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Abstract 13 

In the span of a decade we have seen a rapid progress in the application of genetic tools and genome editing 14 
approaches in “non-model” insects. It is now possible to target sensory receptor genes and neurons, explore 15 
their functional roles and manipulate behavioral responses in these insects. In this review, we focus on the latest 16 
examples from Diptera, Lepidoptera and Hymenoptera of how applications of genetic tools advanced our 17 
understanding of diverse behavioral phenomena. We further discuss genetic methods that could be applied to 18 
study insect behavior in the future.    19 
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Introduction 20 

Insects are the most numerous and diverse animal taxa on the planet. They have evolved different adaptations 21 
in sensory function and neural circuitry towards performing basic behavioral tasks such as finding mates, food 22 
and oviposition sites [1]. The availability of advanced genetic tools in Drosophila melanogaster has allowed us 23 
to perform sophisticated genetic experiments to investigate everything from gene expression to brain and 24 
behavior.  The vinegar fly is a wonderful model for investigating odor- and light-directed locomotion and 25 
courtship, but offers little insight into pollination, phyto- or haemotophagy and eusociality. From the perspective 26 
of meeting the global challenges of the 21st century D. melanogaster fails as it is neither a crop pest nor a 27 
disease vector and we are only beginning to understand its natural behaviors [2]. Paradoxically, only limited 28 
genetic tools are employed for insects with better studied behavior in their ecological context [3]. The 29 
application of genetic techniques in non-drosophilids is often directed by pioneering D. melanogaster studies 30 
that have uncovered phenotypes for candidate homologous gene targets. However, while a genetic tool can 31 
often be successfully ported between species (e.g. fluorescent markers [4], gene editing [5,6] or transgene 32 
binary expression systems [7–9]), the behavioral outcome of targeting homologous genes is less predictable 33 
and needs to be studied on species-by-species basis [e.g. 10–13]. 34 

A number of recent studies have employed gene silencing or editing in Diptera, Lepidoptera, Hymenoptera, 35 
Orthoptera, Hemiptera, Coleoptera and Blattodea (Table 1, Box 1) in order to understand their behaviors. The 36 
majority of these studies focused on olfaction, reflecting its importance for insect fitness and survival, and the 37 
multi-sensory nature of many natural behaviors. These advances herald exciting times in studying the genetic 38 
basis of insect behaviors, with increased focus on the organism itself and reduced focus on its use as a genetic 39 
model. Here we review the latest progress in the use of genetic tools in behavioral studies, taking a closer look 40 
at insect-plant interaction, social behaviors, human host-seeking and oviposition. We also highlight studies that 41 
can potentially help decipher the neuronal basis of behavior.  42 
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Box 1. Overview of genetic methods 43 

RNA-interference (RNAi) 44 

The technique of suppressing gene transcription through the application of RNA-interference (RNAi) was first 45 
described in 1998 in the nematode Caenorhabditis elegans [14]. Since its discovery, this technique has been 46 
widely used in insects [15–20] to silence genes of interest by exogenous or endogenous delivery of double-47 
stranded RNA (dsRNA) or small interfering RNA (siRNA). In target cells, dsRNA is cleaved to siRNA by the Dicer 48 
enzyme and is incorporated into the RNA-induced silencing complex (RISC) to direct degradation of 49 
complementary endogenous mRNA of the targeted gene. The flexibility of this technique is partially attributed 50 
to the fact that only the sequence of the gene, and not that of its chromosomal location or regulatory untranslated 51 
regions, is required to design dsRNAs. However, the technique is susceptible to variable or no results depending 52 
on insect species, gene, tissue, and method of delivery [16,21,22]. Yet, the ability to reduce (knock-down) and 53 
not completely ablate (knock-out) the function of a targeted gene at different stages of development permits 54 
the analysis of early regulators of sensory behaviors that are also essential for overall survival. Multiple methods 55 
of delivery, such as injections at any developmental stage, feeding, transgenic expression and soaking (Fig. 1), 56 
enable manipulation of insect behaviors in laboratory and the field for research or pest control purposes. 57 
Interestingly, pre-blastoderm embryo injections of mRNA has been successfully applied as a forward genetics 58 
approach to upregulate gene expression to study sex determination in mosquitoes [23]. 59 

