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SEMIPARAMETRICALLY POINT-OPTIMAL HYBRID RANK TESTS
FOR UNIT ROOTS
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Hong Kong University of Science and Technology∗ and Tilburg University†

We propose a new class of unit root tests that exploits invariance prop-
erties in the Locally Asymptotically Brownian Functional limit experiment
associated to the unit root model. The invariance structures naturally sug-
gest tests that are based on the ranks of the increments of the observations,
their average and an assumed reference density for the innovations. The tests
are semiparametric in the sense that they are valid, that is, have the correct
(asymptotic) size, irrespective of the true innovation density. For a correctly
specified reference density, our test is point-optimal and nearly efficient. For
arbitrary reference densities, we establish a Chernoff–Savage-type result, that
is, our test performs as well as commonly used tests under Gaussian innova-
tions but has improved power under other, for example, fat-tailed or skewed,
innovation distributions. To avoid nonparametric estimation, we propose a
simplified version of our test that exhibits the same asymptotic properties,
except for the Chernoff–Savage result that we are only able to demonstrate
by means of simulations.

1. Introduction. The monographs of Patterson (2011, 2012) and Choi (2015)
provide an overview of the literature on unit roots tests. This literature traces back
to White (1958) and includes seminal papers as Dickey and Fuller (1979, 1981),
Phillips (1987), Phillips and Perron (1988) and Elliott, Rothenberg and Stock
(1996). The present paper fits into the stream of literature that focuses on “op-
timal” testing for unit roots. Important earlier contributions here are Dufour and
King (1991), Saikkonen and Luukkonen (1993) and Elliott, Rothenberg and Stock
(1996). The latter paper derives the asymptotic power envelope for unit root testing
in models with Gaussian innovations. Rothenberg and Stock (1997) and Jansson
(2008) consider the non-Gaussian case.

The present paper considers testing for unit roots in a semiparametric setting.
Following earlier literature, we focus on a simple AR(1) model driven by possibly
serially correlated errors. The innovations driving these serially correlated errors
are i.i.d., whose distribution is considered a nuisance parameter. Apart from some
smoothness and the existence of relevant moments, no assumptions are imposed
on this distribution. From earlier work it is known that the unit root model leads to
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Locally Asymptotically Brownian Functional (LABF) limit experiments (in the Le
Cam sense; see Jeganathan (1995)). As a consequence, no uniformly most pow-
erful test exists (even in case the innovation distribution would be known); see
also Elliott, Rothenberg and Stock (1996). In the semiparametric case, the limit
experiment becomes more difficult due to the infinite-dimensional nuisance pa-
rameter. Jansson (2008) derives the semiparametric power envelope by mimicking
ideas that hold for Locally Asymptotically Normal (LAN) models. However, the
proposed test needs a nonparametric score function estimator which complicates
its implementation. The point-optimal tests proposed in the present paper only re-
quire nonparametric estimation of a real-valued cross-information factor and we
also provide a simplified version that avoids any nonparametric estimation.

The main contribution of this manuscript is twofold. First, we derive the semi-
parametric power envelopes of unit root tests with serially correlated errors for two
cases: symmetric or possibly nonsymmetric innovation distributions (Section 3).
Our method of derivation is novel and exploits the invariance structures embed-
ded in the semiparametric unit root model. To be precise, we use a “structural”
description of the LABF limit experiment (Section 3.2), obtained from Girsanov’s
theorem. This limit experiment corresponds to observing an infinitely-dimensional
Ornstein–Uhlenbeck process (on the time interval [0,1]). The unknown innovation
density in the semiparametric unit root model takes the form of an unknown drift
parameter in this limit experiment. Within the limit experiment, Section 3.3 de-
rives the maximal invariant, that is, a reduction of the data which is invariant with
respect to the nuisance parameters (i.e., the unknown drift in the limiting Ornstein–
Uhlenbeck experiment). It turns out that this maximal invariant takes a rather sim-
ple form: all processes associated to density perturbations have to be replaced by
their associated bridges (i.e., consider W(s) − sW(1) for the process W(s) with
s ∈ [0,1]). The power envelopes for invariant tests in the limit experiment then
readily follow from the Neyman–Pearson lemma. An application of the Asymp-
totic Representation Theorem (see, e.g., Theorem 15.1 in van der Vaart (1998))
subsequently yields the local asymptotic power envelope (Theorem 3.3). In case
the innovation density is known to be symmetric, the semiparametric power enve-
lope coincides with the parametric power envelope. This implies the existence of
an adaptive testing procedure (see also Jansson (2008)). Moreover, we note that
our analysis of invariance structures in the LABF experiment is also of indepen-
dent interest and could, for example, be exploited in the analysis of optimal in-
ference for cointegration or predictive regression models. Also, the analysis gives
an alternative interpretation of the test proposed in Elliott, Rothenberg and Stock
(1996)—the ERS test—as this test is also based on an invariant, though not the
maximal one (see Remark 3.3).

As a second contribution, we provide two new classes of easy-to-implement
unit root tests that are semiparametrically optimal in the sense that their asymp-
totic power curves are tangent to the associated semiparametric power envelopes
(Section 4.1). The form of the maximal invariant developed before suggests how
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to construct such tests based on the ranks/signed-ranks (depending on whether the
innovation density is known to be symmetric or not) of the increments of the ob-
servations, the average of these increments, and an assumed reference density g.
These tests are semiparametric in the sense that the reference density need not
equal the true innovation density, while they are still valid (i.e., provide the correct
asymptotic size). The reference density is not restricted to be Gaussian, which it
generally needs to be in more classical QMLE results. When the reference density
is correctly specified (i.e., g happens to be equal to the true density f ), the asymp-
totic power curve of our test is tangent to the semiparametric power envelope, and
this in turn gives the optimality property. A feasible version of the oracle test using
g = f is obtained by using a nonparametrically estimated density f̂ , of which the
corresponding simulation results are provided in Section 5.

In relation to the classical literature on efficient rank-based testing (for instance,
Hájek and Šidák (1967), Hallin and Puri (1988) and Hallin, van den Akker and
Werker (2011)) our approach can be interpreted as follows. In the aforementioned
papers, the invariance arguments (i.e., using the ranks of the innovations) are ap-
plied in the sequence of models at hand. We, on the other hand, only apply the
invariance arguments in the limit experiment. In this way, we can extend these
ideas to non-LAN experiments. For the LAN case, both approaches would effec-
tively lead to the same results. Our tests, despite the absence of a LAN structure,
satisfy a Chernoff and Savage (1958)-type result (Corollary 4.1): for any reference
density our test outperforms, at any true density, its classical counterpart which,
in this case, is the ERS test. We provide, in Section 4.2, even simpler alternative
classes of tests that require no nonparametric estimations at all. These (simplified)
classes of tests coincide with their corresponding originals for correctly specified
reference density and, hence, share the same optimality properties. In case of mis-
specified reference density, the alternative classes still seem to enjoy the Chernoff–
Savage-type property, though only for a Gaussian reference density. This is in line
with some traditional Chernoff–Savage results for Locally Asymptotically Normal
models.

The remainder of this paper is organized as follows. Section 2 introduces the
model assumptions and some notation. Next, Section 3 contains the analysis of the
limit experiment. In particular, we study invariance properties in the limit exper-
iment leading to our new derivation of the semiparametric power envelopes. The
classes of hybrid rank tests we propose are introduced in Section 4. Section 5 pro-
vides the results of a Monte Carlo study and Section 6 contains a discussion of
possible extensions of our results. All proofs are organized in the Supplementary
Material (Zhou, van den Akker and Werker (2019)).

2. The model. Consider observations Y1, . . . , YT generated from the classical
component specification, for t ∈ Z+,

Yt = μ + Xt,(2.1)
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Xt = ρXt−1 + vt ,(2.2)

�(L)vt = εt ,(2.3)

where v0 = v−1 = · · · = v1−p = 0, the innovations {εt } form an i.i.d. sequence
defined for t ∈ Z with density f , and �(L) is the AR(p) lag polynomial. Moreover,
it is assumed that Y0 = μ. We impose the following assumptions on this innovation
density.

ASSUMPTION 1. (a) The density f is absolutely continuous with a.e. deriva-
tive f ′, that is, for all a < b we have

f (b) − f (a) =
∫ b

a
f ′(e)de.

(b) Ef [εt ] = ∫
ef (e)de = 0 and σ 2

f = Varf [εt ] < ∞.
(c) The standardized Fisher-information for location,

Jf = σ 2
f

∫
φ2

f (e)f (e)de,

where φf (e) = −(f ′/f )(e) is the location score, is finite.
(d) The density f is positive, that is, f > 0.

The imposed smoothness on f is mild and standard (see, e.g., Le Cam (1986),
van der Vaart (1998)). The finite variance assumption (b) is important to our
asymptotic results as it is essential to the weak convergence, to a Brownian mo-
tion, of the partial-sum process generated by the innovations.1 The zero intercept
assumption in (b) excludes a deterministic trend in the model. Such a trend leads
to an entirely different asymptotic analysis, see Hallin, van den Akker and Werker
(2011). The Fisher information Jf in (c) has been standardized by premultiplying
with the variance σ 2

f , so that it becomes scale invariant (i.e., invariant with respect
to σf ). In other words, Jf only depends on the shape of the density f and not on
its variance σ 2

f . The positivity of the density f in (d) is mainly made for notational
convenience.

The assumption on the initial condition, v0 = v−1 = · · · = v1−p = 0, is less
innocent then it may appear. Indeed, it is known, see Müller and Elliott (2003)
and Elliott and Müller (2006), that even asymptotically, the initial condition can
contain nonnegligible statistical information. Nevertheless, it is still stronger than

1Let us already mention that, although not allowed for in our theoretical results, we will also
assess the finite-sample performances of the proposed tests (Section 5) for innovation distributions
with infinite variance. For tests specifically developed for such cases, we refer to Hasan (2001), Ahn,
Fotopoulos and He (2001) and Callegari, Cappuccio and Lubian (2003).
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necessary for the sake of simplicity, and it can be relaxed to the level of generality
in Elliott, Rothenberg and Stock (1996).

Let F denote the set of densities satisfying Assumption 1. We also investigate
in the present paper the special case of symmetric densities. For that purpose, we
denote by FS the set of densities which satisfy Assumption 1 and, at the same time,
are symmetric about zero. Of course, it follows FS ⊂ F.

With respect to the autocorrelation structure �(L), we impose the following
assumption.

ASSUMPTION 2. The lag polynomial �(z) := 1−�1z−· · ·−�pzp is of finite
order p ∈ Z+ and satisfies min|z|∈C:|z|≤1 |�(z)| > 0.

Let G ⊂ R
p denote the set of (�1, . . . ,�p)′ such that the induced lag poly-

nomial satisfies Assumption 2. For mathematical convenience, we restrict the lag
polynomial to be of finite order p. One may expect many of the results in the
present paper to extend to the case p = ∞ (see, e.g., Jeganathan (1997)).

