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Abstract. A simple game (N, v) is given by a set N of n players and
a partition of 2N into a set L of losing coalitions L with value v(L) = 0
that is closed under taking subsets and a set W of winning coalitions W
with value v(W ) = 1. We let α = minp>0,p6=0 maxW∈W,L∈L

p(L)
p(W )

. It is
known that the subclass of simple games with α < 1 coincides with the
class of weighted voting games. Hence, α can be seen as a measure of the
distance between a simple game and the class of weighted voting games.
We prove that α 6 1

4
n holds for every simple game (N, v), confirming the

conjecture of Freixas and Kurz (IJGT, 2014). For complete simple games,
Freixas and Kurz conjectured that α = O(

√
n). We also prove this con-

jecture, up to an lnn factor. Moreover, we prove that for graphic simple
games, that is, simple games in which every minimal winning coalition
has size 2, the problem of computing α is NP-hard, but polynomial-time
solvable if the underlying graph is bipartite. Finally, we show that for ev-
ery graphic simple game, deciding if α < α0 is polynomial-time solvable
for every fixed α0 > 0.

1 Introduction

Cooperative game theory provides a mathematical framework for capturing sit-
uations where subsets of agents may form a coalition in order to obtain some
collective profit or share some collective cost. Formally, a cooperative game (with
transferable utilities) consists of a pair (N, v), where N is a set of n agents called
players and v : 2N → R+ is a value function that satisfies v(∅) = 0. In our
context, the value v(S) of a coalition S ⊆ N represents the profit for S if all
players in S choose to collaborate with (only) each other. The central problem
in cooperative game theory is how to allocate the total profit v(N) of the grand
coalition N to the individual players i ∈ N in a “fair” way. To this end various
solution concepts such as the core, the Shapley value or the nucleolus have been

? A partial answer to the conjecture of Freixas and Kurz appeared, together with the
results in Sections 3 and 4 of this paper, in an extended abstract published in the
proceedings of SAGT 2018 (Hof et al. 2018).



designed; see the book of Peters (2008) for an overview. For example, core solu-
tions try to allocate the total profit in such a way that every coalition S ⊆ N
gets at least v(S). This is of course not always possible, that is, the core may be
empty. This leads to related questions such as “How much do we need to spend in
total if we want to give at least v(S) to each coalition S ⊆ N?”, or equivalently,
“What is the cost of stability for a cooperative game?” (Bachrach et al. 2018;
Nguyen and Zick 2018). In the specific case of simple games (see below) where
v takes only values 0 and 1, classifying coalitions into “losing” and “winning”
coalitions, one may also ask: “How much do we have to give in the worst case to
a losing coalition if we want to give at least v(S) = 1 to each winning coalition?”

As mentioned above, we study simple games. Simple games form a classical
class of games, which are well studied; see also the book of Taylor and Zwicker
(1999). The notion of being simple means that every coalition either has some
equal amount of power or no power at all. Formally, a cooperative game (N, v)
is simple if v is a monotone 0–1 function with v(∅) = 0 and v(N) = 1, so
v(S) ∈ {0, 1} for all S ⊆ N and v(S) 6 v(T ) whenever S ⊆ T . In other words, if
(N, v) is simple, then there is a set W ⊆ 2N of winning coalitions W that have
value v(W ) = 1 and a set L ⊆ 2Nof losing coalitions L that have value v(L) = 0.
Note that N ∈ W, ∅ ∈ L and W ∪ L = 2N . The monotonicity of v implies that
subsets of losing coalitions are losing and supersets of winning coalitions are
winning. A winning coalitionW is minimal if every proper subset ofW is losing,
and a losing coalition L is maximal if every proper superset of L is winning.