Directed mutagenesis by ZFNs, TALENs and CRISPR/Cas9 60 

Reverse genetics is central to associating genes with a biological function.  Classic methods of altering genomic 61 
DNA using X-rays to induce chromosomal breakage in situ revolutionized our ability to associate a particular 62 
genomic locus with a behavior [24].  Later,  genome sequencing helped map these loci to specific genes and, 63 
most recently, gene function was explored through targeted mutagenesis. Targeting a particular gene of interest 64 
became feasible for non-model organisms with the help of Zinc-finger nucleases (ZFNs) [25,26] and Transcription 65 
activator-like effector nucleases (TALENS) [27]. However, costs and time associated with engineering these 66 
proteins prevented a quick adoption of these methods. The discovery of CRISPR/Cas9 system, the part of the 67 
bacterial adaptive immune system [5,6,28], permits a fairly quick and inexpensive mechanism for the targeted 68 
modification of DNA with the ability to generate deletions from a single base pair to hundreds of kilobase pairs 69 
[29]. It is currently the fastest and most effective method of genome editing in diverse organisms from bacteria 70 
to human [30]. The application of the technique requires a source of Cas9 protein and the custom-designed 71 
guide-RNAs (sgRNAs) that are complimentary to the gene of interest. The sgRNAs bind the Cas9 and deliver it 72 
to the desired location in the genome. Cas9 induces a double-stranded break that is naturally repaired either 73 
through non-homologous end joining (NHEJ) or homology-directed repair (HDR) mechanism. The latter mechanism 74 
allows researchers to design specific DNA homology templates surrounding the repair site, adding elements 75 
such as transgenes to be incorporated into the target site. In most cases, components of the CRISPR/Cas9 system 76 
(Cas9, sgRNAs and a DNA homology template) are injected into a pre-blastoderm embryo. To overcome high 77 
costs and workload, and embryo lethality associated with injection, new methods of delivery directly into a 78 
gravid female are now being developed [31,32].  79 
Since its introduction as a gene editing tool in 2012, CRISPR/Cas9 system has advanced research in many insect 80 
species, including flies [33–38], sandflies [39], mosquitoes [40–43], moths [13,44–47], butterflies [48,49], 81 
crickets [50], locusts [51], planthoppers [52], honeybees [53,54], wasps [55], ants [11,12], beetles [56], aphids 82 
[57] and psyllid bugs [31]. 83 

Transposon Mutagenesis 84 

The workhorse of Drosophila melanogaster genetics is the P-element [58].  The P-element is a sequence of 85 
nucleotides recognized by a transposase found in wild Drosophila and applicable for insertion based 86 
mutagenesis in lab strains of D. melanogaster. These transposable elements allow researchers to insert genes 87 
and gene reporters into the germ line of the vinegar fly driving research in reverse and forward genetics.  88 
However, the p-element is narrowly applicable to other insect species.  The piggyBac transposable element 89 
was discovered in the cabbage looper moth, Trichoplusia ni [59,60] and has been applied broadly to 90 
generate random insertions of transgenes in non-model insects [61]. 91 

  92 
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Insect-plant interaction 93 
 94 
Insects and plants have co-evolved for approximately 400 million years and many insects rely on the sensory 95 
perception of plant cues to elicit quick and adaptive behaviors [62]. Plants are also not passive in these 96 
interactions, exemplified by the diversity of flower colors or plant odors driven by the selectivity of their 97 
pollinators or voraciousness of their pest.  98 

The crepuscular hawkmoth Manduca sexta uses both visual and olfactory cues to locate its host plant, the Western 99 
Jimsonweed, Datura wrightii [3,13], which produces a relatively large, white upright trumpet flower with a strong 100 
odor bouquet. Mediating the detection of this floral bouquet are a subset of diversely evolved insect 101 
chemosensory receptors, one group of which is encoded by the odorant receptor (OR) genes. The ORs form 102 
ligand-gated cation channels with a highly-conserved insect co-receptor ORCO [10,63], and determine the 103 
channel’s odorant-binding specificity. The ORCO gene is thus necessary for proper function of most olfactory 104 
sensory neurons in an insect. Mutating ORCO provides a means of shutting down a large portion of the olfactory 105 
system and evaluating its importance in behaviors in insects (Table 1).  Recently, CRISPR/Cas9 was used to 106 
generate an ORCO knock-out (KO) in M. sexta [13]. Wind tunnel experiments on ORCO mutants demonstrated 107 
that while the nectar-filled and fragrant flower provides a strong visual cue, ORCO-dependent olfaction is 108 
needed to complete the sensory behavior of hovering, unfurling the proboscis, and feeding [13]. Interestingly, 109 
ORCO-independent sensory processes, such as vision, perception of humidity, and CO2 do not compensate for 110 
the innate behavior involved in seeking out the Datura flower (Fig 2A). This study also investigated the role of 111 
ORCO in hawkmoth plant-seeking for oviposition. The hawkmoth caterpillar is an herbivore and Datura is a 112 
preferred food source, often to the detriment of the plant. A gravid female hawkmoth evaluates a suitable host 113 
plant via olfactory cues from plant leaves [64], and this host-seeking behavior is significantly disrupted in ORCO 114 
mutants. However, a number of gravid ORCO-mutant M. sexta were still able to locate their host [13], implying 115 
that other ORCO-independent olfactory cues may direct this host plant seeking behavior. Thus, the hierarchy of 116 
sensory cues and the mode of their integration may vary in multi-sensory behaviors and can only be understood 117 
by testing a reverse genetic phenotype in a semi-natural environment. Further implementation of genetic 118 
methods, e.g. live imaging of neuronal responses as done in mosquitoes [65,66], could help us understand the 119 
gene-specific representation of sensory cues in an insect’s brain. 120 

