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Abstract 

This work presents a Boundary Element Method formulation for the solution of the anomalous 

diffusion problem. By keeping the fractional time derivative as it appears in the governing 

differential equation of the problem, and by employing a Weighted Residual Method approach with 

the steady state fundamental solution for anisotropic media playing the role of the weighting 

function, one obtains the boundary integral equation of the proposed formulation. The presence of a 

domain integral with the fractional time derivative as part of its integrand, and the evaluation of this 

fractional time derivative as a Caputo derivative, constitute the main feature of the formulation. The 

analyses of some examples, in which the numerical results are always compared with the 

corresponding analytical solutions, show the robustness of the formulation, as accurate results are 

obtained even for small values of the order of the time derivative.  



1. Introduction 

Great deal of attention has been given to the solution of problems governed by partial differential 

equations containing non-integer derivatives, as attested by the work by Sun et al. [1], in which 

various applications are listed. Such kind of problems belong to the domain of the so-called 

fractional calculus, although, according to Miller and Ross [2], the use of the word fractional is a 

misnomer, as generalized operators can include rational or irrational, positive or negative, real or 

complex orders. Despite this caveat, this nomination will be kept here, as it is found in textbooks, 

e.g. Ortigueira [3], due to the tradition attached to its use. 

 This work is concerned with the solution of the anomalous diffusion equation for two-

dimensional problems, assuming anisotropic media, by a Boundary Element Method (BEM) 

formulation. The anomalous, or fractional, diffusion equation presents a time-derivative of order , 

with 0 <  < 1. From this point of view, the classical diffusion equation, for which  = 1, can be 

looked upon as a particular case of a most general problem represented by the fractional diffusion 

equation. The time-derivative of order , called from now on as fractional time-derivative, can be 

represented either by the Caputo or by the Riemann-Liouville operators; in fact, these are integro-

differential operators, differing one from the other according to the sequence of the execution of the 

operations of derivation and integration. When the initial conditions are zero, the definitions 

coincide, see Ortigueira [3], Gorenflo and Mainardi [4]. 

 In a previous but related work, the authors presented another BEM formulation based on the 

use of the Riemann-Liouville derivative: in that approach, by means of an inverse operation 

involving both the Riemann-Liouville and the Caputo derivatives, see Ortigueira [3], an ordinary 

time-derivative of order one replaces the fractional time-derivative that, by its turn, is transferred to 

the Laplacian; the interested reader is referred to Carrer et al. [5] for additional details concerning 

this matter. Now, in this work, a new BEM formulation is developed in which the fractional time-

derivative is kept unaltered, that is to say, the formulation is developed by using the Caputo 

derivative directly. This is the main feature of the formulation and, most probably, the feature that 

rendered its robustness: while the previous formulation, named FD-BEM, failed to produce useful 

results for  < 0.5, the new formulation is prone to produce accurate results even for very small 

values of : indeed, in all examples results for  = 0.05, that are in a good agreement with the 

analytical solutions, are presented. As before, the proposed formulation employs the fundamental 

solution of the steady-state problem and, for this reason, it is of the type D-BEM. Due to the use of 

the Caputo derivative, it will be called, from now on, CD-BEM, with C meaning Caputo and D 

meaning domain; note that this designation tacitly states that the formulation is concerned with the 

anomalous diffusion equation. As the fractional differential operators are non-local – this meaning 

that the determination of a future state of a given system depends not only on the current but on all 



the previous states – a summation term, representing the history contribution, appears in the CD-

BEM equation. This summation term turns the CD-BEM formulation more time consuming than the 

standard D-BEM formulation, see the Examples. In Riemann-Liouville based formulations, e.g. 

