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ABSTRACT
Gravitational softening length is one of the key parameters to properly set up a cosmological
N-body simulation. In this paper, we perform a large suit of high-resolution N-body simulations
to revise the optimal softening scheme proposed by Power et al. (P03). Our finding is that
P03 optimal scheme works well but is over conservative. Using smaller softening lengths
than that of P03 can achieve higher spatial resolution and numerically convergent results on
both circular velocity and density profiles. However using an over small softening length
overpredicts matter density at the inner most region of dark matter haloes. We empirically
explore a better optimal softening scheme based on P03 form and find that a small modification
works well. This work will be useful for setting up cosmological simulations.
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1 IN T RO D U C T I O N

Cosmological N-body simulations are essential to study the for-
mation of large-scale structures in Universe. In the past decades,
with the rapid developments both in the computational power of
supercomputers and the numerical techniques, cosmological N-
body simulations have played an important role in the studies
of hierarchical formation of cold dark matter haloes and the
establishment of the standard cosmological model (see Frenk &
White 2012, for a review).

For a cosmological simulation code, there are usually quite
a few parameters to be chosen in order to properly set up it,
gravitational softening length is one of the key parameters. In
cosmological N-body simulations, in order to avoid close encoun-
ters between particles, a small quantity, ε, is introduced in the
computation of Newtonian gravity, i.e. the Plummer form, F12 =
Gm1m2r12/(r2

12 + ε2)3/2. Here, G is the gravitational constant, m1

and m2 are the masses of two particles, r12 is the position vector from
particle 1 to particle 2, and ε is termed as gravitational softening
length. In this sense, instead of being a point mass, a particle is
treated as a smooth ‘ball’ with a volume measured by the softening
length. It is not a trivial task to choose an optimal softening length
for a numerical simulation in terms of computational cost and force
accuracy. In the past decades, many studies have been performed
to explore how to choose softening lengths in N-body simulations
(see e.g. Thomas & Couchman 1992; Merritt 1996; Romeo 1997,
1998; Moore et al. 1998; Splinter et al. 1998; Athanassoula et al.
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2000; Knebe et al. 2000; Dehnen 2001; Fukushige & Makino 2001;
Power et al. 2003; Zhan 2006; Price & Monaghan 2007; Iannuzzi &
Dolag 2011; van den Bosch & Ogiya 2018). For a uniform mass
resolution cosmological simulation, the softening length is usually
set to be a fraction of the mean interparticle separation. However,
there is no consensus on the choice of the fraction. In literature, the
fraction varies from 1/120 (e.g. Klypin, Trujillo-Gomez & Primack
2011) to 1/10 (e.g. Kim et al. 2009).

Currently, the most widely adopted setting of the optimal soft-
ening length in zoom-in N-body simulations is suggested by Power
et al. (2003, hereafter P03). P03 proposed an optimal choice of
softening length based on the argument that the maximum stochastic
acceleration caused by close approaching to a single particle, amax =
Gm/ε2, should be less than the minimum mean-field acceleration in
a virial halo, amin ≈ GM200/r

2
200. Here, M200 and r200 are the virial

mass and virial radius of a simulated halo with its mean density
inside r200 being 200 times the critical density. This argument
sets a lower limit for the softening length which is needed to
avoid strong discreteness effects, ε > εacc ≈ r200/

√
N200, where

N200 is the number of particles within the virial radius. P03 further
empirically proposed that an optimal softening length is

εopt,P03 ≈ 4εacc = 4r200√
N200

, (1)

which tends to describe their numerical results well. With this
optimal softening, the circular velocity profile of a halo can converge
at the radius rconv at a level of better than 10 per cent (Navarro et al.
2004). Here, the convergence radius is estimated by requiring the
collisional relaxation time at the convergence radius, trelax(rconv),

C© 2019 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/487/1/1227/5491314 by U
niversity of D

urham
 user on 30 July 2019

mailto:tczhang@nao.cas.cn


1228 Zhang et al.

equals to the circular orbital time at the virial radius, tcirc(r200), i.e.