A simple game (N, v) is a weighted voting game if there exists a payoff vector
p ∈ RN+ and some integer q, called the quota for (N, v), such that a coalition S
is winning if p(S) > q and losing if p(S) < q; here, we denote the entries
of a vector x ∈ RN by xi, and for S ⊆ N we use the shorthand notation
x(S) =

∑
i∈S xi. Weighted voting games are also known as weighted majority

games (von Neumann and Morgenstern 1944; Shapley 1962) and form one of the
most popular classes of simple games. Throughout our paper we assume without
loss of generality that weighted voting games are normalized, that is, q = 1.

It is easy to construct simple games that are not weighted voting games. We
give an example below, but in fact there are many important simple games that
are not weighted voting games. Gvozdeva et al. (2013) introduced a parameter α,
called the critical threshold value, to measure the “distance” of a simple game to
the class of weighted voting games:

α = α(N, v) = min
p>0,p6=0

max
W∈W
L∈L

p(L)

p(W )
. (1)

Here, for an integer r, we let r denote the vector whose entries are all equal to r,
and for two vectors p, q ∈ RN we write p > q if pi > qi for every i ∈ {1, . . . , n}.

A simple game (N, v) is a weighted voting game if and only if α < 1. This
follows from observing that each optimal solution p of (1) can be scaled to satisfy
p(W ) > 1 for all winning coalitions W . The scaling enables us to reformulate
the critical threshold value as follows:

α = α(N, v) = min
p∈Q(W)

max
L∈L

p(L) ,
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where
Q(W) = {p ∈ RN | p(W ) > 1 for every W ∈ W, p > 0} .

The following concrete example of a simple game (N, v) that is not a weighted
voting game and that has in fact a large value of α was given by Freixas and
Kurz (2014):

Example 1 Let N = {1, . . . , n} for some even integer n > 4, and let the mini-
mal winning coalitions be the pairs {1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}. Then

Q(W) = {p ∈ RN | p1 + p2 > 1, p2 + p3 > 1, . . . , pn + p1 > 1, p > 0} .

This means that p(N) > 1
2n for every p ∈ Q(W). Then, for every p ∈ Q(W)

and for at least one coalition L of the two losing coalitions {2, 4, 6, . . . , n} or
{1, 3, 5, . . . , n − 1}, we have p(L) > 1

4n, showing that α > 1
4n. On the other

hand, it is easily seen that p = 1
2 satisfies p(W ) > 1 for all winning coalitions

and p(L) 6 1
4n for all losing coalitions, showing that α 6 1

4n. Thus α = 1
4n.

This example led Freixas and Kurz (2014) to the following conjecture:

Conjecture 1 (Freixas and Kurz 2014) For every simple game (N, v), it
holds that α 6 1

4n.

1.1 Our Results

Section 2 contains our main result. In this section we reformulate and strengthen
Conjecture 1 and then we prove the obtained strengthening.

In Section 3 we consider a subclass of simple games based on a natural de-
sirability order, as introduced by Isbell (1956). A simple game (N, v) is complete
if the players of N can be ordered by a complete, transitive ordering �, say,
1 � 2 � · · · � n, indicating that higher ranked players have more "power" than
lower ranked players. More precisely, i � j means that v(S ∪ i) > v(S ∪ j) for
any coalition S ⊆ N\{i, j}. The class of complete simple games properly con-
tains all weighted voting games (Freixas and Puente 2008). For complete simple
games, we show an asymptotical upper bound on α, namely α = O(

√
n lnn).

This bound matches, up to a lnn factor, the lower bound of Ω(
√
n) that Freixas

and Kurz (2014) conjectured to be tight. Intuitively, complete simple games are
much closer to weighted voting games than arbitrary simple games. So, from
this perspective, our result seems to support the hypothesis that α is indeed a
sensible measure for the distance to weighted voting games.