Contact chemoreception mediated by gustatory receptors (GRs) is important for oviposition in many insects, 121 
especially in Lepidotpera [67]. Female swallowtail butterflies Papilio xuthus evaluate the suitability of a 122 
substrate while drumming their front legs against the leaves of their Rutacea (citrus) plant host. Synephrine, a 123 
citrus plant alkaloid, induces a physiological response in the female tarsi [68].  Gustatory receptor PxutGR01 124 
was found to be expressed only in females and respond to synephrine when heterologously expressed in an 125 
insect cell line [67]. An injection of dsRNA in the pupae downregulated the PxutGR01 transcript and 126 
physiological response to synephrine was reduced in the tarsi of adults.  While there was no change in the 127 
drumming activity, the oviposition behavior in response to synephrine was reduced in the knock-down individuals, 128 
demonstrating that this GR is responsible for the evaluation of synephrine. Laying eggs on the right plant is 129 
important since caterpillars need to overcome the plant’s defense mechanisms and feed the moment they hatch, 130 
and not all leaves provide adequate nutrients to support growth and development. The peripheral sensory 131 
system mediating this choice has been studied further in the monophagous silkworm, Bombyx mori. This moth is 132 
cultivated for its silk cocoons and has been a Lepidopteran model for the development of genetic tools [69]. 133 
Additionally, many behaviorally abnormal strains of B. mori have been cultivated and their genetic loci 134 
characterized.  The silkworm feeds exclusively on the leaves of the common mulberry plant and a specific 135 
cultivated strain was found to have an abnormal food preference. A putative bitter sensing gustatory receptor 136 
BmorGr66 was identified within the mapped genetic loci of the abnormal strain [70]. The application of 137 
CRISPR/Cas9 to mutate the BmorGr66 led to the silkworm accepting foods like fruits and grains in addition to 138 
mulberry leaves [70]. Electrophysiological analyses of the mutants did not reveal any general sweet or bitter 139 
contact chemoreception deficit; the ligand for mulberry leaf preference remains to be identified. CRISPR/Cas9 140 
mutation of ORCO in B.mori silkworms also determined that OR-related olfaction was important for feeding 141 
behaviors; the ORCO-mutants had trouble localizing the mulberry leaves in a test arena [71]. These studies 142 
highlight the importance of single sensory receptors for complex phenomena like foraging preference. 143 
Identification of genes like BmorGr66 may further instruct genetic pest control strategies. 144 

 145 



5 
 

Social interactions 146 
 147 
Eusocial insects live in complex societies and interact with each other in fascinating ways to maintain social 148 
integrity [72,73]. However, understanding the genetic basis of these sensory behaviors has been hindered by 149 
the lack of genetic tools, which are particularly difficult to establish when only very few female individuals 150 
reproduce sexually, and generation times often span many months. Moreover, these females often have to be 151 
isolated to start new colonies. Genetic crossing and outcrossing routines are thus difficult to achieve in eusocial 152 
insects in a laboratory setting.  153 

