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Vesicle-associated membrane protein–associated protein B
(VAPB) is a tail-anchored protein that is present at several con-
tact sites of the endoplasmic reticulum (ER). We now show by
immunoelectron microscopy that VAPB also localizes to the
inner nuclear membrane (INM). Using a modified enhanced
ascorbate peroxidase 2 (APEX2) approach with rapamycin-de-
pendent targeting of the peroxidase to a protein of interest, we
searched for proteins that are in close proximity to VAPB, par-
ticularly at the INM. In combination with stable isotope labeling
with amino acids in cell culture (SILAC), we confirmed many
well-known interaction partners at the level of the ER with a
clear distinction between specific and nonspecific hits. Further-
more, we identified emerin, TMEM43, and ELYS as potential
interaction partners of VAPB at the INM and the nuclear pore
complex, respectively.

The family of vesicle-associated membrane protein (VAMP/
synaptobrevin)-associated proteins (VAPs)2 includes VAPA

and VAPB with described roles in the morphology and function
of the endoplasmic reticulum (ER) and Golgi apparatus (1, 2).
VAPB is a tail-anchored protein, i.e. a protein containing a sin-
gle transmembrane domain close to its C terminus. Such pro-
teins are typically inserted into the cellular membrane system in
a post-translational manner (3, 4). In its N-terminal region,
VAPB contains a characteristic major sperm protein domain.
VAPB localizes largely to the ER, and its binding to several
partner proteins has been shown to mediate the association of
the ER with other organelles. Acyl-CoA– binding domain pro-
tein 5 (ACBD5), for example, interacts with VAPB and is
involved in binding peroxisomes to the ER (5), whereas tyrosine
phosphatase–interacting protein 51 (PTPIP51) and VAPB form
an ER–mitochondria tethering complex (6). In the secretory
pathway, VAPB interacts with the Yip1-interacting factor ho-
mologue YIF1A, e.g. at the level of the ER–Golgi intermediate
compartment (7). Furthermore, several oxysterol-binding pro-
teins (OSBPs), which play important roles in lipid transport,
interact with VAPB (8), and Kv2 potassium channels form
ER–plasma membrane junctions via interactions with VAPB
(9). In total, �100 proteins have been reported to directly or
indirectly interact with VAPB and/or the highly similar protein
VAPA (10, 11) (see also https://thebiogrid.org).3 A major bind-
ing motif, which is found in many VAPB-interacting proteins, is
the “two phenylalanines in an acidic tract” (FFAT) motif (11,
12). Typically, the FFAT (or FFAT-like) motif interacts with the
major sperm protein domain of VAPB. One example of a pro-
tein containing the FFAT motif that binds VAPB is the WD
repeat– containing protein WDR44 (13). A mutation in VAPB
(P56S) is involved in an autosomal dominant form of amyo-
trophic lateral sclerosis (ALS) (14) and blocks transport of
nucleoporins and emerin, a major protein of the inner nuclear
membrane (INM), to the nuclear envelope (15).

Several methods have been developed for the identification
of proteins that are in close proximity to each other. They typ-
ically introduce biotin into unknown proteins as a tag that can
be used for affinity capture with immobilized streptavidin and
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subsequent analysis by MS (for reviews, see Refs. 16 and 17).
One prominent approach, proximity-dependent biotin identi-
fication (BioID), is based on a mutant form of the biotin ligase
BirA, which can be fused to a protein of interest (the bait) whose
neighboring proteins are to be analyzed (18). The enzyme part
of the fusion protein releases reactive biotin, which can modify
proteins (the prey) within a small spatial range. One drawback
of this method is a rather long reaction time of �15 h, although
a faster method has been described very recently (19). As an
alternative to biotin ligase– dependent modifications, peroxi-
dase-based methods have been introduced that allow short
reaction times in the range of seconds to minutes (20). Ascor-
bate peroxidase (APEX) is a plant enzyme that generates biotin-
phenoxyl radicals from biotin phenol in the presence of H2O2.
These radicals have a very short half-life and, thus, can modify
proteins within a range of �20 nm, reacting with several amino
acids with tyrosine as the primary site of biotinylation (21).
Importantly, APEX can be fused to the N or C terminus of
proteins and may also reside internally. Furthermore, the
enzyme has been shown to be active in several cellular compart-
ments (20, 22, 23). Recently, APEX2, which is far more active
than the original enzyme, was introduced (24). So far, APEX- or
APEX2-based methods have mainly been used for the identifi-
cation of proteins that reside in defined subcellular compart-
ments, e.g. in primary cilia (23) or in the intermembrane space
of mitochondria (25). As an alternative to APEX, horseradish
peroxidase (HRP) can also be used as an enzyme to initiate the
formation of biotin-phenoxyl radicals, and antibody-directed
targeting of HRP to proteins of interest was recently described
(26).

We previously characterized the post-translational insertion
mechanisms of emerin into ER membranes and analyzed tar-
geting of the protein to the INM (27). For this, we applied a
rapamycin-dependent dimerization method to monitor
sequestration of a soluble nuclear reporter protein (dGFP-
GST-NLS-FKBP12) to mCherry-tagged emerin (mCherry-
FRB-emerin) at the INM. In this system, rapamycin binds to
its two cognate binding regions, a 12-kDa FK506-binding
protein (FKBP12) and an FKBP-rapamycin– binding (FRB)
cassette, promoting rapid interaction of the appropriately
tagged proteins (28).

We now combine the APEX2 technology with the rapa-
mycin-dependent dimerization approach. To this end, we tar-
get FKBP12-tagged APEX2 to FRB-tagged proteins in a rapa-
mycin-dependent manner. SILAC, followed by quantitative
MS, then allows the comparison of proteins that are biotiny-
lated by APEX2 in either the absence or presence of rapamycin.
Using this method (rapamycin- and APEX-dependent identifi-
cation of proteins by SILAC or RAPIDS), we found RMDN3
(PTPIP51), ACBD5, YIF1A, OSBPL9, and other previously
known interacting proteins of VAPB. Using a version of APEX2
that accumulates in the nucleus, we identified additional neigh-
boring proteins of VAPB that reside at the nuclear envelope, e.g.
emerin, TMEM43, lamins, and the nucleoporin embryonic
large molecule derived from yolk sac (ELYS; AHCTF1). We
further demonstrated the INM localization of VAPB by immu-
noelectron microscopy and confirmed the close proximity of
endogenous VAPB with several of the newly identified proteins

using proximity ligation assays and coimmunoprecipitation
experiments.