Carrer et al. [5], Yuste and Acedo [6], a strong dependency of the time-step, t, with respect to the 

order  of the fractional derivative is observable. This dependency is such that in the concluding 

remarks of reference [6] one can read: “the number of steps needed to reach even moderate time 

would become prohibitively large’. The CD-BEM formulation, on the other hand, does not present 

such a strong dependency between t and . Consequently, regardless of the value of , the same 

time-step could be used in all the analyses for each example. This is a favourable aspect of the CD-

BEM formulation that renders it attractive.  

 The integrand of the domain integral in the CD-BEM equation is constituted by the product 

of the fractional time derivative with the fundamental solution of the steady-state classical diffusion 

problem. To compute this integral, it is assumed that the Caputo fractional time derivative varies 

linearly in the triangular cells of the domain discretization, and that the variable of interest, say u, 

varies linearly in each time-step. The boundary discretization, by its turn, employs linear elements. 

Under these assumptions, boundary and domain integrations are carried out following standard 

BEM procedures. After the assemblage of the matrices, the time-marching process can start. Note 

that the standard D-BEM formulation arises when  = 1.0 

 Four examples are included in which the BEM results are always compared with the 

analytical solution. Accurate results were obtained for  ranging from 1.0 to 0.05.  

 Although the fractional calculus is as old as the standard calculus, presently it is considered 

an emerging field in mathematics and in many branches of science and engineering where non-

locality plays an important role. As the number of applications has increased, a great deal of 

attention has been given to the development of numerical methods for the solution of fractional 

differential equations. Diverse BEM approaches can be found, for instance: Katsikadelis [7] 

employed the concept of an analog equation together with the BEM to solve two-dimensional 

problems, and Dehghan and Safarpoor [8], presented a dual reciprocity BEM formulation. In what 

concerns the Finite Difference Method (FDM), a great number of articles can be found and, among 

them, the works by Meerschaert and Tadjeran [9], Langlands and Henry [10], Youste and Acedo 

[6], Tadjeran and Meerschaert [11], Murio [12], Murillo and Yuste [13], Li et al. [14], Çelic and 

Duman [15], Li and Li [16], Sousa and Li [17] can be cited. In what concerns the Finite Element 

Method (FEM), one can cite the works by Roop [18], Agrawal [19], Deng [20], Huang et al. [21], 

Zheng et al. [22], Ainsworth and Glusa [23], Esen et.al [24].  

 In addition to the classic methods, other techniques were presented: for example, meshless 

formulations can be seen in Kumar et al. [25], Shekari et al. [26] and Zafarghandi et al. [27], and the 



reproducing kernel algorithm formulation can be found in Arqub and Shawagfeh [28], and Arqub 

[29], whereas and residual power series approach can be found in Arqub [31]. Naturally, this is only 

a little survey concerning a research area that increases continuously. In this context, the authors 

intend to demonstrate that their new BEM approach, or rather, the CD-BEM formulation, can be 

used as a powerful tool for the solution of anomalous diffusion problems. 

 



2. The Anomalous Diffusion Problem 

The anomalous diffusion problem, in the Caputo sense, for anisotropic media, is governed by the 

equation: 
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where 0 <  < 1, and Dx and Dy are the constant diffusion coefficients in x and y directions, 

respectively.  

 For a domain , with the boundary  represented as: qu  , the boundary conditions 

are then schematically defined as follows: 

 

Dirichlet boundary condition: ),,(ˆ),( tXutXu   over u   (2) 

and 

Neumann boundary condition: ),,(ˆ),( tXqn
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 In Equation (3), nx and ny are the components of the unit outward normal vector to the 

boundary. 

 The initial condition is defined as: 

 

 )()0,( 0 XuXu   (4) 

 

 In equations (2), (3) and (4), X represents the point of coordinates (x,y), that is, X = (x,y). 

 The fractional derivative of -order with respect to time that appears on the left-hand-side of 

Equation (1) is known as the Caputo derivative and is defined as: 
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 Unlike the authors’ previous formulation, see Carrer et al. [5], the development of the new 

BEM formulation, to be presented below, starts directly from Equation (1), without any 

manipulation in its original form. 