Pheromones play a crucial role in regulating social behaviors in eusocial Hymenoptera like ant communities. 154 
Antennal olfactory neurons respond to conspecific cuticular hydrocarbons in Camponotus floridanus ants [74], 155 
and ORCO-dependent receptors of the ponerine ant Harpegnathos saltator respond to its cuticular 156 
hydrocarbons and pheromones when ectopically expressed in Drosophila [75]. Recent studies have taken the 157 
next step in genetic characterization of the role of olfaction for intraspecific communications of two species of 158 
ants, using CRISPR/Cas9 for the first time in eusocial insects to mutate the ORCO gene [11,12]. Workers of 159 
Harpegnathos saltator present a unique advantage that facilitates a genetic modification – all workers of this 160 
species normally mate, and can take over the queen’s place after the queen dies or is removed from the colony 161 
[11]. The unmated workers may thus lay haploid eggs that develop into males, or the workers may be allowed 162 
to mate and lay diploid eggs that produce females. Another ant species, the clonal raider ant Ooceraea biroi 163 
was selected for these experiments because it reproduces asexually via parthenogenesis, thus overcoming the 164 
obstacles related to difficult genetic crosses [12]. In addition, these ants are blind, which simplifies analysis of 165 
their behaviors in response to multisensory cues.  166 

ORCO mutant individuals of two species showed deficiencies in olfactory response to pheromones and other 167 
volatiles, and abnormal social behaviors (Fig 2B). For instance, the ORCO-mutant O. biroi could not detect and 168 
follow the pheromone trail to their nest, spending a significant amount of time wandering.  Additionally, a 169 
permanent Sharpie marker line drawn on a surface often deters wild type ants from approaching the line, 170 
however, the ORCO-mutants were not repelled and often crossed these lines [12]. Both studies also reported a 171 
surprising defect in olfactory neurodevelopment. The ORCO-mutants exhibited a dramatic reduction of olfactory 172 
receptor neurons in the antennae [12] and the number of glomeruli in their antennal lobe. Interestingly, ORCO 173 
mutation leads to no visible changes in the brain of Drosophila [10], and only minor reduction in the relative 174 
volume of pheromone-specific glomeruli in M. sexta [13]. These results reveal that olfactory neurodevelopment 175 
in the ant is largely dependent on the presence of functional ORCO, and raise intriguing questions about the 176 
role of ORCO and other olfactory genes in neurodevelopment of other insects. 177 

Within the ant colony necrophoric behavior, the removal of dead individuals from the nest by workers, is an 178 
important innate behavior that is triggered by olfactory cues from dead individuals [76]. A study on the red 179 
fire ant Solenopsis invicta showed that a chemosensory protein gene Si-CSP1, which is highly expressed in the 180 
antenna of workers, is involved in detecting volatile oleic and linoleic acids from dead nestmates and in 181 
regulating the necrophoric behavior of S. invicta workers. The behavior was suppressed by RNAi through 182 
feeding with siRNA mixed into sugar water [77], demonstrating that siRNA feeding is a feasible method of 183 
genetic intervention in red fire ants, and could even be a means of population control. 184 

Attempts are currently underway to introduce genetic tools into another eusocial insect, the honeybee.  185 
CRISPR/Cas9-mediated genetic editing of the major royal jelly protein 1 (MRJP1) gene and a mushroom-body-186 
specific protein mKast were successful (as verified by genotyping) in honeybees but did not affect the normal 187 
development of drones [53,54]. These studies pave way for generating genome-edited honeybee workers for 188 
investigating their neurodevelopment, innate and learnt behaviors. This work is especially exciting given the 189 
economic importance of honeybees as pollinators and the long history of learning and memory studies on 190 
honeybees. 191 

 192 
Human host-seeking 193 
 194 

Insects are vectors of malaria, Zika, Dengue, yellow fever, Chagas and other lethal diseases. Female mosquitoes 195 
(Fig 2C) and triatomine bugs [78] target their human and animal hosts in order to obtain a blood meal and 196 
develop their eggs. Zinc-finger nucleases (ZFNs) were used to mutagenize the ORCO [25] and CO2 co-receptor 197 
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GR3 [26] of Aedes aegypti mosquitoes. The mutations impaired the mosquitoes’ ability to detect components of 198 
human body odor and CO2, but still left them able to find humans. Mosquitoes with a CRISPR/Cas9-generated 199 
mutation for ionotropic olfactory co-receptor, IR8a, were impaired in their ability to respond to acidic odorants 200 
that are components of human sweat [79]. This mutation also significantly reduced attraction of female 201 
mosquitoes to a human arm. The attraction was reduced further, but not abolished, in mosquitoes carrying two 202 
mutations, IR8a+ORCO or IR8a+GR3 indicating that other cues outside chemosensation mediate attraction to 203 
humans. One of these cues is human body heat. For example, mutation in Aedes TRPA1 gene affects the 204 
mosquitoes’ preference for human body temperature (40 °C) and avoidance of warmer objects (50-55 °C) 205 
[80]. These studies have highlighted the multisensory and additive nature of sensory cues mosquitoes employ in 206 
finding humans (summarized in [81]), drawing certain parallels with plant host-seeking in hawkmoths.  207 