In Section 4 we discuss some algorithmic and complexity issues. We focus
on instances where all minimal winning coalitions have size 2. We say that such
simple games are graphic, as they can be conveniently described by a graph
G = (N,E) with vertex set N and edge set E = {ij | {i, j} is winning} (here,
we denote an edge with endpoints i and j as ij). For graphic simple games we
show that computing α is NP-hard in general, but polynomial-time solvable if
the underlying graph G = (N,E) is bipartite, or if α is known to be small (less
than a fixed number α0).
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1.2 Related Work

Due to their practical applications in voting systems, computer operating sys-
tems and resource allocation (see, for example, Bilbao et al. (2002); Chalkiadakis
et al. (2011)), both structural and computational aspects of weighted voting
games have been thoroughly investigated (see, for example, Axenovich and Roy
(2010); Carreras and Freixas (2005); Elkind et al. (2008, 2009); Fishburn and
Brams (1996); Freixas et al. (2011); Gvozdeva et al. (2013); Pashkovich (2018)).

Taylor and Zwicker (1993) measured the distance of a simple game to the
class of weighted voting games by its dimension instead of by α. To explain this
alternative distance measure, the intersection of two simple games (N, v1) and
(N, v2) with sets of winning coalitions W1 and W2, respectively, is the simple
game (N, v) with set of winning coalitions W = W1 ∩ W2. The dimension of
a simple game (N, v) is the smallest number of weighted voting games whose
intersection equals (N, v).5 However, computing the dimension of a simple game
given as the intersection of a number of weighted voting games is NP-hard, as
shown by Deineko and Woeginger (2006). Moreover, the largest dimension of a
simple game with n players is 2n−o(n), as shown by Kurz et al. (2016), and, α
may be arbitrarily large for simple games with dimension larger than 1. Hence,
there is no direct relation between the two distance measures. Apart from α,
Gvozdeva et al. (2013) introduced two other distance parameters. One measures
the power balance between small and large coalitions. The other one allows
multiple thresholds instead of threshold 1 only.

For graphic simple games, it is natural to take the number of players n as the
input size for answering complexity questions, but in general simple games may
have different representations. For instance, one can list all minimal winning
coalitions or all maximal losing coalitions. Under these two representations the
problem of deciding if α < 1, that is, if a given simple game is a weighted voting
game, is polynomial-time solvable. This follows from results by Hegedüs and
Megiddo (1996) and Peled and Simeone (1985), as shown by Freixas et al. (2011).
The latter paper also showed that the same result holds if the representation is
given by listing all winning coalitions or all losing coalitions.

As mentioned, a crucial case in our study is when the simple game is graphic,
that is, defined on some graph G = (N,E). In the corresponding matching game
a coalition S ⊆ N has value v(S) equal to the maximum size of a matching in
the subgraph of G induced by S. One of the most prominent solution concepts
is the core of a game, defined by core(N, v) := {p ∈ RN | p(N) = v(N), p(S) >
v(S) ∀S ⊆ N}. Matching games are not simple games. Yet their core constraints
are readily seen to simplify to p > 0 and pi + pj > 1 for all ij ∈ E. Classi-
cal solution concepts, such as the core and core-related ones like the least core,

5 A related notion, introduced by Freixas and Marciniak (2010), is that of the codi-
mension of a simple game (N, v), which is the smallest number of weighed voting
games whose union equals (N, v). Here, the union of two simple games (N, v1) and
(N, v2) with sets of winning coalitions W1 and W2, respectively, is the simple game
(N, v) with set of winning coalitions W = W1 ∪W2.
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the nucleolus or the nucleon are well studied for matching games; see, for exam-
ple, Biro et al. (2012); Bock et al. (2015); Faigle et al. (1998); Kern and Paulusma
(2003); Könemann et al. (2019); Solymosi and Raghavan (1994).