Results

VAPB resides at the INM

VAPB is typically described as an ER-resident protein, medi-
ating interactions with multiple organelles. In addition, VAPB
seems to play a role in the dynamics of the nuclear envelope and
nuclear pore complex. In this context, it was reported to affect
transport of emerin to the INM (15). A localization of VAPB
itself to the INM, however, has not been demonstrated so far.
We therefore investigated the subcellular localization of VAPB
in detail. We first analyzed endogenous VAPB by indirect im-
munofluorescence using different buffers for the procedure.
The specificity of the anti-VAPB antibody was confirmed by
siRNA-mediated knockdown (see Fig. 6). As shown before,
VAPB localized to the ER, with a clear rim around the nucleus
visible in many cells (Fig. 1A). Interestingly, the ratio of the ER
and the nuclear envelope signal varied a lot, depending on the
buffer used (Fig. 1A, compare panels i and ii). Similar to the
endogenous protein, differently tagged versions of VAPB
(mCherry-FRB-VAPB and HA-FRB-VAPB) were also found at
the level of the ER and the nuclear envelope (Fig. 1B). We next
tested whether the nuclear rim could reflect targeting of VAPB
not only to the outer but also to the inner nuclear membrane.
For readout, we used our established rapamycin system (27). As
shown before for emerin, the nuclear reporter protein dGFP-
GST-NLS-FKBP12 was sequestered to the nuclear rim upon
the addition of rapamycin in cells coexpressing mCherry-FRB-
VAPB (Fig. 1C). This result suggested that at least a portion
of the exogenously expressed VAPB reached the INM. To
unequivocally demonstrate INM localization of endogenous
VAPB, we performed immunoelectron microscopy. As shown
in Fig. 1D, immunoreactivity was detected at mitochondria,
possibly reflecting the interaction of VAPB with PTPIP51. Fur-
thermore, a significant number of gold dots were found at the
level of the INM and in close proximity to nuclear pores. In
addition to these morphological studies, we also performed
biochemical analyses. Obtaining pure INM fractions is hardly
possible; nevertheless, we subjected cell lysates to an estab-
lished fractionation protocol (29). As shown in Fig. S1, VAPB
was largely recovered in the same fraction as emerin and other
proteins of the nuclear envelope, although other membrane
proteins are certainly expected in this fraction as well. To-
gether, our results clearly point to a localization of a fraction of
the cellular VAPB pool at the INM. These results are in line
with a recent study, published during the review process of this
paper, that suggests a role of VAPB in nuclear egress of herpes
simplex viral particles (30).

APEX2-dependent biotinylation of proteins

A number of membrane proteins exposing binding regions to
the cytoplasm have been shown to interact with the ER form of
VAPB (2). A portion of VAPB, however, localizes to the INM, so
we then set out to devise a method for the identification of
neighboring partners of VAPB that allows focus on either the
cytoplasm (where the majority of VAPB is expected) or the
nuclear compartment. Our approach is based on the APEX2

Binding partners of VAPB at the inner nuclear membrane
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method for identification of proximity partners. In a “classic”
approach, we first fused APEX2 directly to VAPB (Fig. 2A, left),
as done before for many other proteins (9, 20 –23, 25, 31–35).
HeLa cells were transfected with constructs coding for APEX2-
VAPB or, for a control reaction, GFP-APEX2. Fig. 2B shows the
subcellular localization of the APEX2 fusion proteins: as
expected, GFP-APEX2 is found all over the cell and should
promote unspecific biotinylation of many cellular proteins,
whereas APEX2-VAPB localizes largely to the ER, very similarly
to other fusion proteins of VAPB (compare Fig. 1B). Next, the
cells were subjected to the biotinylation protocol, including
loading of cells with biotin-phenol and a short pulse with H2O2.
For analysis, biotinylated proteins were enriched using neutra-
vidin beads and detected by Western blotting. As shown in Fig.
2C, both fusion proteins were detected at similar levels in total
cell lysates and in the protein fractions as bound to the neutra-
vidin beads, indicating self-biotinylation. Furthermore, they led
to a similar pattern of biotinylated proteins as detected by
streptavidin-HRP. Next, we probed the blots with antibodies
against proteins that had previously been identified as interac-
tion partners of VAPB. Indeed, ACBD5 and OSBPL9 were
clearly enriched when cells expressed APEX2-VAPB. In the
control cells expressing GFP-APEX2, much lower levels of
ACBD5 and OSBPL9 were detected (Fig. 2C, compare lanes 7
and 8). This result shows that the APEX method is suited for the
identification of interaction/proximity partners of VAPB at the
level of the ER. We noted, however, that the difference between
specific and unspecific biotinylation (i.e. modification in cells
expressing APEX2-VAPB versus cells expressing GFP-APEX2)
varied a lot, possibly resulting from different transfection effi-
ciencies. We therefore modified our approach in a way that

should allow a better control over specific versus unspecific
biotinylation and combined APEX2-dependent biotinylation
with the protocol for rapamycin-dependent targeting of pro-
teins to a protein of interest (27). For a first proof of principle,
we constructed a GFP-linked version of APEX2 with the rapa-
mycin-interaction cassette FKBP12 (Fig. 2A, right). Cells were
transfected with this construct together with a construct cod-
ing for mCherry-FRB-VAPB. Transfected cells were treated
with or without rapamycin and subjected to the biotinylation
protocol. Fig. 2B shows the localization of mCherry-FRB-VAPB
at the ER and the nuclear envelope and the recruitment of GFP-
FKBP12-APEX2 to these sites upon addition of rapamycin.
This treatment resulted in a pronounced overlap of the GFP
and mCherry signals, suggesting a tight interaction of FKBP12-
GFP-APEX2 with mCherry-FRB-VAPB (compare Fig. 1C). As
for the classic approach, cells were then subjected to the bioti-
nylation protocol, and biotinylated proteins were analyzed by
Western blotting. As shown in Fig. 2C, ACBD5 and OSBPL9
were detected as biotinylated proteins (i.e. in the bound frac-
tion) when cells had been treated with the drug, indicating ra-
pamycin-dependent targeting of APEX2 to mCherry-FRB-
VAPB and biotinylation of the known VAPB interaction
partners. The levels of proteins that were recovered from the
neutravidin beads were as high or higher than those found in
the classic experiment using APEX2-VAPB as a fusion protein
(Fig. 2C, compare lanes 4 and 8; also compare with Fig. 3C). The
added advantage of rapamycin-dependent targeting of APEX2
to our protein of interest, however, is 2-fold First, a simple,
single-parameter-change experiment (�rapamycin) can be
performed for subsequent analysis of biotinylated proteins
by quantitative MS and discrimination between specific and

Figure 1. VAPB localizes to the INM. A, HeLa cells were grown on coverslips and subjected to indirect immunofluorescence using antibodies against VAPB.
Cells were blocked with 3% BSA (panel i) or with Sigma Duolink blocking solution (panel ii). B, HeLa cells were transfected with plasmids coding for mCherry-
FRB-VAPB or HA-FRB-VAPB as indicated. C, HeLa cells were cotransfected with plasmids coding for mCherry-FRB-VAPB and dGFP-GST-cNLS-FKBP12. After
treatment with (�) or without (�) rapamycin, cells were fixed and analyzed by confocal microscopy. Scale bars, 10 �m. D, HeLa cells were analyzed by
immunoelectron microscopy using antibodies against VAPB. C, cytoplasm; M, mitochondria; N, nucleus. The arrows indicate nuclear pore complexes. Scale bar,
100 nm.