Interestingly, female Aedes aegypti mosquitoes discontinue host-seeking for four days after a blood meal, and 208 
resume after the eggs have been laid. A recent study has discovered that human neuro-peptide Y (NPY) Y2 209 
receptor agonists efficiently target the Aedes NPY-like receptor 7 (NPYLR7), suppressing mosquito attraction to 210 
humans [82]. NPY antagonists had the opposite effect, leading to increased host-seeking. Mosquitoes that 211 
carried a CRISPR/Cas9-induced mutation in NPYLR7 resumed host-seeking only one day after the blood meal, 212 
in contrast to four days in wild-type mosquitoes. A drug screen, conducted on wild-type and NPYLR7-mutant 213 
mosquitoes, identified six NPYLR7-specific agonists that suppress mosquito attraction to humans. These findings 214 
suggest an exciting new pathway for behavioral analysis of mosquitoes and the potential for vector disease 215 
control by deploying mosquito drug feeders.  216 

The neuronal circuits that underlie mosquito host-seeking are currently unknown. Thus the next step is to 217 
investigate how multimodal sensory stimuli and systemic signals are processed in the mosquito brain. First steps 218 
in this direction have been taken in Anopheles gambiae [83,84] and Aedes aegypti [85] by employing the 219 
fluorescent calcium indicator GCaMP to image live neuronal responses from the peripheral organs and the brain 220 
of mosquitoes. The same approach has been taken to study Aedes oviposition choices [65,66]. 221 

 222 

Oviposition 223 
 224 

Drosophila neuroscience heavily relies on transgenic lines, and in particular on three orthogonal binary 225 
expression systems (reviewed in [86]). Reporter transgenes are especially useful for labelling neurons, 226 
monitoring or manipulating their functional responses. Generating transgenic lines in other insects has, until 227 
recently, been hampered by the need to identify and clone out the native enhancer and promoter region for 228 
the gene of interest (although see [83,85,87,88]). The advance of CRISPR/Cas9 has removed this requirement, 229 
and now allows us to introduce a transgene, with a T2A or a similar linker, immediately into or after the coding 230 
sequence of a gene [89]. By using live Ca2+ imaging of genetically encoded activity indicators, we can now 231 
investigate the neuronal basis of the observed behavioral phenotypes. This method has been elegantly used to 232 
study oviposition choices in Aedes aegypti [65,66] (Fig 2D). Gravid mosquito females lay their eggs in or near 233 
water sources, because their larvae and pupae are aquatic. Female Aedes, mutant for the pickpocket cation 234 
channel subunit gene ppk30, lay fewer eggs and fail to avoid water with high salinity that is harmful for their 235 
larvae [66]. Live Ca2+ imaging of ventral nerve cord that is innervated by ppk301 expressing neurons from the 236 
mosquito legs, has shown that these neurons responds both to water and to NaCl, implying that there must be a 237 
parallel neuronal pathway that prevents oviposition in salty water in wild-type Aedes. Live Ca2+ imaging from 238 
the Aedes antennal lobe has been used to observe sparse neuronal responses to geosmin, an oviposition 239 
attractant [65]. The preference for geosmin has been abolished in ORCO mutant mosquitoes, indicating that, as 240 
in Drosophila, geosmin binds an ORCO-dependent receptor. Drosophila, however, find geosmin repulsive [90] 241 
and avoid it in oviposition and other assays. 242 

 243 

In summary, these latest studies have shed light on general principles that guide insect behavior. Not surprisingly, 244 
complex behaviors such as host-seeking and oviposition in moth and mosquitoes are controlled by multisensory 245 
cues. The relative importance of these cues is different for different behaviors, and depends on the internal 246 
state of the animal (fed, hungry, host-seeking, etc). Mutations of the highly conserved ORCO gene in different 247 
species lead to strikingly different developmental and behavioral consequences, highlighting the necessity of 248 
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an era of comparative genetic studies. These are also instrumental for the development of pest and disease 249 
vector control strategies.  250 