2 The Proof of the Conjecture

To prove Conjecture 1 we reformulate, strengthen and only then verify it. Our
approach is inspired by the work of Abdi, Cornuéjols and Lee on identically self-
blocking clutters (Section 3 in the thesis of Abdi (2018)). A coalition C ⊆ N is
called a cover of W if C has at least one common player with every coalition
in W. We call the collection of covers of W the blocker6 of W and denote it by
b(W). We claim that

L = {N \ C |C ∈ b(W)} .
In order to see this, first suppose that there exists a cover C ∈ b(W) such that
N \ C /∈ L. As L ∪ W = 2N , this means that N \ C ∈ W. However, as C
contains no player from N \C, this contradicts our assumption that C ∈ b(W).
Now suppose that there exists a losing coalition L ∈ L such that C = N \ L
does not belong to b(W). Then, by definition, there exists a winning coalition
W ∈ W with C ∩W = ∅. As C ∩W = ∅, we find that W ⊆ N \ C = L. Then,
by the monotonicity property of simple games, L must be winning as well, a
contradiction.

As L = {N \C |C ∈ b(W)}, the critical threshold value can be reformulated
as follows:

α = min
p∈Q(W)

max
L∈L

p(L) = min
p∈Q(W)

max
C∈b(W)

p(N \ C) = min
p∈Q(W)

max
q∈Q(W)

q∈{0,1}N

〈p,1− q〉 .

Here, 〈p, q〉 stands for the scalar product of two vectors p and q. The last equality
can be justified as follows. For every cover C ∈ b(W), we can define a vector
q ∈ {0, 1}N ∩ Q(W) by setting, for each i ∈ N , qi = 1 if i ∈ C and qi = 0
otherwise. Similarly, for every vector q ∈ {0, 1}N ∩Q(W) we can define a cover
C = {i ∈ N | qi = 1}. Hence, there is a 1-to-1 correspondence between the
covers in b(W) and the vectors in {0, 1}N ∩Q(W).

We can now reformulate Conjecture 1 of Freixas and Kurz (2014) as follows:

Conjecture 1 (reformulated) For a simple game (N, v) with n players and
set of winning coalitions W, we have

min
p∈Q(W)

max
q∈Q(W)

q∈{0,1}N

〈p,1− q〉 6 n/4 .

In order to prove Conjecture 1 we need the following observation. Here, we write
‖p‖2 =

√
p21 + . . .+ p2n for a vector p ∈ RN .

6 The notion of a blocker was originally defined by Edmonds and Fulkerson (1970) as
the collection of minimal covers, but for simplicity of exposition, we define it as the
collection of all covers.
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Observation 2 Let P be a nonempty polyhedron and let p? be the (unique7)
optimal solution of the program min{‖p‖2 | p ∈ P}. Then p? is a (not necessarily
unique) optimal solution of the linear program min{〈p?, q〉 | q ∈ P}.

Proof. Assume to the contrary that there exists some q ∈ P with 〈p?, q〉 <
〈p?, p?〉, implying that 〈p?, q − p?〉 < 0. For any 0 < ε 6 1, we define the point
pε := p? + ε(q − p?) ∈ P and note that

‖pε‖2 = 〈pε, pε〉 = 〈p?, p?〉+ 2ε〈p?, q − p?〉+ ε2〈q − p?, q − p?〉.

Then, as 〈p?, q − p?〉 < 0, we can take ε > 0 to be sufficiently small in order to
obtain: ‖pε‖2 < 〈p?, p?〉 = ‖p?‖2, a contradiction. ut

We are now ready to prove Conjecture 1; in fact we show a slightly stronger
statement.

Theorem 3 (Strengthening of Conjecture 1) For a simple game (N, v) with
n players and set of winning coalitions W, we have

min
p∈Q(W)

max
q∈Q(W)

〈p,1− q〉 6 n/4 .

In particular, if p? is the (unique) optimal solution for the program

min{‖p‖2 | p ∈ Q(W)} ,

then
max

q∈Q(W)
〈p?,1− q〉 6 n/4 .

