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Abstract
Climate change is a major global threat to biodiversity with widespread impacts
on ecological communities. Evidence for beneficial impacts on populations is
perceived to be stronger and more plentiful than that for negative impacts, but
few studies have investigated this apparent disparity, or how ecological factors
affect population responses to climatic change. We examined the strength of the
relationship between species-specific regional population changes and climate
suitability trends (CST), using 30-year datasets of population change for 525
breeding bird species in Europe and the USA. These data indicate a consistent
positive relationship between population trend and CST across the two continents.
Importantly, we found no evidence that this positive relationship differs between
species expected to be negatively and positively impacted across the entire
taxonomic group, suggesting that climate change is causing equally strong,
quantifiable population increases and declines. Species’ responses to changing
climatic suitability varied with ecological traits, however, particularly breeding
habitat preference and body mass. Species associated with inland wetlands
responded most strongly and consistently to recent climatic change. In Europe,
smaller species also appeared to respond more strongly, whilst the relationship
with body mass was less clear-cut for North American birds. Overall, our results
identify the role of certain traits in modulating responses to climate change and
emphasise the importance of long-term data on abundance for detecting large-
scale species’ responses to environmental changes.
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1 Introduction

Correlational studies over large numbers of species, regions and taxonomic groups have revealed
clear associations between recent climate change and observed changes in geographical range and
abundance of many plant and animal taxa (Hickling et al. 2006; Parmesan and Yohe 2003; Spooner
et al. 2018; Stephens et al. 2016). The evidence for positive changes in species abundance and
distribution in response to beneficial recent climate change (i.e. in regions where this will lead to
abundance increases and range extensions) is generally perceived to be stronger and more plentiful
than for populations expected to be negatively impacted (e.g. Frishkoff et al. 2016; Parmesan et al.
1999; Parmesan and Yohe 2003; Root et al. 2003; Thomas et al. 2006; Thomas and Lennon 1999).
However, this effect may be an artefact, particularly if there are time lags in the responses of
populations to climate change, or if range retractions aremore difficult to detect than expansions. For
example, climate change may adversely affect an animal species through changes in vegetation
affecting the suitability of its habitat, which take time to occur, leading to an extinction debt
(Kuussaari et al. 2009). Such time lags may act in the opposite direction too, resulting in instances
where beneficial effects, and therefore, the responses of species predicted to benefit may be delayed
(Menéndez et al. 2006), but this would not explain the suggested excess of positive relative to
negative effects on species distribution and population changes.

Range retractions may be more difficult to detect than expansions, particularly when
occurrence is mapped at a coarse scale. Range expansion requires successful colonisation of
a new site beyond the current range by a small number of individuals, whilst range retraction
may require the extinction of many local populations (Thomas et al. 2006; Brommer et al.
2012). Furthermore, the biological process of extinction may constitute a longer-term process
than colonisation, which may not be detected in the relatively short time periods considered by
many studies of range change (Brommer et al. 2012). Finally, attributing range retractions
solely to climatic change is difficult. Range expansion in areas of degraded habitat can easily
be attributed to improving climatic conditions. However, apportioning the cause of range
retractions among a suite of threatening processes, including habitat degradation and invasive
species, is much harder (Thomas et al. 2006). Despite some evidence for the negative effects of
climate change on populations (Lehikoinen et al. 2019), there is still no consensus on whether
the reported difference in strength and quantity of evidence for positive relative to negative
effects of climate change is an artefact or a true reflection of species’ responses. A large-scale,
multispecies assessment of the positive relative to negative effects of climate change on
species’ populations would provide important insights into the cause of this apparent disparity.

