
open-data requirements of funding bodies. As the next generation of detectors become 
available, this will increase by a factor of around 6 (e.g., in the transition from the Gatan 
K2 to K3 detector [13]), requiring an equivalent uplift in the data storage and analysis 
pipelines. Only major research facilities have previously had to tackle the problems of 
understanding and controlling for continuous data production. This is an urgent issue in 
many cryo-EM facilities. In response, there is an important emerging industry set around 
the products and services that are designed to make data more portable and widely 
accessible, with the expectation that the researcher also stands as an expert ‘software 
analyst’. Many electron microscopy facilities now do significant data processing 
concurrently with data collection to speed up processing of the datasets, but it is clear 
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that a substantial, continual investment into networking and storage infrastructures will 
be required in the future. 
 
Although single-particle cryo-EM is particularly computer intensive, other imaging tools, 
such as superresolution microscopy, soft X-ray tomography, and cryo-ET are also 
generating increasing amounts of data. Robotics technologies and upgraded beamlines at 
synchrotrons provide data ever more quickly. The combination of cryo-ET with cryo-
focused-ion-beam (cryo-FIB) milling is providing information for whole-cell cross 
sections of around 300 nm in thickness, in which the molecular resolution at the surface 
is approximately 10 Å [14]. Soft X-rays now achieve resolutions of < 50 nm and can be 
used for 3D reconstructions of whole cryopreserved cells [15]. Correlated microscopies, 
in which data from distinct modalities are combined to give complementary information, 
are now used to identify specific molecules of interest within 3D cellular landscapes [16] 
by labelling them with a fluorescent tag or bar-coded strands of DNA [17]. Adaptive 
optics combined with lattice light-sheet microscopy in transparent living cells has 
revealed the subcellular dynamics of processes as diverse as the nanoscale diffusion of 
clathrin-coated pits, cancer cell metastasis, and the motility of axons, which involved 
mining and visualisation of around half a terabyte of raw data [18]. Much of the future 
bottleneck for understanding this new wealth of biological information is computational 
[18]. Although microscope suppliers do already provide bespoke software tools for 
visualising and processing 3D microscopy data, such as the Amira program [19], 
bioimaging is evolving so rapidly that the future software needs of this community are 
unknown. As a result, new programming tools, particularly for correlative microscopies 
and the segmentation of noisy volumetric datasets, now need to be developed 
concurrently with the experiments that rely on them and be implemented close to the 
science. The Image Data Resource, for example, combines experimental results from 
multiple independent imaging modalities for reanalysis [20]. A broad awareness of the 
growing computational needs of the biosciences is now necessary to ensure that the 
required hardware, software, and technical expertise is available locally. 
 
