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Abstract

We report on the discovery of oil from the Boulbyn® and its likely productive source rock
from Yorkshire in NE England, located to the wes3({ km) of the newly licenced petroleum
exploration areas in the vicinity of the Mid-No@ea High. Oil samples from the mine have
likely been generated from Zechstein Group KirkhAbbey Formation (KAF) sapropelic
carbonate rock as indicated by aliphatic and armmlydrocarbon biomarkers. Other
potential source rocks of Carboniferous (Westphalidlamurian, Viséan coals and
mudrocks) and Jurassic (the Jet Rock, BituminowdeShKimmeridge Clay Formation) age
are ruled out on the basis of organic geochemiat. Boulby oil was generated in the peak-

to-late oil-window and it is characterised by thghhabundance of and G4 homohopanes,
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slight even-over-odd predominance (EOP) gf &sn-alkanes indicating restricted carbonate-
evaporite depositional conditions, angh€hyl-diacholestane 20S likely implying a clay-rich
source rock. The structural framework and tectdmstory of the Permian strata reveal the
presence of several fault systems which served@aguits for migrating petroleum. Similar
Zechstein-sourced oil is known from Poland and Geryn but the occurrence at Boulby is
the first positive identification of oil deriveddm Zechstein source rock in the North Sea
area. The Boulby olil is reservoired in Zechstei(¥3) Brotherton Formation dolomite and
sealed by Z3 evaporite rocks. The proven oil oenge at Boulby has significant
implications in terms of reducing the risk of alaaf oil mature source rock for acreage

offered in the neighbouring North Sea during the$80" and 3% licencing rounds.

Keywords. seeping oil, source rock, Boulby Mine, YorkshiZechstein, Late Permian

1. Introduction

The Boulby Mine opened in North Yorkshire, Englamd1973 (Woods, 1979, 1973)
for the mining of halite, polyhalite and sylvitef strata of Late Permian (Zechstein cycle 2
[EZ2] and 3 [EZ3]) age. The sylvite was originaidientified in a prospect drilled for oil by
the D’Arcy Exploration Company in 1939 at Aislabyy the Eskdale Anticline. Well Eskdale
2 (Fig. 1), drilled a few km south of the presestdtion of the mine, proved potash-bearing
minerals within three cycles of the Zechstein evapsuccession (EZ2, EZ3 and EZ4).

The mine workings reach a depth of 1300 m below Iegal and extend ~8 km
towards and under the North Sea. The Boulby M:tcated in the Mesozoic Cleveland
Basin of northeast England (Fig. 1), which is thetwre development of the Sole Pit Trough.
It occurs on the margin of the Southern PermianBg&PB) of northwestern Europe, which
later became the North Sea Basin, containing ttsekimentary (sandstone-carbonate-

evaporite) sequences (Glennie and Underhill, 1998).
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Fig. 1. Map of the Cleveland Basin and its major strudtfeatures indicating the position of the Boulbyrdi
(after Powell, 2010). The West Newton locationas shown and is ~113 km south of Boulby. 1 — gaki§i; 2

— undeveloped gas discoveries (after Haarhoff.e2al 8).

In 2011, through fractures encountered during ngiroperations in a salt roadway
and from an exploratory horizontal borehole driltecbugh the salt, a brine, oil and methane
gas influx occurred. The origin of this seepinghaid been linked to the Carboniferous Coal
Measures and terrigenous organic matter (OM) typevison, 2009). In the vicinity of the
Boulby Mine, there are several gas fields (e.gkdgke, Lockton [now called Ebberson
Moor], Malton, Marishes and Pickering; see Figadd the recent discovery at West Newton
located ~113 km south of Boulby) hosted by Zechstimlomites of the Kirkham Abbey
(KAF) and Brotherton formations (EZ2 and EZ3, redpely; Fig. 2). Productive tests were
reported from Namurian strata in the Kirby Mispertéield and from Rotliegend sandstone
in the Caythorpe Field (also producing from the KAFig. 1). There have also been oil
shows in a number of discoveries offshore of thev€land Basin (Quadrant 41), including
well 41/18-1, just offshore of Robin Hood's Bay,dam KAF and Brotherton Formation
carbonate rocks in the Teesside area close todhbeenmn margin of the Cleveland Basin,
including wells at Hartlepool and Seaton Carew (Bnaind Francis, 1967 and references
therein), as well as gas production at Kirkleati{&ng. 1). It has long been assumed that the

gas was generated from coal in the Upper Carbanifeinterval. The Namurian source rock
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present in the East Midlands and Liverpool Baypodvinces has not been shown to be oil-
prone in the North Yorkshire area (Andrews, 20X3her potential candidate source rocks
for the oil at Boulby Mine are Jurassic mudrock tbé Lower Jurassic Jet Rock and
Bituminous Shales and the Upper Jurassic Kimmerid@y Formation (KCF). Some oill
seepage is known from septarian concretions witihénToarcian Jet Rock bituminous shale
exposed on the coast above the mine (Fig. 3), lmaiess only marginally mature (Kent,
1980; Rawson and Wright, 1995, 2018). Furthertsaldng the coast the KCF is present but
thermally immature for petroleum. Boulby Mine icansiderable distance away (400 km)
from the Tail End Graben in the Central North Sdeere the KCF is mature for petroleum
(Glennie et al., 2003).

To explore this conundrum and to test whether Boelby oil was derived from
Carboniferous, Jurassic or a different source-mekhave recently collected four seeping oil
samples in a newly-opened part in the mine (2008t\8alt). Our new data include broader
organic geochemical analyses of Boulby oil allowmgletailed determination of the OM
source for the hydrocarbons, as well as the dapoaltconditions. We have quantified a
suite of biomarker signatures characteristic ot pedox conditions, including homohopane
ratios, complemented by hopane and sterane digtitsuindicative of changes in OM source.
These, as well as geological and tectonic inteatimts, are used to refine the origin of the
Boulby oil. These findings open a new window torplketum exploration in the North Sea,

particularly in terms of defining several new padsctive source rock.
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99 Fig. 2. Onshore (from the Boulby Mine) and offshore (wefhithes 1) stratigraphic correlation of the Englis
100  Zechstein in NE Yorkshire (this paper and after tBneit al., 1986). Note the Chalk Group is absenthin
101 Boulby area. EZ1-5 — English Zechstein cycles G&b. — Carboniferous; Zech. Gp. — Zechstein Group.
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104  Fig. 3. Oil seeping from a ‘whalestone’ concretion in IsS@sbituminous mudstone at Port Mulgrave (photo
105  courtesy of Jack Lee).

106
107

108



109
110
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

129

130

131
132
133
134
135

136
137
138
139
140

2. Geological setting

2.1. Stratigraphy

North Yorkshire and Cleveland Basin lithostratigrgpmodified after Kent (1980), is
shown in Figure 2. The oldest rocks are mudstomkesdtstone with carbonate beds (Lower
Carboniferous, Craven Group, >760 m thick, compgsBowland Shale Formation and
Shale Limestone Unit), sandstone, mudstone amstaik (Namurian Millstone Grit Group,
730 m thick) and a thick succession of Upper Cafbomus mudstone/siltstone with coal
(Westphalian Coal Measures Group, 620 m thick, ratisethe Boulby Mine area). Permian
strata are Upper Rotliegend (Guadalupian) YellomdSa(aeolian sandstone and breccia,
although absent in the Boulby Mine area) and Zedhsvaporite and carbonate rocks (~400
m thick). The Zechstein Group consists of five egc(EZ1-EZ5) containing thick halite and
carbonate and thin anhydrite and potash units. dbatie rocks comprise dolomites of the
KAF (EZ2Ca = Hauptdolomit in the Southern North Seestern SPB) and Brotherton
Formation (EZ3Ca = Plattendolomit in western SABey are sealed by halite and anhydrite
beds of the EZ1, EZ2 and EZ3 cycles. Zechsteingack overlain by the Triassic Sherwood
Sandstone (350 m thick), Mercia Mudstone (320 rokbhand Penarth groups (20 m thick).
Lower Jurassic (Lias Group shale, 435 m thick), dfedJurassic and Upper Jurassic strata,
which crop out extensively along the southern siithe Cleveland Basin and Quaternary

sediments complete the stratigraphy in the Bouleg.a

2.2. Basin devel opment

Since the Late Palaeozoic the Cleveland Basin lamsaundergone two major phases of
basin development (Holliday, 1999). The first lnése was rapid burial in the Carboniferous
terminated by the Variscan Orogeny at the end efGarboniferous (Corfield et al., 1996).
The second, more recent event developed throughoci of the Mesozoic, terminating with
uplift in the Paleogene (Kent, 1980; Imber et2014).