In some studies investigating the impacts of climate change, species distribution models
(SDMs) relating geographical distribution to climatic variables are combined with annual
meteorological data to estimate the direction and magnitude of changes in climate suitability
over a given time period for different species or regions (Engler et al. 2017; Stephens et al.
2016). Variation in observed population changes, both among species in a given area and
among regions for a given species, can then be compared to the modelled differences in
climate suitability trend. A positive relationship between observed and expected change is
taken as correlational evidence of a probable population-level response of distribution and/or
abundance to climatic change (although see Clavero et al. 2011). Such studies have found
positive relationships between climate suitability and population trend, as expected, but have
also identified substantial residual variation in the observed changes in distribution and
abundance that is not accounted for statistically by measures of climatic change (Green
et al. 2008; Stephens et al. 2016).
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Species’ populations and distributions are influenced by many factors other than climate
(e.g. Clavero et al. 2011), and local climate adaptation may lead to different responses in
different parts of a species’ range (Visser et al. 2003), so such unexplained variation is
unsurprising. Ecological factors might lead to interspecific variation in spatial patterns of
sensitivity to climatic change, regardless of the expected direction of change in suitability
(Pearce-Higgins et al. 2015). The phenological mismatch hypothesis is a good example of this,
where the prevalence and magnitude of species’ sensitivity to changes in life-cycle phenology
relative to the phenology of prey or other resources (Franks et al. 2018) may vary because of
differences in habitat, diet or migratory behaviour (Both et al. 2010). Changes, unrelated to
climate change, in the suitability of habitats or impacts of environmental factors on demo-
graphic rates, such as changes in agricultural practices, land cover or pollution, may also
counteract and mask the effects of climate change to a different extent for some groups of
species (Clavero et al. 2011; Herrando et al. 2014; Kampichler et al. 2012). However, to our
knowledge, the potential role of ecological traits in affecting species’ responses to recent
climatic change has not been explored comprehensively.

In this paper, we address these two issues—the apparent difference in response between
species expected to benefit or be negatively impacted by climate change, and the role of
ecological traits in influencing the relationship of population change to climate suitability
trend. First, we examine the strength of the relationship between species- and region-specific
population trends and trends in climate suitability using two of the best global datasets of
recent long-term population changes for 525 bird species from Europe and the USA. Second,
we investigate how species’ responses to changing climatic suitability vary with ecological
traits, specifically body mass, migratory behaviour and habitat association. We hypothesise
that, should all three trait variables be upheld as important, we might expect to see a more
positive mean annual population trend (r) vs. CST regression slope for (i) species with smaller
body mass, whose populations are likely to be favoured by the higher temperatures inherent in
climatic change (Millien et al. 2006; Sheridan and Bickford 2011); (ii) species associated with
habitats more immediately-responsive to climate change (i.e. wetlands), which might be
expected to undergo more rapid population changes as a result of climate-driven habitat
degradation or improvement (Erwin 2009; Foden et al. 2009) and (iii) long-distance migrants
which may be more vulnerable to phenological changes on their breeding grounds (Both et al.
2010; Mayor et al. 2017; Vickery et al. 2014).

2 Materials and methods

2.1 Bird population trends

We obtained information on changes over time in breeding bird population size in Europe
during the period 1980–2009 for 145 common species in 20 nation states (termed ‘states’
henceforward) from the Pan-European Common Bird Monitoring Scheme (PECBMS 2012;
Online Resources 1 and 2). For the USA, information on changes in breeding population size
during the same period was obtained for 380 bird species in the 48 states of the contiguous
USA (also termed ‘states’) from the US Breeding Bird Survey (Sauer and Link 2011;
Online Resources 3 and 4). For a given species, the information consisted of annual indices
of population in the state derived from counts conducted annually using comparable methods
at survey sites in all European or all US states. The methods used to derive the annual
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population indices from the count data are given by PECBMS (2012) and Sauer and Link
(2011) for Europe and the USA respectively. The number of species for which annual indices
was available for a given state ranged from 36 to 104 species (Europe, Online Resource 2) and
from 66 to 215 species (USA, Online Resource 4). The duration of the time period of the data
series used to calculate a population trend ranged from 10 to 30 years, depending on state and
species (Online Resource 5, PECBMS 2012; Sauer and Link 2011).

Datasets were checked to eliminate state-level trends for species that (i) were of limited
temporal extent or (ii) displayed anomalously large inter-annual population fluctuations,
possibly indicative of extensive population movements among states or of less robust popu-
lation estimates. To do this, we applied the following rules. First, state-wide indices of
abundance for any species were included only if that species had been monitored since
2000 at the latest. Second, state-level abundance index series for any species that displayed
population fluctuations too large to reflect local population processes, such as annual changes
of a factor > 10, were excluded (Gregory et al. 2009; Stephens et al. 2016). For Europe, this left
1686 species-state combinations with population data available for analysis, with 6760
species-state combinations available for the USA. For each species and state, a mean annual
population trend (r) was calculated as the slope of the ordinary least squares regression of the
natural logarithm of the population index on calendar year, using the results for all years for
which an eligible population index was available (Online Resource 5).