The main goal of this paper is to develop tests, with optimality features, for the
semiparametric unit root hypothesis

H0 : ρ = 1 (μ ∈ R,� ∈G, f ∈ F) vs.

Ha : ρ < 1 (μ ∈ R,� ∈ G, f ∈ F),

that is, apart from Assumptions 1, no further structure is imposed on f , the inter-
cept μ and the autocorrelation structure �(L).

In the following section, we derive the (asymptotic) power envelope of tests that
are (locally and asymptotically) invariant with respect to the nuisance parameters
μ, � and f . We consider both the nonsymmetric (f ∈ F) and the symmetric case
(f ∈ FS). Section 4 is subsequently devoted to tests, depending on a reference
density g that can be freely chosen, that are point optimal with respect to this
power envelope and proves a Chernoff–Savage type result.

3. The power envelope for invariant tests. This section first introduces some
notations and preliminaries (Section 3.1). Afterwards, we will derive the limit ex-
periment (in the Le Cam sense) corresponding to the component unit root model
(2.1)–(2.3) and provide a “structural” representation of this limit experiment (Sec-
tion 3.2). In Section 3.3, we discuss, exploiting this structural representation, a nat-
ural invariance restriction, to be imposed on tests for the unit root hypothesis with
respect to the infinite-dimensional nuisance parameter associated to the innovation
density. We derive the maximal invariant and obtain from this the power envelope
for invariant tests in the limit experiment. At last, in Section 3.4, we exploit the
Asymptotic Representation Theorem to translate these results to obtain (asymptot-
ically) optimal invariant test in the sequence of unit root models. Again we con-
sider both the case of unrestricted densities f ∈ F and that of symmetric densities
f ∈ FS.
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3.1. Preliminaries. We first introduce local reparameterizations for the pa-
rameter of interest ρ and the nuisance autocorrelation structure �(L). Then we
discuss a convenient parametrization of perturbations to the innovation density f

which we use to deal with the semiparametric nature of the testing problem. These
perturbations follow the standard approach of local alternatives in (semiparamet-
ric) models commonly used in experiments that are Locally Asymptotically Nor-
mal (LAN). We will see that, with respect to all parameters but ρ, the model is
actually LAN; compare also Remark 3.1 below. Moreover, we introduce some
partial sum processes that we need in the sequel, as well as their Brownian limits.

Local reparameterizations of ρ and �(L). It is well known, and goes back
to Phillips (1987), Chan and Wei (1988) and Phillips and Perron (1988), that the
contiguity rate for the unit root testing problem, that is, the fastest convergence rate
at which it is possible to distinguish (with non-trivial power) the unit root ρ = 1
from a stationary alternative ρ < 1, is given by T −1. Therefore, in order to compare
performances of tests with this proper rate of convergence, we reparametrize the
autoregression parameter ρ into its local-to-unity form, that is,

(3.1) ρ = ρ
(T )
h = 1 + h

T
.

The appropriate local reparameterization for the lag polynomial �(L) is of a
traditional form with rate

√
T , that is,

�(T )
γ (L) = �(L) + γ (L)√

T
,(3.2)

where the local perturbation γ is defined by γ (L) := −γ1L−· · ·−γpLp with local

parameter γ := (γ1, . . . , γp)′ ∈ R
p . As G is open, �

(T )
γ ∈ G for T large enough.

Perturbations to the innovation density. To describe the local perturbations to
the density f , we need the separable Hilbert space

L0,f
2 = L0,f

2 (R,B) =
{
b ∈ Lf

2 (R,B)
∣∣∣ ∫ b(e)f (e)de = 0,

∫
eb(e)f (e)de = 0

}
,

where Lf
2 (R,B) denotes the space of Lebesgue-measurable functions b : R → R

satisfying
∫

b2(e)f (e)de < ∞. Because of the separability, there exists a count-
able orthonormal basis bk , k ∈ N, of L0,f

2 (see, e.g., Rudin (1987), Theorem 3.14).
This basis can be chosen such that bk ∈ C2,b(R), for all k, that is, each bk

is bounded and two times continuously differentiable with bounded derivatives.
Moreover, Ef bk(ε) = 0 and Varf bk(ε) = 1. Hence each function b ∈ L0,f

2 can
be written as b =∑∞

k=1 ηkbk , for some η := (ηk)k∈N ∈ 	2 = {(xk)k∈N|∑∞
k=1 x2

k <
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∞}. Besides the sequence space 	2 we also need the sequence space c00 which is
defined as the set of sequences with finite support, that is,

c00 =
{
(xk)k∈N ∈ R

N
∣∣∣ ∞∑
k=1

1{xk 
= 0} < ∞
}
.

Of course, c00 is a dense subspace of 	2. Given the orthonormal basis bk and
η ∈ c00, we introduce the following perturbation to the density f :

f (T )
η (e) = f (e)

(
1 + 1√

T

∞∑
k=1

ηkbk(e)

)
, e ∈ R.(3.3)

The rate T −1/2 is already indicative of the standard LAN behavior of the nuisance
parameter f as will formally follow from Proposition 3.2 below.

For the symmetric case, we can assume that the perturbations bk , k ∈ N, are also
symmetric about zero.

The following proposition shows that the perturbations, both for the nonsym-
metric and for the symmetric case, are valid in the sense that they satisfy the
conditions on the innovation density that we imposed throughout on the model
(Assumption 1). The proof is organized in the Supplementary Material (Zhou, van
den Akker and Werker (2019)).

PROPOSITION 3.1. Let f ∈ F and suppose η ∈ c00. Then there exists T ′ ∈ N

such that for all T ≥ T ′ we have f
(T )
η ∈ F. If we further restrict f ∈ FS and bk is

chosen symmetric about zero for k ∈ N, then there exists T ′′ ∈ N such that for all
T ≥ T ′′ we have f

(T )
η ∈ FS.

REMARK 3.1. In semiparametric statistics, one typically parametrizes pertur-
bations to a density by a so-called “nonparametric” score function h ∈ L0,f

2 , that
is, the perturbation takes the form f (e)k(T −1/2h(e))) ≈ f (e)(1 + T −1/2h(e)) for
a suitable function k; see, for example, Bickel et al. (1998) for details. By using
the basis bk , k ∈ N, we instead tackle all such perturbations simultaneously via the
infinite-dimensional nuisance parameter η. Of course, one would need to use 	2
as parameter space to “generate” all score functions h. We instead restrict to c00
which ensures (3.3) to be a density (for large T ). For our purposes this restriction
will be without cost. Intuitively, this is since c00 is a dense subspace of 	2 (so if a
property is “sufficiently continuous” one only needs to establish it on c00 because
it extends to the closure).

Partial sum processes. To describe the limit experiment in Section 3.2, we
introduce some partial sum processes and their limits. These results are fairly clas-
sical but, for completeness, precise statements are organized in Lemma A.1 in the
Supplementary Material (Zhou, van den Akker and Werker (2019)).
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Define, for s ∈ [0,1], the partial sum processes

W(T )
ε (s) = 1√

T

sT �∑
t=p+2

�(L)
Yt

σf

,

W
(T )
φf

(s) = 1√
T

sT �∑
t=p+2

σf φf

(
�(L)
Yt

)
,

W
(T )
� (s) = 1√

T

sT �∑
t=p+2

(
Yt−1, . . . ,
Yt−p)′φf

(
�(L)
Yt

) ∈ R
p,

W
(T )
bk

(s) = 1√
T

sT �∑
t=p+2

bk

(
�(L)
Yt

)
, k ∈N.

Note that we pick the starting point of the sums at t = p + 2, so that these partial
sum processes are (maximally) invariant with respect to the intercept μ (otherwise,
e.g., for t = p + 1, the term �(L)
Yt contains 
Y1 = Y1 − μ).

Using Assumption 1 we find, under the null hypothesis, joint weak convergence
of observation processes W

(T )
ε , W

(T )
φf

, W
(T )
� and W

(T )
bk

to Brownian motions that

we denote by Wε , Wφf
, W� and Wbk

, respectively.2 These limiting Brownian mo-
tions are defined on a probability space (�,F,P0,0,0). Let us already mention that
we will introduce a collection of probability measures Ph,γ,η, on (�,F), repre-
senting the limit experiment, in Section 3.2. We use the notational convention that
probability measures related to the limit experiment (i.e., to the “W-processes”)
are denoted by P, while probability measures related to the finite-sample unit root
model, that is, observing Y1, . . . , YT , will be denoted by P(T ).

We remark that integrals like
∫ 1

0 W
(T )
ε (s−)dW

(T )
φf

(s) can be shown to converge
weakly, under the null hypothesis, to the associated stochastic integral with the
limiting Brownian motions, that is, to

∫ 1
0 Wε(s)dWφf

(s). Weak convergence of in-

tegrals like
∫ 1

0 (W
(T )
ε (s−))2 ds follows from an application of the continuous map-

ping theorem. Again, details can be found in the proof of Proposition 3.2 in the
Supplementary Material (Zhou, van den Akker and Werker (2019)).

Behavior of Wε , Wφf
, W� and Wbk

under P0,0,0 when f ∈ F. As ε and bk(ε)

are orthogonal for each k, it holds that Wε and Wbk
, k ∈ N, are all mutually inde-

pendent. Moreover, we have

Var0,0,0
[
Wε(1)

]= 1 and Var0,0,0
[
Wbk

(1)
]= 1.

2All weak convergences in this paper are in product spaces of D[0,1] with the uniform topology.
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As φf (ε) is the score of the location model, it is well known (see, e.g., Bickel
et al. (1998)) that we have (under Assumption 1) Ef [φf (ε)] = 0 and Ef [εφf (ε)] =
1. Consequently, for f ∈ F, again because ε and bk(ε) are orthogonal for each k,
we can decompose

σf φf (ε) = σ−1
f ε +

∞∑
k=1

Jf,kbk(ε)(3.4)

with coefficients Jf,k := σf Ef [bk(ε)φf (ε)]. This establishes

Wφf
= Wε +

∞∑
k=1

Jf,kWbk
.(3.5)

Moreover, we have, for k ∈ N,

Cov0,0,0
[
Wφf

(1),Wε(1)
]= 1, Cov0,0,0

[
Wφf

(1),Wbk
(1)
]= Jf,k(3.6)

and

Var0,0,0
[
Wφf

(1)
]= Jf = 1 +

∞∑
k=1

J 2
f,k.(3.7)

As for W� : since, under the null, (
Yt−1, . . . ,
Yt−p)′ is independent of the
innovation εt and E0,0,0[
Yt−i] = 0, i = 1, . . . , p, it follows

Cov0,0,0
[
W�(1),Wε(1)

]= 0, Cov0,0,0
[
W�(1),Wφf

(1)
]= 0,(3.8)

and

Cov0,0,0
[
W�(1),Wbk

(1)
]= 0, k ∈ N.(3.9)

We define the covariance matrix of W�(1) as

Var0,0,0
[
W�(1)

]= �� ∈ R
p×p(3.10)

with

��i,j := Jf Ef

[
�(L)−1εt−i�(L)−1εt−j

]
, i, j = 1, . . . , p.