Requirments for the future: Biomolecular modelling and simulation 
 
Computational tools have been developed at all length-scales in the biosciences, but 
integrating between these different regimes remains a challenge. Examples in which this 
challenge has been embraced include the Virtual Cell Software Environment [21], which 
provides a ‘biology-orientated’ tool for spatial–temporal modelling and visualisation of 
biochemical pathways. The European ‘Virtual Physiological Human’ (VPH) project has 
undertaken to construct a ‘digital representation of the human body and its relevant 
physiological systems’, with the long-term aim of using computational physiology in 
biomedical research and clinical practice [22]. In biomechanics, the aspiration is for 
simulations to speed up the design cycle for medical implants and devices before 
experimental prototypes are built. In 2016, the United States Food and Drug 
Administration (FDA) agency issued guidance on the use of computational studies to 
evaluate the safety and effectiveness of medical devices [23]. Multiscale models of the 
heart that span from the length-scale of ion channels up to whole-organ models [24] 
have already been integrated with imaging data from individual patients in research 
towards personalised surgery [25]. The concept of a ‘Digital Twin’, which is a 4D in silico 
copy of a physical system, and which has been widely adopted in mechanical engineering 
for applications as diverse as sensors to power plants, will similarly become an integral 
component of industrial tissue engineering [26]. 
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Simulations test our understanding of biological mechanisms and provide information 
that cannot be obtained by experiment alone. For example, in molecular and cellular 
biology, imaging tools require samples to be fixed in space to make it possible to collect 
enough information to extract a signal out of noisy data, so much of the dynamics of 
biomolecules are impossible to access experimentally. However, molecular recognition 
and the ability to respond to cellular signals relies on such dynamics, so the relationship 
between structure and biological function is still not well understood, which remains a 
significant obstacle in rational drug design. In principle, atomistic molecular dynamics 
simulations can predict binding constants, locate allosteric sites, and explain gating 
mechanisms such as in membrane transporters and ion channels [27][28]. In practice, 
however, such simulations remain severely limited by the simulation timescales that can 
be explored, even with specialist HPC resources. This has, in turn, inspired radical 
developments in bespoke hardware for molecular dynamics (MD) (e.g., the Anton chip 
[29][30]). Biomolecular simulation has a mature software stack that is actively developed 
and maintained by the community as an international priority. This facilitated the porting 
of the most popular community codes to graphical processing units (GPUs). As well as 
the improvements in speed, the relatively low cost and easy availability of GPUs have 
broadened the availability of such tools. Molecular modelling software developers know 
that usability is key to user engagement and are investing considerable effort into making 
their software (which has traditionally been limited to the HPC community) more user 
friendly. The importance of bringing high-quality computational tools into the everyday 
repertoire of experimental biologists has been emphasised by the computational biology 
community [31]. In the molecular biosciences, in silico screening has already been 
integrated into the rational drug design pipeline. As their predictive power improves, the 
hope is that in the future, biomolecular simulations will replace animal testing, and 
patients will be treated with personalised medicines designed using bespoke computer 
models. 
We therefore need a deeper understanding of how changes at the molecular level 
propagate through to cells and tissues. Statistical approaches, such as those used in 
systems biology, have proven particularly powerful for identifying correlations in 
complex datasets that can be used predictively. For example, Bayesian methods have 
been developed that can assess functional assignments to unknown genes—for example, 
by analysis of hormonal networks described by multiple (e.g., of order 10) experimentally 
measured rate constants [32]. Machine learning is now being used to extract patterns and 
correlations from elaborate datasets, and in image processing [33][34][35], drug design 
[36], and omics analysis (for a review, see [37]). Identification of correlations in large 
datasets is valuable for hypothesis generation and provides new understanding when 
combined with complementary tools, such as simulation and experimentation. However, 
machine learning cannot explain the underlying, causative interactions, which limits its 
predictive power to within the scope of the data supplied [38]. Computer modelling is 
therefore essential for applications such as personalised medicine because the number of 
genetic mutations possible is so vast that the circumstances of individual patients will 
never be captured in any dataset. 
 
The bioimaging revolution is providing data that is inherently multiscale. To understand 
how the structures we observe ultimately give rise to biological function requires the 
development of new models that integrate datasets collected at different spatial and 
temporal resolutions. For example, the CellView visualisation tool, which is implemented 
within a game engine, uses the latest GPU-based algorithms to construct and render 
enormous biological scenes (approximately 15 billion atoms) [39], such as an entire 
mycoplasma cell [40]. Modelling will also be required to integrate imaging and 
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informatics. The enormous data sizes required to comprehensively map cellular 
components at an atomistic level (see S1 Supporting Information) implies that 
abstraction is essential. The challenge is therefore to capture the detail necessary to 
understand how a single amino acid substitution can give rise to disease yet build a model 
that is computationally tractable. Multiscale simulation tools capable of coupling 
different levels of chemical detail into integrated models are therefore essential for 
bioscience model building [41]. Multiscale, integrative modelling is one of the ‘grand 
challenges’ of computational chemistry and physics. In the biosciences, it may transform 
the field into a fully quantitative discipline. 
 