κ(rconv) = trelax(rconv)

tcirc(r200)
=

√
200

8

N (rconv)

lnN (rconv)

[
ρcrit

ρ̄(rconv)

] 1
2

= 1, (2)

where ρcrit is the critical density, and N(rconv) and ρ̄(rconv) are the
enclosed number of particles and mean enclosed density within
rconv, respectively. The proposal of P03 optimal softening scheme
has been widely adopted in the settings of many zoom-in simu-
lations such as the Phoenix simulations (Gao et al. 2012), Auriga
simulations (Grand et al. 2017), AGORA simulations (Kim et al.
2014), FABLE simulations (Henden et al. 2018), etc.

Since the proposal of P03 softening scheme, cosmological
simulation codes have evolved gradually in recent years, both in
force calculation and time integration accuracy. It is interesting to
revisit the problem with the most updated codes and with better
statistics to see whether P03 optimal softening scheme still holds,
and if not, how to improve it.

In this paper, we will revise P03 optimal softening scheme with
a set of high-resolution simulations. The paper is structured as
follows. In Section 2, we describe the details of our simulations and
halo samples. In Section 3, we use a series of high-resolution numer-
ical simulations to test the optimal softening scheme advocated in
P03 (Section 3.1), and propose an improved optimal softening which
can achieve higher spatial resolution (Section 3.2), and discuss the
implications of our updated optimal softening length (Section 3.3).
Our conclusions are presented in Section 4.

2 N U M E R I C A L S I M U L AT I O N S

We use one of the most widely used cosmological simulation codes,
GADGET-3, which is an improved version of GADGET-2 (Springel
2005), to perform all our simulations in this study. The cosmological
parameters are �m = 0.3, �� = 0.7, σ8 = 0.9, h = 0.65, and ns =
1.0. The initial conditions at z = 100 are generated with the N-GENIC

code with the linear matter power spectrum given in Eisenstein &
Hu (1998). Dark matter haloes in the simulations are identified with
the standard friends-of-friends algorithm with a linking length of
0.2 times the mean particle separation (Davis et al. 1985).

In our simulations, the default integration accuracy parameter
ErrTolIntAcc is set to 0.025. For the TREEPM computation, the force
accuracy parameter ErrTolForceAcc is set to 0.0025, and the FFT
mesh dimension, PMGRID, is set to be equal to the number of
particles in each dimension, Np. Varying these three parameters
hardly affect our results present below; see Appendix A for details.

Simulation set I. To test the optimal softening scheme in P03,
equation (1), we perform a set of simulations with varying softening
lengths fixed in comoving coordinates. Each simulation contains
N3

p = 2563 dark matter particles in a periodic box with a length
Lbox = 10 Mpc h−1 on a side.

We first run a simulation with a softening length following the
usual choice, 1/50 of the mean interparticle separation, i.e. εuse =
XLbox/Np with X = 1/50. The value of εuse is 0.78 kpc h−1 here.
Then, we select the most massive halo and calculate its optimal
softening according to equation (1) by using its r200 ≈ 330 kpc h−1

and N200 ≈ 1.6 × 106. The P03 optimal softening length for this halo
is εopt, P03 = 1.0 kpc h−1, roughly X = 1/40 of the mean interparticle
separation. Then we re-run the simulation with εuse = εopt, P03, and a
series of softening lengths greater or less than εopt, P03, i.e. X = 1/10,
1/25, 1/80, 1/100, 1/300, and 1/500. As a fiducial one to compare
with, we also perform a simulation with eight times better mass
resolution with N3

p = 5123 and two times better spatial resolution,

Table 1. Details of simulation set II. Here, mp, Nhalo, and N̄200 denote
the particle mass, number of selected haloes, and the average number of
particles inside the selected haloes, respectively.

Name α mp Nhalo N̄200 ε

(M� h−1) ( kpc h−1)

Fiducial 4 7.31 × 105 164 1285515 0.54
HighRes 1 5.84 × 106 167 160860 0.38

2 167 159430 0.76
3 166 162509 1.14
4 163 162216 1.52

MidRes 0.5 4.68 × 107 165 19765 0.54
1 165 20059 1.03
2 167 19708 2.06
3 168 19887 3.09
4 168 19580 4.124

LowRes 0.5 3.74 × 108 168 2463 1.52
1 170 2440 3.03
2 167 2456 6.06
3 164 2434 9.09
4 165 2418 12.12

and use the same random phases as the lower resolution runs to set
up the initial conditions. We will use this set of simulations to test
whether P03 optimal softening scheme works the best to resolve the
inner structures of the most massive halo in Section 3.1.