Behavior of Wε , Wφf
, W� and Wbk

under P0,0,0 when f ∈ FS. In this case,
the density function f (ε) is an even function and so are the perturbation functions
bk(ε), k ∈ N. The score φf (ε) is now an odd function. Therefore, φf (ε) cannot be
decomposed by ε and bk(ε) anymore as in (3.4) and (3.5). Instead of (3.7) we now
have

Jf,k = σf Ef

[
bk(ε)φf (ε)

]= 0

for all f ∈ FS and k ∈ N. All the other results mentioned above still hold.
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3.2. A structural representation of the limit experiment. The results in the pre-
vious section are needed to study the asymptotic behavior of log-likelihood ratios.
These in turn determine the limit experiment, which we use to study asymptoti-
cally optimal procedures invariant with respect to the nuisance parameters. Thus,
fix μ ∈ R, � ∈ G and f ∈ F. Let, for h ∈ R, γ ∈ Rp and η ∈ c00, P(T )

h,γ,η;μ,�,f

denote the law of Y1, . . . , YT under (2.1)–(2.3) with parameter ρ given by (3.1),
�

(T )
γ (L) given by (3.2), and innovation density (3.3). The following proposition

shows that the semiparametric unit root model is of the Locally Asymptotically
Brownian Functional (LABF) type introduced in Jeganathan (1995).

PROPOSITION 3.2. Let μ ∈ R, � ∈ G, f ∈ F, h ∈ R, γ ∈R
p and η ∈ c00. Let


 denote differencing, that is, 
Yt = Yt − Yt−1.

(i) Then we have, under P(T )
0,0,0;μ,�,f ,

log
dP(T )

h,γ,η;μ,�,f

dP(T )
0,0,0;μ,�,f

=
T∑

t=1

log
f

(T )
η

(
�

(T )
γ (L)

(

Yt − h

T
(Yt−1 − μ)

))
f (�(L)
Yt)

= h

(T )
f + γ ′
(T )

� +
∞∑

k=1

ηk

(T )
bk

− 1

2
I(T )(h, γ, η) + oP (1),

where the central-sequence 
(T ) = (

(T )
f ,


(T )
� ,


(T )
b ), with 


(T )
b = (


(T )
bk

)k∈N,
is given by



(T )
f = 1

T

T∑
t=p+2

�(L)(Yt−1 − Y1)φf

(
�(L)
Yt

)
,



(T )
� = 1√

T

T∑
t=p+2

(
Yt−1, . . . ,
Yt−p)′φf

(
�(L)
Yt

)
,



(T )
bk

= 1√
T

T∑
t=p+2

bk

(
�(L)
Yt

)
, k ∈ N

and

I(T )(h, γ, η) = h2Jf

1

T 2

T∑
t=p+2

(�(L)(Yt−1 − Y1))
2

σ 2
f

+ γ ′��γ + ‖η‖2
2

+ 2h
1

T 3/2

T∑
t=p+2

�(L)(Yt−1 − Y1)

σf

∞∑
k=1

ηkJf,k.



SEMIPARAMETRICALLY OPTIMAL UNIT ROOT TESTS 2611

(ii) Moreover, with 
f = ∫ 1
0 Wε(s)dWφf

(s), 
� = W�(1) and 
bk
= Wbk

(1),

k ∈N, we have, still under P(T )
0,0,0;μ,�,f and as T → ∞,

dP(T )
h,γ,η;μ,�,f

dP(T )
0,0,0;μ,�,f

⇒ exp

(
h
f + γ ′
� +

∞∑
k=1

ηk
bk
− 1

2
I(h, γ, η)

)
,(3.11)

where

I(h, γ, η) = h2Jf

∫ 1

0

(
Wε(s)

)2 ds + γ ′��γ + ‖η‖2
2

+ 2h

∫ 1

0
Wε(s)ds

∞∑
k=1

ηkJf,k.

(iii) For all h ∈ R, γ ∈ R
p and η ∈ c00 the right-hand side of (3.11) has unit

expectation under P0,0,0.

Of course, Proposition 3.2 still holds for f ∈ FS; in that case we have Jf,k = 0.
The proof of (i) follows by an application of Proposition 1 in Hallin, van den Akker
and Werker (2015) which provides generally applicable sufficient conditions for
the quadratic expansion of log likelihood ratios. Of course, part (ii) is not surprising
and follows using the weak convergence of the partial sum processes to Brownian
motions (and integrals involving the partial sum processes to stochastic integrals)
discussed above. Finally, part (iii) follows by verifying the Novikov condition.
For the sake of completeness, detailed proofs are organized in the Supplementary
Material (Zhou, van den Akker and Werker (2019)).

Part (iii) of the proposition implies that we can introduce, for h ∈ R, γ ∈ R
p

and η ∈ c00, new probability measures Ph,γ,η on the measurable space (�,F)

(on which the processes Wε , Wφf
, W� and Wbk

were defined) by their Radon–
Nikodym derivatives with respect to P0,0,0:

dPh,γ,η

dP0,0,0
= exp

(
h
f + γ ′
� +

∞∑
k=1

ηk
bk
− 1

2
I(h, γ, η)

)
.

Proposition 3.2 then implies that the sequence of (local) unit root experiments
(each T ∈ N yields an experiment) weakly converges (in the Le Cam sense) to the
experiment described by the probability measures Ph,γ,η. Formally, we define the
sequence of experiments of interest by

E (T )(μ,�,f ) = (
R

T ,B
(
R

T ), (P(T )
h,γ,η;μ,�,f |h ∈ R, γ ∈ R

p, η ∈ c00
))

for T ∈ N, and the limit experiment by, with BC the Borel σ -field on C[0,1],
E(f ) = (

C[0,1] × C[0,1] × Cp[0,1] × CN[0,1],
BC ⊗BC ⊗ (⊗pBC

)⊗ (⊗∞
k=1BC

)
,
(
Ph,γ,η|h ∈R, γ ∈ R

p, η ∈ c00
))

.

Note that the latter experiment indeed depends on f as the measure Ph,γ,η depends
on f .
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COROLLARY 3.1. Let μ ∈ R, � ∈ G and f ∈ F. Then the sequence of experi-
ments E (T )(μ,�,f ), T ∈ N, converges to the experiment E(f ) as T → ∞.

The Asymptotic Representation Theorem (see, e.g., Chapter 9 in van der Vaart
(1998)) implies that for any statistic AT which converges in distribution to the
law Lh,γ,η, under P(T )

h,γ,η;μ,�,f , there exists a (possibly randomized) statistic A,
defined on E(f ), such that the law of A under Ph,γ,η is given by Lh,γ,η. This
allows us to study (asymptotically) optimal inference: the “best” procedure in the
limit experiment also yields a bound for the sequence of experiments. If one is
able to construct a statistic (for the sequence) that attains this bound, it follows
that the bound is sharp and the statistic is called (asymptotically) optimal. This
is precisely what we do: Section 3.3 establishes the bound and in Section 4 we
introduce statistics attaining it.

To obtain more insight in the limit experiment E(f ), the following proposition,
which follows by a direct application of Girsanov’s theorem, provides a “struc-
tural” description of the limit experiment.

PROPOSITION 3.3. Let h ∈ R, γ ∈ R
p , η ∈ c00, and f ∈ F. The processes

Zε , Zφf
, Z� and Zbk

, k ∈ N, defined by the starting values Zε(0) = Zφf
(0) =

Zbk
(0) = 0, Z�(0) = 0p and the stochastic differential equations, for s ∈ [0,1],

dZε(s) = dWε(s) − hWε(s)ds,

dZφf
(s) = dWφf

(s) − hJf Wε(s)ds −∑
k

ηkJf,k ds,

dZ�(s) = dW�(s) − γ ds,

dZbk
(s) = dWbk

(s) − hJf,kWε(s)ds − ηk ds, k ∈ N,

are zero-drift Brownian motions under Ph,γ,η. Their joint law is that of (Wε,Wφf
,

W�, (Wbk
)k∈N) under P0,0,0.

For the case f ∈ FS, Proposition 3.3 still applies with Jf,k = 0. Moreover, for

this case, we denote by E (T )
S

(f ) the associated sequence of experiments and by
ES(f ) the associated limit experiment.

REMARK 3.2. Part (i) and (ii) Proposition 3.2 show that the parameter μ van-
ishes in the limit. More explicitly, in the proof of this proposition, we replace μ in
the likelihood ratio term by Y1 and then show that the difference term is oP (1). On
the other hand, one could also “localize” the parameter μ as μ = μ

(T )
d = μ0 + d

(with rate T 0 = 1) as in Jansson (2008). As shown in that paper, the term associated
to the parameter d does not change with T and is independent of the other terms of
the likelihood ratio. By the additively separable structure, we can treat the param-
eter μ “as if” it is known. In either way, inference for ρ would be invariant with
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respect to μ in the limit. Analogously, in the finite-sample experiment E (T )(f ),
μ is eliminated (automatically) by using the increments 
Yt , t = p + 2, . . . , T ,
which are (maximally) invariant with respect to μ (see Section 4).

3.3. The limit experiment: Invariance and power envelope. In this section, we
consider the limit experiments E(f ) and ES(f ). In these experiments, we observe
the processes Wε , Wφf

, W� and Wbk
, k ∈ N, continuously on the time interval

[0,1] from the model (Ph,γ,η|h ∈ R, γ ∈ R
p, η ∈ c00), and we are interested in the

power envelopes for testing the hypothesis

H0 : h = 0
(
γ ∈R

p, η ∈ c00
)

versus

Ha : h < 0
(
γ ∈ R

p, η ∈ c00
)
.

(3.12)

To eliminate the nuisance parameters γ and η, we first propose a statistic that is
sufficient for the parameter of interest h and does not depend on γ . Afterwards,
using Proposition 3.3, we discuss a natural invariance structure with respect to
the infinite-dimensional nuisance parameter η. We derive the maximal invariant
and apply the Neyman–Pearson lemma to obtain the power envelopes of invariant
tests within the experiments E(f ) and ES(f ), respectively, in Section 3.3.1 and
Section 3.3.2.

We begin with the elimination of γ . The statistic (Wε,Wφf
, (Wbk

)k∈N) serves
as a sufficient statistic for the parameter h. This is because, according to the struc-
tural version of E(f ) (or ES(f )) in Proposition 3.3, the distribution of W� is
only affected by γ and so is the distribution of the process (Wε,Wφf

, (Wbk
)k∈N)

only affected by h and η. It then follows that the distribution of the statistic
(Wε,Wφf

,W�, (Wbk
)k∈N) conditional on the statistic (Wε,Wφf

, (Wbk
)k∈N) is only

a function of W� and γ and, in turn, does not depend on h. Next, observe that the
sufficient statistic (Wε,Wφf

, (Wbk
)k∈N) is independent of the process W� and thus

has a distribution that does not depend on γ . This allows us to restrict attention to
the sufficient statistic (Wε,Wφf

, (Wbk
)k∈N) to conduct inference for h, and the

nuisance parameter γ disappears from the likelihoods.