2.2 Ecological traits

In examining the relationship between bird population trends and trends in climate suitability,
we wished to account for ecological traits of species. We used information on three traits
previously reported as important predictors of population trends and for which data could be
summarised with a high level of confidence at the state-level for both European and North
American species: mean body mass, breeding-season habitat association and migratory be-
haviour (Angert et al. 2011; Buckley and Kingsolver 2012). These traits are correlated with
drivers of population trend (e.g. land-use change; Sanderson et al. 2006), and may act as
proxies for other ecological traits (e.g. diet, clutch size, brain size, degree of habitat
specialisation; Millien et al. 2006).

Body mass was obtained as the mean of the mean masses of male and female birds
(g), or of unsexed birds where sex-specific information was not available. Mass data
came from Cramp et al. (1977–1994) for European species, and from BirdLife Inter-
national’s World Bird Database for US species (BirdLife-International 2014). We used
the natural logarithm of this mean body mass (Lmass) in analyses (Online Resources 1
and 3).

Species were assigned to one of four breeding-season habitat categories (HAB;
Online Resources 1 and 3). For Europe, species were assigned a primary breeding
habitat, based on information from PECBMS (2012), Gregory et al. (2009), Tucker and
Evans (1997) and expert opinion. For the USA, broad habitat use could not be
differentiated at state level, so continent-wide habitat preferences were obtained from
BirdLife-International (2014) and Poole (2005). Species were allocated to habitat
categories if more than 50% of the population in each state used that particular habitat
during the breeding season (Gregory et al. 2009). Habitat definitions in the sources
consulted differed between Europe and the USA, so for comparability between the two
continents, we defined our own broad habitat categories as forest, comprising ‘forest’
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(Europe) and ‘forest and shrubland’ (USA) habitats; farmland, comprising ‘farmland’
(Europe) and ‘grassland’ (USA) habitats, both of which included arable and grassland;
inland wetland, comprising ‘wetland’ (Europe) and ‘inland wetland’ (USA) habitats,
including rivers, lakes, marshes and other non-marine wetlands and other, comprising
all habitats not considered forest, farmland or inland wetland.

Each species in each state was assigned to one of four migratory behaviour categories
(MIG; Onlines Resource 1 and 3) classifying the behaviour of all or most individuals: long-
distance migrant, short-distance migrant, resident and mixed strategy species (Gregory et al.
2009). For Europe, this was based on the text and maps in Cramp et al. (1977–1994)
supplemented by available migration atlases (Speek and Speek 1984; Spina and Volponi
2008-2009; Wernham et al. 2002; Zink and Bairlein 1987-1995). For the USA, we based
the classification on maps in Poole (2005). Long-distance migrants were defined as those
usually making regular seasonal movements between their breeding range and either, for
Europe, a non-breeding range outside the Palaearctic region (Snow and Perrins 1998), or,
for the USA, a non-breeding range occurring south of latitude 25° N (the southern tip of
Florida). We considered short-distance migrants to be those usually making regular migratory
or dispersive movements within the Palaearctic region (Europe) or north of latitude 25° N
(USA). Residents were those where most individuals were non-migratory, making only
irregular movements within the Palaearctic region (Europe) or where breeding and non-
breeding ranges overlapped by > 50% (USA). The mixed strategy category was only used in
the USA in instances where information was insufficient to determine where birds from a state
migrate to outside the breeding season, although the species was known to migrate to both
short- and long-distance destinations in other states.

2.3 Climate suitability trends

Climate suitability trends (CST) for each species and state were derived from SDMs
(Online Resource 5), which linked annual grid-cell specific probability of occurrence estimates
for a given species to grid-cell specific contemporaneous climatic data. Steps involved in
fitting SDMs and using them to derive CSTs followed the methods of Stephens et al. (2016),
and are described in the following sections.

2.4 Species occurrence data for SDM fitting

For European birds, species occurrence data (the presence or absence of each species as a
breeding bird) was obtained for Europe, Turkey, Cyprus and North Africa (Mediterranean to
latitude 20° N). The latter three regions, representing the southern margin of the Western
Palaearctic realm, were added to include the southern range margins of as many species as
possible, which was expected to improve the performance of the SDMs (Barbet-Massin et al.
2010). For Europe, occurrence data was available for 50 × 50 km UTM squares from
Hagemeijer and Blair (1997). Occurrence data for Turkey, Cyprus and North Africa was
available for 0.5° × 0.5° latitude-longitude grid cells (approximately equal to 50 × 50 km UTM
squares) from BirdLife International Natureserve (2013). For the USA, we used bird species
occurrence data for 0.5° × 0.5° latitude-longitude grid cells spanning the whole of North
America northwards from latitude 10° N from BirdLife International Natureserve (2013).
Occurrence data on both continents was mostly derived from surveys conducted in the 1980s
before the most rapid phase of recent climate change.
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2.5 Observed climate data for SDM fitting