Proof. Let p? be the unique optimal solution of min{‖p‖2 | p ∈ Q(W)}. By
Observation 2, p? is an optimal solution for the programmin{〈p?, q〉 | q ∈ Q(W)}.
As 〈p?,1− q〉 = p?(N) − 〈p?, q〉, we find that p? is also an optimal solution for
the program max{〈p?,1− q〉 | q ∈ Q(W)}. Thus, we have

max
q∈Q(W)

〈p?,1− q〉 = 〈p?,1− p?〉 =
n∑
i=1

p?i (1− p?i ) 6
n∑
i=1

1

4
=
n

4
,

finishing the proof. ut

We note that for a simple game (N, v) that has a singleton winning coalition
W = {i}, we may put, without loss of generality, pi = 1; doing this does not
affect α = minp∈Q(W) maxL∈L p(L) since no losing coalition L contains i. Hence,
in our context, we may assume that all winning coalitions have size at least 2,
and we call simple games with this property non-singular.
7 For every nonempty polyhedron P , the program min{‖p‖22 | p ∈ P} is a feasible con-
vex quadratic program with a strictly convex objective function, where all values of
the function are bounded from below by 0. Hence, min{‖p‖22 | p ∈ P}, and conse-
quently min{‖p‖2 | p ∈ P}, has a unique optimal solution (see, for example, Borwein
and Lewis (2000)).
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Lemma 1 Let (N, v) be a non-singular simple game with α = n/4. Then p? =
1
21 is an optimal solution for min{〈p?, q〉 | q ∈ Q(W)} with value n/4.

Proof. We first observe that p∗ ∈ Q(W), as every winning coalition has size at
least 2. Now, if we choose q = p?, then the inequality

〈p?,1− p?〉 =
n∑
i=1

p?i (1− p?i ) 6
n∑
i=1

1

4
=
n

4

in the proof of Theorem 3 becomes tight, as 〈p?,1− p?〉 = n
4 . This implies that

p? is an optimal solution for the program max{〈p?,1− q〉 | q ∈ Q(W)}. Then, as
〈p?,1− q〉 = p?(N)− 〈p?, q〉, we find that p? is also an optimal solution for the
program min{〈p?, q〉 | q ∈ Q(W)}, with value n

4 . ut

We now discuss when Conjecture 1 provides a tight upper bound for the
critical threshold value. In order to do this we first recall some standard termi-
nology. A set X of points is convex if for every x, y ∈ X and 0 6 τ 6 1, the point
τx+ (1− τ)y belongs to X. The convex hull of a set Y of points is the smallest
convex set that contains Y . The characteristic vector of a coalition S ⊆ N is the
vector x ∈ RN with, for every i ∈ N , xi = 1 if i ∈ S and xi = 0 if i /∈ S.

Our next theorem shows that if the upper bound in Conjecture 1 is tight,
then this fact can be certified in the same way as in Example 1. Thus, if we
were to convince someone that α = n/4 is best possible for a given instance,
then we could prove this by revealing that specific vectors, namely 2

n1 and 1
21,

are in the convex hull of the set of characteristic vectors of winning and losing
coalitions, respectively. By Caratheodory’s Theorem (see, for example, Faigle
et al. (2002)), every vector in the convex hull of some set can be written as
a convex combination of at most n + 1 vectors from that set. Hence, giving an
appropriate set of at most 2(n+1) characteristic vectors would provide a succinct
proof for α = n/4.

Theorem 4 For a non-singular simple game (N, v) with n players and sets of
winning coalitions W and losing coalitions L, we have

α = min
p∈Q(W)

max
L∈L

p(L) = n/4

if and only if 2
n1 lies in the convex hull of the set of characteristic vectors of

winning coalitions and 1
21 lies in the convex hull of the set of characteristic

vectors of losing coalitions.