The Carboniferous interval in the Cleveland Basikmnown only from a few boreholes
drilled onshore for petroleum exploration (Maltonkdrby Misperton 1; Stowakiewicz et al.,
2015), waste chemical disposal (Seal Sands nedleplaol; Johnson et al., 2011; Andrews,
2013), and offshore for petroleum exploration ina@want 41 (Besly, 1998). The oldest

strata penetrated belong to the Fell Sandstone a&mm (Arundian = Viséan). The Fell
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Sandstone Formation is known from outcrop furtheitinin Northumberland to have been
deposited in a high-energy fluvial system. It iedain by a shale-dominated interval with
subordinate sandstones and limestones depositgralic to shallow-marine conditions

during a syn-rift episode (Fraser and Gawthorp®0L9Post-rift sediments are also largely
paralic but with substantially more sandstone (8fiihe Grit and Coal Measures groups).
The maximum thickness of the Carboniferous intersah excess of 3000 m (Imber et al.,
2014). By the end of the Carboniferous the areahef current Cleveland Basin was
undergoing inversion resulting from the Variscam@@ny and this resulted in the removal of
the Coal Measures Group over large areas so tkaPémmian strata commonly overstep
Namurian and Dinantian rocks. Uplift and erosidnttee Cleveland area lasted until the

Early Permian when a second phase of rifting began.

By the Early Permian the area was within the sifRgagea supercontinent and, although
subsidence had lowered the basin surface belovesgaraneous sea level, the area was not
inundated. A land-locked basin developed with meditation occurring under aeolian,
sabkha and ephemeral fluvial conditions to formYe#ow Sands Formation. This sandstone
has been comprehensively described immediatelh mmdrthe Cleveland Basin (but is absent
in the Boulby Mine area) in County Durham wherernbps out and where quarrying has
afforded good exposure. The Yellow Sands Formationstitutes a series of NE-SW
trending sand ridges up to 60 m high and 1.5 tkB5vide, separated by areas up to 2 km
wide that lack sand (Steele, 1983).

Sandstone deposition ended when the barrier t@ ¢kleyan Ocean to the south east was
breeched and the seaway to Panthalassa in the opetied up so that what had been a sub-
sea-level basin dominated by deposition of teri@stediments became the Zechstein Sea.

The Late Permian was mostly a period of regionbkglence allowing up to many 100s
m of carbonate and evaporite units of the ZechdBrioup to be deposited (Smith, 1989;
Taylor, 1998). These sediments form broadly ofplag packages of carbonate and
anhydrite, with one major phase of basin-fillinditea(EZ2E, Fordon Formation evaporite =
Stassfurt evaporites in the SPB). There is evidemceCounty Durham for some
synsedimentary fault movements which controlled odéwn of the EZ1Ca reef (Ford
Formation = Zechstein Limestone in the SPB, Dareel., 2020).

The Mesozoic cover sequence in the area comprigassic and Jurassic sedimentary
rocks, the youngest being Middle Jurassic at thiéase across the North Yorkshire hills.

Younger, Upper Jurassic rocks are exposed alongaithern margin of the Cleveland Basin
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(Powell, 2010), and, together with Cretaceous atratop out immediately south of the area
of interest and would in the past have been pathefsedimentary cover at Boulby before
Paleogene inversion. According to Holliday (199%re was probably a thick succession of
Chalk Group and Paleogene sediments present priRaleogene uplift and erosion.

The Triassic succession, divisible into a lower r8lo®@d Sandstone Group, an upper
Mercia Mudstone Group and the Penarth Group, lispsésent in the subsurface. The likely
original thicknesses of these strata are up tor6§350 m, 320 m, 15 m, respectively; Kent,
1980). The Sherwood Sandstone Group was predothind@posited by braided fluvial
systems and the overlying Mercia Mudstone Groupnsewnts accumulated as playa lake
deposits.

The Lower Jurassic strata of the Lias Group ardougd35 m thick and dominated by
mudstone with subordinate sandstone and ironstéaedll, 2010). The Redcar Mudstone
Formation (256 m) occurs at the base and includéstic, siliceous and pyritic/ironstone
marine shales. The shales are overlain by théh&tabandstone Formation (25 m) deposited
below wave-base in marine conditions as storm ljeals Buchem and Knox, 1998). The
youngest section of the Lower Jurassic Lias Groopprises the Whitby Mudstone
Formation (107 m thick), which, near the base,ha Mulgrave Shale member, contains
organic-rich mudrocks of the 8.5 m thick Jet Roefujvalent to the Schistes Carton of the
Paris Basin) and overlying 23 m of thick Bitumino8bkales (Rawson and Wright, 1995,
2018).

The Middle Jurassic strata are the youngest roggesed in the vicinity of the Boulby
Mine; they also crop out extensively in the CleweldBasin and most comprise hon-marine
siliciclastics with minor coal of the up to 240 idk Ravenscar Group (Powell, 2010).
Deposition occurred in a range of paralic sub-emnments, shallow-marine to delta-top.
Younger Jurassic strata crop out towards the southmargin of the basin, ~30 km to the
south of the Boulby Mine, and include the Oxforcay;l carbonate rock of the Corallian

Group and, at the top of the preserved succes$ien;300 m thick KCF mudrock.

2.3. Inversion

The area of the Cleveland Basin has undergone twasgs of inversion since the
beginning of the Late Palaeozoic (Kent, 1980; Cheklwt al., 1993; Holliday, 1999). The
Variscan Orogeny caused a regional phase of wglithe end of the Carboniferous as the

supercontinent Pangea came into existence. Upft substantial, causing on the order of
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1.5 km of erosion as a minimum in the Clevelanddkent, 1980) and, offshore in Quadrant
42 (80 km east of Boulby), Lower Permian sedimensrlie Devonian strata (Underhill,
2003). The Zechstein Group overlies Devonian raks in parts of Quadrant 38 (Taylor,
1998). This phase of uplift resulted in the remosalCoal Measures as a potential source
rock, as well as the uplift of older source rocks,, the Carboniferous Bowland Shale

Formation mudrock.

A second phase of uplift occurred in the Late Qredais. In the Cleveland Basin an
estimated 1 to 1.5 km of Upper Cretaceous to Upgpemssic sediment was stripped off (Kent,
1980; Imber et al., 2014), leaving the Middle Jaiaparalic sediments as the youngest now

seen in the area.