Monthly mean values for cloud cover, precipitation and temperature for the period 1961 to
1990 were obtained from www.worldclim.org (Hijmans et al. 2005) and CRUTS3.1 (Harris
et al. 2014). Soil water capacity data were obtained from Prentice et al. (1992). Climate data
were bilinearly interpolated onto the same grid structure as used for species occurrence data
(50 km UTM grid for Europe; 0.5° grid for Turkey, Cyprus, North Africa and North America).
Bioclimate variables shown elsewhere to be highly influential were derived from climate data
following Prentice et al. (1992) and Gregory et al. (2009), and included annual temperature
sum above 5 °C (GDD5), mean temperature of the coldest month (MTCO) and an estimate of
the annual ratio of actual to potential evapotranspiration (APET). We restricted the number of
bioclimate variables used to minimise the risk of overfitting and data-dredging, which can
occur when large numbers of candidate explanatory variables are used in fitting SDMs
(Pearce-Higgins and Green 2014). We chose these particular variables because they are known
to influence the distribution of plant species and vegetation types and could therefore limit
species’ ranges directly through effects on species’ physiology, or indirectly through effects on
vegetation and habitats, or on prey, predators, competitors or diseases (Huntley et al. 2007;
Pearce-Higgins and Green 2014).

2.6 Fitting the SDMs

For each species, we fitted four types of SDM following Bagchi et al. (2013) to 1980s
occurrence data and the 1961–1990 values of the three bioclimate variables. The four SDM
types used were generalized linear models (GLMs, McCullagh and Nelder 1989),
semiparametric generalized additive models (GAMs, Hastie and Tibshirani 1990), generalized
boosted models (GBMs, Elith et al. 2008) and random forests (RFs, Cutler et al. 2007), all of
which perform well when compared with other SDM-fitting techniques (Araujo et al. 2005;
Elith and Leathwick 2009; Franklin 2009; Meynard and Quinn 2007; Wenger and Olden
2012).

We used a cross-validation approach to fit each type of SDM. The occurrence data used to
fit each model was divided into ten similarly-sized blocks each with similar mean values for
the three bioclimate variables, but spanning the full range of bioclimates. Blocks comprised
spatially disaggregated sampling units consisting of whole or partial global ecoregions (www.
worldwildlife.org/science/data). SDMs were fitted to data from nine blocks, excluding each
block in turn, with the fitted SDM from each of the ten iterations of this procedure being used,
together with grid-cell-specific values of the 1961–1990 bioclimate data to calculate the
probability of occupancy for each cell in the left-out block. These predicted probabilities of
occupancy were then assembled for the entire area. Full details of model fitting methods,
outcomes and measures of goodness-of-fit are presented in Stephens et al. (2016).

2.7 Calculating CST for 1980–2009

For a given species and area (Europe or the USA), the ten models fitted using each SDM
approach (i.e. the cross-validation models fitted with each block omitted) were applied to
annual bioclimate data from all focal states for each of the years 1980–2009. The climatic data
used for this were as described for the SDM fitting, but annual values of the bioclimate
variables were used, in combination with the SDMs, to calculate annual values of expected
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probability of species occurrence for each grid cell. Predicted probabilities of occurrence were
averaged across the ten models for each cell to give the probability of occurrence for that cell
in that year from the given SDM method. Probability of occurrence for each cell was then
averaged across the four SDM approaches to give an ensemble probability of occurrence for
the given cell in the given year. We used an ensemble approach to minimise the influence of
potential bias associated with any particular modelling approach (Araújo and New 2007;
Araújo et al. 2011; Bagchi et al. 2013). For a given state and year, annual mean probability of
occurrence was then averaged across all cells in the state.

For a given species in a given state, the CSTwas calculated as the slope of an ordinary least
squares linear regression of logit annual mean ensemble probability of occurrence (as de-
scribed above) regressed on calendar year. A positive CST slope indicates an increased
probability of occurrence over time (species is predicted to benefit from climate change in
that state); a negative slope indicates that the species is predicted to be disadvantaged by
climate change. CSTwas calculated for the same time period over which species-state-specific
population trends were calculated, i.e. from 1980 or the first year of population data (which-
ever was later) to 2009 or the year after which there was no further data (whichever was earlier,
Online Resource 5).