3.3.1. Elimination of η in E(f ) and the associated power envelope. The elim-
ination of the nuisance parameter η is more involved and different for the limit
experiments E(f ) and ES(f ). We start with E(f ).

In Proposition 3.3, if one applies the decompositions (3.5) and (3.7) to the first
equation (of Wε) and the fourth equation (of Wbk

), one retrieves the second equa-
tion (of Wφf

). This essentially allows us to omit the process Wφf
and restrict the

observations to the processes Wε and Wbk
, k ∈ N.

Now we formalize the invariance structure with respect to η. Introduce, for η ∈
c00, the transformation gη = (gηk

)k∈N : CN[0,1] → CN[0,1] defined by, for W ∈
C[0,1],
(3.13) gηk

: [gηk
(W)

]
(s) = W(s) − ηks, s ∈ [0,1],
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that is, gηk
adds a drift s �→ −ηks to its argument process. Proposition 3.3 im-

plies that the law of (Wε, (gηk
(Wbk

))k∈N) under Ph,γ,0 is the same as the law of
(Wε, (Wbk

)k∈N) under Ph,γ,η. Hence our testing problem (3.12) is invariant with
respect to the transformations gη. Therefore, following the invariance principle, it
is natural to restrict attention to test statistics that are invariant with respect to these
transformations as well, that is, test statistics t that satisfy

(3.14) t
(
Wε,

(
gηk

(Wbk
)
)
k∈N

)= t
(
Wε, (Wbk

)k∈N
)

for all gη, η ∈ c00.

Given a process W let us define the associated bridge process by BW(s) = W(s)−
sW(1). Now note that we have, for all s ∈ [0,1] and k ∈N,

Bgηk
(W)(s) = [

gηk
(W)

]
(s) − s

[
gηk

(W)
]
(1)

= W(s) − sηk − s
(
W(1) − 1 × ηk

)
= W(s) − sW(1)

= BW(s),

that is, taking the bridge of a process ensures invariance with respect to adding
drifts to that process. Define the mapping M by

M
(
Wε, (Wbk

)k∈N
) := (

Wε, (Bbk
)k∈N

)
,

where Bbk
:= BWbk . It follows that statistics that are measurable with respect to

the σ -field,

M = σ
(
M
(
Wε, (Wbk

)k∈N
))= σ

(
Wε, (Bbk

)k∈N
)
,(3.15)

are invariant (with respect to gη, η ∈ c00). It is, however, not (immediately) clear
that we did not throw away too much information. Formally, we need M to be
maximally invariant which means that each invariant statistic is M-measurable.
The following theorem, which once more exploits the structural description of the
limit experiment, shows that this indeed is the case.

THEOREM 3.1. The σ -field M in (3.15) is maximally invariant for the group
of transformations gη, η ∈ c00, in the experiment E(f ).

The above theorem implies that invariant inference must be based on M. An
application of the Neyman–Pearson lemma, using M as observation, yields the
power envelope for the class of invariant tests. To be precise, consider the likeli-
hood ratios restricted to M, which are given by

dPM
h

dPM
0

= E0

[
dPh,γ,η

dP0,γ,η

∣∣∣M]
,
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where the conditional expectation indeed does not depend on η precisely because
of the invariance. The conditional expectation also does not depend on γ as a result
of the arguments stated at the beginning of this section.

To calculate this conditional expectation, we first introduce Bφf
= B

Wφf , that
is, the bridge process associated to Wφf

. Following the decomposition in (3.5), we

can decompose 
f = ∫ 1
0 Wε(s)dWφf

(s) = I + II with

I =
∫ 1

0
Wε(s)dBφf

(s) + Wε(1)

∫ 1

0
Wε(s)ds,

II =
( ∞∑

k=1

Jf,kWbk
(1)

)∫ 1

0
Wε(s)ds.

Note that part I is M-measurable. Under P0,0,0 the random variables Wbk
(1),

k ∈ N, are independent of Wε and Bbk
, k ∈ N. Indeed, the independence of Wε

holds by construction and the independence of Bbk
is a well known, and easy

to verify, property of Brownian bridges. We thus obtain, since I(h, γ, η) is M-
measurable as well,

dPM
h

dPM
0

= E0

[
dPh,γ,η

dP0,γ,η

∣∣∣M]

= exp
(
h × I − 1

2
I(h, γ, η)

)

×E0,0,0

[
exp

( ∞∑
k=1

(
hJf,k

∫ 1

0
Wε(s)ds + ηk

)
Wbk

(1) + γ ′W�(1)

)∣∣∣M]

= exp

(
h × I − 1

2

(
I(h, γ, η) −

∞∑
k=1

(
hJf,k

∫ 1

0
Wε(s)ds + ηk

)2
− γ ′��γ

))

= exp
(
h
∗

f − 1

2
h2I∗

f

)
with


∗
f =

∫ 1

0
Wε(s)dBφf

(s) + Wε(1)

∫ 1

0
Wε(s)ds,(3.16)

I∗
f = Jf

∫ 1

0
W 2

ε (s)ds −
(∫ 1

0
Wε(s)ds

)2 ∞∑
k=1

J 2
f,k

= Jf

∫ 1

0
W 2

ε (s)ds −
(∫ 1

0
Wε(s)ds

)2
(Jf − 1),(3.17)
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where the last equality follows from (3.7). Note that the distribution of this likeli-
hood ratio indeed does not depend on the nuisance parameters γ or η.

We can now formalize the notion of point-optimal invariant tests in the limit
experiment. To that end, let us denote the (1 − α)-quantile of dPM

h /dPM
0 under

P0,γ,η, which does not depend on either γ or η, by c(h, Jf ;α). Define the size-α
test φ

F∗
f,α(h̄) = 1{dPM

h̄
/dPM

0 ≥ c(h̄, Jf ;α)}, for a fixed value of h̄ < 0. Note that
this is an oracle test in E(f ) that depends on the true value of f . A feasible test is
provided in Section 4. The power function of this oracle test is given by

h �→ π
F∗
f,α(h; h̄) = E0

[
φ
F∗
f,α(h̄)

dPM
h

dPM
0

]
= E0

[
φ
F∗
f,α(h̄)

dPh,γ,η

dP0,0,0

]
.

An application of the Neyman–Pearson lemma yields the following.

COROLLARY 3.2. Let f ∈ F and α ∈ (0,1). Let φ be a (possibly randomized)
test that is M-measurable and is of size α, that is, E0φ ≤ α. Let π denote the
power function of this test, that is, π(h) = Ehφ. Then we have

π(h̄) ≤ π
F∗
f,α(h̄; h̄), h̄ < 0.

The (oracle) test φ
F∗
f,α(h̄) thus is point optimal, that is, its power function is

tangent to the (semiparametric) power envelope h �→ π
F∗
f,α(h;h) at h = h̄.3

REMARK 3.3. The notion of invariance in the limit experiment leads to an-
other interpretation of the Elliott, Rothenberg and Stock (1996) (ERS) test statistic.
Note that σ -field Mε = σ(Wε(s); s ∈ [0,1]) is also invariant, though not maxi-
mally so. The likelihood ratio conditional on observing only Mε is given by

dPMε

h

dPMε

0

= E0

[
dPM

h

dPM
0

∣∣∣Mε

]

= exp
(
h

∫ 1

0
Wε(s)dBε(s) + hWε(1)

∫ 1

0
Wε(s)ds − 1

2
h2I∗

)

×E0

[
exp
(
h

∫ 1

0
Wε(s)dBb(s)

)∣∣∣Mε

]

= exp
(
h

∫ 1

0
Wε(s)dWε(s) − 1

2
h2I∗

)

× exp
(

1

2
h2
[∫ 1

0
W 2

ε (s)ds −
(∫ 1

0
Wε(s)ds

)2]
(Jf − 1)

)
3Here and later in this section, the early usage of the concept “power envelope” is due to the fact

that it is shown to be the upper bound later in this section and point-wisely attainable by tests in
sequence in Section 4.
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= exp
(
h

∫ 1

0
Wε(s)dWε(s) − 1

2
h2
∫ 1

0
W 2

ε (s)ds

)
,

where Wb(s) = ∑∞
k=1 Jf,kWbk

(s) and Bb(s) = BWb(s) for notational simplicity.
As a result, the ERS test statistic equals the likelihood ratio statistic using the
(non-maximal) invariant Mε . This explains the improved power of our tests within
the model we consider. Moreover, for Gaussian f , we have Mε = M and obtain
point-optimality of the ERS test.4

REMARK 3.4. The semiparametric power envelope derived above for this
case of f ∈ F, of course, coincides with the one in Jansson (2008) based on the
invariance constraint. This can be seen by rewriting 
∗

f = ∫ 1
0 Wε(s)dWφf

(s) −
(Wφf

(1) − Wε(1))
∫ 1

0 Wε(s)ds. We feel our approach is attractive since, by
describing the perturbations on f with an orthonormal basis and a infinite-
dimensional parameter instead of one single parameter, there is no need to find the
least favorable direction.5 Moreover, we feel that the use of the invariance prin-
ciple, rather than the similarity constraint, more naturally suggests (partly) rank-
based tests.

3.3.2. Elimination of η in ES(f ) and the associated power envelope. Since in
this case we have Jf,k = 0, the structural representation of experiment ES(f ) in
Proposition 3.3 becomes

dZε(s) = dWε(s) − hWε(s)ds,

dZφf
(s) = dWφf

(s) − hJf Wε(s)ds,

dZbk
(s) = dWbk

(s) − ηk ds, k ∈N.

Note that here the process W� is again removed by sufficiency in order to eliminate
the nuisance parameter γ (see the discussion at the beginning of Section 3.3).
Following the same argument for the case of f ∈ F, statistics that are measurable
with respect to the σ -field

MS = σ
(
M
(
Wε,Wφf

, (Wbk
)k∈N

))= σ
(
Wε,Wφf

, (Bbk
)k∈N

)
(3.18)

are invariant with respect to the transformations gη, η ∈ c00. Moreover, in the fol-
lowing theorem, we show that this σ -field is maximally invariant.

THEOREM 3.2. The σ -field MS in (3.15) is maximally invariant for the group
of transformations gη, η ∈ c00, in the experiment ES(f ).

4Similarly, one could try to derive the statistic resulting from using MB = σ(Bbk
(s); s ∈ [0,1])

as an invariant. However, that does not seem to lead to an insightful result.
5The traditional semiparametric approach, developed for LAN-type experiments, accomplishes

this by projecting the score function of the parameter of interest onto the tangent space of nuisance
score functions. However, this approach seems not easily generalizable to LABF-type experiments.
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The likelihood ratio restricted to MS is given by

dPMS

h

dPMS

0

= E0

[
dPh,γ,η

dP0,γ,η

∣∣∣MS

]

= exp
(
h
f − 1

2
I(h, γ, η)

)

×E0,0,0

[
exp

( ∞∑
k=1

ηkWbk
(1) + γ ′W�(1)

)∣∣∣MS

]

= exp
(
h
f − 1

2
I(h, γ, η) + 1

2
‖η‖2

2 + 1

2
γ ′��γ

)
= exp

(
h
f − 1

2
h2If

)
,

where

If := Jf

∫ 1

0
W 2

ε (s)ds.(3.19)

As before, we then formalize the point-optimal invariant tests in ES(f ). Denote
the (1−α)-quantile of dPMS

h /dPMS

0 under P0,γ,η by cS(h, Jf ;α). Define the size-

α test φ
FS∗
f,α (h̄) = 1{dPMS

h̄
/dPMS

0 ≥ cS(h̄, Jf ;α)}, for a fixed value of h̄ < 0. The
associated power function is

h �→ π
FS∗
f,α (h; h̄) = E0

[
φ
FS∗
f,α (h̄)

dPh,γ,η

dP0,0,0

]
.