3. The Boundary Element Method 

The Weighted Residuals Method, e.g., Brebbia et al. [31], Zienckiewiccz and Morgan [32], is used 

as the starting point for the development of the basic Boundary Element Method (BEM) integral 

equation. Here, the fundamental solution of the steady-state classical diffusion problem, say w, 

plays the role of the weighting function for the domain residuals. The weighting functions for the 

residuals at the boundaries u and q, denoted here, respectively, as w and w are determined in 

such a way that unnecessary approximations to the boundary conditions are avoided.  

 The weighted residual equation is written as: 
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 After applying the divergence theorem, the functions w and w are chosen to avoid 

approximations to the boundary conditions. In this way, one has: 
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and 

 

 ww   (8) 

 

 Remembering that:  
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the substitution of Equations (7) – (9) into Equation (6) produces a BEM equation valid, however, 

only for   . In order to solve the problem numerically, the limiting form of such a BEM 

equation, in which   , should be obtained. This is done following standard procedures, such as 

that presented by Brebbia et al. [31], and the resulting equation, called the basic BEM equation 

reads:  
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 In equation (10),  = (x,y) and X = (x,y) are called, respectively, source point and is the 

field point. 

 The term c() appears as a consequence of the limiting process mentioned above. For   , 

it is assumed that c() = 1. For   , c() is computed according to, see Carrer et al. [33]: 
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 The angles 1 and 2 in Equation (11) are depicted in Figure 1.  

 The fundamental solution is given by, see Berger and Karageorghis [34]: 
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 For isotropic media, Dx = Dy = D and expressions (11) and (12) become the well-known 

expressions below, see: 
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and 
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 BEM formulations concerned with the solution of time-dependent problems can be 

developed using non-time-dependent fundamental solutions, thus generating the so-called D-BEM 

formulations. The letter D, in this case, stands for domain, indicating the presence of a domain 

integral in the BEM integral equations. The kernel of such domain integrals is constituted by the 

product of the fundamental solution with the time derivative of the variable of interest, u, or any 

other function that can be treated as a domain body force. For the present case, the product of the 



fundamental solution by the fractional time derivative of u constitutes the kernel of the domain 

integral. Based on this discussion, the formulation developed here can be named CD-BEM, with the 

letter C standing for the Caputo derivative, which means that it is concerned with the solution of a 

fractional problem.  

 For computational purposes, the variable t in Equation (10) is replaced by a discrete value, 

say ,)1(1 tntn   where t is the selected time interval, and 0  t  tn+1. Also, aiming at 

computing the integral in Equation (5) analytically, it is assumed that u varies linearly between two 

consecutive time steps. By adopting a simplified notation, in which: ),(),( XutXuu kkk   one has: 
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and consequently: 
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 Finally, the resulting expression for the Caputo derivative can be written as: 
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 After performing all the integrations in Equation (17), the resulting expression can be 

written as: 
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 More concisely, Equation (18) can be rewritten as: 
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where: 
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 Note that Equation (18) is valid for n  1. When n = 0, it is written simply as: 
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 Equation (18) now can be substituted into Equation (10), and the resulting expression is: 
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 For the computation of the boundary integrals in Equation (22), linear elements were 

employed in the boundary discretization, assuming a linear variation to u and q in each element. 

The computation of the domain integral requires the discretization of the entire domain. Linear 

triangular cells were employed in the domain discretization, with the assumption of linear variation 

for u in the cells. The matrix form of Equation (21) is written as: 
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 After rearranging the common terms, Equation (23) can be written as: 
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 The unknown values of u and q, at time tn+1, are determined after applying the boundary 

conditions to Equation (24). Note that: i) the non-local behaviour of the Caputo fractional operator 

is characterized by the summation symbol in Equations (22) and in Equations (23) and (24): the 

computation of the current values of u and q depends not only on their current values, but also on all 

the previous values of u, that is, depends on the history; ii) the last term on the right hand side of 

Equation (24) is null when  = 1.0, as this case corresponds the BEM formulation for the classical 

diffusion problem. In Equations (23) and (24), superscripts b and d correspond to the boundary and 

domain variables, while the double superscripts are related to the positions of the source and field 

points: the first superscript indicates the position of the former, the second, the position of the latter. 