Binding partners of VAPB at the inner nuclear membrane
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unspecific hits. Second, the physical separation of APEX2 from
the protein of interest allows an independent subcellular local-
ization of the enzyme and, hence, a control over the population
of cellular proteins that are potential targets for biotinylation.
This is of particular importance for proteins like VAPB that can
engage in interactions with different sets of proteins residing at
distinct localizations.

RAPIDS

Based on the results described above, we decided to use the
combined APEX2/rapamycin system for the identification of
novel VAPB proximity partners. The outline for an experiment
with a version of APEX2 with the rapamycin-interaction cas-
sette and identification of proteins by SILAC and quantitative
MS is depicted in Fig. 3A. Briefly, cells are grown in media
containing either light or heavy isotopes of the amino acids
lysine and arginine and transfected with plasmids coding for
mCherry-FRB-VAPB and FKBP12-GFP-APEX2. The two types
of cells (“light” and “heavy”) are then treated with or without
rapamycin and subjected to the biotinylation procedure. Cellu-
lar lysates are combined, and biotinylated proteins are enriched
by binding to neutravidin beads. Mass spectrometry of eluted
proteins then allows a direct comparison between �rapamycin
(i.e. specific biotinylation close to mCherry-FRB-VAPB) and
�rapamycin (i.e. background biotinylation) conditions. A quanti-
tative evaluation of heavy and light tryptic fragments of biotiny-
lated proteins should immediately yield proteins that were in

close proximity to mCherry-FRB-VAPB in the presence of ra-
pamycin. Fig. S2A shows the controls for H2O2-dependent pro-
tein biotinylation. Prominent bands that are seen in the absence
of H2O2 correspond to endogenously biotinylated proteins.
Similar transfection efficiencies in the two sets of cells (light
and heavy) are controlled in Fig. S2B.

Fig. 3B shows the combined results of two independent
experiments, each with forward (i.e. using light and heavy
media for the �rapamycin and �rapamycin conditions) and
reverse reactions (i.e. with changed conditions, as depicted in
Fig. 3A). Proteins that are preferentially biotinylated in the
presence of rapamycin in both forward (x axis) and reverse
reactions (y axis) are expected in the upper left quadrant of the
plot. One prominent protein here is VAPB itself, indicating its
modification by the APEX2 fusion protein. Many previously
known cytoplasmic interaction partners of VAPB were also
identified with high levels of significance, including PTPIP51
(RMDN3), YIF1A, WDR44, OSBPL9, OSBPL8, and ACBD5.
GAPDH, by contrast, was found in the cloud of proteins that
were hardly affected by rapamycin, close to the intersection of
the x and y axes. The list of identified proteins is presented in
Table S1. Interestingly, the INM protein emerin was also iden-
tified with a high significance. Another potential interaction
partner is TMEM43, also known as LUMA, a membrane pro-
tein that interacts with emerin at the INM (36) and plays a role
in certain forms of muscular dystrophies (37). Its localization,

Figure 2. Comparison of the classic and a new APEX approach. A, schemes of the “direct fusion (classic) approach” (left) and the “rapamycin (new) approach”
(right). B, for the direct fusion and rapamycin approaches, cells were transfected with plasmids coding for GFP-APEX2 or APEX2-VAPB and FKBP12-GFP-APEX2
and mCherry-FRB-VAPB, respectively. Cells were analyzed directly (left) or upon incubation with or without rapamycin (right). Scale bars, 10 �m. C, cells were
transfected as in B and subjected to the biotinylation protocol. Biotinylated proteins were enriched using neutravidin beads, and total and bound proteins were
analyzed by SDS-PAGE followed by Western blotting. Note that GFP-APEX2 (lanes 5 and 7) and APEX2-VAPB (lanes 6 and 8) have very similar molecular weights.

Binding partners of VAPB at the inner nuclear membrane
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however, is controversial because it was mainly found in zonula
adhaerens and punctum adhaerens plaques in another study
(38). Another nuclear protein that was identified is the AT-rich
interactive domain– containing protein 4 A (ARID4A). This
protein, also known as Rbbp1, is a retinoblastoma-binding pro-
tein (39) with functions in chromatin remodeling (40). The sig-
nificance of the proximity and/or interaction of VAPB and
ARID4A remains to be investigated.

Next, we performed Western blotting to confirm the MS
data. As shown in Fig. 3C, high levels of mCherry-FRB-VAPB,
ACBD5, OSBPL9, and emerin were detected in the bound frac-
tion when the cells had been treated with rapamycin, confirm-
ing rapamycin-dependent biotinylation. For GAPDH, by con-
trast, very similar levels were observed for rapamycin-treated

and nontreated cells. Based on the successful identification of
known interaction partners, we termed our approach “RAPID
SILAC” or “RAPIDS.”

RAPIDS using a nuclear version of APEX2

The identification of emerin supported the notion that
VAPB can reach the INM (see Fig. 1), although emerin could
also localize to other regions of the cell (41, 42). Two parame-
ters of the assay as performed above disfavor the identification
of bona fide INM proteins. First, FKBP12-GFP-APEX2 is found
all over the cell and may preferentially interact with VAPB that
localizes to the ER upon addition of rapamycin. Second, the
version of VAPB in this experiment contains a large cytoplas-
mic mCherry tag. Although the protein can reach the INM to

Figure 3. Proximity mapping of mCherry-FRB-VAPB by RAPIDS. A, experimental workflow. Cells grown in light or heavy medium are cotransfected with
plasmids coding for FKBP12-GFP-APEX2 and mCherry-FRB-VAPB and subjected to APEX2-dependent biotinylation in the absence or presence of rapamycin.
Note that this labeling scheme reflects the reverse reaction. In the forward reaction, light and heavy media are used for cells treated with or without rapamycin,
respectively. Proteins from cell lysates are bound to neutravidin beads, and the total and bound fractions are analyzed by LC-MS. B, the scatter plot resulting
from two independent experiments shows normalized log2 ratios of proteins eluted from neutravidin beads in forward (heavy medium (H) without rapamycin;
light medium (L), with rapamycin; x axis) and reverse (heavy medium, with rapamycin; light medium, without rapamycin; y axis) experiments. The plot focuses
on the upper left quadrant because in the forward reaction, low heavy/light ratios (i.e. negative log2 values) are expected for specific hits, whereas high ratios
are expected in the reverse reaction. Known interacting partners of VAPB are underlined. Closed circles, proteins that were significant in all experiments; open
triangles, proteins that were significant only in forward experiments; open squares, proteins that were significant only in reverse experiments. C, total cell lysates
(total) and proteins bound to neutravidin beads (bound) from one of the experiments depicted in B were analyzed by Western blotting using antibodies against
VAPB, ACBD5, OSBPL9, emerin, and GAPDH as a loading control.