 251 

Outlook 252 

CRISPR/Cas9 provides a unique opportunity to use gene editing to study the molecular and neuronal basis of 253 
insect behavior, ranging from sensory perception to memory formation and retrieval [50,91]. Either mutating a 254 
gene of interest or simultaneously introducing transgenes into precisely defined locations with CRISPR/Cas9 255 
would permit the functional re-programming of neurons. The successful use of transgenes to monitor neuronal 256 
responses in mosquitoes will be undoubtedly followed by similar studies in other non-model insect organisms. 257 
Work on Drosophila has developed multiple methods for activating or silencing neurons by ectopic expression 258 
of sensory receptors or ion channels [86,92]. These techniques are now being adapted to other insects [e.g. 93], 259 
promising us greater understanding of the neural basis of insect behaviors.  260 

Gene knockouts deliver a unique opportunity for observing the comparative evolution of gene function. For 261 
example, the ORCO gene knock out has been generated in 8  species (Table 1).  ORCO is a highly conserved 262 
gene with putative chaperone function and forms functional co-receptors with the highly diverse ORs. OR gene 263 
numbers range from 10 to > 300 across species and are tuned to diverse natural ligands [1,94]. The Orco KO 264 
has consistently demonstrated disrupted neurophysiological responses to a range of odorants and pheromones. 265 
However, insect OR-mediated behaviors distinctively integrate with other sensory modalities (Fig 2).  For 266 
instance, copulation behaviors continue to occur in ORCO KO D. melanogaster, presumably through the flexible 267 
multi-sensory nature of their mating cues. On the other hand, the strict OR-mediated perception of pheromones 268 
is critical for copulation behaviors in some Lepidoptera [13,47]. A more striking example involves the role of 269 
ORCO in neurodevelopment, where the loss of ORCO leads to dramatic reduction and loss of olfactory glomeruli 270 
and olfactory sensory projections from the antennae, indicating a developmental role for ORCO via an unknown 271 
mechanism in ants [11,12]. The application of genetic techniques to other genes and their respective homologues 272 
will no doubt advance our understanding of many novel biological phenomena based on expanding 273 
comparative observations. 274 

However, care should be taken in understanding certain unforeseen effects of current gene editing techniques. 275 
CRISPR-Cas9 may introduce unintended mutations beyond the targeted genes and in silico methods of off-276 
target detection are often unverified in current non-model organisms. These off-target effects may provide 277 
misleading information for behavioral phenotypes or disrupt other factors involved in fitness or fecundity. 278 
Especially when a genetic rescue lines are not feasible, techniques in testing off-target effects in vivo should be 279 
considered. Research is quickly advancing in the development of rapid and accurate techniques applying 280 
methods in next generation sequencing to identify sites that go through the natural cellular nucleotide repair 281 
mechanism after CRISPR application, providing a reliable and un-biased method of off-target detection in any 282 
organism [95,96].  283 

Advances in genetic techniques in other insect species will also have practical implications in pest management 284 
of major crop and disease vectors. For example, new methods of RNAi delivery now allow applications of it in 285 
field conditions for crop protection [17,19]. Additionally, a combination of CRISPR/Cas9 and RNAi can lead to 286 
the generation of more insects susceptible to RNAi transcript downregulation. Releases of sterile [97] or 287 
bacteria-carrying [98] mosquitoes have been adopted as methods to limit mosquito population. Gene-drive 288 
technology now allows us to propagate various genetic modifications and transgenes throughout an insect 289 
population [41]. These modifications do not need to eliminate an insect population, but may also rely on 290 
manipulating insect behavior, e.g. to divert them from economically important crops or from ourselves. Ultimately 291 
the application of these techniques and the observations gained from different insects may provide the 292 
conceptual framework to better address these challenges.   293 
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Figures 301 

Figure 1. Ways to deliver RNAi in insects.  302 

A. Soaking. Immersion in dsRNA solution against a detoxification enzyme gene has been successfully used in 303 
adult fleas [99]. The fleas were incubated at 4C, which excludes active ingestion of dsRNAs. 304 

B. Feeding. RNAi feeding has been applied in e.g. larval mosquitoes [100–103] and Tribolium [104], triatomine 305 
bug nymphs [105], caterpillars [106], ants [76] and aphids [104,107]. dsRNA may be mixed directly into food 306 
[76,104], or presented in the form of nanoparticles [100,101] that slow down the degradation of dsRNA. 307 
Bacteria [102] and yeast [103] have been genetically engineered to produce siRNA. Finally, plants may be 308 
genetically modified to produce siRNA or sprayed with dsRNA against insect genes [107].  309 