2.4. Candidate source rocks

In this section an overview of potential sourcekeodor Boulby oil in the Cleveland
Basin is provided. These include Upper Jurassic K@krock, Toarcian shale and coal,
Zechstein lagoonal facies, Carboniferous Coal Messuas well as Namurian and Viséan

mudrocks.
2.4.1. Kimmeridge Clay Formation (KCF)

The organic richness of KCF mudrock (300 m thickd a&he results of Rock-Eval
pyrolysis show that the average total organic car@@®C) values are 5-8 wt.%; the quality
of kerogen is excellent with respect to hydrocareneration, and the hydrogen index (HI)
ranges from 500 to 600 mg HC/g TOC. In some pladesre there is an immature-mature
transition the TOC and HI values reach 32 wt.% d200 mg/g TOC, respectively;
sapropelic marine kerogen type Il predominates &®eoan, 1991). Thé**C values of
saturated and aromatic bitumen fractions range fr8thto -25 %o (Bailey et al., 1990;
Cooper et al., 1995; van Kaam-Peters et al., 1@autier, 2005).

The features of KCF source rock are a significamicement of Gz.35 homohopanes (de
Leeuw and Sinninghe Damsté, 1990), a high abundain28,30-bisnorhopane (Grantham et
al., 1980; Peters et al., 1989), a dominance pfa@d Ggsteranes (Mackenzie et al., 1983;
Huc et al., 1985), and the presence of isorenieeatierivatives (van Kaam-Peters et al.,
1997; Sinninghe Damsté et al., 2001).

2.4.2. Lower Jurassic mudrocks of the Jet Rock and Bituminous Shales
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Lower and Middle Jurassic coals and shales areevmali to contribute locally as
petroleum sources (Husmo et al., 2002). Jet RockBituminous Shales form part of the
Mulgrave Shale Member at the base of the Whitby 8Moaice Formation. The Jet Rock’s
equivalents in the Paris Basin (Schistes Cartorg &ermany (Posidonienschiefer) are
petroleum source rocks. The TOC content in Toarskale of Runswick Bay varies from 2.5
to 18.9 wt.%; HI ranges from 500 to 700 mg HC/g T@@d kerogen type 1l is predominant
(Song, 2015; Song et al., 2015). Vitrinite refleta values are between 0.6 and 0.7,%R
(Song, 2015; Song et al., 2015), indicating théyeait generation window. Th&"**C values
of OM in the shale vary from -27.3 to -25 %o (Bailetyal., 1990).

2.4.3. Zechstein Group carbonate rocks

Kirkham Abbey Formation (KAF) carbonate rocks (Z&telin cycle 2, EZ2) in the
Cleveland Basin area, which are sealed at the ndpbattom by the Fordon Formation and
Hayton Anhydrite evaporites, respectively, chiefnsist of ramp to slope facies (lagoonal,
oolitic, turbiditic, pelagic, slump and debrite banate rocks), which extend landwards and
interfinger with siliciclastic lagoonal-evaporitiacies of the Edlington Formation (Smith,
1989; Taylor, 1998). Clay- and microbial- rich lagal dolomites are, in addition to lower
slope facies and chicken-wire anhydrites, regam@edource rocks for Zechstein oil in the
central and eastern SPB (Stowakiewicz et al., 20L&pgoonal carbonate facies in the
Yorkshire area have TOC <2 wt.% and thickness ~25a3(Stowakiewicz et al., 2016). In
addition, thinly-laminated basinal calcareous modst named Stinkschiefer in the SPB,
commonly regarded as a source rock for hydrocatrbloas previously been ruled out by
Stowakiewicz and @siewicz (2013) as an effective source rock. Furtieee, Zechstein
cycle 3 (EZ3) Plattendolomit (= Brotherton Formadiaepresenting ramp facies are only
regarded as good reservoir rocks for petroleurhénNorth Sea (e.g., Wissey field located in
the southern North Sea, Duguid and Underhill, 20HXhough bituminous organic-rich
limey mudstone of the Grauer Salzton Formation [pmeermost unit of the Plattendolomit)
(Duguid and Underhill, 2010) might serve as a pi&eisource rock. In addition, Zechstein
lagoonal carbonates with anhydrite units may aksgabtential source rocks, with the OM

derived from former microbial mats with clay.
2.4.4. Carboniferous Coal Measures Group

The Westphalian Coal Measures Group representg dlgolio-deltaic sedimentation in a

lower delta-plain environment at times when théuxbf sand was at a minimum (Fraser and
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Gawthorpe, 1990; Burgess and Gayer, 2000). The rityajof Westphalian sandstone

reservoirs are currently producing gas, which isreed from Coal Measures with a possible
contribution from Namurian basinal shales (Kombratlal., 2010). Westphalian coal source
rocks are largely absent from the Cleveland Baliaathoff et al., 2018) due to Variscan

uplift over wide areas prior to deposition of Peamsediments.
2.4.5. Namurian and Dinantian source rocks

Lower Carboniferous and Namurian source rocks epeesented by black shale formed
in marine deep-water basins and coal developedeortgénous to marginal-marine delta
plains (Fraser and Gawthorpe, 1990). Basinal shibt¥nating with carbonate beds was
deposited on the slope of carbonate platforms anthé basinal areas. After carbonate
sedimentation ceased (Namurian-Viséan transitiolackb shale was deposited across
carbonate platforms (e.g., Bowland Shale Formatiothe Derbyshire Block). In the basinal
areas, black shale deposition continued from treeafi into the Namurian (Pletsch et al.,
2010).

Petroleum has been found in fractured Viséan stelbonates sourced by Namurian
basinal shale at a number of locations in Derbgs(firaser and Gawthorpe, 1990; DECC,
2013). Highly mature Hardstoft oil (located southGhesterfield, in eastern Derbyshire) is
sourced from Viséan calcareous shale (Craig et2@ll5, and our unpublished biomarker
data). Namurian and lower Westphalian (Langsettgamdstone reservoirs host several oll
and gas fields in the East Midlands, Gainsborougtugh and Yorkshire. In all cases the
source rock is gas-prone Namurian basinal shaleNsstphalian Coal Measures (Kombrink
et al., 2010).

The Namurian Bowland Shale Formation of the Clew&lBasin has been identified as
having substantial unconventional hydrocarbon resopotential (Andrews, 2013; Haarhoff
et al., 2018). TOC of Bowland Shale Formation muolrgaries from 1.3 to 9.1 wt.%; the
dominant kerogen is a gas-prone humic terrigengus lil, and the Carboniferous section is
mature for gas generation in the Cleveland Basug(i¢s et al., 2018) and further south in
the Pennine Basin (Gross et al., 2015).

In addition, in the Great Limestone Member (Namiri€reaney et al. (1980) reported
the presence of bitumen characterised by the priedome of low molecular weight-
alkanes in calcite veins. The Great Limestone Merhe®ngs to the Yoredale Group, which

comprises repeated sequences of limestone, shaldstone and coal. The average thickness
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of these cycles is ~30 m (Chadwick et al., 1998)wbich dark limestone, shale and coal
might serve as a potential source rock for petrale8imilarly, Edale oil (located southwest
of Boulby, in northern Derbyshire) is sourced frahe Edale Shale Group mudrock (=
Bowland Shale Formation) of the lowermost Namuffamaser and Gawthorpe, 1990; Gluyas
and Bowman, 1997). Also, in the Midland Valley afoBand, Viséan Strathclyde Group oil

shale is a rich source rock for petroleum (Undéstibl., 2008).
2.5. Distribution and perception of thermal maturity