The identity matrix I is related to points that belong to the domain; as already mentioned, for such 

points c() = 1. 

 Note that Equation (23) is much simpler than the corresponding matrix equation presented 

by Carrer et al. [5], in which the history contribution takes into account all the previous values of u 

and q.  



 

4. Examples 

In this section, the CD-BEM formulation is validated. Four examples are included and discussed. 

For each example, the BEM results are presented as functions of time or of the spatial coordinates 

and are always compared with the analytical solutions. This comparison showed that reliable 

results, even for small values of  such as  = 0.2 and  = 0.05, are furnished by the CD-BEM 

formulation. Besides the analyses with these two small values of , other analyses were also carried 

out, with  = 1.0, that corresponds to the classical diffusion problem, and with  = 0.8 and with 

 = 0.5.  

 The BEM results were obtained from a computer program developed by the authors, written 

in the language Fortran 90. The structure of such a computer program is quite simple and its steps 

are listed below: 

 

a) Input data concerning the geometry: number of nodes and their coordinates; number of linear 

boundary elements, n , and of linear triangular cells, n ; connectivity of the boundary elements and 

of the cells; 

b) Input data concerning the boundary conditions; 

c) Input data concerning the time-step t, the number of time-steps, and the order  of the time 

derivative; 

d) Input data concerning the media: Dx and Dy; 

e) Assemblage of the matrices that appear in Equation (24); 

f) Beginning of the time marching process: if  = 1, the summation operation indicated in Equations 

(24) is avoided; 

g) Print the results for the select node as a function of time; 

h) Print the results for the geometry for the selected times. 

 



4.1. Rectangular Domain with sinusoidal initial condition 

This example presents a bar with length L = , with an initial condition given by: 

 

   xxu sin0   (25) 

 

 The boundary conditions, assuming 0  x  , then are: u(0,t) = 0 and u(,t) = 0. 

 The analytical solution for an isotropic medium with Dx = Dy = D = 1.0 reads, see Murillo 

and Yuste [13]: 
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 In equation (26),  ...E  is the Mittag-Leffler function, defined according to: 
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where z  C, (…) is the gamma function, and  is the fractional order of the derivative. If  = 1.0, 

Equation (27) reduces to:  

 

   zezE 1  (28) 

 

and equation (26) becomes the well-known classical diffusion equation analytical solution. From 

this point of view, this analytical solution can be looked upon as a particular case of the solution 

given by equation (26).  

 The two-dimensional analysis of this one-dimensional problem was carried out in a 

rectangular domain defined on the region 0  x   and 0  y  /2, with the Dirichlet boundary 

conditions: 

 

     0,,,,0  tyutyu  (29) 

 

and with the Neumann boundary conditions below, chosen to turn possible the simulation of the 

one-dimensional problem: 

 

   0),2/,(,0,  txqtxq  (30) 



 

 The initial condition is: 

 

   xyxu sin,0   (31) 

 

 The BEM analyses employed the mesh depicted in Figure 2. That mesh contains n  = 48 

linear elements of the same length and n  = 256 linear triangular cells of the same area. Figure 3 

depicts the results for u as a function of time at the point (x,y) = (/2,/4). Good agreement between 

the BEM results and the analytical solution is observed for the chosen values of , that is, the 

proposed formulation was prone to provide accurate results for the classical diffusion problem and 

for the anomalous diffusion problem with very low orders of the time derivative. Besides, and this a 

very important aspect to be mentioned here, while the previous formulation presented by Carrer et 

al. [5] failed for  < 0.5, this new formulation provides accurate results even for small values of , 

such as  = 0.2 and  = 0.05. 