Organisation, structures, and skills 
 
Evolution of research computing technologies and services 
 
As imaging, informatics, and modelling become increasingly crucial in the biosciences, its 
research computing (a discussion of the definition of research computing in this context 
is provided in S1 Supporting Information) tools will also evolve. All research 
continuously generates new and innovative techniques and technologies that disrupt 
existing approaches. Many technology disruptors follow similar evolutionary paths over 
time, and there are models to track and predict this. Figure 1 shows the well-established 
model put forward by Abernathy and Utterback [42]. For any new technology, early 
efforts concentrate on establishing core capabilities and features. As the technology 
matures, the feature set becomes both canonical and commoditised. Thus, development 
and operations effort shifts more towards usability and efficiency. 
 
 
 Fig 1. Evolution of research computing technologies, based on the Abernathy-
Utterback curve. Innovations in the fluid phase undergo churn, eventually yielding a 
dominant design. In the transitional phase, delivery processes become more important 
than feature sets. Then, in the specific phase, the innovation is well established, and 
effort is mainly devoted to efficient operation. 
  
Although improvements in usability and efficiency in the ‘transitional’ and ‘specific’ 
phases do not necessarily push back the frontiers of research, such developments can 
massively ‘democratise’ a new approach, as is currently happening in cryo-EM (as 
demonstrated by the increase in depositions to the EMDB discussed previously). 
Improvements in service delivery often significantly reduce costs, reducing barriers to 
adoption and increasing uptake. When a research computing tool set becomes entirely 
mainstream, increased standardisation for data sharing and workflows further improve 
access and efficiency, enabling data to be combined in new ways and providing novel 
insights and understanding. 
Bioscience computation is following these trends. In the ‘fluid phase’, when a new 
algorithm is first conceived (for example, for image processing, biomolecular modelling, 
or informatics analysis) it will most likely be implemented by an individual research team. 
The focus is on developing the core functionality of the software so that new biological 
questions can be addressed. It is only when the computational tool has been validated 
that usability and sustainability improve and the tool enters the ‘transitional phase’. A 
computational technology in the ‘specific phase’ is fully mature, often with so many users 
that the cost of providing it needs to be considered at an institutional level. Examples 
include standard scientific software such as Matlab and core infrastructure hardware (e.g., 
GPUs and computing blades). 
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Other aspects of research computing follow this evolutionary path too, with interesting 
consequences. Research ‘grand challenges’, such as the development of the bespoke 
Anton chip for biomolecular simulation, are located at the far left of Figure 1, as these 
involve highly innovative (and often expensive) computational tools accessible to only a 
few researchers at their conception. New techniques in the ‘fluid phase’ will most likely 
be funded by short-term academic research grants, whereas technologies in the ‘specific 
phase’ often receive international, national, or institutional support, mainly through 
professional information technology (IT) services. This has a profound influence on the 
working cultures of computing experts supporting technology at each of the various 
phases, as academic research and IT services have different priorities and career 
structures (see S1 Supporting Information for a comparison between research computing 
and enterprise IT). Most attrition occurs in the ‘transitional phase’. Research groups 
rarely possess the expertise to transform an academic code into widely usable software. 
Therefore, new types of research computing experts are needed to meet the growing 
demand for good scientific software, and such roles are becoming part of the basic fabric 
of a research-intensive institution [43]. Software developers and systems administrators 
responsible for research computing hardware are necessarily clustered around the 
intersection of the two curves in Figure 1. The dynamic nature of the evolution of 
technology necessitates a fully integrated approach between innovative research teams 
working on the left of the curve (‘fluid phase’) and operational IT teams working on the 
right (‘specific phase’). This is particularly vital for the biosciences because research 
computing needs to evolve rapidly to keep up with experimental data production. For 
example, academic bioscience software can be brought to a broader user base by 
exploiting the modern software development processes of enterprise IT. Conversely, 
academic research often stretches IT capabilities and drives innovation to meet those 
challenges. Close collaboration with researchers will enable professional IT services to 
anticipate future problems based on the experience of the early adopters if both sides are 
willing to learn and adapt. The relationship needs to be bidirectional so that future 
service provision is informed and relevant, with biological researchers and IT 
professionals working as partners to reach new and innovative solutions together. Only 
this collaborative approach is capable of providing bioscientists with the computing tools 
and skills that they increasingly need with the urgency required to keep pace with 
experimental advances. 
 