Simulation set II. As we shall see in the next section that P03
softening scheme is indeed not most optimal. In order to improve
it, we generalize the form of P03 optimal softening scheme by
introducing a free parameter, α (see Section 3.2 for details). We
explore whether or not we can improve P03 softening scheme in a
simple way by varying α in our following numerical simulations.

In order to have better statistics, we perform a set of cosmological
simulations with a box size of Lbox = 33 Mpc h−1, and focus on the
galactic haloes with masses M200 = [5 × 1011, 2 × 1012] M� h−1

with the corresponding virial radii r200 ≈ 150 kpc h−1. There are
about 160 haloes in the halo sample in each simulation, and these
haloes are stacked to obtain the stacked density and circular velocity
profiles. We have performed the simulations with three different
resolutions, at each resolution, we run these simulations with five
different softening setups, namely α = 0.5, 1, 2, 3, and 4. Details
of simulations are summarized in Table 1.

3 R ESULTS

3.1 Testing P03 optimal softening scheme

To test the optimal softening scheme proposed by P03, in Fig. 1, we
plot the circular velocity profile, Vc(r) = √

GM(r)/r , and density
profile, ρ(r), of the most massive halo in each Set I simulation, and
compare them with those of the fiducial run. Results for different
simulations are distinguished with different colours as labelled in
the figure.

We can clearly see that both circular velocity and density profiles
in the simulations with X = 1/80 and 1/100 converge to smaller
radii when compared with the run using softening length proposed
by P03. This suggests that P03 softening scheme may be too
conservative (see Ludlow, Schaye & Bower 2018, for a similar
conclusion). However, we shall note that using an over small
softening (e.g. the simulation with X = 1/500) overpredicts ρ(r)
with respect to the fiducial one as large as ∼20 per cent at small
radii, this is possibly due to two-body effects introduced by over
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The optimal softening for N-body simulation 1229

Figure 1. Circular velocity profiles (left-hand panel) and density profiles (right-hand panel) for the largest halo in the simulation set I at z = 0. For a direct
comparison, the radius has been scaled to r200 for each halo. In each panel, the upper part presents profiles, and the bottom shows their residuals from the
fiducial simulation (e.g. δln Vc = ln Vc − ln Vc, Fiducial). The solid vertical lines in the upper parts mark the softening lengths for different simulations, whereas
the dotted vertical lines in the bottom parts show P03 convergence radii, rconv, computed from equation (2).

small softening length, or spurious low-mass structures which form
at early times, retain their high central densities and later sink into
the halo centre to artificially boost the central density (see Power
et al. 2016, for related discussions). Note that P03 convergence radii
(the dotted vertical lines in Fig. 1) are almost independent of the
chosen softening lengths. Also we note that, while we only show the
results for the most massive halo here, similar results can be found
for other haloes with comparable halo mass in the simulations.

3.2 An improved proposal of optimal softening and
convergence radius

As we see in the above subsection that P03 softening scheme is
over conservative, For simplicity, in this subsection we explore to
improve it based on the original P03 form. To this end, we generalize
the form of P03 optimal softening form into

εopt = α
r200√
N200

, (3)

where α is a free parameter to be determined here, and α =
4 corresponds to the original P03 optimal softening scheme. To
empirically explore the optimal α, we have performed a set of
simulations with softening lengths given by α = 0.5, 1, 2, 3, and 4,
which are described in detail in Section 2.

To reduce noises, we stack the circular velocity and density
profiles of ∼160 galactic haloes at z = 0 which have masses in
the range from 5 × 1011 to 2 × 1012 M� h−1. In Fig. 2, we plot
the stacked profiles of the simulations with different resolutions and
compare them with the fiducial run.