 In what concerns the choice of the time-step, this is a crucial matter for this kind of problem; 

bearing in mind the critical time-step proposed by Yuste and Acedo [6] for a Finite Difference 

Method approach, and given by: 

 

 
 


2

2

2

xD
t  (32) 

 

one can see how advantageous the CD-BEM formulation is, as it does not present such a strong 

dependence of t with respect to the order  of the time derivative. Indeed, the same time-step, 

t = 0.005, was employed in all analyses.  

 In Figures 4 and 5 one finds the results for u as a function of x for the selected instants of 

time, that is, for t = 0.25 and t = 2.0. As expected, good agreement is observed between the BEM 

results and the analytical solution for all values of .  

 The computer time is a matter that deserves attention due to the non-local behaviour of the 

fractional operators or, bearing in mind Equations (22 – 24), due to the summation term that takes 

into account the history contribution in the computation of the values of u and q for each time. The 

CPU time required for the solution of the classical diffusion problem, say 1
CPUt , can be regarded as 

the reference CPU time; consequently, the ratio between the CPU times for the fractional 

analyses, 
CPUt , and 1

CPUt  provides a measure of how the fractional analyses increase the required 

computer time. Here, one has: 
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 Note that the CPU time is related only on the marching process and does not include the 

time for assembling the matrices, as this time is the same regardless the value of . For this first 

example, 1.0 3.015 .CPUt s   

 



 

4.2. Rectangular Domain with Dirichlet boundary conditions 

This second example also deals with a one-dimensional problem: now, the problem interpreted as 

that of a heat transfer from the region at x = 0 to the region at x = L is analysed in a rectangular 

domain, defined on the region 0  x  L and 0  y  L/2. The mesh is that already employed in the 

first example, scaled to accommodate the different domain size, as now one has L = 2.  

 The Dirichlet boundary conditions are: 

 

   10,2/,0 tLu  (34) 

 

   0,, tyLu  (35) 

 

 The Neumann boundary conditions:  

 

   0),2/,(,0,  tLxqtxq  (36) 

 

enable the simulation of the one-dimensional problem.  

 The initial condition is null, that is,  

 

   0,0 yxu  (37) 

 

 The analyses were carried out with Dx = Dy = D = 1.0. Following the same sequence of the 

previous example, results for u at (x,y) = (L/2,L/4), as a function of time, are presented in Figure 6. 

Results for u, for the selected instants of time t = 0.25 and t = 1.0, are presented in Figures 7 and 8, 

respectively. All the analyses were carried out with the same time-step, t = 0.005. Again, good 

agreement is observed between BEM results and the analytical solution, given by: 
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 The solution given by expression (38) cannot be evaluated using expression directly (26), 

because the argument of the Mittag-Leffler function grows faster than its convergence radius. To 

overcome this difficulty, the Mittag-Leffler function was computed through the algorithm found at 



https://github.com/khinsen/mittag-leffler, which is a Python language version of a MATLAB 

routine presented by Garrappa [35]. 

 Regarding the reference CPU time, now one has 1.0 1.12 .CPUt s   and: 
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57CPU
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4.3. Circular Domain with Dirichlet Boundary Condition 

This example presents a circular domain, conveniently described in the polar coordinate system 

(r,), with 0  r  R and 0    2.  

 With zero initial condition, 0),(0 Ru , and the Dirichlet boundary condition: 

 

 utRu ˆ),,(   (40) 

 

the problem becomes axisymmetric for an isotropic medium. The governing equation of the 

problem, Equation (1), is rewritten as:  
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 From equation (41) u = u(r,t). 