Thermal maturity development in the Cleveland Bamnstill poorly understood.
According to Barnard and Cooper (1983) Carbonifer@oal Measures Group sediments
have thermal maturity >2 % on the vitrinite refeate scale (§, whereas Middle and Upper
Jurassic rocks have,Ralues from 0.3 % in southern part of the CleveélBasin to 0.8 % in
the Boulby area, also suggesting greater buridderiatter. Curiously, in the Malton area (Fig.
1) Ry is ~0.3 % in Jurassic rocks, but 20 km farthetat Lockton, R values increase (R
0.5-0.6 %), which might imply the influence of fautlated hydrothermal higher heat flow
(Barnard and Cooper, 1983; Imber et al., 2014).eBasn the illite-smectite assemblage
Kemp et al. (2005) suggested burial depths of 4dad a geothermal gradient of 25-30
°C/km for Lias shale. In addition, the Toarcian VidgiMudstone Formation is in the early oil
window (French et al., 2014), but the CarboniferBosvland Shale-Hodder Mudstone shales
are thermally mature for gas (Haarhoff et al., 20H8gher thermal maturity (§2~0.8-0.9 %)
has also been noted in Lockton 2a KAF limestoneesifacies, revealed by negatis€0O
values (-2 to -14 %o), the presence of saddle dd@nd increased abundance of tricyclic

and tetracyclic terpenoids (Stowakiewicz et al1@0

3. Materialsand methods

3.1. Sample collection

Four crude-oil samples (one Boulby black oil [saenp] and three light-brown Boulby oil
[samples 2-4] samples) dripping out of fracturesaick salt of the Boulby Halite Formation
(EZ3Na, Figs 2,4) from the roof of the Boulby Miaeworkings (2000 West Salt) at a depth
of 1100 m subsurface were collected by hand inéefpmaced glass jars. The glass jars were
sealed with pre-furnaced aluminium foil and stosed °C.
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In addition, comparisons are made in this papepraviously published and reported
herein biomarker data from fourteen samples of Kddfomite lagoonal facies (onshore
equivalent of the Innes Carbonate Member of the N6tBhe Malton 4 well (Stowakiewicz
et al.,, 2016), and typical carbon isotopic values $aturated and aromatic fractions of

Jurassic, Permian and Devonian oil from the SPBNuorth Sea areas.
3.2. 3D seismic data

A 3D seismic survey was undertaken by ICL UK Ltd2011 as part of an ongoing
exploration programme for potash and polyhalitee @ata reveal some interesting structural
features which correlate with both the locationshaf oil samples collected in this study and
with previous instances of hydrocarbons in thiscmearea of the mine. Data for this
survey were acquired by CGG and processed by Flgperpretation was carried out by a

combination of external contractors and on-sité stathe Boulby Mine.
3.3. Density determination of Boulby oil samples

Oil samples were analysed atZDfor API gravity using an Anton-Paar DMA 5000 M
density meter. A minimum of two replications werellected for each sample and the

average value was used.
3.4. Extraction and biomarker analyses

Approximately 120 mg of the crude-oil samples wergjected to a fractionation
procedure. Prior to this, asphaltenes were pretgutby adding 60 mL petroleum ether to (at
maximum) 100 mg of sample. Subsequently, the maxtuais centrifuged at 1600 rpm for 10
min. The supernatant solution containing maltenas wollected and the solvent removed
through evaporation in a nitrogen atmosphere &35Asphaltenes were then removed. The
residual maltenes (up to 100 mg) were separated dhphatic and aromatic fractions on
silica gel (activated at 240 °C for 12 h), usingezmjuence of organic solvents of different

polarity (petroleum ether, toluene).

Aliquots (1 uL) of each fraction were analysed by gas chromafagy (GC) using an
Agilent 7890A instrument, fitted with an on-colunmector and an Agilent DB-5MS fused
silica capillary column (60 m x 0.25 mm; df = 0.if) coated with 95 % dimethylarylene
siloxane and 5 % phenyl phase. Detection was aetlienth flame ionization, with helium as
the carrier gas. The temperature programme codsttéour stages: 80 °C held for 1 min;
80°-120 °C at 20 °C mihy 120°-300 °C at 3 °C mih and 300 °C with the temperature held
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for 35 min. GC-mass spectrometry (MS) analyses wweréormed using an Agilent 5975C
mass selective detector (MSD) using the same colmdrtemperature programme as for GC
analyses. The MS operated with an ion-source tesmtyoer at 230 °C, electron ionization at
70 eV, and a cycle time of 1 sec in the mass rdraya 45 to 600 Da. In the selected ion
mode (SIM) the dwell time of the operated MSD wad at 30 ms for each ion.
Measurements of aliphatic fractions were carriedaua Thermo Scientific TSQ Quantum
using parent-daughter-scans via multiple-reacti@mitoring (MRM), which overcomes
most of the interference caused by co-eluting pelliks instrument was tuned to a resolution
of 0.7 mass units. The collision energy was 15 Yhwargon as the collision gas at a pressure
of 1.0 mTorr. The column used was a 60-m CP-SilBsMS with an i.d. of 0.25 mm and a
film thickness 0.2%um. The temperature programme was 50 °C held fom] 59°-225 °C at

2 °C min*; 225°-300 °C at 20 °C mih and 320 °C with the temperature held for 20 min.

Compounds were identified by comparison of retentimes and mass spectra to the
literature. Peak ratio calculations for GC-FID a@dC-MS were done from integrated
area:area and the biomarker ratios were computaceasarea as well. Individual compounds

were identified and quantified relative to interstndards (ortho-terphenyl).
3.5. Sable carbon isotope analyses

Stable carbon isotope ratios of thgsCsaturated and aromatic hydrocarbon fractions
were determined using a Finnigan Delta Plus MS.5tf@ values are reported relative to the
Vienna Pee Dee Belemnite (VPDB) standard, and tia¢yacal error, determined by using

co-injected standards, is +0.2%o.
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Fig. 4. Light-brown oil dripping out from fractures in fosalt of the Boulby Halite Formation from the rauff
the Boulby Mine at a depth of 1100 m (mine work2@P0 West Salt).

4. Structural geology and organic geochemistry
4.1. Seeping oil density

Oil samples can be classified as light oils withl APavity ranging from 35%to 42.2
(density 0.80984-0.84487 g/énTable 2), respectively, and cannot be linkedatiyeto any
particular oil in the North Sea such as Chalk Grol{CF-, Zechstein-, Carboniferous- or

Devonian-sourced oil (Evans et al., 2003).
4.2. Thermal maturity

Thermal maturity of Boulby oil and Malton 4 KAF splas (Table 1) is evaluated
based on the saturated and aromatic hydrocarbims teted in Table 1. These ratios may be
affected by factors such as lithology and adsonptbOM on mineral surfaces, which may
affect maturation signatures and variations in fadaar distributions (Jiang et al., 1988;
Peters et al., 2005); thus interpretations shoalddsed on a variety of maturity parameters.

The isoprenoid-based ratios i, and Phi-C,g decrease with increasing thermal
stress due to the preferential release-atkanes during maturation, but they can be aftecte

by organofacies variation and biodegradation (Beteral., 2005). These ratios show values
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of 0.27 — 0.54 and 0.53-0.78 for Boulby oil sampled 0.17 — 0.58 and 0.21 — 0.58 for KAF

samples, respectively (Table 3a, Fig. 5).
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Fig. 5. Phytane t;-C,g alkane versus pristane meC,; alkane for Boulby oil (samples 1-4) and Malton AKK

samples (graphical fields after Shanmugam, 1985).

The Ts/Tm ratio calculated from oil sample 1 i410and 0.52 — 0.71 from Malton 4
KAF samples (Table 1). The Ts/Tm ratio can alsatiected by lithology; for example, in
carbonate settings Tm is preferentially generakRstes et al., 2005). The M/H ratio in oil
sample 1 is 0.12 and in KAF samples is 0.03 — QTHBle 1). The M/H ratio decreases with
thermal maturity from ~0.8 in immature bitumen @.X5 in a mature source rock and oil to a
minimum of 0.05 (Mackenzie et al., 1980; Seifertd avioldowan, 1980). In Boulby oil
samples 2-4 the Ts/Tm and M/H ratios could not é&eminined due to high thermal maturity
or OM alteration after deposition.