Let us focus on results of MidRes simulations (middle column
of Fig. 2) first. Clearly Vc(r) of the simulation using P03 softening
scheme (solid red curve) converge to the fiducial one at convergence
radius at 10 per cent level, in agreement with studies of Navarro

et al. (2004) and others. However, the simulations with smaller
softening length converge to even smaller radii at a similar error
level. Results for density profiles are displayed in the lower panels
of the same figure. Again, the P03 softening scheme does a pretty
good job in matching the density profile at the convergence radius
at which density profile of the halo in the lower resolution run
only deviates from the fiducial one about few per cent. However,
similar to the result for the circular velocity profiles, using smaller
softening length, the density profile can converge to smaller radii,
for α = 2 and 3 the spatial resolution for the stacked density profile
can be improved by a factor of 1.8 and 1.3, respectively. Note,
as we discussed in the last subsection that using an over small
softening overpredicts dark matter density at very inner region, one
can readily find bumps in the residual plot for the run using α =
0.5, 1 at ∼0.04r200. Therefore, according to the above convergence
tests, these results suggest the simulations with α = 2 works
equivalently well as P03 in terms of numerical convergence but at
the same time can achieve about two times better spatial resolution.
Similar conclusions can also be drawn from LowRes and HighRes
simulations.

A remaining question is that if we choose α = 2 in equation (3)
as a better optimal softening scheme, then is it possible to give
an estimation of its convergence radius? In Fig. 2, we plot P03
convergence radii with vertical dotted lines in the residual panels.
Similar to previous studies (e.g. Navarro et al. 2004), we find that in
the MidRes and HighRes cases, the circular velocity profiles with
P03 softening (red lines) converge to the fiducial one roughly at a
level of 10 per cent at r = rconv, P03. But for the LowRes case, the
convergence level at r = rconv, P03 is slightly worse, i.e. ∼15 per cent.
Note that the haloes in LowRes simulations only have ∼2000
particles, and previous studies (e.g. Navarro et al. 2004) have not
tested P03 convergence radius for the haloes with such low number
particles. Our LowRes results suggest that in haloes with thousands
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1230 Zhang et al.

Figure 2. Stacked circular velocity and density profiles for galactic haloes at z = 0 in the simulation set II. Results from the fiducial simulation, the simulations
with α = 0.5, 1, 2, 3, and 4 are plotted with grey, cyan, black, blue, green, and red curves, respectively. From left- to right-hand columns, results from LowRes,
MidRes, and HighRes simulations are shown. The first two rows show circular velocity profiles and their residuals to the fiducial one, respectively, while the
third and fourth rows show density profiles and their residuals with respect to the fiducial one respectively. The solid vertical lines in the first and third rows
mark the softening lengths of simulations. The dotted (solid blue) vertical lines in the second and fourth rows mark the P03 convergence radii (our improved
convergence radius estimation, i.e. equation 4), and the horizontal pink in the residual plots lines show 10 per cent for easy reference.

of particles, the circular velocity profile at the P03 convergence
radius converges at a level worse than 10 per cent.

We also plot the half of P03 convergence radius with blue vertical
solid lines in the residual panels in Fig. 2. They offer a rough
estimation of the convergence radius of the circular velocity with
α = 2 at a level of ∼10 per cent. This means that by reducing the
softening length into half of P03 optimal softening scheme, the
spatial resolution of a simulation can be two times better. In such
a way, we efficiently achieve a spatial resolution which otherwise
needs a simulation with eight times more particles and several times
more computational cost.

We have also looked at a set of simulations targeting cluster
haloes, and found similar conclusions for the optimal softening
length and convergence radius presented above. Thus, we conclude
that an improved proposal for the optimal softening is to set α = 2
in equation (3), and the corresponding convergence radius can be
estimated as

rconv,opt = rconv,P03/2, (4)

where rconv, P03 can be computed from equation (2).

3.3 Discussion

An important application of cosmological simulations is to study the
halo mass–concentration relation. In order to estimate concentration
parameter (c) reliably, simulations need to have enough spatial
resolution to well resolve the characteristic radius rs of a halo of
given mass (Neto et al. 2007). Based upon our results presented
in the last subsection, we can make a rough estimation of the
required mass and spatial resolution in order to reliably estimate
the concentration parameter of a halo as a function of halo mass.
This will be very useful to set up simulation parameters in practice.