2.8 Statistical analysis

The principal objective of our analysis was to examine the relationship between observed
recent population trends (r) and trends in climate suitability (CST) at the species-state level for
each continent. We had an a priori expectation that rwas positively related to CST (Green et al.
2008), and wished to examine firstly whether the strength of this relationship differed between
species-states for which climate suitability was expected to decrease (CST-) or increase (CST+
), and secondly whether species- and state-specific ecological traits affected the strength of this
relationship.

2.9 Population trend vs. CST relationships for species-states expected to be positively
or negatively impacted by climate change

To test whether responses to climate change differ between species-state combinations in
which populations were expected to benefit from recent observed climate change (i.e. all
species with a positive CST [CST+, Online Resources 1–4]) and those expected to be
adversely affected (i.e. all species with a negative CST [CST-, Online Resources 1–4]), we
compared the slope of the regression of r on CST for these two species-state groups separately
through piecewise regression, assuming that the slope of the relationship would change at
CST = 0. Linear mixed models (LMMs) were fitted using the lme4 package in R (Bates and
Maechler 2009; R Core Team 2013) for Europe and the USA separately, incorporating the
crossed random effects of species and state, thus accounting for the non-independence of
trends among states within species, and among species within states. We also included random
effects of the interactions between species and CST and between state and CST, to account for
the non-independence of the relationship between r and CST among populations of a species
and between states, and a nested random effect of ‘order/family/species’ to account for
potential phylogenetic non-independence. Our data would not support the fitting of random
coefficient terms. For all models, diagnostic plots were used to check that assumptions had
been met.
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A piecewise test was incorporated into models by including both CST and also the dummy
variable CST*, where CST* = 0 if CST < 0 (CST- species-states) and CST* = CST if CST ≥ 0
(CST+ species-states; Hardy 1993). The regression coefficient for CST* represents the
estimated difference in slope between the CST- (CST < 0) and CST+ (CST ≥ 0) sections of
the CST range. We took the t value for the effect of CST* as a test of whether regression slopes
differed for CST- and CST+ species and used two-tailed significance tests because the
difference in slope could plausibly have been in either direction.

2.10 Population trend vs. CST relationships for species with different ecological traits

To examine the effects of ecological traits on the relationship of r with CST, we fitted LMMs,
with the same random effects structure as above. We did this separately for Europe and the
USA because two of the traits (HAB and MIG) had broadly similar, but not precisely
equivalent, definitions on the two continents. We had no a priori expectations about the
importance of the trait variables, so our model set of interest included all 27 possible models
which included the main effect of CST and the main effects of Lmass, HAB and MIG, as well
as their two-way interactions with CST (Online Resources 6 and 7). Including two-way
interaction terms in this way allowed us to test the effects of trait variables on the slope of
the r vs. CST relationship, which was the aim of this analysis. To avoid retention of overly
complex models, selection followed the recommendations of Richards et al. (2011) whereby
all models with ΔAICc < 6 were classed as a set of top models, excluding models that were
more complex versions of those with a lower AICc.

3 Results

3.1 Comparing the r vs. CST relationship for species-states expected to be positively
or negatively impacted by climate change

A significant positive relationship between population trend and CST was found for
both species-state groups on both continents (Table 1; Fig. 1). There was no significant
difference in the slope of the relationship between population trend and CST between
species-states with expected negative (CST−) and positive (CST+) effects of recent
climate change (Table 1; Fig. 1). Hence, there was no statistical support for a weaker

Table 1 Comparison of regression slopes (model coefficients b, standard errors SE, and 95% confidence
intervals 95% CIs) between population trend and climate suitability trend (CST) for species-state populations
on the two continents. The regression coefficient CST* represents the estimated difference in slope between
populations expected to be adversely (CST-) or positively affected (CST+) by recent observed climate change.
Italicised text indicates results significant at the 0.05 level

Continent b SE 95% CIs t P

Europe (n = 1686)
CST 0.243 0.103 0.041–0.445 2.354 0.019
CST* − 0.240 0.185 − 0.602–0.122 − 1.298 0.195

USA (n = 6760)
CST 0.186 0.069 0.050–0.322 2.688 0.007
CST* 0.083 0.116 − 0.143–0.310 0.721 0.471
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relationship between observed and expected changes for species expected to be affected
negatively by recent change.