Binding partners of VAPB at the inner nuclear membrane
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some extent (Fig. 1C), the efficiency of diffusion of proteins
from the ER via the outer nuclear membrane to the INM in
general is clearly affected by the size of the cytoplasmic domain
(43–47). We therefore modified our approach 2-fold (Fig. 4A).
First, we used a version of APEX2, APEX2-dGFP-NLS-
FKBP12, that strongly accumulates in the nucleus of trans-
fected cells as a result of its nuclear localization signal. Hence,
biotinylation of nuclear proteins or INM proteins should be
favored. Second, we designed a smaller version of VAPB, HA-
FRB-VAPB, that we expected to diffuse more readily across the
nuclear pore to the INM than the mCherry-tagged version. As
shown in Fig. 4B, APEX2-dGFP-NLS-FKBP12 localized largely
in the nucleus in the absence of rapamycin. Upon addition of

the drug, the reporter protein was sequestered to the nuclear
envelope, suggesting binding to HA-FRB-VAPB at the INM.
We then performed RAPIDS and could show that VAPB (i.e.
HA-FRB-VAPB in this experiment) was prominently biotiny-
lated in the presence of rapamycin (Fig. 4, C and D). By quanti-
tative proteomics, we identified at least 22 biotinylated proteins
that were enriched on the neutravidin beads upon addition of
rapamycin to the cells, suggesting their close proximity to HA-
FRB-VAPB (Fig. 4C and Table S2). Strikingly, many of the pro-
teins identified are known to reside on the nuclear side of the
nuclear envelope. The proximity candidates fall into three cat-
egories. In the first category are proteins of the INM like
emerin, lamina-associated polypeptide 1 (LAP1 or Torsin-1A–

Figure 4. RAPIDS using HA-FRB-VAPB. A, experimental workflow. Cells are grown in light or heavy medium as indicated, cotransfected with plasmids coding
for APEX2-dGFP-cNLS-FKBP12 and HA-FRB-VAPB, and subjected to RAPIDS as described in Fig. 3A. B, transfected cells were treated with or without rapamycin
as indicated, fixed, and analyzed by fluorescence microscopy. Scale bar, 10 �m. C, the scatter plot resulting from two independent experiments shows
normalized log2 ratios of proteins eluted from neutravidin beads in forward (heavy medium (H), without rapamycin; light (L) medium, with rapamycin; x axis)
and reverse (heavy medium, with rapamycin; light medium, without rapamycin; y axis) experiments. As in Fig. 3, the plot focuses on the upper left quadrant.
Closed circles, proteins that were significant in all experiments; open triangles, proteins that were significant only in forward experiments; open squares, proteins
that were significant only in reverse experiments. D, total cell lysates (total) and proteins bound to neutravidin beads (bound) from experiments depicted in C
were analyzed by Western blotting using antibodies against VAPB, ELYS, lamin B1, Nup153, lamin A/C, TMPO, TOR1AIP1, SEC22b, emerin, and GAPDH as a
loading control.

Binding partners of VAPB at the inner nuclear membrane
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interacting protein 1 (TOR1AIP1) (48)) and LAP2� (thymopoi-
etin (TMPO) (48, 49)). Another protein in this category is
TMEM43, which we also found with mCherry-FRB-VAPB as a
bait (Fig. 3). In the second category are proteins of the nuclear
pore complex (NPC) like Nup153 (50), Tpr (51), and ELYS
(AHCTF1 (52)). In the third category are components of the
nuclear lamina like lamin A and lamin B (53). To confirm pref-
erential biotinylation of candidates in the presence of rapa-
mycin, we performed Western blotting of proteins eluted from
the neutravidin beads (Fig. 4D). Essentially all the tested pro-
teins showed increased recovery from neutravidin beads upon
treatment of cells with rapamycin, including ELYS, lamin A/C,
LAP1 (TOR1AIP1), LAP2� (TMPO), and emerin. Together,
our results show that RAPIDS allows the identification of
known interaction partners of VAPB and, possibly, of novel
proximity and/or interaction partners.

Validation

Proteins identified by RAPIDS could be direct or indirect
binding partners of VAPB and occur in biochemically stable
complexes or just reside in very close proximity to our protein
of interest. As a first step to distinguish between these possibil-
ities, we performed coimmunoprecipitation experiments com-
bined with a cross-linking approach to stabilize low-affinity
interactions. We first immunoprecipitated endogenous VAPB
using a specific antibody and analyzed the precipitate for copre-
cipitating proteins. As a control, total IgG was used (Fig. 5A).
For the established binding partners of VAPB, ACBD5 and
OSBPL9, and for emerin and TMEM43, specific coprecipita-
tion with VAPB was observed when the cells had been treated

with the cleavable bifunctional cross-linker dithiobis(succin-
imidyl propionate) (DSP). For OSBPL9 and TMEM43, copre-
cipitation above the IgG background was also seen in the
absence of the cross-linker, suggesting tight interactions. To
corroborate these findings, we also used HA-FRB-VAPB–
overexpressing cells for coimmunoprecipitation experiments,
again with and without DSP as a cross-linking reagent. As
shown in Fig. 5B, low levels of ACBD5 and OSBPL9 coprecipi-
tated with overexpressed HA-FRB-VAPB. The levels of copre-
cipitated proteins strongly increased when the cells had been
treated with DSP prior to cell lysis (compare lanes 5 and 7). For
emerin, TMEM43, and to some extent ELYS, coprecipitation
was observed in the cross-linked samples, suggesting that the
corresponding complexes exist in intact cells. Very low levels of
coprecipitating proteins were observed when the cells had been
transfected with a plasmid coding for HA-FRB (lanes 6 and 8).
Together, these results show that VAPB indeed interacts with
some of the proteins that were identified as proximity partners
by RAPIDS. It remains to be investigated whether these inter-
actions are direct or indirect.

Next, we performed proximity ligation assays (PLAs) (54),
which detect interactions (or at least proximity) of endogenous
proteins and allow statements about the precise localization of
the protein–protein interactions. These assays are based on the
decoration of proteins in fixed cells, first with specific primary
antibodies and subsequently with oligonucleotide-linked sec-
ondary antibodies. If the proteins of interest are in close prox-
imity (i.e. within �40 nm), subsequent ligation and amplifica-
tion reactions lead to formation of a fluorescent product that