The isomerisation equilibrium f@f/(ao + fB) and 20S/(20S + 20R).Esteranes lies
between 0.67 — 0.71 and 0.52-0.57, respectivetyy@aches equilibrium in the late and peak
oil window, respectively (Peters et al., 2005). fEHfere, Gy steranes may have a limited
relevance in thermal maturity assessment (Walteid.£2012). In oil sample 1 and KAF
samples, values for tH/(aa + Bp) ratio are 0.56 and 0.45 — 0.58, respectively,reas the
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20S/(20S + 20R) values are 0.52 in oil sample 1Al — 0.57 in KAF samples, indicating
generation in the peak oil window (Table 1). The[l[/AA[l + II] ratio (Mackenzie et al.,
1981) increases with increasing maturity (Beachl.et1989) and is indicative of mature and
late mature stages of oil generation (Peters e2@05). Values for TA[I)/TA]Il + II] are 0.07
in oil sample 1 and 0.25 — 0.33 in KAF samplesrrefg to the peak oil phase (Table 1).
Values for regular sterane and triaromatic stemaiibs in oil samples 2-4 could not be
determined due to the high thermal maturity of GQ%.an alternative, a significant reduction
in the distribution of terpenoids would not onlyswé from high thermal maturity or
diagenetic processes altering OM but also fromdhke of more volatile hydrocarbons due to
evaporation during the dripping out from fractures.

The MDR value is 4.88 in oil sample 1 and 1.786242n KAF samples, respectively,
giving maturities in the range of 0.64 — 0.87 %Rmhereas MPI 1 values in oil sample 1
(0.65) and oil samples 2-4 (1.3-1.4) give matusiiirethe range of 0.8-1.2 %Rc (Table 1) and
in KAF samples (0.68 — 0.77) are 0.8-0.9 %Rc (Table indicating peak oil window
generation for oil sample 1 and KAF samples anel déitwindow generation for oil samples
2-4.

In summary, our data indicate that the Boulbysaiinples were generated in the peak

to late oil window and Malton 4 KAF samples in feak oil window.

4.3. Molecular indicators of depositional environment
4.3.1. Stable carbon isotopes

The carbon isotopic compositions of aliphatic amon@atic hydrocarbons of crude
oils are frequently used for correlation of oilsuéx, 1977; Peters et al., 2005), to decipher
their marine or terrigenous origin (Sofer, 1984.u@Gh et al., 1992), or age (Andrusevich et
al., 1998).5%C values of the saturated fraction of the Bouldysamples vary between -25.2
and -23.9 %o, whereas the aromatic fraction 186 values ranging from -24.4 to -22.6 %o
(Fig. 6, Table 2). The canonical variable (CV, 30f£984), which separates non-waxy
(marine) and waxy (non-marine) oil, varies betwegrand -0.5 (Table 2). All signatures
indicate that the source rock for the Boulby oibvdeposited in a marine setting.

83C values of the saturated and aromatic fractionthefBoulby oil are within the
range of Late Permian (Zechstein) oil in Europe. (t31 to -24%o), although the values
between > -27.5 and -31%. reported by Stowakiewical.e(2018) are of oils likely to have
been generated from a different source rock tha&nzbachstein (unpublished data). The
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Boulby *°C values are different from those of the Late J&ica&31.5 to -27.8%0; Bailey et
al., 1990; Andrusevich et al., 2000; Peters e28l05; and this study) and Devonian (-35 to -
31%o; Bailey et al., 1990; Peters et al., 2005)rothe North Sea (Fig. 6).

22 Oil samples from oil fields
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Fig. 6. Sofer's (1984) plot 08™°C values for the saturated and aromatic fractidnsacious oil samples to

Saturates?

compare with the Boulby oil. Late Jurassic (AlImajkAClaymore, Cormorant, Piper, from Peters et24(Q5
and this study + Utsira High oil + data from Baileyal., 1990), Zechstein (from Stowakiewicz et 2018),
and Devonian (Beatrice, from Peters et al., 200E) are given for comparison. Note th&fC values of

Devonian oil shows and bitumen range from -31.8&%. (see Bailey et al., 1990).

4.3.2. Water column characteristics

A suite of biomarkers was used to assess redox itcmmsl and depositional
environment during formation of the source rockstfee Boulby oil, including the carbon
preference index (CPI), P¥rC,7 versus Pm-C;5, even-over-odd predominance (EOP)nef
alkanes, @;-C3s homohopane distributions, and the homohopane ifldél) expressed as
Cs5/(C31-C3s) and GsS/GisS (Table 3a-c). Triterpenoids in Boulby oil sampked were
absent or significantly reduced due to high thermaturity or OM degradation.

The CPI for all oil and KAF dolomite samples iss#ato 1 and 0.8 — 1, respectively,
and an EOP for the &5 n-alkanes is observed in oil samples (Fig. 7). ArPE@the range
of >n-C,, is typical of biomass deposited in restricted margarbonate/evaporite facies
(Dembicki et al., 1976; Shen et al., 1980; Palatasl., 1984; Ten Haven et al., 1985) and
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can also be attributed to some specific bacteriaigi (Han and Calvin, 1969; Jones, 1969;
Fisher et al., 1972).

The values of PntC;7 versus Pm-Cygin Figure 5 indicate primary accumulation of
marine OM under reducing conditions (Connan ands@as1980; Palacas et al., 1984) for
the source rock of the Boulby oil. It should alse toted that short and long molecular
weight n-alkanes are reduced in some samples due to bedkgwn (from non- to slight to
moderate biodegradation and presence of an unegsotvmplex mixture illustrated in Figure
7), thermal maturity (cracking), water washing vajgorative fractionation (Thompson, 1987,
1983; Holba et al., 1996; Akinlua et al., 2006) nithopane distributions (Fig. 8) are used to
differentiate between oxic and reducing deposifi@mvironments, but the distributions can
be affected by thermal maturity and secondary aiten (Peters and Moldowan, 1991).
Slightly reducing (suboxic) depositional conditioase indicated by the HHI (0.14) and
C35S/GssS ratio (0.8) for Boulby oil. Slightly more anoxidepositional conditions are
deduced for the KAF dolomite samples (Table 3b).
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495 Fig. 7. Total ion current chromatograms of whole oil (Bmuloil samples 1 to 4) and selected Malton 4
496  dolomite (lagoonal facies) samples. Pr — prist&te;- phytane; black dots indicatealkanes. Note slight even-
497 over-odd preference (EOP) for thgygs n-alkanes in Boulby oil samples. The EOP is notrcleaBoulby oil
498 sample 3. Note moderate biodegradation (classibicaafter Wenger et al., 2002) with visible unre=al

499 complex mixture (UCM for Malton 4 samples).

500
501 Boulby oil (particularly in oil sample 1) and KAFbmite samples are characterized

502 by the dominance of £ 17ap-hopane over lower or higher homologues and elevatiative
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abundances of &£ and G4 hopanes (Boulby) andsg£and Gs hopanes (KAF) (Fig. 8, Table
3b), which are believed to indicate suboxic (high)@noxic (high G4or Czs) source-rock
depositional environments (Peters and Moldowan1198he dominance of &p-Cs, over
Cs1 and Gzhomologues and bp-Cs4 over Gz and Gs homologues (Table 3b) indicates a
carbonate lagoonal and evaporitic environment s(Ralacas et al., 1984; Jiamo et al.,
1986; Brassell et al., 1988; Waples and Machih&®81) or a depositional setting for oil
shale (Kara-Gulbay and Korkmaz, 2008). Howeveryakd 14f3-Cs,and Gs hopanes are
also characteristic for Late Permian (Zechsteihjrom south-central Germany derived from
a carbonate-evaporite source rock (Stowakiewicd.ef018).