To answer this question, we notice that the enclosed number of
particles and mean density in equation (2) can be expressed as

N (rconv,opt) = M(rconv,opt)

mp
, (5)

and

ρ̄(rconv,opt) = 3M(rconv,opt)

4πr3
conv,opt

, (6)
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The optimal softening for N-body simulation 1231

Figure 3. Required mass resolution (left-hand axis) and softening length
(right-hand axis) as a function of halo mass assuming rconv, opt = 0.5rs.

respectively. Here, mp is the particle mass, and the enclosed mass
within rconv, opt is

M(rconv,opt) = M200
f (cx)

f (c)
, (7)

where x = rconv, opt/r200, and the function f(y) has the form of

f (y) = ln(1 + y) − y

1 + y
. (8)

Considering the relation between M200 and r200,

M200 = 800π

3
ρcritr

3
200, (9)

and putting equations (5)–(6) into equation (4), we can find that
rconv, opt is a function of M200, c, and mp. Once c–M200 relation is
known (e.g. Dutton & Macciò 2014), rconv, opt is only a function of
M200 and mp. Therefore, for given rconv, opt and M200, it is easy to
derive mp and then use equations (3) and (9) to compute εopt.

In Fig. 3, we plot the required mass resolution mp (left-hand axis)
and optimal softening length as a function of M200. The optimal
softening length derived here assumes spatial resolution 0.5rs of
any given mass halo. From the plot, one can easily identify what
mass resolution and softening are needed to reliably estimate the
concentration parameter of a halo of given mass when using the
optimal softening scheme proposed in this study. For example, if
we aim to resolve a Milky Way-sized halo (M200 ∼ 1012 M� h−1),
the most economical simulation setup is to use a mass resolution
mp ≈ 5 × 108 M� h−1 and a softening length 5 kpc h−1, these are
indeed very similar to the corresponding parameters adopted in the
Millennium simulation (Springel et al. 2005).

4 C O N C L U S I O N S

We have performed a series of high-resolution cosmological N-
body simulations to revisit the optimal softening scheme proposed
by P03. Our results can be summarized as follows:

(i) We find that P03 optimal softening scheme works well
but is over conservative. Using smaller softening length than the
value suggested by P03 can achieve higher spatial resolution and
numerically converged results both on circular velocity and density

profiles. However using an over small softening causes artificially
high density in the inner most of dark matter haloes.

(ii) We empirically generalize the P03 softening scheme by
adding a free parameter α (equation 3). We use a set of simulations
with varying resolutions to show that α = 2 is an improved choice
than the original P03 scheme. We further find that the convergence
radius for this updated optimal softening coincides with half of the
value in P03. Therefore, for a given mass resolution, simulations
with the improved softening scheme can achieve two times better
spatial resolution than using P03 one, and thus reduce the compu-
tational cost by a large factor for the spatial resolution.

(iii) As the halo mass–concentration relation is an important
property to be determined in cosmological simulations, based
up our results, we make estimations of the required mass and
spatial resolution in order to reliably measure halo concentration
parameters as a function of halo mass.

Our results will be helpful for the set-up of future numerical
simulations aiming to study structures of dark matter haloes or
galaxies.
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Knebe A., Kravtsov A. V., Gottlöber S., Klypin A. A., 2000, MNRAS, 317,

630
Ludlow A. D., Schaye J., Bower R., 2018, preprint(arXiv:1812.05777)
Merritt D., 1996, AJ, 111, 2462
Moore B., Governato F., Quinn T., Stadel J., Lake G., 1998, ApJ, 499, L5
Navarro J. F. et al., 2004, MNRAS, 349, 1039
Neto A. F. et al., 2007, MNRAS, 381, 1450
Power C., Navarro J. F., Jenkins A., Frenk C. S., White S. D. M., Springel

V., Stadel J., Quinn T., 2003, MNRAS, 338, 14( P03)
Power C., Robotham A. S. G., Obreschkow D., Hobbs A., Lewis G. F., 2016,

MNRAS, 462, 474
Price D. J., Monaghan J. J., 2007, MNRAS, 374, 1347
Romeo A. B., 1997, A&A, 324, 523