Figure 5. VAPB forms complexes with emerin, TMEM43, and ELYS. A, HeLa cells were treated with (�) or without (�; DMSO as a control) DSP, and
endogenous proteins from cell lysates were precipitated using rabbit anti-VAPB and rabbit IgG as a control. *, IgG heavy chain. B, HeLa cells were transfected
with constructs coding for HA-FRB-VAPB or HA-FRB and subjected to cross-linking with (�) or without (�; DMSO as a control) DSP. Proteins from cell lysates
were immunoprecipitated (IP) using anti-HA antibodies. Note that HA-FRB was expressed and precipitated to similar levels as HA-FRB-VAPB (data not shown).
A and B, precipitated proteins were analyzed by Western blotting, detecting VAPB, ACBD5, OSBPL9, emerin, TMEM43, ELYS, the HA tag, and, as a control,
Na�/K�-ATPase as indicated.
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can easily be detected by microscopy. We first analyzed VAPB
with respect to its interaction with known binding partners that
were also detected by RAPIDS, namely ACBD5 and OSBPL9.
To characterize our antibodies, we performed immunofluores-
cence analysis. As shown in Fig. S3, A and B, ACBD5 colocal-
ized with the peroxisomal marker protein PMP70, and OSBPL9
colocalized with the Golgi marker GM130, indicating the spec-
ificity of the ACBD5 and OSBPL9 antibodies. In PLAs, specific
interactions of VAPB were observed with characteristic pat-
terns of dots. For ACBD5 (Fig. S3, C and D), dots were found
scattered all over the cell, consistent with signals derived from
ER–peroxisome interactions. For OSBPL9, the observed dots
were largely found in an area corresponding to the Golgi com-
partment (Fig. S3, E and F). The specificity of the signals was
supported by single-antibody controls. These results show that
our antibodies are suitable for a faithful detection of VAPB–
protein interactions. Next, we performed PLAs with antibodies
against VAPB and emerin or ELYS (Fig. 6). TMEM43 was not
analyzed here due to lack of PLA-suitable antibodies. For
emerin, PLA dots were mostly observed at the nuclear rim,
consistent with the major localization of emerin at the INM
(Fig. 6A). For ELYS (Fig. 6B), PLA dots were observed at the
nuclear envelope but also in the nuclear interior. For both pro-
teins, the number of dots decreased significantly when VAPB
had been depleted by specific siRNAs as well as in single-anti-
body controls, demonstrating the specificity of the PLA. In
summary, coimmunoprecipitation experiments and PLAs sug-
gest that VAPB indeed forms complexes with proteins of the
INM and/or the NPC. Fig. 7 depicts the interactome of VAPB,
as revealed by our analysis and by previous studies.

Discussion

RAPIDS

The known binding partners of VAPB localize exclusively to
the cytoplasm or to cytoplasmic membranes. The INM local-
ization of VAPB therefore prompted us to search for nuclear
proteins that could interact with VAPB or are at least in close
proximity to VAPB at the level of the INM or the NPC. For this,

Figure 6. VAPB is in close proximity to emerin and ELYS. A and B, cells were treated with siRNAs against VAPB or nontargeting (nt) siRNAs as indicated and
subjected to PLAs using antibodies against VAPB (A and B) and emerin (A) or ELYS (B), respectively. Indirect immunofluorescence was used to detect VAPB. The
graphs show the quantification of PLA results from three independent experiments analyzing a total of 450 cells. The error bars indicate mean values � S.D.
Single-antibody controls were performed to confirm the specificity of PLA interactions. ***, p � 0.001. Scale bars, 10 �m.
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Figure 7. The VAPB interactome. Shown is a schematic representation of
the protein network identified by RAPIDS using HA-FRB-VAPB (HA-VAPB) with
APEX2-dGFP-cNLS-FKBP12 (NLS-APEX2) or mCherry-FRB-VAPB (mCherry-
VAPB) with FKBP12-GFP-APEX2 (APEX2). Dotted lines indicate interactions that
have also been found in previous studies.
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affinity-based methods that require an initial cell lysis step were
not very promising because the lysis buffers must fulfill two
conflicting criteria: they must be strong enough to solubilize
protein complexes like the nuclear lamina or the NPC but
maintain the interactions of interest. Indeed, validation of our
candidate proteins by coimmunoprecipitation approaches
required a careful choice of specific reaction conditions con-
cerning the lysis buffer, the specific antibody, and, importantly,
the cross-linker used for stabilization of protein–protein inter-
actions. As alternatives, proximity-based approaches like BioID
and the APEX system have the advantage of targeting proteins
in their natural environment, living cells. BioID, in fact, was
initially developed to probe the nuclear lamina for interaction
partners of lamin A (18). In the last couple of years, APEX-
based biotinylation approaches have been used very success-
fully for the analysis of the interactome of many proteins (9,
20 –23, 25, 31–35). With RAPIDS, we now introduce a method
that combines APEX2-dependent biotinylation, rapamycin-de-
pendent targeting of the enzyme to proteins of interest, and
quantitative proteomics using SILAC. The use of rapamycin to
induce rapid targeting of APEX2 to a specific subcellular local-
ization should facilitate the discrimination between proteins
that are modified in a specific versus a nonspecific manner.
Furthermore, a careful choice of the tags used for APEX2 (here,
�NLS) and the protein of interest (here, HA versus mCherry)
may strongly affect the spectrum of identified proteins. This is
of particular importance for proteins of the INM, where the size
and the nature of the tag may affect efficient targeting of pro-
teins to their final destination. In general, the approach to phys-
ically separate the APEX2 enzyme from the protein of interest
offers a tight control over the cellular proteins that are potential
targets for biotinylation. This is a clear advantage for proteins
like VAPB that can engage in interactions at different intracel-
lular contact sites. Notably, a similar targeting approach using
the rapamycin analogue AP21967 as a dimerizing agent was
very recently described (55). In 2C-BioID, the authors used the
rapamycin analogue AP21967 to initiate dimerization of a bio-
tin-protein ligase and a protein of interest to analyze the inter-
actomes of LAP2� and lamins A and C as a proof of principle.

The feasibility of RAPIDS was demonstrated by the identifi-
cation of many of the previously known binding partners of
VAPB (Fig. 3). Furthermore, we identified several novel nuclear
proximity partners of VAPB, consistent with the INM localiza-
tion of the protein. For this, usage of our nuclear version of
APEX2 was important as it favors the biotinylation of nuclear
proteins. Fig. 7 summarizes our findings and also indicates
some of the proteins that had previously been identified as
binding partners of VAPB. Altogether, RAPIDS is a versatile
method for the identification of proteins that are in close prox-
imity to a protein of interest. This modification of the classic
APEX approach should be applicable to proteins residing at
different subcellular localizations.

VAPB at the INM

To our knowledge, a nuclear localization of VAPB itself has
not been documented so far, except in a very recent publication
(30). Using our rapamycin-dependent dimerization assay as
well as immunoelectron microscopy, we now unequivocally

show that VAPB can indeed reach the INM and can also be
detected in close proximity to NPCs (Fig. 1). At this point, we
cannot say with certainty which percentage of the entire cellu-
lar pool of endogenous VAPB resides at the INM. In immuno-
fluorescence, the ratio of the nuclear envelope and the ER sig-
nals of VAPB is affected by the buffer conditions (Fig. 1A). In
immunoelectron microscopy (Fig. 1D), epitope masking is a
general issue and could affect nuclear and cytoplasmic immu-
noreactivity of VAPB differently. Hence, other, more quantita-
tive methods are required for an accurate determination of
VAPB levels at different localizations within the cell.