Biomarkers for anaerobic phototrophic green sulfgiaateria provide strong evidence
of the redox state and water column stratificatraticating photic zone euxinia (PZE) during
source rock deposition (Summons and Powell, 1986nigghe Damsté et al., 1993).
Isorenieratene derivatives §512,3,6-aryl isoprenoids are present in oil sampknd KAF
samples; in two KAF samples even isorenieratane e detected (not shown). The
absence or low abundance of isorenieratene der@smtn the other oil samples is likely a
result of the thermal maturity effect (Requejolet092).
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Fig. 8. Terpane mass chromatograms for Boulby oil samgfesMalton 4 lagoonal facies have elevatgg C
Cs4 and Gs homohopanes indicating carbonate-evaporite sawe-depositional conditions. Some terpanes

are absent in Boulby oil sample 2 due to high ttrmaturity. Distribution of biomarkers in oil safep? is
similar in oil samples 3 and 4.
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4.3.3. Source of organic matter

The source rock for Boulby oil can be explored gssS/G,S, the Go 17af-
norhopane/gy 170p-hopane (Go/H), Cio/Cy3 tricyclic terpane and diasterane/sterane ratios
expressed as J&or Cy 136,170(H) (20S + 20R)/(G7 or 29 5a0,140,170(H) 20S + 20R +
5a,14B,178(H) 20S + 20R).

High G¢/H (>0.8) in oil is commonly reported as derivedrfr anoxic carbonate or a
marl source rock (Palacas et al., 1984; Clark dmtpf1989). In oil sample 1 the,gH ratio
is 0.27 and in KAF dolomite samples this rangemffb5 to 1.2 (mean 0.74) (Table 3a) and,
in tandem with GS/Gs4S, suggests a clay-rich source rock (Peters 2G05).

The G¢/Cys tricyclic terpane ratio is used to distinguishvibe¢n algal/microbial and
terrigenous sources of OM becausg i€ mainly derived from higher plants, whereas i€ a
predominant component of algal and microbial OM(&ameit, 1977). High values of the
ratio indicate oils derived from source rocks caomtey significant amounts of terrigenous
OM, whereas oils originating from algal/microbiaMhave low values. All samples (Boulby
oils and Malton 4 dolomites) have low values (0-08.24; Table 3a) of the gCy3 ratio
suggesting that OM is dominated by marine algavoti@l components.

The diasterane/sterane ratio also helps to digghguil from carbonate versus clastic
source rock (Mello et al., 1988). High diasterateztme ratios are typically interpreted to be
derived from a clay-rich source rock but high ratimve also been observed in extracts from
organic-lean and clay-poor carbonate rock (Palatad., 1984; Moldowan et al., 1991), or
they might result from high thermal maturity or iagdiodegradation (Seifert and Moldowan,
1978, 1979), also in the case of coals (Killopalet1994). The diasterane/sterane ratigy (C
and Gy) in all oil samples of between 0.3 and 0.9 andKAF dolomite samples (0.3 — 4)
suggests a carbonate-evaporite source rock witibandant clay (marl) content (Table 3b).
Importantly, a very characteristic biomarker fot Bbulby oil samples is an unusually
abundant & 24-ethyl-13(H),17a(H)-diacholestane (20S) (Fig. 9). High abundande€.g
diasteranes (20S + 20R) have also been found iMitdle Jurassic Sanjianfang Formation
oil generated from the Xishanyao Formation coatrioédded with shale (Sun et al., 2000).
Therefore, given the high diasterane/sterane nati@oulby oil samples (Table 3b), we
tentatively assign £ 24-ethyl-1B(H),170(H)-diacholestane (20S) to the clay source.

In summary, Boulby oil was generated from a souomk deposited under suboxic-
anoxic marine carbonate-evaporite-clayey conditgnslar to the depositional conditions of
KAF lagoonal facies. The absence of 28,30-bisnaahep(BNH) commonly found in KCF

kerogen and oil in the North Sea (Grantham et18l80) argues against an Upper Jurassic
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source rock for Boulby oil, although this should tveated with caution because BNH
decreases with increasing thermal maturity (Petees., 2005). However, the BNH/AF-Czo
ratio (0.01-0.06) applied as a facies paramete¢ypgal of Zechstein Main Dolomite oil in
other parts of the SPB (Petersen et al., 2016; &tmwicz, 2016; Stowakiewicz et al., 2018),
although BNH was not detected in KAF dolomite sasptither. Gammacerane, commonly
invoked as evidence for a stratified water columnmarine and non-marine depositional
environments and/or specifically for hypersalir(®oldowan et al., 1985; Jiamo et al., 1986;
Sinninghe Damsté et al., 1995), is also absents $hggests that OM may not have been
deposited under high-salinity conditions or gammaoe has not been preserved. The
predominance of Jp-Cszs or G homologues has been found to be characteristic of
Zechstein oil (Stowakiewicz et al., 2018), and doamce of 1dp-Cs, and Gshomologues

occurs in Malton 4 KAF lagoonal carbonate rock®{&tkiewicz et al., 2016, and this study).
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Fig. 9. Sterane mass chromatograms (GC-MS and GC-MS/M3dalby oil and Malton 4 KAF samples. (A)
Boulby oil sample 2 and Malton 4 lagoonal faciesgke are given for comparison; (B) Note that Boudily
samples have elevatedqs4-ethyl-13$(H),170(H)-diacholestane (20S) tentatively assigned td igundance

of clay-rich organic matter.

4.3.4. 3D seismic and fluid migration
Interpretation of the seismic data cube resultethendefinition of three main structural
trends (Figs. 10, 11).

coastline

Fig. 10. Dip map highlighting the regional context and a#dn in dips. The darker areas of strong dip higtl
major structures affecting the top of the Billingh&ormation anhydrite (EZ3A). Sampling locatiommarked

by the yellow circle.
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Fig. 11. Map of the Boulby oil sampling location and itdaten to the seismic survey area (inset). Major
structural features are highlighted (courtesy df 14K). Light blue line is the ‘seismically quietr@a identified

by the 3D survey.

1) East-west trending faults which cut across ttighore area in the centre of the data
cube: There is an indication of separation aloreg¢hfaults between shallower and deeper
sections where plastic flow of the halite, marl gudash intervals within the upper part of
the EZ3 and lower EZ4 cycles accommodates britfplaicement in the underlying sequence
(Fig. 10, Hardy, 2011 unpublished).

2) Northeast-southwest faults (Fig. 12): This gysts composed of deep leveh-
echelon and shallow through-going components. There arapéex interactions with the
east-west faulting and seismic data indicate extenthinning and possible absence of

halite/potash at the junction of the two fault syss.
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Fig. 12. Current cross-section model of the faults affertime various strata within the study area, hidtiiigg
the observed dissipation of fault offset by plasti@ta in the two Zechstein horizons (Z1 + Z2vadl as the
brittle fracturing in anhydrite and dolomite bel@iardy, 2011 unpublished). Model has planar (or péanar)
faulting above and below which effectively termemton entering the plastic, mobile Zechstein roidke
energy of the fault movement dissipates as a pregsont through the rock causing flow in the mehiinits
(i.e., potash, marls) and fracturing in the intiéiedtbrittle units (i.e., dolomite) (courtesy o$rbhel Chemicals
Ltd).

3) North-south faults: These form part of the PE&aklt system (Milsom and Rawson,
1989) and are the most relevant trend for thisystilese N-S faults are known to have been
active during Jurassic times, i.e., they show ewdefor synsedimentary movements. Other
synsedimentary N-S faults in the Cleveland Basohuighe the Whitby Harbour Fault and the
Runswick Bay Fault, relatively close to the Boulldyne. The N-S fault structure interacts
directly with the area from which the oil describdestein and that previously encountered by
mining were collected. Although direct intersentiof the fault plane by drilling is limited,
significant occurrences of thinned/absent stratshweuts, collapse breccias and evidence for
geologically high fluid flux are common throughdbge region surrounding this system over
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many kilometres. These features indicate that thakH-ault system has acted as a fluid
pathway for brine and oil, presumably sourced frdepth and localised within the Boulby

Halite Formation.