Proof. First suppose that 2
n1 lies in the convex hull of the characteristic vectors

of winning coalitions and that 1
21 lies in the convex hull of the characteristic

vectors of losing coalitions. Then for every p ∈ Q(W) we have

max
L∈L

p(L) > 〈p, 1
2
1〉 = n

4
〈p, 2

n
1〉 > n

4
,

showing that α > n/4 and hence α = n/4 by Theorem 3.
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Now suppose that α = n/4. We first show that 2
n1 lies in the convex hull of

the characteristic vectors of winning coalitions. From Lemma 1 we know that if
α = n/4, then p? = 1

21 is an optimal solution for min{〈p?, q〉 | q ∈ Q(W)} with
value n/4. We denote the characteristic vector of a winning coalition W ∈ W by
χW . Then we can write the dual program as

max{〈1, y〉 |
∑
W∈W

yWχW 6 p∗, y > 0}.

Let y∗ be an optimal solution of the dual program. By linear duality, the primal
and dual program define the same value 〈1, y∗〉 = 〈p∗, p∗〉 = 1

4n. Moreover, as
p∗i =

1
2 > 0 for every i ∈ N , we find that

∑
W∈W y∗WχW = p∗ by complementary

slackness (see, for example, the text-book of Schrijver (1998)). Consequently,
λ := 4

ny
∗ > 0 not only satisfies

∑
W∈W λW = 1 but also

∑
W∈W λWχW =

4
np
∗ = 2

n1. This means that 2
n1 is indeed a convex combination of characteristic

vectors of winning coalitions.
We now show that 1

21 lies in the convex hull of the characteristic vectors of
losing coalitions. Let q? be the optimal solution for the program

min{‖q‖2 | q ∈ conv{r ∈ {0, 1}N | r ∈ Q(W)}},

where conv denotes the convex hull operator. Note that, as Q(W) is convex,
q∗ ∈ Q(W). Recall that α = minp∈Q(W) max{〈p,1− q〉| q ∈ {0, 1}N ∩ Q(W)}.
Hence, as q∗ ∈ Q(W), we find that α 6 max{〈q?,1− q〉 | q ∈ {0, 1}N ∩Q(W)}.
In the same way as in the proof of Theorem 3, we can show that

α 6 max
q∈Q(W)

q∈{0,1}N

〈q?,1− q〉 = 〈q?,1− q?〉 =
n∑
i=1

q?i (1− q?i ) 6
n

4
,

As α = n
4 , the above inequality becomes tight, meaning that q? = 1

21 and thus
1
21 lies in conv{r ∈ {0, 1}N | r ∈ Q(W)}, and hence 1 − q? = 1

21 lies in the
convex hull of the characteristic vectors of losing coalitions. This completes the
proof. ut

3 Complete Simple Games

Recall that a simple game (N, v) is complete if the players in N can be ordered
by a complete, transitive ordering � such that for all i, j ∈ N with i � j and
every S ⊆ N\{i, j}, we have v(S ∪ i) > v(S ∪ j). As a consequence, in complete
simple games we have v(S) > v(S′) whenever S dominates S′ = {j1, . . . , js} in
the sense that S contains elements i1, . . . is with ip � jp, p = 1, . . . s.

Intuitively, the class of complete simple games is “closer” to weighted vot-
ing games than general simple games. The result of this section quantifies this
expectation.8

8 This result and a proof have appeared in an extended abstract published in the
proceedings of SAGT 2018 (Hof et al. 2018). As outlined by one of the referees, the
proof given there contained a mistake and we include a correct proof in this paper
resulting in a slightly weaker upper bound.

8



Theorem 5 For a complete simple game (N, v), it holds that α 6
√
n(1+ lnn).

Proof. Let N = {1, . . . , n} be the set of players and assume without loss of
generality that 1 � 2 � · · · � n. Let k ∈ N be the largest number such that
{k, . . . , n} is winning. For i = 1, . . . , k, let si denote the size of a smallest winning
coalition in {i, . . . , n}. We define pi := 1/si for i = 1, . . . , k, and if k < n, pi := 1

n
for i = k + 1, . . . , n. We note that p1 > . . . > pk > . . . > pn > 1

n .
Consider a winning coalition W ⊆ N and let i be the first player in W (with

respect to �). If |W | 6
√
n, then si 6 |W | 6

√
n and hence p(W ) > pi =

1
si

>
1√
n
. On the other hand, if |W | >

√
n, then p(W ) >

√
n 1
n = 1√

n
. We conclude

that for every winning coalition W , it holds that p(W ) > 1√
n
.