Again, by the Neyman–Pearson lemma, the following corollary holds.

COROLLARY 3.3. Let f ∈ FS and α ∈ (0,1). Let φ be a (possibly random-
ized) test that is MS-measurable and is of size α, that is, E0φ ≤ α. Let π denote
the power function of this test, that is, π(h) = Ehφ. Then we have

π(h̄) ≤ π
FS∗
f,α (h̄; h̄).

The likelihood ratio of the maximal invariant MS, dPMS

h /dPMS

0 , equals the
likelihood ratio of the full observation (Wε,Wφf

,W�, (Wbk
)k∈N)′ with known

η = 0 (i.e., known f ) and γ = 0, dPh,0,0/dP0,0,0. This shows that the “semi-
parametric” power envelope π

FS∗
f,α actually coincides with the parametric power

envelope, which is defined based on the likelihood ratio dPh,0,0/dP0,0,0. This veri-
fies again the adaptivity result in Jansson (2008) under the same conditions for this
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unit root testing problem.6 We provide, in Sections 4.1 and 4.2, a class of adaptive
unit root tests based on signed-rank statistics for this setting.

REMARK 3.5. The semiparametric power envelopes π
F∗
f,α and π

FS∗
f,α are scale

invariant, that is, invariant with respect to the value of σf > 0. This is easily seen
from the fact that Wε , Wφf

and Jf are all scale invariant.

REMARK 3.6. The problem of eliminating the nuisance parameter η in the
symmetric density case (f ∈ FS) is actually the same as that of eliminating the
autocorrelation parameter γ in the beginning of this section: the nuisance param-
eter appears only in a process which is independent of all the other processes. To
be specific, η only affects the distribution of Wbk

, which is independent of Wφf

as well as Wε . Therefore, the distribution of (Wε,Wφf
, (Wbk

)k∈N) conditional on
the statistic (Wε,Wφf

) does not depend on the parameter of interest h. Hence, the
statistic (Wε,Wφf

) serves as a sufficient statistic for h which is also invariant with
respect to η.

3.4. The asymptotic power envelope for asymptotically invariant tests. Now
we translate the results for the limit LABF experiment to the unit root model of in-
terest. To mimic the invariance in the limit experiment we introduce the following
definition.

DEFINITION 1. Let μ ∈ R, � ∈ G, f ∈ F. A sequence of test statistics ψ(T )

is said to be asymptotically invariant if the distribution of ψ(T ) weakly converges,
under P(T )

h,γ,η;μ,�,f for all h ≤ 0, γ ∈ R
p , and η ∈ c00, to the distribution of an

invariant test in the limit experiment E(f )/ES(f ), under Ph,γ,η.

The Asymptotic Representation Theorem (see, e.g., van der Vaart (1998) Chap-
ter 9) now yields the following main result on the asymptotic power envelope.

THEOREM 3.3. Let μ ∈ R, � ∈ G, f ∈ F, and α ∈ (0,1). Let φT (Y1, . . . , YT ),
T ∈ N, be an asymptotically invariant test of size α, that is, lim supT →∞ E0,γ,η ×
φT ≤ α for all γ ∈ R

p and η ∈ c00. Let πT denote the power function of φT , that
is, πT (h, γ, η) = Eh,γ,η;μ,�,f φT . Then we have

lim sup
T →∞

πT (h, γ, η) ≤ π
F∗
f,α(h;h), h < 0, γ ∈ R

p, and η ∈ c00.

For the case of f ∈ FS, we have

lim sup
T →∞

πT (h, γ, η) ≤ π
FS∗
f,α (h;h), h < 0, γ ∈ R

p, and η ∈ c00.

6A discussion about the notion of “adaptiveness” in this nonstandard testing problem can be found
in Section 5 of Jansson (2008).
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These power envelopes for invariant tests in the limit experiments E(f ) and
ES(f ) thus provide upper bounds to the asymptotic powers of invariant tests for
the unit root hypotheses in E (T )(f ) and E (T )

S
(f ), respectively. The next section

introduces two classes of tests (based on rank and signed-rank statistics) that (in
a point-wise sense) attain these power envelopes and, thereby, demonstrates that
these bounds are sharp. We additionally provide a Chernoff–Savage-type result for
these classes of tests.

4. A class of semiparametrically optimal hybrid rank tests. The appear-
ance of the bridge process Bφf

in the “efficient central sequence” 
∗
f naturally

suggests the (partial) use of ranks in the construction of test statistics. Indeed,
we can construct an empirical analogue of Bφf

by considering a partial-sum pro-
cess which only depends on the observations via the ranks Rt of �(L)
Yt among
�(L)
Yp+2, . . . ,�(L)
YT . We allow for the use of a reference density g that
may or may not be equal to the true underlying innovation density f . Our findings
compare to Quasi-ML methods: if the true innovation density happens to be the
same as the selected reference density the inference procedure is point-optimal.
At the same time, the procedure remains valid, that is, has proper asymptotic size,
even in case the true innovation density does not coincide with the reference den-
sity. Note that these results also hold in case the reference density is non-Gaussian,
while Quasi-ML results are generally restricted to Gaussian reference densities.

We need the following mild assumption on the reference density.

ASSUMPTION 3. The density g ∈ F, with finite variance σ 2
g , satisfies

lim
T →∞

1

T

T∑
i=1

σ 2
g φ2

g

(
G−1

(
i

T + 1

))
= Jg,

with location score function φg(ε) := −(g′/g)(ε), where Jg is the standardized
Fisher information for location of g.7

Now we can formulate the following direct extension of Lemma A.1 in Hallin,
van den Akker and Werker (2011) and its signed-rank counterpart. The proof for
the weak convergence of the stochastic integrals in (4.3) and (4.7) is provided in
the Supplementary Material (Zhou, van den Akker and Werker (2019)).

LEMMA 4.1. Let μ ∈R, � ∈G and g satisfy Assumption 3.

7Similar to the standardized Fisher information Jf of f , the Fisher information Jg of g is stan-

dardized by the variance σ 2
g . As a result, it is scale invariant.
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(i) For the case f ∈ F, consider the partial sum process

(4.1) B
(T )
φg

(s) = 1√
T

sT �∑
t=p+2

σg

(
φg

(
G−1

(
Rt

T − p

))
− φ̄(T )

g

)

for s ∈ [0,1], where φ̄
(T )
g := T −1∑T −p−1

i=1 φg(G
−1(i/(T − p))), and Rt denotes

the rank of �(L)
Yt , t = p + 2, . . . , T . Then, under P
(T )
0,0,0;μ,�,f and as T → ∞,

we have [
W(T )

ε ,W
(T )
φf

,B
(T )
φg

]′ ⇒ [Wε,Wφf
,Bφg ]′,(4.2)

and ∫ 1

0
W(T )

ε (s−)dB
(T )
φg

(s) ⇒
∫ 1

0
Wε(s)dBφg(s).(4.3)

Here, Bφg is the associated Brownian bridge of Wφg , which itself is a Brownian
motion defined on the same probability space (�,F,P0,0,0) as Wε and Wφf

, with
covariance matrix

Cov0,0,0

⎡⎢⎣ Wε(1)

Wφf
(1)

Wφg(1)

⎤⎥⎦=
⎛⎝1 1 σεφg

Jf Jfg

Jg

⎞⎠ ,(4.4)

where

σεφg = σ−1
f σg

∫ 1

0
F−1(u)φg

(
G−1(u)

)
du,

Jfg = σf σg

∫ 1

0
φf

(
F−1(u)

)
φg

(
G−1(u)

)
du.

(ii) For the case f ∈ FS, consider the partial sum process

W
(T )
φg

(s) = 1√
T

sT �∑
t=p+2

stσg

(
φg

(
G−1

(
1

2
+ R+

t

2(T − p)

)))
(4.5)

for s ∈ [0,1], where st and R+
t denote the sign of �(L)
Yt and the rank of its

absolute value, respectively, for t = p + 2, . . . , T . Then, under P
(T )
0,0,0;μ,�,f and as

T → ∞, we have[
W(T )

ε ,W
(T )
φf

,W
(T )
φg

]′ ⇒ [Wε,Wφf
,Wφg ]′,(4.6)

and ∫ 1

0
W(T )

ε (s−)dB
(T )
φg

(s) ⇒
∫ 1

0
Wε(s)dBφg(s),(4.7)

where the law of Wφg is given in (4.4).
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In practice, the autoregressive structure �(L) will not be known. In that case,
one must rely on ranks (and signs) based on innovations calculated using an es-
timated autoregressive structure, that is, using residuals. This is usually referred
to as inference based on aligned ranks. For this purpose, we first introduce the
following assumption on the estimation of �(L) (see Hallin and Puri (1994)).

ASSUMPTION 4. (i) There exists, under the null hypothesis, a
√

T -consistent
estimator (�̂1, . . . , �̂p)′ of (�1, . . . ,�p)′. That is, for all μ ∈ R, � ∈ G, f ∈ F and
all ε > 0, there exists b and Tb such that

P
(T )
0,0,0;μ,�,f

{∥∥√T (�̂ − �)
∥∥> b

}
< ε ∀t ≥ Tb.(4.8)

(ii) The estimator (�̂1, . . . , �̂p)′ is discretized on grids of mesh width T −1/2.
That is, the number of possible values of (�̂1, . . . , �̂p)′ in balls of the form {ϒ ∈
R

p‖T −1/2(ϒ − ϒ0) ≤ c} remains bounded, as T → ∞, for all ϒ0 ∈ R
p and all

c > 0.

Part (i) of Assumption 4 is mild as many known estimators of (�1, . . . ,�p)′
exist for the AR(p) model that can be applied to the increments 
Yt ; see, for
example, Brockwell and Davis (2016). Part (ii) is standard in the semiparametric
literature and can easily be met by transforming the estimator in Part (i); see, for
example, Bickel (1982) and Kreiss (1987). Such an estimator is often called locally
asymptotically discrete. The use of aligned ranks does not invalidate the conclusion
of Lemma 4.1. This is the content of the following result, of which the proof is
provided in the Supplementary Material (Zhou, van den Akker and Werker (2019)).

LEMMA 4.2. Under Assumption 4, Lemma 4.1 remains valid in case aligned
signs and ranks are used, that is, signs and ranks of innovations calculated using
the estimated autoregressive coefficients (�̂1, . . . , �̂p).