Numerous HS and hydrocarbon-rich halite horizons and seeps fanhydrite were
detected whilst crossing this area with explorateeyls. All workings mined across the fault
were subject to ingress of light oil and gas natmaldly encountered elsewhere in the mine,
the majority of which appear to be trapped at dowehe Boulby Potash Member (EZ3K)

level.

Further evidence of the upward migration of fluiesthin the EZ3 halite was
demonstrated when mining revealed a series ofrfika bodies of white coarse-grained
halite within the normal laminar halite strata (BNg; these structures demonstrate cross-
cutting relationships to the EZ3 halite and fragteesf the surrounding rock could be seen
breaking off at the tip of the structure (Fig. 13).

Adjacent seismic sections (Fig. 14) illustrate #ose of faulting and disturbance. Breaks
in a number of stratigraphic markers, in particdte Bilingham Formation anhydrite, can
be picked out and a zone of ductile deformationcWwlgan be seen extending ~100-200 m

away from the fault.
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Fig. 13. Two photographs illustrating a cross-cutting whitdite pillar with associated hydrocarbon residue
trapped towards the tip within the EZ3Na haliteulby Mine. Approximate field of view: 3.5m H x 2.0k

(photograph courtesy of Israel Chemicals Ltd).
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Fig. 14. Clean and interpreted seismic section pair thrahghfault zone adjacent to the sampling locafitp
of the Billingham Formation anhydrite marked appnuately half-way down the section with the faultked
out in yellow. Vertical scale: time in seconds (&&ts courtesy of Israel Chemicals Ltd).
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5. Discussion

From time to time oil is encountered during minoyerations at Boulby Potash Mine on
the coast of Yorkshire. ‘Live’ flowing oil was emgntered in early September 2018 and
sampled immediately. The analytical results ofntoker distributions demonstrate clearly
that Boulby oil was generated locally from threkely source rocks: the Brotherton
Formation (EZ3Ca = Plattendolomit), the KAF (EZ2€d&auptdolomit) and Namurian oil
shale, although, as noted earlier, one other pdgsise OM from microbialites within
anhydrite facies, i.e., Hayton (EZ1A), Fordon (EJ2#nd Billingham (EZ3A) anhydrites.
The Brotherton Formation (26 m thick) consists efywdark grey to black fine-grained
muddy carbonate, mostly dolomite, and locally tlisk contains dolopackstone formed by
the green alg&alcinema. The Brotherton is located some 50 m below theemuorking
where the oil was collected, and it has been erteoea in drilling for polyhalite (Z2 age)
which occurs just below that carbonate. The KAmboaate is present 200 m below the halite
from which the oil drips, and here it is likelybe in a mid-outer ramp facies with a thickness
in the region of approximately 200 m, although &lceual thickness has not been established.
This KAF facies has been examined from two borehate North Yorkshire, 30 km
(Lockton) and 50 km (Malton) south of the Boulbyndi(Fig. 1; Stowakiewicz et al., 2016,
and this study). Here, OM from Lockton KAF loweopé facies has high thermal maturity
(reduced or absent hopanes and steranes), likalyltirey from burial diagenetic or
hydrothermal influence, but OM from Malton KAF lagmal facies is within the peak oil
window for hydrocarbon generation. Distribution mealkanes in the latter is unimodal or
bimodal andh-C,5 andn-Cy3 or n-C,4 are the most abundant unless samples are biodegrad
or thermally altered. Gammacerane and BNH are &ap€gnand Gs homohopanes dominate
over G; and Gz or G4 homologues, respectively, ang;@nd/or Gy regular steranes are
predominant (Figs. 8,9). OM is clay-rich as alsenitfied in Boulby oil samples. Hence,
most likely the lagoonal dolomite identified in tK&F might be the source rock for Boulby
oil. Such marly algal-microbial dolomite sourcecke are well documented in Central
Europe and they form an important source rock fbinadhe German and Polish sections of
the SPB (Stowakiewicz et al., 2018). However, médwefore has mature Zechstein oil been

found so far west.
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Zechstein evaporites, which seal KAF's stratigrapdmjuivalents elsewhere in the SPB,
containing clay-rich chicken-wire anhydrite, haweehb interpreted as important contributors
to a source rock for Zechstein oil (Stowakiewiczakt 2018). Yet, biomarker distributions
and their characteristics obtained from the Hadtég\nhydrite (= Z1A, Werraanhydrit, 590-
1020 ft [179.8-310.9 m]) from Durham Offshore Baskh No. 1 do not match those of
Boulby oil; more data are needed to prove thes&sras a potential source rock for

petroleum in the North Sea (our unpublished data).

The second significant source rock for Boulby acdull be Namurian (Edale Shale
Group) oil shale. It was deposited in a distal getta setting (Fraser et al., 1990) and hence
the OM is of predominantly terrigenous type. Howevhe high abundance of diasteranes
(particularly Ggdiacholestane 20S) in the Boulby oil is more likedybe a reflection of a
marine clay rather than a terrigenous OM sources itoteworthy that the OM in the KAF
dolomite samples is also of marine clay-rich tylngportantly, Namurian source rock in the
Boulby area is in both the peak oil and gas windbraser et al., 1990; Heath-Clarke et al.,
2016; Haarhoff et al., 2018); this is closely sanito the interpreted peak to late oil window
for hydrocarbon generation of the Boulby oil. Howewvthe oil residues filling fractures in
the Devonian Weardale Granite in Co. Durham (100 MW of Boulby), which were
probably derived from a mid-Carboniferous sourakr@aba et al., 2019) have significantly
different distributions oh-alkanes, steranes and hopanes compared to théyBoilland
KAF dolomite samples. In addition, Edale Shale @proil shale has not been identified in
the close vicinity of the Boulby Mine and 41/18-Lanock samples. Finally, the structural
pattern in the Boulby area and presence of sefaullsystems would have created excellent
conduits for fluid migration from the Zechstein KABurce rock to more porous portions of
Brotherton Formation dolomite. As reported by Hoém@991) and presented herein, the
presence of a reverse fault well exposed by mingiwgs (Fig. 13) results in a 35-m vertical
displacement of the Brotherton Formation dolomitd @3 evaporites (anhydrite, halite and
potash beds) are draped over it. Boulby oil sedpmd the Brotherton Formation carbonate
rocks when they were first encountered duringidgliat the mine (Davison, 2009) so that the
oil must be migrating up from lower stratigraphieveéls (KAF) into the Boulby Halite
through some transient faults, although Z3 anhgduitd halite would mostly act as seals.
The latter and, along with the underlying Roxbyration marl, which is ~125 m thick in
the Boulby Mine area, may have prevented the Bowbyfrom reaching the porous

Sherwood Sandstone Group strata above.
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To date, the perceived primary exploration riskha offshore area has been an absence
of an oil source rock. The presence of thermallyumreaZechstein source rock in this western
UK sector of the North Sea is important becausehrafcthe recently offered exploration
acreage in the UK 3band 3% Licencing rounds is just ~50 km east of the provérat

Boulby.

6. Conclusions

The investigated origin of the Boulby oil, seepiingm fractures in the Boulby Halite
Formation rock salt, and based on its stable carbotopes, biomarker distributions and
structural pattern, is that it was likely derivedrh Zechstein 2 Kirkham Abbey Formation
sapropelic dolomite and reservoired by ZechsteiBr@therton Formation dolomite. The
thermal maturity of the analysed oil is in the péakate oil window.