For a losing coalition L ⊆ N , we observe that, for i = 1, . . . , k, |L∩{1, . . . , i}| 6
si − 1; otherwise L would dominate the winning coalition of size si in {i, . . . , n}
implying v(L) = 1, a contradiction. Let y be the characteristic vector of L. Then
p(L ∩ {1, . . . , k}) =

∑k
i=1 yipi =

∑k
i=1 yi

1
si

is bounded by

max

k∑
i=1

xi
1

si
subject to

i∑
j=1

xj 6 si − 1, for i = 1, . . . , k.

The optimal solution of this maximization problem is x1 = s1 − 1 and xi =
si − si−1 for i = 2, . . . k with corresponding value

(s1 − 1)
1

s1
+ (s2 − s1)

1

s2
+ · · ·+ (sk − sk−1)

1

sk
6

1

2
+ · · ·+ 1

sk
6 lnn,

where we use the facts that (s1 − 1) 1
s1

6 1
2 + . . . + 1

s1
and that for i > 2,

(si − si−1) 1
si

6 1
si−1+1 + . . . + 1

si
. Hence, we obtain p(L) 6 p(L ∩ {1, . . . , k}) +

p(L ∩ {k + 1, . . . , n}) 6 lnn+ (n− k) 1n 6 1 + lnn.
From the above it follows that for every winning coalitionW and every losing

coalition L, p(L)/p(W ) 6
√
n(1 + lnn), as claimed. ut

Freixas and Kurz (2014) conjectured that α = O(
√
n) holds for complete

simple games. In the same paper they gave a lower bound of order
√
n, as well

as some specific subclasses of complete simple games for which α = O(
√
n) can

be proven.

4 Algorithmic Aspects

A fundamental question concerns the complexity of our original problem (1),
that is, the complexity of computing the critical threshold value of a simple
game. For general simple games this depends on how the game in question is
given, and we refer to Section 1.2 for a discussion.

In this section, we concentrate on the “graphic” case and present three results.
These results and their proofs have appeared in an extended abstract published
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in the proceedings of SAGT 2018 (Hof et al. 2018). In order to keep our paper
self-contained we also include the proofs of these results.

For a graphic simple game (N, v) defined on a graph G = (N,E), we write
αG = α(N, v).

Proposition 1. For a bipartite graph G, the quantity αG can be computed in
polynomial time.

Proof. Let P ⊆ RN be the set of feasible payoffs (satisfying p > 0 and pi+pj > 1
for ij ∈ E). For α ∈ R, let Pα := {p ∈ P | p(L) 6 α for all independent L ⊆ N}.
Thus αG = min{α | Pα 6= ∅}. The separation problem for Pα (for any given
α) is efficiently solvable. Given p ∈ RN , we can check feasibility and whether
max{p(L) | L ⊆ N independent} 6 α by solving a corresponding maximum
weight independent set problem in the bipartite graph G. Thus we can, for any
given α ∈ R, apply the ellipsoid method to either compute some p ∈ Pα or
conclude that Pα = ∅. Binary search then exhibits the minimum value for which
Pα is non-empty; binary search works indeed in polynomial time as the optimal
α has size polynomially bounded in n, which follows from observing that

α = min{a | pi+pj > 1 ∀ij ∈ E, p(L)−a 6 0 ∀L ⊆ N independent, p > 0} (2)

can be computed by solving a linear system of n constraints defining an optimal
basic solution of the above linear program. ut

The proof of Proposition 1 also applies to other classes of graphs, for which
finding a maximum weight independent set is polynomial-time solvable, such
as the class of claw-free graphs, as shown by Brandstädt and Mosca (2018). In
general, the problem of computing a maximum independent set in a graph is
NP-hard (see Garey and Johnson (1979)).