VAPB has been described as a protein that localizes to ER-
contact sites (2). Using RAPIDS under conditions that should
favor the identification of cytoplasmic binding/proximity part-
ners (i.e. with mCherry-FRB-VAPB and FKBP12-GFP-APEX2;
Figs. 2 and 3), we found many of the previously known interac-
tion partners of VAPB, including oxysterol-binding proteins,
PTPIP51, and ACBD5. Most of the identified proteins associate
with membranes, and many of them localize to the ER (see
Table S1), consistent with the major localization of mCherry-
FRB-VAPB. Nevertheless, we also identified emerin as a mainly
nuclear protein using this approach, in agreement with the
observation that mCherry-FRB-VAPB can reach the INM (Fig.
1C). A different picture emerged when we used FRB-VAPB
with an HA tag at the N-terminal end instead of an mCherry tag
and APEX2-dGFP-NLS-FKBP12 as a nuclear version of the
biotinylating enzyme (Fig. 4 and Table S2). Under this condi-
tion, we identified significantly more nuclear proteins, includ-
ing emerin and other membrane proteins of the INM, several
nucleoporins, and components of the nuclear lamina. This
result is consistent with the observation that the efficiency of
translocation of proteins from the outer to the inner nuclear
membrane inversely correlates with the size of the cytoplasmic/
nuclear region of the protein (43–47). Because the HA tag is
significantly smaller than the mCherry tag, a larger proportion
of the overexpressed protein is expected to reach the INM via
passive diffusion (45) where, upon rapamycin treatment, the
nuclear version of APEX2 can then initiate efficient biotinyla-
tion of neighboring proteins.

Importantly, interaction of endogenous VAPB or overex-
pressed VAPB with emerin and TMEM43 could be confirmed
by coimmunoprecipitation experiments where the novel bind-
ing partners behaved very similarly to the established binding
partners ACBD5 and OSBPL9 (Fig. 5). Interestingly, coprecipi-
tation of TMEM43 with emerin has been described previously
(36). For VAPB/emerin and VAPB/ELYS, we also confirmed a
close proximity in situ using PLAs (Fig. 6). For emerin, PLA
dots were largely restricted to the nuclear envelope, consistent
with the predominant localization of the protein. ELYS is a
nucleoporin that can also localize to the nuclear interior in
interphase cells (52) and plays a role in early steps of postmitotic
NPC assembly (56, 57). Hence, a role of VAPB in this process
could be envisaged. ELYS has previously been suggested to
interact directly with VAPB based on an FFAT-like motif in its
sequence (2, 10). In our PLAs, we also observed intranuclear
dots, suggesting that not only ELYS but also VAPB might reside
in the nucleoplasm. This seems counterintuitive because VAPB
is a membrane protein. Being a tail-anchored protein, however,
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a soluble pool of VAPB must exist, and a fraction could even
reach the nuclear interior. At this point, we can only speculate
about the functional significance of INM localization of VAPB.
VAPB has been implicated in the transport of emerin and
nucleoporins to the INM and the NPC, respectively (15).

In summary, our findings suggest that the interaction reper-
toire of VAPB is even larger than previously thought. VAPB not
only serves as a bridging factor at multiple contact sites of the
ER with mitochondria, peroxisomes, the Golgi apparatus, and
the plasma membrane, but also localizes to the INM where it
may contact several nucleoporins, integral membrane proteins,
and components of the nuclear lamina.

Experimental procedures

Plasmids

Standard procedures were used for cloning, and the obtained
constructs were confirmed by sequencing. To obtain pcDNA3-
FKBP12-GFP-APEX2, the FKBP12 coding sequence was
originally derived from pcDNA3-FKBP12 (27, 58) using prim-
ers G1562 and G1563 and cloned into pcDNA3-Connexin43-
GFP-APEX2 (Addgene plasmid 49385) through AflII and
BamHI, thereby replacing the Connexin43 coding sequence
(oligonucleotides are listed in Table S3). For APEX2-dGFP-
NLS-FKBP12, the APEX2 coding sequence was amplified by
PCR using pcDNA3-Connexin43-GFP-APEX2 as a template
and primers G1573 and G1571. The PCR product was cloned
into a pEGFP-C1 derivative encoding dGFP-cNLS-FKBP12
through BcuI. For pmCherry-FRB-VAPB, the VAPB coding
sequence was amplified by PCR using primers G1390 and
G1386 and pCAN-myc-VAPB (59) as a template. The PCR
product was cloned into a pmCherry-C1 derivative coding for
mCherry-FRB through KpnI and BamHI.

For pEF-HA-FRB-VAPB, the FRB coding sequence (as above)
from mCherry-FRB was first inserted into a modified pEF-HA vec-
tor (60) via NcoI and EcoRI, generating pEF-HA-FRB. The VAPB
coding sequence was amplified by PCR using primers G1512 and
G1511 and pCAN-myc-VAPB (59) as a template. The PCR prod-
uct was then inserted into pEF-HA-FRB plasmid through EcoRI
and SpeI. To obtain pEGFP-APEX2, APEX2 was amplified from
pcDNA3-FKBP12-GFP-APEX2 using primers G1854 and G1855
and cloned into pEGFP-C1 through EcoRI and BamHI. For
APEX2-VAPB, VAPB was amplified from pmCherry-FRB-VAPB
using primers G1512 and G1386 and cloned via EcoRI and BamHI
into pAPEX2-C1, which had been generated by exchanging the
mCherry sequence of pmCherry-C1 for that of APEX2.

Cell culture and transfection

HeLa P4 cells (61) were obtained from the National Institutes
of Health AIDS Reagent Program. Cells were cultivated in Dul-
becco’s modified Eagle’s medium (Life Technologies) supple-
mented with 10% (v/v) fetal bovine serum (Life Technologies),
100 units ml�1 penicillin, 100 �g ml�1 streptomycin, and 2 mM

L-glutamine (Life Technologies) under 5% CO2 at 37 °C. They
were tested regularly for contamination by Mycoplasma.

For SILAC, cells were grown in medium containing heavy or
light isotopes of arginine and lysine. For this purpose, Dulbec-
co’s modified Eagle’s medium (high glucose) lacking glutamine,
lysine, and arginine (Thermo Fisher Scientific, Waltham, MA)

was supplemented with 10% (v/v) dialyzed fetal bovine serum, 6
mM L-glutamine (Life Technologies), 100 units ml�1 penicillin,
and 100 �g ml�1 streptomycin. To obtain SILAC media with
heavy and light isotopes, either 0.4 mM L-[13C6,15N2]lysine
(Silantes, Munich, Germany) and 0.2 mM L-[13C6,15N4]arginine
(Silantes) or 0.4 mM L-[12C6,14N2]lysine (Sigma-Aldrich) and
0.2 mM L-[12C6,14N4]arginine (Sigma-Aldrich) were added,
respectively. To ensure sufficient incorporation of heavy amino
acids, cells were passaged five to seven times in SILAC medium
before the biotinylation experiment, and the incorporation rate
was confirmed to be �97% by MS.