 The analytical solution reads: 
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where (...)0J  and (...)1J  are the Bessel functions of the first kind and orders zero and one, 

respectively, and the parameters n are the positive roots of the equation  

 

 0)(0  RJ n  (43) 

 

 The analyses were carried out with the parameters D = 1.0, R = 10 and .10ˆ u  Three 

meshes, with increasing level of discretization, were employed to investigate the convergence of the 

BEM results to the analytical solution through the computation of the relative L2 error norm, E2. 

The convergence is guaranteed as the error norm diminishes with the increasing level of refinement. 

The first mesh presents the poorest discretization, with n  = 16 and n  = 144, see Figure 9. For this 

mesh, t = 0.8. The second mesh, see Figure 10, has n  = 32 and n  = 544 and the time-step is 

t = 0.4. The third and more refined mesh, depicted in Figure 11, has n  = 64 and n  = 2368. The 

time step is t = 0.2. From now on, these meshes will be called, respectively, as mesh 1, 2 and 3.  

 The results for E2, computed according to: 
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are presented in Figures l2 and l3 for t = 8.0 and t = 20.0. It can be observed, in Figures 12 and 13, a 

significant reduction in the error with the mesh refinement. Indeed, more refined meshes are 

required to obtain accurate results for smaller values of . A quite similar convergence pattern was 

also observed for other values of time and, for this reason, the results presented here were restricted 

to t = 8.0 and t = 20.0. Also, it is important to mention that the error decreases as the time increases, 

that is, as the problem approaches the steady-state condition; see, for instance, Figure 14, with the 

results for  = 0.5 for t = 4.0, 8.0, 12.0, 20.0.  

 Results for u as a function of r, for selected instants of time, are depicted in Figures 15 – 19 

for  = 1.0, 0.8, 0.5, 0.2, 0.05, respectively, with t = 1.0, 4.0, 20.0, 60.0, and results for u at r = 5 as 

a function of t are depicted in Figure 20. The last six figures provide a good description of how the 

results are influenced by the parameter . It can be seen, in Figures 15 – 19, that decreasing the 

values of  results in decreasing the values of u, for r < R, with the curves for different times 

becoming closer to each other and presenting increasing gradients towards the boundary: this 

description is better illustrated for the results corresponding to  = 0.05. Regarding Figure 20, it is 

observed that more and more time is required to reach the steady state as  decreases. As an overall 

conclusion, the BEM results are in good agreement with the analytical solution.  

 For this example, the results regarding the CPU time are summarized in Table 1. Note that 

the ratios in the third column refer to the same mesh. This observation is also valid for Table 2, in 

the next example. 

 

Table 1. Circular domain: CPU times. 

mesh 1.0
CPUt (sec.) 1.0/CPU CPUt t   

1 0.094 4.0 

2 0.626 25.0 

3 32,782 40.0 

 



 

4.4. Square domain with initial sinusoidal condition 

A square domain defined in the region 0  x,y  L, with the boundary conditions: 

 

 0),,(),0,(),,(),,0(  tLxutxutyLutyu  (45) 

 

and the initial condition: 
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is analysed next. The side of the square is L = 10.  

 For anisotropic media, the analytical solution is given by: 

 

   





 







   L

y

L

x
tEtyxu sinsin),,( 2  (47) 

 

with:  
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 The results for an isotropic medium, with Dx = Dy = 1.0, and for an anisotropic medium, 

with Dx = 1.0 and Dy = 0.1, are presented next. Three meshes were employed to verify the 

convergence of the BEM results to the analytical solution at times t = 10 and t = 15. The first mesh 

has n  = 40 and n  = 200, the second n  = 80 and n  = 800. The third mesh, depicted in Figure 

21, has n  = 160 and n  = 3200. These meshes will be referred to as mesh 1, mesh 2, and mesh 3, 

for which t = 0.2, 0.1, 0.05, respectively.  