Building computational skills for the biosciences 
  
Software engineers understand the importance of making software easy to use, thus 
reducing training requirements. However, much of the biosciences software, such as 
NAMD for MD simulations [44], is extremely sophisticated, so expert knowledge is 
needed to exploit its full potential. As the quantity and complexity of bioscience data 
grow, researchers also need to write software of their own. Consequently, python and 
other high-level programming languages have grown in popularity, and many software 
packages such as Visual Molecular Dynamics (VMD) [45] provide an internal scripting 
language for advanced users. Although PhD students and postdocs rely on software 
development, principal investigators (PIs) may not always be so aware of its intrinsic 
value because research computing tools are evolving so fast it can be challenging for 
academic teaching staff (and managers of industrial research teams) to keep up with 
developments. The consequence of this is that grant applications to improve software 
usability are often outperformed by standard proposals that address a specific biological 
research question. 
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We propose that the research community will require some or all of the following three 
elements of computational knowledge (ranked by sophistication): 
  

1. An understanding of hardware so that systems and software can be 
configured most effectively and data can be transferred across the 
network efficiently and securely  

2. Practical skills in programming or use of high-level utilities such as 
databases so that raw data can be processed before importing into 
specialist research software  

3. An understanding of the software applications used by their research 
community in general and with specialist knowledge of the software 
required for their current research project  

 
Currently, much application-specific software training is delivered by the research 
communities themselves. Many of the world-class computational bioscience facilities, 
such as EMBL–EBI, are also centres of excellence for training [2], which brings 
biological researchers into continual contact with software developers and is key to 
providing usable and relevant computational tools. Much of this activity is funded by 
research councils that understand that supporting communities to develop good software 
is critical to their science. Less experienced researchers need training from world experts 
to use these packages robustly, which implies an understanding of the underlying science, 
an awareness of the potential pitfalls, and the knowledge of the limitations and 
significant sources of error. However, the growing demand for software applications 
training now requires this to be provided by local institutions. 
Researchers who are developing code need additional software development skills, such 
as understanding how to use code repositories and how to design robust test suites. It is 
currently unlikely that a biosciences researcher will acquire these skills during an 
undergraduate degree. Consequently, research students and postdocs need to find 
training at their institution, attend an external course, or draw upon the experience of 
their local research team. In the United Kingdom, the Software Sustainability Institute 
(SSI) boasts that it has ‘trained over 5,000 new learners in the basics of software 
engineering’ [46], which potentially has a massive scientific impact given the high 
proportion of researchers who require software for their research. As partners of the US 
Software Carpentry Foundation, the SSI join with a global network of institutions with a 
staggering diversity of scientific interests, including a strong representation from data-
intensive bioscience disciplines [47]. Ensuring that research-intensive organisations 
provide up-to-date research computing training is essential. 
 
Bioscience computation in the cloud 
 
The cloud has the potential to revolutionise research in the biosciences. The porting of 
biosciences software onto GPUs combined with secure, on-demand access to such 
hardware in the cloud now provides the opportunity to embed biomolecular modelling 
and data analytics in far more areas of discovery. The need for good biosciences 
software, and for people with the skills to write and use it, is therefore set to explode. 
Although in the future cloud providers may well see commercial value in installing and 
testing software with a sufficiently large user base, currently cloud computing devolves 
the responsibility for installing and testing software and choosing the associated 
hardware platform from centralised facilities to the user. Bioscientists will need additional 
computational expertise, particularly in DevOps/ResOps (see S1 Supporting 
Information) and support to benefit. Current financial models for cloud-based 
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computing also charge for data ingress/egress, which may slow uptake of applications 
such as cryo-EM image processing, which is very data intensive. Added to this, the scale 
of data involved is leading to the physical shipping of hard drives as the only currently 
practical way of transferring data at this scale [48]. Upgraded network infrastructure and 
new cost models would therefore be required to remove these roadblocks. 
 