Transfections were performed according to the calcium
phosphate method (62). Briefly, the respective plasmids were
mixed with 250 mM CaCl2. After the addition of the same
amount of HEPES buffer (50 mM HEPES, pH 6.98, 250 mM

NaCl, and 1.5 mM NaHPO4) and 20-min incubation at room
temperature, the mixture was added to the cells, which were
then grown as above.

siRNA-mediated knockdown of VAPB was carried out using
Lipofectamine RNAiMAX (Thermo Fisher Scientific) following
the manufacturer’s protocol. VAPB siRNA (GCUCUUGGC-
UCUGGUGGUUUU and AAAACCACCAGAGCCAAGAGC;
Sigma) and ON-Targetplus nontargeting siRNA (D-001810-01-
50, Dharmacon, Lafayette, CO) were used at a final concentration
of 100 nM.

Rapamycin-dependent biotinylation assay

HeLa P4 cells were grown in 10-cm dishes in SILAC medium
as described above. Two sets of cells (in light or heavy medium)
were transfected with pmCherry-FRB-VAPB and pcDNA3-
FKBP12-GFP-APEX2 or pEF-HA-FRB-VAPB and pAPEX2-
dGFP-NLS-FKBP12, using the same transfection mixture to
ensure similar expression levels, and grown to confluence. Cells
were then incubated for 30 min with 500 �M biotin-phenol (Iris
Biotech, Marktredwitz, Germany) with or without 200 nM ra-
pamycin (Sigma-Aldrich). For each experiment, forward and
reverse reactions were performed. For forward reactions, cells
grown in light SILAC medium were treated with rapamycin,
and cells grown in heavy SILAC medium were not. For reverse
reactions, this labeling scheme was switched. After incubation
with biotin-phenol and rapamycin, 1 mM H2O2 was added at
room temperature. After 1 min, the medium was aspirated, and
cells were washed twice with quenching buffer (5 mM Trolox,
10 mM NaN3, and 10 mM sodium ascorbate in PBS) and once
with PBS. Cells used for fluorescence microscopy were fixed
immediately.

For Western blotting and SILAC analyses, cells from each
dish were lysed with 1 ml of radioimmune precipitation assay
buffer (50 mM Tris, pH 7.4, 5 mM Trolox, 0.5% (w/v) sodium
deoxycholate, 150 mM NaCl, 0.1% (w/v) sodium dodecyl sulfate
(SDS), 1% (v/v) Triton X-100, 1 mM phenylmethanesulfonyl
fluoride, 10 mM NaN3, 10 mM sodium ascorbate, 1 �g ml�1

aprotinin, 1 �g ml�1 leupeptin, and 1 �g ml�1 pepstatin). The
cell lysate was incubated for 5 min on ice and centrifuged for 10
min at 16,000 	 g at 4 °C. The cleared cell lysate was used to
enrich biotinylated proteins with neutravidin beads (Thermo
Fisher Scientific). For MS, cell lysates derived from three 10-cm
dishes were pooled, the protein concentration of the cell lysates
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was determined using the Pierce 660 nm Protein Assay
(Thermo Fisher Scientific), and equal protein amounts of sam-
ples treated with or without rapamycin were mixed prior to
addition to neutravidin beads. For Western blotting analyses,
the samples were kept separately. For each forward or reverse
experiment, six batches of 130 �l of neutravidin beads were
incubated with 1 ml of cell lysate overnight at 4 °C on a rotor.
The beads were washed once with washing buffer 1 (50 mM

HEPES, pH 7.4, 0.1% (w/v) sodium deoxycholate, 1% (v/v) Tri-
ton X-100, 500 mM NaCl, and 1 mM EDTA), once with washing
buffer 2 (50 mM Tris, pH 8.0, 250 mM LiCl, 0.5% (v/v) Nonidet
P-40, 0.5% (w/v) sodium deoxycholate, and 1 mM EDTA), and
twice with washing buffer 3 (50 mM Tris, pH 7.4, and 50 mM

NaCl). For each washing step, the beads were incubated for 8
min at 4 °C on a rotor. After the last washing step, the buffer was
removed, and bound proteins were eluted from the beads by
incubation for 5 min at 95 °C with 90 �l of SDS sample buffer
(4% (w/v) SDS, 125 mM Tris, pH 6.8, 10% (v/v) glycerol, 0.02%
(v/v) bromphenol blue, and 10% (v/v) �-mercaptoethanol) sup-
plemented with 5 mM desthiobiotin (Sigma-Aldrich). To
increase the protein concentration, three batches of beads were
consecutively eluted in the same buffer.

Mass spectrometric analyses

Samples were separated on 4 –12% NuPAGE Novex Bis-Tris
minigels (Invitrogen). Gels were stained with Coomassie Blue,
and each lane was sliced into 11–12 equidistant bands. After
washing, gel slices were reduced with dithiothreitol (DTT),
alkylated with 2-iodoacetamide, and digested with trypsin
(sequencing grade; Promega, Madison, WI) overnight. The
resulting peptide mixtures were then extracted, dried in a
SpeedVac, reconstituted in 2% acetonitrile and 0.1% formic
acid (v/v), and analyzed by nano-LC-MS/MS on a hybrid qua-
drupole/orbitrap mass spectrometer (Q Exactive, Thermo
Fisher Scientific) as described previously (63). Raw data were
processed using MaxQuant software version 1.5.7.4 (Max
Planck Institute for Biochemistry, Martinsried, Germany). Pro-
teins were identified against the human reference proteome
(v2017.02, 92,927 protein entries) along with a set of common
lab contaminants. The search was performed with trypsin
(excluding proline-proximal cleavage sites) as enzyme and
iodoacetamide as cysteine blocking agent. Up to two missed
tryptic cleavages were allowed as well as methionine oxidation
and protein N-terminal acetylation variable modifications.
Instrument type “Orbitrap” was selected to adjust for MS acqui-
sition specifics. Following an initial internal recalibration, this
translated into an MS mass tolerance of 4.5 ppm and an MS/MS
mass tolerance of 20 ppm. Protein and peptide results lists were
thresholded at false discovery rates of 0.01 using a forward-and-
reverse decoy database approach. The arginine R10 and lysine
K8 labels including the “Re-quantify” option were specified for
relative protein quantitation. Perseus software version 1.5.6.0
(Max Planck Institute for Biochemistry, Martinsried, Germany)
was used for statistical evaluation of relative protein quantita-
tion values from the MaxQuant software results, and a two-
sided significance B test (64) was performed using normalized
log2 ratios. For the analysis, a Benjamini–Hochberg correction
was applied, and a threshold value of 0.05 was chosen. Mass

spectrometry experiments were performed twice, each with
two biological and two technical replicates.