3.2 Effects of ecological traits on the r vs. CST relationship

For both continents, the top model of the relationship of population trend to CST incorporating
ecological and life history traits included the two-way interactions between body mass and
CST, and habitat association and CST (Table 2, Online Resources 6, 7 and 8). The main effect
of migratory behaviour was also included in the top model for Europe, but not for the USA.
Two models were eligible for inclusion in the top set for Europe, whilst four other models were
also selected in the top set for the USA. For each continent, the top model set contained
various combinations of the variables included in the top model.

The direction and magnitude of the effect of species’ body mass on the slope of the
regression of population trend on CST differed between continents (Fig. 2, Online Resource
8). For European species, the relationship between the r vs CST regression slope and body
mass was negative, so the relationship of r to CST was strongly positive for species of low
body mass and became less positive as body mass increased (Fig. 2a), as we hypothesised a
priori. However, for birds in the USA, the relationship between the r vs CST regression slope
and body mass was positive, so the relationship of r to CST was least positive for species of

Fig. 1 The effect of climate suitability (CST) on bird population trends (r) for Europe and the USA. Dotted lines
represent continent-specific regression models of r on CST from analyses presented by Stephens et al. (2016).
Solid lines are those predicted by continent-specific piecewise regression models with a breakpoint at CST = 0
(see Table 1 for model coefficients). All models also included the random effects of species and state. Plotted
points are mean values of population trend and CST (± 95% confidence intervals, which are very small for CST)
for species-state combinations binned according to their CST value for each continent (species states sorted by
descending CST value and grouped into three bins containing approximately equal numbers of CST- species-
states and three bins containing approximately equal numbers of CST+ species-states: CST- = 284 and 1263 per
bin, CST+= 278 and 991 per bin for Europe and the USA respectively)
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low body mass and became more positive as body mass increased (Fig. 2b), counter to our
expectation. This contrary effect appears to be driven by the strength of the response of the
largest birds on this continent (Fig. 2). When only species of a comparable mass range (10–
100 g, spanning the interquartile range of body mass for European species and excluding the
heaviest species in the USA, Fig. 2) were included in analysis on both continents, the
interaction between r vs CST regression slope and body mass was no longer upheld as
important in the top model for the USA, although its effect in Europe remained unchanged
(Online Resource 9).

Table 2 Top sets of linear mixed models of population trend in relation to climate suitability trend (CST) and
ecological traits of species for Europe and the USA. Both top sets include only those models simpler than the top
model with ΔAICc < 6. Models are shown in order of increasing AICc from the top model (shown in italics).
Variables included in each model are denoted by codes: HAB broad habitat association, Lmass natural logarithm
of body mass in grams. The log likelihood (logLik), number of fitted parameters (df) and Akaike weight (w) are
shown for each model. Two-way interaction terms are coded by placing ‘:’ between two variable codes. Results
for the full set of models considered are presented in Tables S6 and S7

Continent Variables retained logLik df AICc ΔAICc w

Europe CST + Lmass +HAB+MIG+CST:Lmass + CST:HAB 3043.0 20 − 6045.5 0.0 0.47
CST + Lmass + HAB+CST:Lmass + CST:HAB 3040.7 18 − 6045.1 0.4 0.38

USA CST + Lmass +HAB+CST:Lmass + CST:HAB 10,861.4 18 − 21,686.8 0.0 0.19
CST + Lmass + CST:Lmass 10,855.4 12 − 21,686.7 0.1 0.18
CST + Lmass + HAB+CST:Lmass 10,860.1 17 − 21,686.1 0.6 0.14
CST + Lmass 10,853.6 11 − 21,685.2 1.6 0.08