A surge in demand for better simulations and data analytics due to uptake in the cloud 
will change the HPC landscape needed to support research and will push development 
towards ever-more-sophisticated models, beyond the limit of standard cloud computing. 
The most challenging biosimulations, for example, require tightly coupled, massively 
parallel resources, relatively few of which are currently available in the public cloud. 
Microsoft Azure now offers the ability to run large-scale parallel applications in the cloud 
as part of their cloud for research e-infrastructure [49]. As the need for computation in 
the biosciences grows, these additional resources will allow mature software applications 
to be run in the cloud, freeing up time on national academic HPC for ‘capability’ (single 
large simulation) rather than ‘capacity’ (many small simulations) research. Research 
pioneers will continue to demand bespoke hardware facilities until computations 
sufficiently sophisticated to answer their research questions run efficiently without them. 
The complexity of biology implies that this will not occur in the foreseeable future. 
Therefore, universities, national supercomputing facilities, and the commercial cloud 
providers will all be required to expand the boundaries of computation and to develop 
the tools that will ultimately become standard as they become more mainstream. 
 
An even more fundamental change in bioscience computation may arise from new ‘cloud 
native’ working practices (e.g., the ResOps approach from the EBI [50]). Applications 
within the cloud need to work independently of the hardware platform, have a higher 
tolerance for failure, and be able to respond to changes in price. Software ‘containers’ 
allow for this, providing everything needed to run the code. Containers thus facilitate 
sharing and increased reproducibility. As these technologies evolve, the community will 
need to continue to engage with these new computational tools. 
 
Discussion 
 
Embedding computational thinking within bioscience culture 
 
In molecular biology, materials science, and increasingly, social sciences and humanities, 
computation has become an essential part of the experimental pipeline. The integrity of 
results relies on both the software and the way the user employs it. Researchers therefore 
need a deep understanding of the computational aspects of their experiments and the 
science underlying these tools. Concerns about researchers’ use of software and our 
readiness to believe the answers it provides are not new in the biosciences [51] and have 
been reawakened in the light of increasing levels of automation in macromolecular 
crystallography, which encourages reliance on ‘magical black boxes’ [52]. The discussion 
will intensify as machinelearning algorithms enter scientific workflows. We must keep 
questioning how our computational tools are solving a particular problem for us rather 
than focusing only on the broader research agenda. 
Scientifically correct and user-friendly community software is essential to the productivity 
of researchers. However, software developers face a completely different design 
challenge to engineers building software platforms for automation of tasks such as 
payroll or goods delivery, in which complexity must be hidden from users. In research 
software, the package should communicate the full range of options in an intuitive 
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manner, inform users of the choice of defaults, and provide easy access to detailed 
explanations of parameters, with caveats, through links to online manuals, tutorials, and 
research papers. Wherever possible, informative error checking and validation 
procedures should be built into the workflow. These must give understandable and 
practical advice or risk being ignored by users. Creating software that engages users 
appropriately is an enormous challenge, but the benefits can be dramatic. This is amply 
shown in the rapid increase in cryo-EM structure depositions, which have been enabled 
in part by rapid improvements in software functionality and ease of use [53][54][55]. The 
architectural equivalent of software platforms for organisations is a transport hub, such 
as a railway station or an airport, where providing the most efficient route to the final 
destination is critical. For research software, the design principles should mimic those of 
professional library services, in which engagement, exploration, and education are 
paramount. 
 