We denote by B̂
(T )
φg

and Ŵ
(T )
φg

the aligned-rank-based counterparts of the rank-

based processes B
(T )
φg

and W
(T )
φg

, respectively.

4.1. Hybrid rank tests based on a reference density. In this section, we pro-
pose our unit root tests, for both the nonsymmetric case (f ∈ F) and the symmetric
case (f ∈ FS). Section 3.3 provides the basis for optimal invariant tests in the limit
experiment E(f ) and ES(f ). Lemmas 4.1 and 4.2 can subsequently be used to
approximate, in the sequences of unit root experiments E (T )(f ) and E (T )

S
(f ), the

observable processes in these limit experiments. More specifically, these two lem-
mas indicate that constructing the rank-based score partial sum processes B

(T )
φg

and

W
(T )
φg

as in (4.1) and (4.5), together with W
(T )
ε , intuitively corresponds to observing

the σ -fields Mg := σ(Wε,Bφg) and MS
g := σ(Wε,Wφg) in the limit experiments
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E(f ) and ES(f ), respectively. This then leads to our asymptotically invariant tests
based on Mg and MS

g .
The following proposition establishes the likelihood ratio restricted to the in-

formation Mg and MS
g . The Neyman–Pearson lemma implies that tests based on

these likelihood ratios are point optimal amongst the class of invariant tests in the
limit experiments.

PROPOSITION 4.1. Define W⊥ implicitly via the decomposition

(4.9) Wφg = σεφgWε +
√

Jg − σ 2
εφg

W⊥,

which is a standard Brownian motion under P0,0,0 and denote the associated
bridge by B⊥.8

(i) The likelihood ratio dPM
h /dPM

0 restricted to the outcome space Mg is
given by

dP
Mg

h

dP
Mg

0

= E0

[
dPM

h

dPM
0

∣∣∣Mg

]
= exp

(
h
g − 1

2
h2Ig

)
,(4.10)

where


g = 
ε + λ
⊥,

Ig =
∫ 1

0
W 2

ε (s)ds + λ2
(

Jg

σ 2
εφg

− 1
)[∫ 1

0
Wε(s)

2 ds −
(∫ 1

0
Wε(s)ds

)2]
,

with 
ε = ∫ 1
0 Wε(s)dWε(s), 
⊥ =

√
Jg/σ

2
εφg

− 1
∫ 1

0 Wε(s)dB⊥(s), and

λ = (
Jfgσεφg − σ 2

εφg

)
/
(
Jg − σ 2

εφg

)
.

(ii) The likelihood ratio dP
MS

g

h /dP
MS

g

0 restricted to the outcome space MS
g is

given by

dP
MS

g

h

dP
MS

g

0

= E0

[
dPMS

h

dPMS

0

∣∣∣Mg

]
= exp

(
h
S

g − 1

2
h2IS

g

)
,(4.11)

8The implicit requirement Jg ≥ σ 2
εφg

in the decomposition (4.9) is directly guaran-

teed the Cauchy–Schwarz inequality, σ 2
g

∫ 1
0 |φg(G−1(u))|2 du · σ−2

f

∫ 1
0 |F−1(u)|2 du ≥

|σ−1
f σg

∫ 1
0 F−1(u)φg(G−1(u))du|2, and the fact that σ−2

f

∫ 1
0 [F−1(u)]2 du = 1.
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where


S
g = 
ε + λ
S⊥,

IS
g =

(
1 + λ2 Jg

σ 2
εφg

− λ2
)[∫ 1

0
Wε(s)

2 ds

]
,

with 
S⊥ =
√

Jg/σ
2
εφg

− 1
∫ 1

0 Wε(s)dW⊥(s).

REMARK 4.1. To construct the test statistic in the limit experiment E(f ), in-
stead of simply replacing Bφf

by Bφg , we rely on the likelihood ratio of Mg .
This, by the Neyman–Pearson lemma, is the optimal way regardless of complexity.
Clearly, it has Mg ⊆ M so that Mg is invariant for the group of transformations
gη.9 When g = f , Mg = M so that it is maximally invariant, which means that
we capture all available information about h, and this in turn gives the asymptotic
optimality for the finite-sample counterpart below. The same argument also holds
for the limit experiment ES(f ).

REMARK 4.2. The result of Proposition 4.1 can also be achieved by first ap-
plying Girsanov’s theorem to the experiment associated to observing Wε and Wφg

defined via

dWε(s) = hWε(s)ds + dZε(s),

dWφg(s) = hJfgWε(s)ds + dZφg(s),

to get the likelihood ratio of MS
g . This experiment is obtained by combining the

limit experiment in Proposition 3.3 and the covariance matrix in (4.4). In other
words, this provides the limit experiment associated to MS

g . Subsequently, one

can take the expectation of the likelihood ratio of MS
g obtained above conditional

on Mg to get the likelihood ratio of Mg . The associated limit experiment is given
by

dWε(s) = hWε(s)ds + dZε(s),

dBφg(s) = hJfg

[
Wε(s) − Wε

]
ds + d

[
Zφg(s) − sZφg(1)

]
,

where Wε = ∫ 1
0 Wε(r)dr .

Observe that W⊥ is a standard Brownian motion under P0,0,0 and independent
of Wε . When g = f , we have Jfg = Jf = Jg and σεφg = 1, so that λ = 1 and
Bφg = Bφf

. As a result, we have 
g = 
∗
f and Ig = I∗

f , and 
S
g = 
f and IS

g =
If .

9This is due to the decomposition Bφg
= σεφg

Bε +∑∞
k=1 Jg,kBbk

.
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The central idea to construct a hybrid rank test is to use a (quasi)-likelihood
ratio test based on LMg (h, λ) := h
g − 1

2h2Ig from (4.10) for the case of f ∈ F,
and LMS

g
(h,λ) := h
S

g − 1
2h2IS

g from (4.11) for the case of f ∈ FS. In both cases,
we then replace Wε and Bφg by their finite-sample counterparts in Lemma 4.2 (or
those in Lemma 4.1 in case �(L) would be known, for example, when p = 0). The
remaining unknown finite-sample parameters σ 2

f and λ are replaced by estimates
that need to satisfy the following condition.

ASSUMPTION 5. There exist consistent, under the null hypothesis, estimators
σ̂ 2

f > 0 a.s., σ̂εφg and Ĵfg of σ 2
f , σεφg and Jfg , respectively. More precisely, for

all μ ∈ R, � ∈ G, f ∈ F, we have σ̂ 2
f

p→ σ 2
f , σ̂εφg

p→ σεφg and Ĵfg
p→ Jfg , under

P(T )
0,0,0;μ,�,f as T → ∞.

Such estimators are easily constructed, although Ĵfg is somewhat more in-
volved. Estimating the real-valued cross-information Jfg requires nonparametric
techniques, but is considerably simpler than a full nonparametric estimation of
φf . Estimating Jfg can be done along similar lines as estimating the Fisher infor-
mation Jf ; see, for example, Bickel (1982), Bickel et al. (1998), Schick (1986)
and Klaassen (1987). A direct rank-based estimator of Jfg has been proposed in
Cassart, Hallin and Paindaveine (2010). It is also worth noting that the consistency
automatically also holds under local alternatives due to Le Cam’s third lemma.

Based on a chosen reference density g satisfying Assumption 3 and estimators
σ̂f , σ̂εφg and Ĵfg satisfying Assumption 5, we introduce the following partial sum
processes:

Ŵ (T )
ε (s) = 1√

T

sT �∑
t=p+2

�̂(L)
Yt

σ̂f

,

B̂
(T )
⊥ (s) =

(
Jg

σ̂ 2
εφg

− 1
)− 1

2
[ B̂

(T )
φg

(s)

σ̂εφg

− (Ŵ (T )
ε (s) − sŴ (T )

ε (1)
)]

,

Ŵ
(T )
⊥ (s) =

(
Jg

σ̂ 2
εφg

− 1
)− 1

2
[Ŵ

(T )
φg

(s)

σ̂εφg

− Ŵ (T )
ε (s)

]
,

where B̂
(T )
φg

(s) and Ŵ
(T )
φg

(s) are defined by Lemma 4.2. Note that in the case of

known �(L), for example, the i.i.d. case, one can simply use �̂(L) = �(L) (where
B̂

(T )
φg

(s) = B
(T )
φg

(s) and Ŵ
(T )
φg

(s) = W
(T )
φg

(s)). Now, given a fixed alternative h̄ < 0,
we define

L̂Mg (h̄, λ̂) := h̄
̂g − 1

2
h̄2Îg,
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with


̂g = 
̂ε + λ̂
̂⊥,

Îg =
∫ 1

0

(
Ŵ (T )

ε (s−)
)2 ds + λ̂2

(
Jg

σ̂ 2
εφg

− 1
)

×
[∫ 1

0

(
Ŵ (T )

ε (s−)
)2 ds −

(∫ 1

0
Ŵ (T )

ε (s−)ds

)2]
,

where 
̂ε = ∫ 1
0 Ŵ

(T )
ε (s−)dŴ

(T )
ε (s), 
̂⊥ =

√
Jg/σ̂

2
εφg

− 1
∫ 1

0 Ŵ
(T )
ε (s−)dB̂

(T )
⊥ (s)

and λ̂ = (Ĵfgσ̂εφg − σ̂ 2
εφg

)/(Jg − σ̂ 2
εφg

). Define also for the case of f ∈ FS,

L̂MS
g
(h̄, λ̂) := h̄
̂S

g − 1

2
h̄2ÎS

g ,

with


̂S
g = 
̂ε + λ̂
̂S⊥,

ÎS
g =

(
1 + λ̂2 Jg

σ̂ 2
εφg

− λ̂2
)[∫ 1

0

(
Ŵ (T )

ε (s−)
)2 ds

]
,

where 
̂S⊥ =
√

Jg/σ̂
2
εφg

− 1
∫ 1

0 Ŵ
(T )
ε (s−)dŴ

(T )
⊥ (s).

By Slutsky’s theorem, we have the convergences (Ŵ
(T )
ε , B̂

(T )
⊥ )′ ⇒ (Wε,B⊥)′

and (Ŵ
(T )
ε , Ŵ

(T )
⊥ )′ ⇒ (Wε,W⊥)′, and the convergences of stochastic integrals∫ 1

0 Ŵ
(T )
ε (s−)dB̂

(T )
⊥ (s) ⇒ ∫ 1

0 Wε(s)dB⊥(s) and
∫ 1

0 Ŵ
(T )
ε (s−)dŴ

(T )
⊥ (s) ⇒∫ 1

0 Wε(s)dW⊥(s) (see the proof of Lemma 4.1). We thus also obtain L̂Mg (h̄, λ̂) ⇒
LMg (h̄, λ) and L̂MS

g
(h̄, λ̂) ⇒ LMS

g
(h̄, λ) under P

(T )
0,0,0;μ,�,f . Define the critical

values cMg (h̄, σεφg , λ, Jg;α) and cMS
g
(h̄, σεφg , λ, Jg;α) by the (1 − α)-quantiles

of LMg (h̄, λ) and LMS
g
(h̄, λ), respectively. This leads to the (feasible) tests

φMg (h̄, α) := 1
{
L̂Mg (h̄, λ̂) ≥ cMg (h̄, σ̂εφg , λ̂, Jg;α)

}
and

φMS
g
(h̄, α) := 1

{
L̂MS

g
(h̄, λ̂) ≥ cMS

g
(h̄, σ̂εφg , λ̂, Jg;α)

}
.