Data availability

The MS proteomics data have been deposited to the Pro-
teomeXchange Consortium via the PRIDE (65) partner repos-
itory with the data set identifier PXD012157.

Western blotting analyses

Western blotting was performed according to standard
methods using HRP-coupled secondary antibodies. To detect
biotinylated proteins, they were separated by SDS-PAGE using
4 –12% NuPAGE Novex Bis-Tris minigels. After transfer to
nitrocellulose, the membranes were incubated in blocking
buffer (3% bovine serum albumin (BSA) in TBS-T (24.8 mM

Tris, pH 7.4, 137 mM NaCl, 2.7 mM KCl, and 1% (v/v) Tween
20)) overnight at 4 °C. Incubation with streptavidin-HRP (Jack-
son ImmunoResearch Laboratories, West Grove, PA; diluted
1:5,000 –1:40,000 in blocking buffer) for 1 h at room tempera-
ture was followed by three washing steps with TBS-T. For
detection of proteins, Immobilon Western Chemiluminescent
HRP Substrate (Millipore, Burlington, MA) and a luminescence
image analyzer (LAS-3000, Fuji, Tokyo, Japan) were used. Sig-
nal intensities were measured using Image Studio Lite (version
5.2). Two-way analysis of variance followed by Bonferroni post-
test was used for statistical analysis, and a confidence interval of
95% was set. Primary and secondary antibodies are listed in
Table S4.

Immunofluorescence and microscopy

For fluorescence microscopy, cells were grown on coverslips
and fixed with 4% (v/v) paraformaldehyde. Cells expressing
fluorescently labeled proteins were mounted directly with
Mowiol supplemented with 1 �g/ml DAPI. For immunofluo-
rescence, fixed cells were permeabilized with 0.5% (v/v) Triton
X-100 in PBS for 5 min at room temperature and blocked with
3% (w/v) BSA in PBS for 20 min at room temperature. Staining
was performed for 1 h at room temperature using appropriate
primary antibodies and fluorescently labeled secondary anti-
bodies (Table S4), which were diluted in 3% BSA in PBS. After-
wards, cells were embedded in Mowiol–DAPI. Microscopic
analysis was performed using an LSM510 confocal laser-scan-
ning microscope using a 63	/1.4 oil immersion lens (Zeiss,
Oberkochen, Germany).

EM

For immunoelectron microscopy, HeLa cells were fixed with
2% paraformaldehyde and 0.2% glutaraldehyde in PHEM buffer
(60 mM Pipes, 25 mM HEPES, 2 mM MgCl2, and 10 mM EGTA,
pH 6.9) for 1 h, washed with PHEM buffer, and scraped off.
Cells were pelleted (200 	 g for 2 min), resuspended in
0.1% glycine in PBS, pelleted (400 	 g for 2 min), resuspended in
0.1% glycine in PBS (15 min), pelleted (400 	 g for 2 min),
resuspended in 1% gelatin (Dr. Oetker) at 37 °C for 10 min,
pelleted (400 	 g for 2 min), resuspended in 10% gelatin for 10
min at 37 °C, and then replaced on ice. Pellets were immersed in
15% polyvinylpyrrolidone (10 kDa; Sigma) and 1.7 M sucrose in
PBS overnight, then mounted and frozen in liquid nitrogen, and
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sectioned on a cryo-ultramicrotome (Leica UC6 with FC6).
Cryosections were thawed and placed at 37 °C, washed in 0.1%
BSA (Sigma) in PBS and then in 1% BSA in PBS for 3 min
followed by overnight incubation with undiluted primary anti-
body (mouse anti-VAPB mouse, Proteintech), washed in PBS,
incubated with 10-nm colloidal gold–anti-mouse antibody
(BBI Solutions). Grids were washed in PBS, transferred to 1%
glutaraldehyde in PBS (5 min), washed in H2O, and embedded
in 2% methyl cellulose containing 0.4% uranyl acetate (Agar
Scientific). Imaging was done using a Hitachi H7600 transmis-
sion electron microscope at 100 kV.

Cross-linking and coimmunoprecipitation

2 	 106 Hela P4 cells/10-cm dish were transfected with plas-
mids coding for HA-FRB-VAPB or HA-FRB. After 24 h, the
cells were washed twice with cold PBS containing 0.1 mM CaCl2
and 1 mM MgCl2 and incubated with DSP (Thermo Scientific)
at a final concentration of 1 mM in DMSO for 2 h on ice. For
control reactions, DMSO alone was used. DSP was quenched by
the addition of 20 mM Tris-HCl, pH 7.4, for 15 min. The cells
were then washed twice with cold PBS and lysed with 1 ml of
lysis buffer (0.5% sodium deoxycholate, 50 mM Tris-HCl, pH
7.4, 150 mM NaCl, 0.25% SDS, and 0.5% Triton X-100 with
Complete protease inhibitor mixture (Roche Applied Science))
for 30 min on ice. To reduce viscosity, the lysate was passed
through a 27-gauge 	 3⁄4-inch needle and then centrifuged at
15,000 	 g for 20 min at 4 °C. For immunoprecipitation, 25 �l
of anti-HA–agarose beads (Sigma A2095) were washed with
washing buffer (10 mM HEPES, 150 mM NaCl, 1 mM EGTA, 0.1
mM MgCl2, 0.1% Triton X-100, and Complete protease inhibi-
tor mixture). The lysate from 24 	 106 cells was added to the
beads and rotated for 3 h at 4 °C. The beads were then washed
four times with washing buffer, and proteins were eluted with
sample buffer containing 50 mM DTT. For immunoprecipita-
tion of endogenous protein complexes, 4 �g of rabbit anti-
VAPB, or IgG as a control were immobilized on 40 �l of Protein
A–Sepharose 4 Fast Flow beads (GE Healthcare) for 3 h and
incubated with lysates from 24 	 106 cells that had or had not
been subjected to cross-linking as described above.

PLA

HeLa cells were seeded at a density of 40,000 cells/well in
24-well plates. After 48 h, cells were fixed with 4% paraformal-
dehyde and permeabilized with 0.05% (v/v) Triton X-100. PLAs
were performed using the Duolink In Situ PLA kit (DUO 9200,
Sigma-Aldrich). Cells were blocked and incubated with mouse
anti-VAPB and rabbit anti-emerin, rabbit anti-ELYS, rabbit
anti-ACBD5, or rabbit anti-OSBPL9, respectively (see Table S4
for antibodies). After ligation and amplification using the cor-
responding PLA probes, the cells were counterstained for
VAPB and mounted using Duolink mounting medium with
DAPI. Images were acquired on an LSM510 confocal laser-
scanning microscope using a 63	/1.4 oil immersion lens. 450
cells over three independent experiments were analyzed for
PLA interaction using CellProfiler 2.2 (66). One-way analysis of
variance followed by Bonferroni post-test was used for statisti-
cal analysis, and a confidence interval of 95% was set.
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