C. Injections. Injection of dsRNA or siRNA is the most common laboratory delivery method. Injections may be 310 
given at any of an insect’s life stages (e.g. embryos [23,108], larvae [109–111], pupae [91,112–114], adults 311 
[115,116]). While labor-intensive, this method normally provides the highest efficiency of gene silencing, with 312 
the caveat that giving the injection may impair an animal’s survival. 313 

D. Transgenes. Transgenic expression of dsRNA is most commonly used in Drosophila, where thousands of UAS-314 
RNAi lines have been established, and may now be used by simple genetic crosses with a driver line of interest. 315 
The same transgenic approach is feasible in other insects, but the need to create a stable transgenic line has so 316 
far prevented its implementation. 317 

 318 

Figure 2. Insect behaviors, studied with genetic tools.  319 

A. Insect-plant interactions. Flowers provide visual and olfactory cues (odor bouquet, relative humidity and 320 
CO2), while the leaves of the plant also provide olfactory and gustatory cues for adult female butterflies and 321 
moths, and their caterpillars. ORCO-mutant Manduca sexta moths are impaired in their foraging behaviors [13] 322 
(left). Caterpillars choose their food based on its taste. Bombyx mori caterpillars with mutated GR66 receptor 323 
expanded their food preference from mulberry leaves to fruit and grains [70] (right). 324 

B. Social behaviors. Social behaviors of ants heavily rely on olfactory perception of pheromones. Recent studies 325 
have shown that ORCO-mutant ants are seriously impaired in their social interactions, indicating that ORCO-326 
dependent olfactory receptor neurons are necessary for pheromone perception [11,12]. 327 

C. Human host-seeking. Female mosquitoes, as moths, integrate multiple sensory cues to find their human host. 328 
Mutations in ORCO [25], GR3 [26] and IR8a [79] receptors that detect human body odors, CO2 and acidic 329 
components of human sweat respectively, have significantly reduced the ability of Aedes aegypti to find humans.  330 

D. Oviposition. Female mosquitoes lay their eggs in or near water, and their larvae and pupae develop in 331 
water. Thus, oviposition sites need to be carefully selected by the females. Two recent studies have found that 332 
Aedes aegypti mosquitoes prefer to lay their eggs in geosmin-scented water [65], and tend to avoid salty water 333 
[66]. Neurons that respond to salt and water were found in the mosquitoes’ legs, and geosmin-sensing neurons 334 
– in the antennae. 335 

  336 
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Table 1. Applications of genetic methods to study behavior (non-exhaustive list) 

Order Species Method Target Phenotype Refer
ence 

Diptera Aedes 
aegypti 

chitosan-siRNA 
nanoparticle 
feeding 

SEMA1a Impaired larval light avoidance due to 
improper targeting of photoreceptor 
neurons 

[100] 

Aedes 
aegypti 

chitosan-siRNA 
nanoparticle 
feeding 

SEMA1a Impaired larval yeast attraction due to 
improper targeting of olfactory neurons 

[101] 

Aedes 
aegypti 

CRISPR/Cas9; 
RNAi injection 

DOP1 Impaired olfactory learning [91] 

Aedes 
aegypti 

ZFN 
 

ORCO Loss of OR-mediated olfaction. Disrupted 
host localization 

[25] 

Aedes 
aegypti 

ZFN GR3 Impaired CO2 detection and host 
localization 

[26] 

Aedes 
aegypti 

ZFN TRPA1 Impaired avoidance of high temperatures  [80] 

Aedes 
aegypti 

CRISPR/Cas9 PPK301 
(also 304, 
216, 306) 

Impaired oviposition decisions in response 
to salty water 

[66] 

Aedes 
aegypti 

CRISPR/Cas9 NPYLR7 Abnormal host-seeking after a recent blood 
meal 

[82] 

Aedes 
aegypti 

CRISPR/Cas9 IR8a Impaired detection of lactic acid and host 
localization 

[79] 

Aedes 
aegypti 

GCaMP 
imaging 

ORCO, Ubi-
GCamp6s 

Olfactory responses to geosmin observed 
in vivo. Demonstration that geosmin is 
oviposition attractant. 

[65] 

Aedes 
aegypti 

GCaMP 
imaging 

Ubi-
GCamp6s 

In vivo recordings from antennal and optic 
lobes, evidence of visual - olfactory 
integration. 