These tests are not only based on the ranks of 
Yt but also their average, therefore,
we name them Hybrid Rank Tests (HRTs).

We can now state our main theoretical result.

THEOREM 4.1. (i) Under the Assumptions 1–5, for each chosen α ∈ (0,1)

and h̄ ∈ (−∞,0), we have:
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(1) The HRT φMg (h̄, α) is asymptotically of size α.
(2) The HRT φMg (h̄, α) is asymptotically invariant.
(3) The HRT φMg (h̄, α) is point-optimal, at h = h̄, if g = f .

(ii) Under the Assumptions 1–5 and g ∈ FS, for each chosen α ∈ (0,1) and
h̄ ∈ (−∞,0), we have:

(1) The HRT φMS
g
(h̄, α) is asymptotically of size α.

(2) The HRT φMS
g
(h̄, α) is asymptotically invariant.

(3) The HRT φMS
g
(h̄, α) is point-optimal, at h = h̄, if g = f .

Theorem 4.1 shows the HRTs are valid irrespective of the choice of the reference
density and point-optimal for a correctly specified reference density. Moreover, in
the corollary below, we state that the HRTs enjoy a Chernoff–Savage-type result.

COROLLARY 4.1. Fix α ∈ (0,1) and h̄ < 0. The HRT φMg (h̄, α) is, for any
reference density g satisfying Assumption 3, more powerful, at h = h̄ and for μ ∈
R, � ∈ G and f ∈ F, than the ERS test except when f is Gaussian where they have
equal powers. The same argument holds for the HRT φMS

g
(h̄, α) with g ∈ FS for

any f ∈ FS.

Corollary 4.1 is a particularly useful result for applied work. The HRT dom-
inates its classical canonical Gaussian counterpart, that is, the ERS test in the
present model, for any reference density g. Traditionally, this claim can only be
made for Gaussian reference densities, but the framework here even allows for a
stronger result. Our formulation of the testing problem using invariance arguments
is convenient in this respect: the larger the invariant σ -field that is used, the more
powerful the test.

The situation can be compared to Quasi-Maximum Likelihood methods. How-
ever, again, in classical situations these methods are restricted to Gaussian refer-
ence densities. In the present setup, any reference density g (subject to the regu-
larity conditions imposed) can be used. The resulting test will always be valid, but
more powerful in case the reference density chosen is closer to the true underlying
density f .

REMARK 4.3. It is worth noting that the invariance constraint is only imposed
in the limit and, therefore, the maximal invariant needs only to be derived in the
limit experiment. In other words, in the finite-sample unit root testing experiment
E (T )(f ) (or E (T )

S
(f ) for f ∈ FS), we actually use statistics that are only asymp-

totically invariant (i.e., their limiting equivalents are measurable with respect to
the maximally invariant sigma-field M (or MS for f ∈ FS), while, for finite T ,
they are not necessarily (maximally) invariant with respect to some transformation
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on the density f . In fact, a maximal invariant may very well not even exist in the
finite-sample experiments. Specifically, W(T )

ε approximates Wε in the limit, whose
distribution does not change with the density f , while the distribution of W

(T )
ε

does depend on the density f . Instead, the statistic B
(T )
φg

(or W
(T )
φg

for f ∈ FS) is
distribution-free, that is, its distribution is not affected by any transformation on the
density f . In Section 5 below, we will show that the asymptotic approximations
work well even in smaller samples.

REMARK 4.4. The additional power of the HRT compared to the ERS test
is not free due to the stronger weak convergence assumption employed. Conse-
quently, the class of models for which the HRTs are valid forms a subclass of the
class where the ERS tests are valid. In this subclass, the HRT dominates the ERS
test, but outside they may even loose validity. In the opposite direction, the Müller
and Watson (2008) low-frequency unit root test can be applied in a even larger
class of models than the ERS tests. Again, within the class of models where the
ERS test is valid, it has lower power. A more general and detailed discussion in
this direction can be found in Müller (2011). Our test will still be relevant in many
applications, notably those where policy implications are derived under an i.i.d.
assumption on the innovations. Also, our approach can most likely be extended to
situations where the innovations are described by some explicit dynamic location-
scale model. We come back to this point in Section 6.

4.2. Approximate hybrid rank tests. A somewhat inconvenient aspect of the
hybrid rank tests is that we need to estimate “the real-valued parameter” Jfg . As
mentioned before, this is (much) less complicated than estimating the score func-
tion φf (as needed in Jansson (2008)), but might still be considered cumbersome,
despite all references mentioned below Assumption 5. Moreover, the critical value
cMg (h̄, σ̂εφg , λ̂, Jg;α) depends on the estimates σ̂εφg and λ̂ (henceforth Ĵfg). Of
course, this introduces no difficulty to implementing the test for a single dataset
(though one would need to simulate a critical value), however, when it comes to
a Monte Carlo study to access the performances of the HRTs, the computational
effort will be significant. Therefore, we introduce a simplified version of the hy-
brid rank test. This simplified test is obtain by invoking λ = 1, which holds in case
g = f .

To be precise, define

L̂g(h̄) := L̂Mg (h̄,1) = h̄
̂g − 1

2
h̄2Îg,(4.12)

where


̂g = 1

σ̂εφg

∫ 1

0
Ŵ (T )

ε (s−)dB̂
(T )
φg

(s) + Ŵ (T )
ε (1)

∫ 1

0
Ŵ (T )

ε (s−)ds,
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Îg = Jg

σ̂ 2
εφg

∫ 1

0

(
Ŵ (T )

ε (s−)
)2 ds −

(∫ 1

0
Ŵ (T )

ε (s−)ds

)2( Jg

σ̂ 2
εφg

− 1
)

and

(4.13) L̂S
g(h̄) := L̂MS

g
(h̄,1) = h̄
̂S

g − 1

2
h̄2ÎS

g ,

where


̂S
g = 1

σ̂εφg

∫ 1

0
Ŵ (T )

ε (s−)dŴ
(T )
φg

(s),

ÎS
g = Jg

σ̂ 2
εφg

∫ 1

0

(
Ŵ (T )

ε (s−)
)2 ds.

Also define Lg(h̄) := LMg (h̄,1) and LS
g(h̄) := LMS

g
(h̄,1), then we have L̂g(h̄) ⇒

Lg(h̄) and L̂S
g(h̄) ⇒ LS

g(h̄) under P(T )
0,0,0;μ,�,f . Denoting the (1 − α)-quantiles of

Lg(h̄) and LS
g(h̄) by cg(h̄, σεφg , Jg;α) and cSg(h̄, σεφg , Jg;α), respectively. These

lead to the feasible tests

φg(h̄, α) := 1
{
Lg(h̄) ≥ cg(h̄, σ̂εφg , Jg;α)

}
and

φS
g (h̄, α) := 1

{
LS

g(h̄) ≥ cSg(h̄, σ̂εφg , Jg;α)
}
.

Since φg(h̄, α) and φS
g (h̄, α) are approximate versions of the Hybrid Rank Tests

φMg (h̄, α) and φMS
g
(h̄, α), we refer to them as Approximate Hybrid Rank Tests

(AHRTs).

THEOREM 4.2. Under the same conditions as Theorem 4.1, the asymptotic
properties of the Hybrid Rank Tests—validity, invariance, and point-optimality
when g = f —also hold for the Approximate Hybrid Rank Tests.

The proof of Theorem 4.2 follows along the same lines as that of Theorem 4.1
but using the weak convergences L̂g(h̄) ⇒ Lg(h̄) and L̂S

g(h̄) ⇒ LS
g(h̄). The simu-

lation results in Section 5 show that these asymptotic properties carry over to finite
samples.

REMARK 4.5. Although we are not able to provide a rigorous mathematical
proof, the Monte-Carlo study indicates that the Chernoff–Savage property is also
preserved for the AHRTs, at least in case the reference density g is chosen to be
Gaussian. Such a result would be more in line with applications of the Chernoff–
Savage result in classical LAN situations.
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TABLE 1
This table provides estimated critical value functions for three reference densities: Gaussian

(Jg = 1), Laplace (Jg = 2), and Student t3 (Jg = 2) at α = 5% and h̄ = −7σεφg
. For each case, the

critical value function is estimated by OLS using simulated critical values on the interval [0,
√

Jg]
with a grid where adjacent points are 0.01 apart

g

Gaussian cg(−7σεφg
, σεφg

,1;5%) = 0.96 + 1.88σεφg
− 3.98σ 2

εφg
+ 6.74σ 3

εφg
− 5.45σ 4

εφg

Laplace cg(−7σεφg
, σεφg

,2;5%) = 0.25 + 2.30σεφg
− 3.58σ 2

εφg
+ 4.30σ 3

εφg
− 2.45σ 4

εφg

Student t3 cg(−7σεφg
, σεφg

,2;5%) = 0.25 + 2.30σεφg
− 3.58σ 2

εφg
+ 4.30σ 3

εφg
− 2.45σ 4

εφg

From a computational point of view, the AHRTs have the advantage that non-
parametric estimation of Jfg is no longer needed. This significantly reduces the
computational effort in the Monte Carlo study. Indeed, even though the critical
value cg(h̄, σεφg , Jg;α) and cSg(h̄, σεφg , Jg;α) are still data dependent, it is, for
given α, h̄ and reference density g, a function of only one argument—the param-
eter σεφg . Observe, by Cauchy–Schwarz, that σεφg is bounded by

√
Jg . For the

chosen three reference densities, the critical value functions are listed in Table 1.
These are obtained by fitting a fourth-order polynomial to the exact critical values.
In the Monte Carlo study (Section 5), we use these approximating critical value
functions for computational speed.

REMARK 4.6 (Nonparametrically estimated reference density). The Hybrid
Rank Test and the Approximate Hybrid Rank Test are optimal when the reference
density g coincides with the actual innovation density f . It is therefore reasonable
to consider these test using a nonparametric estimate of f , say f̂ , as reference
density. Commonly such estimators are based on the order statistics of the resid-
uals ε̂t . Under a suitable consistency condition, the HRT based on f̂ asymptoti-
cally is conjectured to behave as the HRT based on the true innovation density f .
Thus, such test achieves the optimality properties of Theorem 4.1 and Theorem 4.2
globally. Notably, even if there exists relatively large bias in the estimation of f ,
the usage of rank statistics ensures zero expectation of the feasible score function
φ

f̂
[F̂−1(Rt/(T + 1))], which furthermore ensures the validity of the HRTs and

the AHRTs.