Proposition 2. Computing αG for arbitrary graphs G is NP-hard.

Proof. Let G′ = (N ′, E′) and G′′ = (N ′′, E′′) be two disjoint copies of a graph
G = (N,E) with independence number k. For each i′ ∈ N ′ and j′′ ∈ N ′′ add an
edge i′j′′ if and only if i = j or ij ∈ E and call the resulting graphG∗ = (N∗, E∗).
We claim that αG∗ = k/2 (thus computing αG∗ is as difficult as computing k).

First note that the independent sets in G∗ are exactly the sets L∗ ⊆ N∗

that arise from an independent set L ⊆ N in G by splitting L into two com-
plementary sets L1 and L2 and defining L∗ := L′1 ∪ L′′2 . Hence, p = 1

2 on N∗

yields max p(L∗) = k/2 where the maximum is taken over all independent sets
L∗ ⊆ N∗ in G∗. This shows that αG∗ 6 k/2.

Conversely, let p∗ be any feasible payoff in G∗, that is, p∗ > 0 and p∗i +p∗j > 1
for all ij ∈ E∗. Let L ⊆ N be a maximum independent set of size k in G and
construct L∗ by including for each i ∈ L either i′ or i′′ in L∗, whichever has
p-value at least 1

2 . Then, by construction, L∗ is an independent set in G∗ with
p∗(L∗) > k/2, showing that αG∗ > k/2. ut
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Summarizing, for graphic simple games, computing αG is as least as hard as
computing the size of a maximum independent in G.

For our last result we assume that α0 is a fixed number, that is, α0 is not
part of the input.

Proposition 3. For every fixed α0 > 0, it is possible to decide if αG 6 α0 in
polynomial time for an arbitrary graph G = (N,E).

Proof. Let k = 2(bα0c + 1). By brute-force, we can check in O(n2k) time if N
contains 2k vertices {u1, . . . , uk} ∪ {v1, . . . , vk} that induce k disjoint copies of
P2, that is, paths Pi = uivi of length 2 for i = 1, . . . , k with no edges joining any
two of these paths. If so, then the condition p(ui)+p(vi) > 1 implies that one of
ui, vi, say ui, must receive a payoff p(ui) > 1

2 , and hence U = {u1, . . . , uk} has
p(U) > k/2 > α0. As U is an independent set, α(G) > α0.

Now assume that G does not contain k disjoint copies of P2 as an induced
subgraph, that is, G is kP2-free. For every s > 1, the number of maximal inde-
pendent sets in a sP2-free graphs is nO(s) due to a result of Balas and Yu (1989).
Tsukiyama et al. (1977) show how to enumerate all maximal independent sets
of a graph G on n vertices and m edges using time O(nm) per independent set.
Hence we can find all maximal independent sets of G and thus solve, in polyno-
mial time, the linear program (2) in the proof of Proposition 1. Then it remains
to check if the solution found satisfies α 6 α0. ut

Note that Proposition 3 immediately implies that the problem of deciding if
a graphic simple game (N, v), given as a graph G = (N,E), is a weighted voting
game is polynomial-time solvable.

5 Conclusions

We have strengthened and proven the conjecture of Freixas and Kurz (2014) on
simple games (Conjecture 1) and showed a number of computational complex-
ity results for graphic simple games. Moreover, we considered complete simple
games and proved a stronger upper bound for this class of games. It remains
to tighten the upper bound for complete simple games to O(

√
n) if possible. In

order to classify simple games, many more subclasses of simple games have been
identified in the literature. Besides the two open problems, no optimal bounds
for α are known for other subclasses of simple games, such as strong, proper, or
constant-sum games, that is, where v(S) + v(N\S) > 1, v(S) + v(N\S) 6 1, or
v(S) + v(N\S) = 1 for all S ⊆ N , respectively.
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