The open-data movement improves scientific reproducibility, enables the efficient use 
and reuse of valuable research data, and shares detailed experimental protocols. The 
advent of electronic laboratory notebooks combined with software containers and cloud 
services could massively enable large-scale sharing of bioscience computational tools. 
Every published computational experiment should be archived (e.g., using a software 
container) into an executable workflow, which could then be rerun locally by a separate 
team, who would have the freedom to reanalyse the data using a different approach. This 
external validation will improve scientific rigor, as common mistakes will be identified, 
corrected, and then avoided in the future. Moreover, by being interactive, these archives 
would be engaging and educational and enable large-scale collaborative bioscience 
projects across multiple international sites. 
 
A subtle and informed discussion is necessary on what ‘open data’ means. Providing 
public access to datasets for a decade following the completion of a research project is 
challenging. Many experimental and computational projects now create volumes of data 
vastly greater than what was envisaged when the 10-year standard was created, and such 
datasets may be beyond the limit that is practical to curate. Examples are particle physics 
experiments, cryo-EM datasets, biomolecular simulations, X-ray free-electron lasers 
(XFELS) (see S1 Supporting Information), and supercomputer simulations for 
cosmology. However, it is also clear that preservation of raw datasets can enable 
invaluable new insights, such as the extraction of dynamic information from cryo-EM 
[56]. The effectiveness of open-data policies in practice will depend critically on curation 
because reuse is impossible if the data cannot be found, and protocols will be 
unreproducible unless they are clearly explained. Data can be much easier to preserve 
than executable software, which can have hidden dependencies in both software and 
hardware that are not recorded and may be difficult to recreate. This is a problem that 
research computing and curation experts need to resolve. 
 
Predictions for the future 
 
Given the above, we make the following predictions on the future of research computing 
in the biosciences (see Table 1). 
  
Table 1. Predictions for the future of biocomputation. 
  
Massive growth in 
bioscience research 
computing 

More data; more computing power; more algorithms; more applications; and more insight 
and knowledge generated. Progress can only accelerate research and improve 
reproducibility and consistency.  
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Commoditisation of 
research computing 

As tools go from being fluid to translational to specific, they will become commoditised. 
Standard hardware models (such as GPUs) will become more pervasive, and software reuse 
will happen more through containers and cloud applications. 

Data and process 
standardisation 

As data, workflow, and processing standards mature, they will yield platforms that give the 
best computing power and value for money for well-established research tasks (as has 
happened for genome sequencing, for example). 

Specialisation of research 
computing in bioscience 
research 

Specialisation in the biosciences, such as innovative microscopy or XFELs, will continue to 
accelerate. Knowledge of the underpinning computational tools will be essential for 
researchers in these fields. 

Data analysis at speed The increase in data production in the biosciences means that the ability to analyse and 
compress data as they are generated will become ever more important. 

Multiscale visualisation 
and modelling tools 

The multiresolution nature of bioimaging data requires multiscale modelling and 
visualisation tools to understand how structure connects to biological function. 

Rise of commercial comp 
biotech services 

Commercial services will step in to provide bioscience computation in a similar manner to 
the emergence of gene-sequencing services. 

New ethical issues 
emerge  

We will become increasingly coupled to computation, through wearable sensor 
technologies, virtual reality, and implantable devices. The long-term consequences for 
society will require a broad interdisciplinary base to assess, e.g., neuroscience, genomics, 
psychology, physiology, and computer science. 

Growth in visualisation 
and ‘citizen science’ 

 As bioscience software matures, focus will shift from functionality to visualisation tools for 
best exploring the data [39], which will include virtual reality [57]. Such rich computational 
experiences will engage a wide public audience with bioscience research, as is already 
happening for bioimaging [58][59]. 

Abbreviations: GPU, graphical processing unit; XFEL, X-ray free-electron laser. 
  