8"3C values and biomarker signatures of saturatedamanhatic hydrocarbon fractions

show that oil samples were not derived from Dewvoroa Late Jurassic source rocks. With
respect to source, a carbonate-evaporite depasitisatting is indicated by the high
abundance of £ and G4 homohopane homologues and EOP ef.4 n-alkanes whereas

clay-rich (but not terrigenous) OM is implied byetabundant & ethyl-diacholestane 20S,

which seem to be characteristic biomarkers of tbell®y oil. The source rock was deposited
under marine and suboxic-anoxic conditions. Simbamarker distributions (apart from

abundant g ethyl-diacholestane 20S) have been detected irtoMad KAF dolomite

samples, suggested to be the likely source rocthBoulby oil.

Collectively, biomarker fingerprints and seismidadfave allowed the identification of
depositional environment, OM source, thermal matuand migration pathways of Boulby

oil in the Cleveland Basin.
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Sample TA()/
o Co7; TSITm M/H Gy 20S Go BB TAQ+N MPI 1 Rc MDR Rm
1 0.41 0.12 0.52 0.56 0.07 0.65 0.79 4.88 0.87
2 nd nd nd nd nd 1.39 1.23 nd nd
3 nd nd nd nd nd 1.3 1.18 nd nd
4 nd nd nd nd nd 1.33 1.2 nd nd
. 0.52-0.71 | 0.03-0.13 | 0.46-0.57 | 0.45-0.58 | 0.25-0.33 | 0.7-0.81 | 0.7-0.81 | 1.78-2.02 | 0.64-0.66
aton 0.6) (0.07) 051 051 029 | (075 | (075 1.9) (0.65)
1155
1156  Table 1. Biomarker and non-biomarker maturity pagtars for Boulby oil (samples 1-4) and Malton
1157 4 KAF samples. nd — not determined. Numerator gigege of values and denominator gives average
1158  values.
1159  C,; Ts/Tm — G; 18u-trisnorneohopane/biftrisnorhopane
1160  M/H — moretane/hopane
1161  C,920S — 20S/(20S + 20R) epimers ofH),14a(H),17a(H)-ethylsterane
1162 CyoBp — Sa(H),14B(H),173(H)/[5a(H),14B(H),17B(H) + 5u(H),14a(H),170(H) 20R ethylsteranes]
1163 TA/TA( + ) = TA(l) = C + Gy, TA(I)=ZC2-Cys (20S + 20R) triaromatic steroids
1164  MPI 1 — methylphenanthrene index = 1.5 x (2-MP MB})/P + 1-MP + 9-MP
1165 Rc — calculated vitrinite reflectance = 0.40 + O6NPI 1
1166  MDR — methyldibenzothiophene ratio = 4-MDBT/1-MDBT
1167 R — calculated vitrinite reflectance = 0.073 x MDR .51
1168
Sample | density [g/cth | 8%Csar | 8% Caro | CV
1 0.84617 -25.2 -24.4 -2.06
2 0.80984 -24.25 -22.61 -0.49
3 0.84487 -24.04 -22.58 -0.96
4 0.81543 -23.92 -23.37 -3.01
1169
1170  Table 2. Density and stable carbon isotopic contjposbdf the saturateds°*Csar, %0) and aromatic
1171 (8"Caro, %o) fractions of Boulby oil (samples 1-4). CV —neaical variable (CV = —2.53%Cgar +
1172 2.28™Caro — 11.65; after Sofer, 1984).
1173
Sample no Pr/Ph F?r-ng Ph:h'Clg 019/023 CZ4Te{C23 ng/H Q;OdiJH C_{LR/H
1 0.71 0.54 0.78 0.07 0.07 0.27 0.09 0.39
2 0.71 0.27 0.53 nd nd nd nd nd




3 0.72 0.28 0.54 nd nd nd nd nd
4 0.71 0.28 0.54 nd nd nd nd nd
Malton4 | 0.3 —-0.46 | 0.17 —0.58| 0.21 — 0.58| 0.03 — 0.24| 0.14 — 0.58| 0.49 — 1.17 nd 0.31 —0.52
(0.38) (0.42) (0.51) (0.08) (0.31) (0.74) (0.4)
1174
1175 Table 3a. Source-related geochemical characteristicBoulby oil (samples 1-4) and Malton 4
1176  dolomite samples. nd — not determined. Numerateesgrange of values and denominator gives
1177  average values.
1178
HHI Caz(s+rICa1str) | Caas+rICassiry | Cs55/CaaS Gdia Ggdia %Gy %Cs
0.14 1.3 1.35 0.8 0.33 0.69 39 25
nd nd nd nd 0.49 nd 13 nd
nd nd nd nd 0.72 nd 12 nd
nd nd nd nd 0.94 nd 9 nd
0.09 -0.3 0.82 —1.43 0.63 — 1.88 0.45-1.79| 0.75 —4.33 | 0.28 — 2.48 31 —-44 24 — 27
(0.21) (1.02) (0.98) (1.23) (1.7) (0.77) (38) (26)
1179
1180 Table 3b. Continued.
1181
%Cyg C,7/Cyg C,4/Cog tricyclics/1- | steranes/lo- DBT/P CPI
hopanes hopanes
36 1.09 0.871 0.03 0.25 0.49 0.98
87 nd nd nd nd 0.36 0.99
88 nd nd nd nd 0.42 1.02
91 nd nd nd nd 0.26 0.99
29 —42 | 0.75—-1.53| 0.6 —0.91 0.14 - 1.19 0.12 — 0.37 0.86 — 1.34| 0.83 —1.01
(36) (1.08) (0.72) (0.67) (0.23) (1.16) (0.95)
1182
1183  Table 3c. Continued.
1184
1185  Pr/Ph — pristane/phytane.
1186 Prin-C,; — pristaneai-heptadecane.
1187  Phh-C,5— phytanet-octadecane.
1188  Cy1Cyr3— C/Cyatricyclic terpanes.
1189  C,fCy— G Cyy tricyclic terpanes.




1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211

1212

Caatef Coz — G4 tetracyclic/Gs tricyclic terpanes.

Coo/H — G norhopane/gg 170-hopane.

Cso dia/H — G, diahopane/gy 17a-hopane.

Cs1 R/H — Gy homohopane 22Rig170-hopane.

HHI — homohopane index:36p(S + R)/ECs1-Casaff S + R).

C3/C31 (S + R) — G, (S + R) 16-hopane/G, (S + R) 1'4-hopane.

C3/C33 (S + R) — G4 (S + R) 16-hopane/Gs (S + R) 1'é-hopane.

Ca5S/GyS - GsS/GS homohopanes.

C,; dia — diasterane/sterane ratio ;7 €33,17a(H) (20S + 20R)/(&; 50,,140,170(H) 20S + 20R +
5a,14B,173(H) 20S + 20R).

C,o dia — diasterane/sterane ratio ;3 €33,17a(H) (20S + 20R)/(&s 50,140, 170(H) 20S + 20R +
5a,14B,173(H) 20S + 20R).

%C,7 (M2217) — 100 x S/(CrS + GgS + GoS).

%Cys (M2 217) — 100 x 6gS/(C7S + GgS + GoS).

%Cye (M2 217) — 100 % &S/(Co7S + GeS + GoS).

C,7/Cyg — G,7/C,g Sterane ratio.

C,g/Cog — Gg/Cyg Sterane ratio.

Tricyclics/1u-hopanes =Cig.pstricylic terpanesKCiq.ostricylic terpanes £C,g.35 1 70-hopanes).
Steranes/lad-hopanes =C,7.09 regular steranesC,q.35 1 7a-hopanes.

DBT/P - dibenzothiophene/phenanthrene.

CPl — carbon preference index based mwalkanes I(C,5-Csz)oddE(Cos-Csr)even + E(Cos
Ca3)0ddE(Cye-Cag)even]/2.



Highlights
* A new and working petroleum source rock on the UK Continental Shelf
* Boulby oil seeping from rock-salt fractures derives from sapropelic dolomite

* A carbonate-evaporite depositional setting is confirmed
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