Fig. 2 Regression slopes of the relationship between bird population trends (r) and climate suitability trend
(CST) derived from the top model for (a) Europe and (b) the USA. The top models for the two continents both
included the main effects of CST, log body mass (Lmass) and habitat and the two-way interactions of CSTwith
each of Lmass and habitat (Table 2, Online Resource 8). Each line shows the modelled slope of the r vs. CST
regression in relation to body mass for a single habitat type, with the horizontal extent of the line corresponding to
the central 90% of body mass values for the species studied on each continent. The shaded area shows the
interquartile range of body mass and the vertical line its median value. For Europe, the lines for forest and other
almost coincide, so for clearer differentiation between these habitats, the line for forest has been jittered upwards
by 0.02 (the direction indicated by the model). Line segments lying above the horizontal grey line represent
positive modelled relationships between r and CST
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On both continents, species associated with inland wetland had the most positive relation-
ship of r to CST. Species associated with other habitats had the least positive relationship, and
relationships for farmland and forest species were of intermediate strength (Fig. 2,
Online Resource 8). The slope of the r vs CST regression was positive across the whole of
the observed range of body mass for species associated with inland wetland in Europe and for
species associated with inland wetland, farmland and forest in the USA. It was also positive
across most of the observed range of body mass for species associated with farmland, forest
and other habitats in Europe but not for species associated with other habitat in the USA.

4 Discussion

Our analyses of over 500 bird species confirm the overall positive relationship between population
trend and climate suitability on our two focal continents in support of Stephens et al. (2016) and
others (Green et al. 2008; Gregory et al. 2009). Importantly, we found no statistically supported
difference in the strength of the relationship between population trend and climate suitability change
between those species expected to benefit from climate change and those expected to be adversely
impacted, failing to support previous reports that the positive effects of climate change have been
more pronounced than its negative effects. Across our sample of 525 species over the two
continents, we therefore found no strong evidence of a greater tendency for delay in effects of
climate change on species’ populations projected to be negatively impacted compared to those
projected to be positively impacted by climate, in contrast to suggestions from previous, often finer-
scale studies (e.g. see Thomas et al. 2006). The positive relationship between population trend and
climate suitability largely persisted regardless of species ecology, although the strength of relation-
ship varied with ecological traits, further increasing the causal evidence of a consistent effect of
climate change on bird populations over recent decades.

It has been suggested that the evidence for negative population responses to climate change
may be less strong than for positive population responses (e.g. Parmesan et al. 1999; Parmesan
and Yohe 2003; Root et al. 2003; Thomas and Lennon 1999). However, our evidence of a
positive relationship between population trend and CSTwas, if anything, more compelling for
species-states expected to be negatively impacted rather than those expected to benefit (Fig. 1).
A similar study examining community composition found a similar effect of comparable
contributions of both cold-dwelling (~CST-) and warm-dwelling (~CST+) species to regional
climate-induced changes across a smaller geographic area (Tayleur et al. 2016). A possible
explanation for why we found no evidence that species favoured by changing climate
suitability have responded more strongly than species expected to be disadvantaged, may be
that we compared range change predictions from models of distribution data with detailed
abundance data in our analyses. Assessments of climate impact based on distribution data
alone are more likely to be biased towards increases in range which are often more noticeable
(Thomas and Abery 1995; Thomas et al. 2006), whilst abundance data from long-term
population monitoring schemes, by being more sensitive to changes than range, are unlikely
to share this bias. This therefore stresses the importance of long-term population monitoring
schemes over simple spatial occupancy data for detecting large-scale species’ responses to
environmental changes. Our assumption of a linear relationship between population trends and
climate suitability may have resulted in our analysis being less able to capture the nature of the
relationship. Developing theory to guide understanding of the relationship between population
trends and climate suitability would provide a useful area of future research.
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The population trend vs. CST relationship was slightly less positive for CST+ species
in Europe than the other groups tested, indicating that this group may be less able to take
advantage of an increasingly suitable climate. This may reflect differences in the
underlying trajectories of avian abundance between the two continents, with average
trends in Europe predominantly negative since 1980 (EBCC 2014), whilst US bird
populations have, on average, remained relatively stable (Sauer and Link 2011;
Stephens et al. 2016). This is reflected in the lower mean values of population trend at
a given value of CST in Europe compared to the USA evident in Fig. 1. These different
patterns could be related to the proportion of rare species included in population
monitoring data for the two continents. In Europe, rarer species have been faring better
than more common species (Inger et al. 2015) but our European dataset is focussed on
common birds (PECBMS 2012). Differences in land-use change on the two continents
(Clavero et al. 2011; Kampichler et al. 2012), both in terms of current rates of change
and levels of historical conversion, might also have a bearing on mean population
trajectories.

Another explanation for why CST+ species may not be responding as positively in terms of
population trend in Europe is if they are following the pattern of increasing climate suitability
into an ecological trap due to changing land use and intensity patterns (Herrando et al. 2014).
This could be the case if pressures other than climate change, such as agricultural intensifica-
tion or land abandonment, were particularly prevalent in Europe compared to the USA (e.g.
Lasanta et al. 2017).