Surveying the current landscape and anticipated future directions leads us to the 
following three requirements to secure the future of research computing in the 
biosciences: 
  

1. Investment in the e-infrastructure environment: The analysis, curation, 
and sharing of data will require robust and sustained investment in 
networking, data storage, HPC, software, support, and people at the 
local, national, and international levels.  

2. Importance of collaborative research communities: Communities are 
vital. They ensure the interoperability of datasets and software. They 
define ‘grand challenge’ problems that require collaboration. They 
deliver bespoke training and share expertise. Communities advocate 
and influence, securing the investment necessary.  

3. Computation is an integral part of the scientific method: The 
understanding gained from experimental biology arises from 
computation, either through analysis, modelling, or both. 
Computational thinking needs to be embedded within the culture of 
biology, creating a research computing landscape that is resilient 
enough to accommodate a continual flow of disruptive methodology 
and analysis.  

 
 
Conclusions 
 
The integration of large-scale computing into the scientific method within many more 
areas of the biosciences requires investment into a broad ecosystem of research 
computing. We have focused on the exciting biological discoveries that can be made 
through the widespread uptake of computation to illustrate that undertaking this 
challenge is necessary and timely and will ultimately transform the biological sciences. 
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Researchers, academics, institutions, learned societies, funders, and enterprise IT 
professionals need to discuss the scientific and organisational issues to ensure that there 
are sufficient resources and flexibility to accommodate this influx of novel technology 
and the people who support it. The closer integration between research computing and 
enterprise IT needed to deliver computational tools to an increasingly varied community 
of researchers requires that institutions recognise the contribution that supportive IT 
service provision makes to research. The success of any research computing initiative in 
the biosciences will be judged by the novelty and depth of the biological questions it 
answers; therefore, performance metrics for people, projects, and processes should be 
designed to support research. 
 
More broadly, growth in cheap, online public access to personalised biological datasets, 
such as genome sequencing [60], microbiome analysis [61], and biometrics collected from 
wearable sensor technologies (e.g., fitness trackers and social media apps to record diet), 
along with the classification of personalised data characterised as the ‘quantified self’ [62], 
will further fuel the omics revolution. These innovations will define the research 
questions asked by biologists, not only in response to public demand but also from 
legislators trying to regulate these new industries. In July 2014, the European 
Commission led a consultation on medical devices and mobile health (mHealth) apps 
and proposed a code of conduct [63]. In parallel, manufacturers are in the process of 
marketing smart technology–enabled medical devices to allow healthcare providers 
access to patient data, including remote monitoring and cloud-based data-sharing 
systems. Although the outcomes are too revolutionary to be foreseen, without doubt, 
computational tools will be vital to the analysis and interpretation of individuals’ data. As 
the world becomes ever more technologically empowered, we must remember to engage 
mindfully with computation and the answers that it produces to make certain that we are 
informed more often than we are misled. 
 
Understanding the molecular choreography that allows cells to work, how this is affected 
by a disease, and our relationships with other living organisms will influence societal 
attitudes to health and lifestyle, medicine, and our impact on the environment. The 
imaging revolution, combined with informatics, physical modelling, and visualisation, will 
lead to profound new insights. The aim of ‘cellular cartography’ is to chart out the whole 
atlas of the cell, in which all structural and omics information is unified within a single 
multidimensional, multiscale computational framework [57]. Realising this ambition will 
place computation at the very centre of biological research and will, therefore, drive a 
massive uptake of computational tools and skills by bioscientists. 
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S1 Supporting information. This contains two case studies that quantify the future 
computational needs (e.g., networking, compute, and storage) of key areas of structural 
biology. The first, ‘Quantitative estimates for the computational requirements of single 
particle cryo-EM studies’, focuses on imaging, and the second, ‘Data storage sizes for an 
atomistic map of C. elegans’, focuses on computer modelling and simulation, including a 
discussion of coarse graining. The final appendix, ‘Research Computing, Enterprise IT 
and bioscience computation support’, compares the approaches of IT services and 
research computing and describes how they can work together to support bioscientists. 
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