5. Monte Carlo study. This section reports the results of a Monte Carlo study
to corroborate our asymptotic results, and to analyze the small-sample perfor-
mance of the Approximate Hybrid Rank Tests. As mentioned earlier, we use the
Approximate Hybrid Rank Tests in this simulation to avoid having to simulate the
critical value for each individual replication. For the fixed alternative, we choose
h̄ = −7σεφg for two reasons. First, when g = f , we have σεφg = 1 and hence
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h̄ = −7, which is in line with Elliott, Rothenberg and Stock (1996). Second, as
σ̂εφg appears in the denominator in the AHRT statistic (4.12), the statistic becomes
better behaved for values of σ̂εφg close to zero. The corresponding critical value
functions for various reference densities are provided in Table 1. The estimators
for σ 2

f and σεφg we use are

σ̂ 2
f = 1

T − p − 1

T∑
t=p+2

(
�̂(L)

(

Yt − 1

T

T∑
t=p+2


Yt

))2

,

σ̂εφg = 1

T − p − 1

T∑
t=p+2

�̂(L)
Yt

σ̂f

σgφg

(
G−1

(
R̂t

T − p

))
.

Moreover, to simplify the notation, we denote the Approximate Hybrid Rank Test
with reference density g by AHRT-g and, in particular, by AHRT-φ for Gaussian
reference density and by AHRT-f̂ for a (nonparametrically) estimated reference
density. To be specific, for the nonparametric estimation of f , we employ a kernel-
based method f̂ (x) = (T h)−1∑T

t=1 K((x − ε̂t )/h), where the kernel K is chosen

to be Gaussian, h is the bandwidth chosen by the rule (4/(3T ))
1
5 σ̂f , and ε̂t are the

residuals from the regression (5.1) below. Throughout, we use significance level
α = 5% and all results are based on 20,000 Monte-Carlo replications.

We compare the performances of the propsed AHRT tests with two alterna-
tives. First, we consider the Dickey–Fuller test (denoted by DF-ρ) from Dickey
and Fuller (1979). This test is based on the statistic T (ρ̂ − 1) where ρ̂ is the least-
squares estimator in the regression

Yt = μ + ρYt−1 +
p∑

i=1

�i
Yt−i + εt .(5.1)

The critical values for this test are −13.52 for T = 100 and −14.05 for T = 2500.
The second competitor is the ERS test with h̄ = −7. This test is based on the
statistic [S(ᾱ) − ᾱS(1)]/ω̂2 with ᾱ = 1 + T −1h̄ and S(a) = (Ya − Zaβ̂)′(Ya −
Zaβ̂), with Ya and Za defined as

Ya = (Y1, Y2 − aY1, . . . , YT − aYT −1)
′,

Za = (1,1 − a, . . . ,1 − a)′,

where β̂ is estimated by regressing Yᾱ on Zᾱ . The long-run variance estimator (for
ERS test), ω̂2, is chosen to be ω̂2

AR(p) = σ̂ 2
e /(1−∑p

i=1 �̂i)
2 with σ̂ 2

e =∑T
t=1 ε̂2

t /T ,

where the residuals ε̂t and coefficient estimates �̂i are from the regression in (5.1).
The critical values for this test are 3.11 for T = 100 and 3.26 for T = 2500. We
do not consider the Dickey–Fuller t-test as it is dominated by the DF-ρ test in
the current model. Similarly, the DF-GLS test proposed in Elliott, Rothenberg and
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FIG. 1. IID errors case: large-sample power functions of the AHRT-g with various reference densi-
ties g, the AHRT-f̂ and other selected unit root tests under the true innovation densities f : Gaussian,
Laplace, Student’s t3.

Stock (1996) is also omitted as it behaves asymptotically the same as the ERS test,
but can be oversized in smaller samples.

Below, we start with the Monte Carlo study with i.i.d. innovations, that is,
the data is generated by the model in (2.1)–(2.3) with �(L) = 1. Therefore, for
the newly-proposed AHRT test and its competitors introduced above, we have
�̂(L) = 1 (or, equivalently, �̂1 = · · · = �̂p = 0). The Monte Carlo study with i.i.d.
innovations and f ∈ FS, the one with ARMA innovations, and the one illustrating
how the AHRT-f test’s power function converges to the power envelope as the
sample size T increases are provided in the Supplementary Material (Zhou, van
den Akker and Werker (2019)).

Large-sample performance. We first use the large-sample performances to
illustrate the asymptotic properties. In particular, the chosen sample size T is
2500.

Figure 1 shows the power curves for 9 combinations of 3 innovation densi-
ties f and 3 reference densities g (for AHRT-g): f and g are chosen to be
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Laplace, Student t3 or Gaussian.10 In line with our theoretical results, we find
that the AHRT-g test outperforms the two competitors in most cases. More specif-
ically, when g = f (the graphs on the diagonal), the AHRT-f has power very
close to the semiparametric power envelope and it is tangent to it at the point
−h = 7. This verifies the point-optimal result of the AHRT-f test in Theo-
rem 4.2. The AHRT-f̂ test has a similar behavior as the AHRT-f but with a
slightly lower power due to the efficiency loss in estimating the density f . This
small amount of power loss is also different from case to case, for example, for
f = t3, this power loss is almost indistinguishable; and the amount decreases to
zero as T goes to infinity. Moreover, when the reference density g is Gaussian
(the three right-most graphs), the AHRT-φ outperforms its competitors for non-
Gaussian f ; while for Gaussian f , the AHRT-φ test and the ERS test have in-
distinguishable power (and they outperform the Dickey–Fuller-ρ test). This cor-
roborates the Chernoff–Savage property of the AHRT-φ test mentioned in Re-
mark 4.5.

In order to investigate the Chernoff–Savage result for the AHRT-φ test even fur-
ther, we consider in Figure 2 the AHRT-φ test for i.i.d errors generated with nine
different true innovation densities f . These include innovation densities f that are
extremely heavy-tailed, skewed or both. The first row of graphs shows three ex-
tremely heavy-tailed distributions: Student t2, Student t1 and a stable distribution
with parameter values 0.5 for stability, 0 for skewness, 1 for scale and 0 location.
As these densities do not all satisfy our maintained assumptions, these graphs ex-
clude power envelopes and the AHRT-f̂ power functions. The top three graphs
in Figure 2 show that the AHRT-φ is much more powerful than its competitors
and that its power increases with the heaviness of the tail. The second and third
row show the effect of skewness in f . Specifically, the AHRT-φ’s power is higher
when f is skewed-normal (with skewness 0.8145) than that when f is normal
(in Figure 1). This indicates that the AHRT-φ can acquire power from skewness.
The same conclusion can be drawn from the comparison of the AHRT-φ power
function for t4 and that of a skewed t4 with skewness ≈ 2.7. To further remove
the effects of the other moments, in the third row, we also employ the Pearson
distributions with identical mean, variance and kurtosis, but different skewness—
skewness = 1 for Pearson-I, skewness = 3 for Pearson-II and skewness = 6 for
Pearson-III. Comparing the corresponding power functions, it validates again that
the larger the skewness of the true distribution f is, the more powerful the AHRTφ

becomes.
A final remark on the size of the AHRT tests. In all cases where the true density

f satisfies our maintained assumption, that is, f ∈ F (that is all cases in Figure 1
and the skewnormal, t4, Pearson-I, Pearson-II and Pearson-III in Figure 2), the sim-
ulated sizes are between 4.9% and 5.1%. This verifies the validity of the AHRTs

10The semiparametric power envelopes are based on 40,000 Monte Carlo replications where the
W-processes are approximated by a simple Euler approximation using 2500 grid points.



2634 B. ZHOU, R. VAN DEN AKKER AND B. J. M. WERKER

FIG. 2. IID errors case: illustration of the Chernoff–Savage result. The figure shows large-sample
power functions of the AHRT-φ and other selected unit root tests under various true innovation
densities f .

claimed in Theorem 4.2. In the other cases, that is, f /∈ F, the AHRT is somewhat
conservative. More precisely, the simulated sizes of the AHRT-φ are 4.8%, 4.1%,
3.7% and 4.7% for the Student t2, t1, stable and skew-t4 distribution, respectively.
This result seems consistent over all simulations.

Small-sample performance. We also report the performance of the AHRTs and
the two competitors introduced above for smaller samples. Figures 3 and 4 are the
small-sample versions, with T = 100, of Figures 1 and 2, respectively. We observe
that, even with a slight downward shift of the power functions for all three tests
considered, the findings of the large-sample case remain valid in this small-sample
case. For larger values of h, the DF-ρ test sometimes dominates the other two
tests. This is due to the fact that the DF-ρ in this Monte Carlo setting appears to
have a superior convergence speed (towards its asymptotic power as sample size T

increases) to those of the AHRTs and the ERS test. This phenomenon appears only
in (ultra)-small-sample cases, and disappears when T gets larger (e.g., T = 200).
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FIG. 3. IID errors case: small-sample power functions of the AHRT-g with various reference densi-
ties g, the AHRT-f̂ and other selected unit root tests under various true innovation densities: Gaus-
sian, Laplace, Student t3.

In cases with enough samples (say, T ≥ 100) and when f is significantly away
from the Gaussian density, irrespective of the choice of g, the AHRTs performs
favorably.

Concerning the small-sample size, we find it to range from about 4.0% to 4.5%
for the cases where f ∈ F. Again, when f does not satisfy our maintained as-
sumptions (f /∈ F) the AHRT turns out to be conservative. More precisely, we find
a size of 3.7%, 3.1%, 2.4% and 4.1% for the t2, t1, stable and skew-t4 distribution,
respectively. This makes the improved power even more remarkable.

6. Conclusion. This paper has provided a structural representation of the limit
experiment of the standard unit root model in a univariate but semiparametric set-
ting. Using invariance arguments, we have derived the semiparametric power en-
velope. These invariance structures also lead, using the Neyman–Pearson lemma,
to point-optimal semiparametric tests. The analysis naturally leads to the use of
rank-based statistics.
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FIG. 4. IID errors case: small-sample power functions of the Gaussian AHRT and other selected
unit root tests under some more true innovation densities.

Our tests are asymptotically valid, invariant and (with a correctly chosen refer-
ence density) point-optimal. Moreover, we establish a Chernoff–Savage-type prop-
erty of our test: irrespective of the reference density chosen, our test outperforms
its classical competitor which in this case is the ERS test. Finally, we introduced a
simplified version of our test and show, in a Monte Carlo study, that our theoretical
results carry over to finite samples.

As potential future work we mention the use of similar ideas to construct hybrid
rank-based tests in more general time-series models with, for instance, a determin-
istic time trend term, or stochastic volatility. Also, the structural representation of
the limit experiment and its invariance properties could be applied to other non-
stationary time-series models, for instance, cointegration and predictive regression
models.

SUPPLEMENTARY MATERIAL

Supplement to “Semiparametrically optimal hybrid rank tests for unit
roots” (DOI: 10.1214/18-AOS1758SUPP; .pdf). This supplemental file contains
technical proofs for propositions and theorems in the main context.

https://doi.org/10.1214/18-AOS1758SUPP
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