MNRAS 487, 1227–1232 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/487/1/1227/5491314 by U
niversity of D

urham
 user on 30 July 2019

http://dx.doi.org/10.1046/j.1365-8711.2000.03316.x
http://dx.doi.org/10.1086/163168
http://dx.doi.org/10.1046/j.1365-8711.2001.04237.x
http://dx.doi.org/10.1093/mnras/stu742
http://dx.doi.org/10.1086/305424
http://dx.doi.org/10.1002/andp.201200212
http://dx.doi.org/10.1086/321666
http://dx.doi.org/10.1111/j.1365-2966.2012.21564.x
http://dx.doi.org/10.1093/mnras/stx071
http://dx.doi.org/10.1093/mnras/sty1780
http://dx.doi.org/10.1111/j.1365-2966.2011.19446.x
http://dx.doi.org/10.1088/0004-637X/701/2/1547
http://dx.doi.org/10.1088/0067-0049/210/1/14
http://dx.doi.org/10.1088/0004-637X/740/2/102
http://dx.doi.org/10.1046/j.1365-8711.2000.03673.x
http://arxiv.org/abs/1812.05777
http://dx.doi.org/10.1086/117980
http://dx.doi.org/10.1086/311333
http://dx.doi.org/10.1111/j.1365-2966.2004.07586.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12381.x
http://dx.doi.org/10.1046/j.1365-8711.2003.05925.x
http://dx.doi.org/10.1093/mnras/stw1644
http://dx.doi.org/10.1111/j.1365-2966.2006.11241.x


1232 Zhang et al.

Romeo A. B., 1998, A&A, 335, 922
Splinter R. J., Melott A. L., Shandarin S. F., Suto Y., 1998, ApJ, 497, 38
Springel V. et al., 2005, Nature, 435, 629
Springel V., 2005, MNRAS, 364, 1105
Thomas P. A., Couchman H. M. P., 1992, MNRAS, 257, 11
van den Bosch F. C., Ogiya G., 2018, MNRAS, 475, 4066
Zhan H., 2006, ApJ, 639, 617

A P P E N D I X A : IN T E G R AT I O N AC C U R AC Y,
F O R C E AC C U R AC Y A N D P M G R I D

In this appendix, we study the effects of varying three numerical
parameters, integration accuracy, force accuracy and FFT mesh
dimension on halo density profiles.

In GADGET-3, the adaptive time-step for a particle is controlled
by

�t =
√

2ηε

|a| , (A1)

where η is the integration accuracy parameter ErrTolIntAcc, and a is
the particle’s acceleration. The default value of η for our simulations
present in the main text is 0.025.

We adopte the TREEPM scheme in GADGET-3 to compute gravita-
tional force. For the short-range tree force computation, the relative

cell-opening criterion is

Ml2 > α |aold| r4, (A2)
where α is force accuracy parameter ErrTolForceAcc, M is the
mass inside a node, l is cell side-length, r is the distance, and aold

is the total acceleration of the particle. The default value for α is
0.0025. For the long-range PM force, the mesh dimension of the
FFT method is given by the parameter PMGRID, and its default
value is set to Np.

To examine how these three numerical parameters affect our
results, we re-run the X = 1/100 run the Simulation set I six times
more by changing η, α, and PMGRID twice with values 0.5 and
2 times their default, respectively. Other parameters and settings
of these simulations remain unchanged. The softening length for
these testing simulations is chosen to be about the proposed optimal
softening lengths of the most massive haloes.

To reduce noise, we have stacked the 12 most massive haloes in
each simulation, and plot their stacked density profile in Fig. A1. As
we can see from the bottom residual panels, at radii r > rconv, opt, for
different η, α, and PMGRID, the changes of halo density profiles
are minor (i.e. mostly � 5 per cent). Especially, when comparing
the curves from the simulations with the default values to those
with half of the default values, the differences are � 2 per cent.
Therefore, we expect that our results present in main text are not
sensitive to the selection of these three parameters.

Figure A1. Effects of varying integration accuracy (left), force accuracy (middle), and FFT mesh dimension (right) on halo density profiles. The grey curves
represent the fiducial results (i.e. the same as in Fig. 1), while the black, blue, and red lines mark the profiles from the simulations with default values, 2 and
0.5 times the default values, respectively. The upper residual panels show the deviations relative to the fiducial curves, while the lower residual panels give the
differences with respect to the default results. The vertical dotted lines mark our proposed convergence radii, and the horizontal lines present the 10 per cent
convergence region.
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