[117] 

Anopheles 
gambiae 

RNAi injection OR7, 
OR40, 
IR76b 

Impaired larval olfactory behavior [109] 

Anopheles 
gambiae 

RNAi injection TRPA1 Impaired larval thermotaxis [110] 

Culex 
quinquefasci
atus 

RNAi injection OR37, 
OR99 

Impaired oviposition preference for 4-
ethylphenol 

[113] 

Lepidopt
era 

Spodoptera 
littoralis 

CRISPR/Cas9 ORCO Disrupted antennal function towards plant 
host and pheromone volatiles. Disrupted 
mating. 

[47] 

Spodoptera 
exigua 

RNAi injection Se-uv, Se-
bl, Se-lw 

Phototaxis towards green light [118] 

Manduca 
sexta 

CRISPR/Cas9 ORCO Disrupted plant host localization and 
foraging behaviors. Disrupted mating 

[13] 
 

Ostrinia 
furnacalis 

TALEN ORCO Ablated pheromone response [119] 
 

Bombyx 
mori 

CRISPR/Cas9 GR66 Feeding assay used to determine a 
gustatory receptor involved in the deterring 
generalist feeding behavior 

[70] 
 

Bombyx 
mori 

CRISPR/Cas9 ORCO Pheromone detection [71] 

Papilio 
xuthus 

RNAi PxutGr01 Tarsal contact chemosensation of plant host 
compounds 

[68] 
 



Helicoverpa 
armigera 

RNAi injection Sex 
peptide 
receptor 

Oviposition and ovary development [120] 

Danaus 
plexipus 

ZFN, TALENs, 
CRISPR/Cas9 

CRY2, CLK Group eclosion behavior [49,1
21] 

Heliconius 
melpomene, 
Heliconius 
cydno 

QTL analysis  Mating preference [122] 

Hymeno
ptera 

Ooceraea 
biroi 

CRISPR/Cas9 ORCO Deficiencies in social behavior and fitness. 
Disrupted antennal lobe development 

[12] 

Harpegnath
os saltator 

CRISPR/Cas9 ORCO Deficiencies in social behavior and fitness. 
Disrupted antennal lobe development 

[11] 

Solenopsis 
invicta 

RNAi feeding Si-CSP1 Chemosensory protein, involved in 
necrophoric behavior 

[76] 

Nasonia 
vitripennis 

Genetic 
crosses, RNAi, 
hybrids, QTL 
analysis 

NV10127-
29  

Production and perception of male sex 
pheromone components 

[123] 
 

 Nasonia 
vitripennis 

Hybrids, 
genotyping 

 Egg-laying preference [124] 

Orthopte
ra 

Locusta 
migratoria 

CRISPR/Cas9 ORCO Olfactory response to conspecifics [51] 
 

Locusta 
migratoria 

RNAi injection CSP3, TO1 Olfactory response to conspecifics [125] 
 

Gryllus 
bimaculatus 

CRISPR/Cas9 DOP1 Appetitive and aversive olfactory learning [50] 

Gryllus 
bimaculatus 

RNAi injection OA1, 
DOP1, 
DOP2 

Appetitive and aversive learning [126] 

Coleopte
ra 

Tribolium 
castaneum 

RNAi injection TRP 
channels 

Motor behaviors based on anatomical 
defects of hind leg folding; tonic 
immobilization 

[127] 

Tribolium 
castaneum 

RNAi injection TcTβH Mobility [128] 

Tribolium 
castaneum 

RNAi injection TRPA1 Thermotaxis [129] 

Tenebrio 
molitor 

RNAi injection ORCO Impaired mate recognition [130] 

Hemipte
ra 

Rhodnius 
prolixus 

RNAi injection ORCO Impaired host localization, ecdysis, survival, 
oviposition rate and blood ingestion 

[78] 

Nilaparvata 
lugens 

RNAi injection CSP8 Decreased olfactory attraction [131] 

Laodelphax 
striatellus 

RNAi feeding ORCO Olfactory host-seeking [132] 

Blattode
a 

Periplaneta 
americana, 
Blattella 
germanica 

RNAi injection CRY1, 
CRY2, 
TIMELESS 

Responses to magnetic field 
 

[133] 

Periplaneta 
americana 

RNAi  
injection 

Opsins 
Trp 
Channels 

Electrophysiological characterization of 
phototransduction 

[134] 

 

 



 

 



 