The strength of the relationship between population trend and climate suitability
varied in relation to the same ecological traits on both continents, with similar patterns
found for species associated with different habitat types; associations with body mass,
however, were more complex. It has been proposed that a warming climate favours
smaller species (Atkinson 1994; Millien et al. 2006; Sheridan and Bickford 2011), and
distribution shifts driven by climate change may be stronger in small-bodied species
with more rapid reproduction and shorter generations (Devictor et al. 2012), so we
expected that smaller species would respond more positively to warming climate and
associated range changes. In accord with this hypothesis, we found that species with
smaller body mass had a more positive population trend to CST relationship, but only
in Europe.

In the USA, we found the opposite effect of body mass on the population trend to
CST relationship, with larger species apparently having more positive population trend
vs. CST relationships. This relationship was not supported when we considered equiv-
alent mass ranges (10–100 g) of species on both continents however, suggesting that it
is driven by strong responses to climate change among the very largest species in the
USA. The reasons for this finding are unclear but could be explained by the inclusion
of large bodied wetland species in our US dataset, which, as discussed below, appear to
be more responsive to environmental change. Similar large bodied wetland species are
absent from our European data set, potentially explaining the discrepancies in these
results.

As hypothesised, species associated with different breeding habitats responded differently
to changes in climate suitability, and these responses were largely consistent on both conti-
nents. Species associated with inland wetlands showed a consistently more positive relation-
ship between r and CST than those associated with other habitat types. The biota of wetlands
may be more responsive to environmental changes due to the already seasonal or stochastic
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nature and spatial or temporal patchiness of wetland habitats relative to less labile ecosystems
(e.g. forests), which can withstand environmental changes for many decades without
exhibiting large-scale community changes (Erwin 2009; Lindner et al. 2010). Wetland breed-
ing birds may also make longer-distance dispersal movements than those associated with dry
habitats for the same reason (Paradis et al. 1998), so they may be better able to respond more
rapidly to changing conditions. Strong and increasing protection of wetlands relative to other
habitats, at least in Europe (Butchart et al. 2012), may also allow wetland bird populations to
better track the direction of climate suitability without the trade-off of also adapting to habitat
change and other threats (Gaüzère et al. 2016). These habitat changes and threats may also be
more coherent with the impact of climatic changes (e.g. drainage and water abstraction similar
to the drying effects of reduced rainfall and warmer temperatures; Erwin 2009), potentially
explaining the enhanced the strength of the r and CST relationship for wetland species.

Surprisingly, migratory behaviour was not found to be important in affecting the strength of
the relationship between population trend and CSTon either continent. Long-distance migrants
are less able to adapt their phenology than their resident and short-distance migrant counter-
parts. Phenological mismatch renders long-distance migrants vulnerable to the effects of
worsening climate suitability across their breeding grounds, whilst also rendering them less
able to benefit from improvements in climate suitability (Both et al. 2010; Franks et al. 2018;
Mayor et al. 2017; Samplonius et al. 2018; Vickery et al. 2014). In addition, the effects of
phenological mismatch vary between species, study systems and habitats (Both et al. 2010;
Hurlbert and Liang 2012). With potentially contrasting responses by migratory species to
changes in climate suitability, the effect of migratory behaviour on the r vs CST relationship
may be weaker than expected.

Taken together, our results indicate that ecological traits and habitat associations
substantially affect the strength of bird population responses to changing climate suit-
ability, but that their impact may not always be consistent even between continents.
Much emphasis is currently placed on examining the likely impacts of ecological traits
on species’ responses to climate change, with the aim of predicting global patterns of
climate change adaption (e.g. Angert et al. 2011; Jiguet et al. 2007; Jiguet et al. 2010;
Pearson et al. 2014). Our results suggest that generalizing the impacts of these traits from
localised geographical studies, even those examining whole continents, to a universal
scale may not be robust.

Thomas et al. (2006) highlighted the likely artefactual perception that range expansions and
population increases as a result of climate change are more widespread than range retractions
and population decreases. Here, we have shown that despite differences in species ecology, the
relationship between population trend and climate suitability trend is persistently positive
across an entire taxonomic group and two continents, with no evidence that species favoured
by climate change have responded more strongly than those disadvantaged by it, thus
providing clear evidence that climate change is causing widespread strong, quantifiable
population increases and declines in equal measures.
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