 The errors for the selected values of  can be seen in Figures 22 and 23 for the isotropic 

medium, and in Figures 24 and 25 for the anisotropic medium. From these figures it is readily seen 

that the BEM results converge to the analytical solution, with the errors decreasing as more refined 

meshes are employed. For the isotropic medium, Figures 22 and 23 show different convergence 

paths regarding the pure diffusion and the anomalous diffusion problems: quite unexpectedly, the 

errors associated with  = 1.0 range from the smallest, with mesh 1, to the biggest ones, with 



meshes 2 and 3. For  < 1, one can observe that, with the mesh 1, the errors decrease insofar as the 

values of  decrease and become practically the same with meshes 2 and 3, with the smallest errors 

being related to  = 0.8. Regarding the anisotropic medium, Figures 24 and 25 show similar 

convergence paths for all the values of . Note that the errors for  = 1.0 are the biggest ones with 

mesh 1, then becomes the smallest ones with mesh 2, and with mesh 3 the errors for all the values 

of  are practically the same.  

 Accurate results for u(L/2,L/2,t) are depicted in Figures 26 and 27, for isotropic and 

anisotropic media, respectively. The independence of t regarding  is observed again. In Figures 

28, for isotropic medium, and 29, for anisotropic medium, u is presented as a function of the 

position for t = 10. 

 Table 2 presents a comparison between the CPU times. 

 

Table 2. Square domain: CPU times.  

mesh 1.0
CPUt (sec.) 1.0/CPU CPUt t   

1 0.172 15.0 

2 2.8 50.0 

3 118. 108.0 

 



Conclusions 

The main contribution of this work, its novelty, is the development of a BEM formulation for the 

solution of the anomalous diffusion problem: this formulation, called for general purposes CD-

BEM, proved to be capable of producing accurate and reliable results even for small values of the 

order of the time derivative, represented by the Greek letter . Indeed, a value so small as  = 0.05 

was employed and the numerical results presented a good agreement with the analytical solution. 

Note that the solution of problems presenting such a small value of  are hardly found in the 

literature concerning numerical methods. The Caputo derivative was kept as it appeared in the 

governing differential equation of the problem and this approach brought many advantages, such as 

the storage of only the previous values of the variable of interest, u, in the computation of the 

history contribution for the present state of the problem. An important advantage, from the 

computation point of view, is that the choice of the time-step was not so strongly dependent on the 

order of the time derivative, rendering the analyses less time consuming than those based on the use 

of the Riemann-Liouville approach previously presented by the authors. But the main advantage 

brought by the proposed formulation is the possibility of analyzing problems with small values of 

, enabling the authors to state that the CD-BEM formulation is capable of covering all the range 

0 <  < 1.0 that characterizes the anomalous diffusion problem. The development of a D type 

formulation seemed to be the natural choice, in the absence, as long as the authors know, of a 

proper fundamental solution. Naturally, development the results presented here encourage further 

developments and these could be the implementation of more accurate approximations for the 

Caputo derivative in the domain integral, the use of time-steps with variable lengths and, mainly, 

the development of a similar formulation for the solution of the wave-diffusion problem, for which 

1 <  < 2. The CD-BEM formulation also demonstrates that the Boundary Element Method can be 

used as a powerful tool for the solution of fractional calculus problems. 

 

 

The development of a BEM formulation concerned with the solution of the anomalous diffusion 

equation for two-dimensional problems is the main contribution, is the novelty, of this work. The 

use of the Weighted Residuals Method as the initial step towards the development of this 

formulation seems to be advantageous, according to the authors’ previous experience in dealing 

with this kind of problems, with the resulting BEM integral equation easily obtained. In the absence 

of a proper fundamental solution, the steady-state fundamental solution played the role of the 

weighting function, resulting in a D-BEM type formulation. Called CD-BEM for general purposes, 

this formulation is based on the direct use of the Caputo derivative. Thanks to this approach, the 

computation of the variables u and q at the present time requires the storage of only the values of u 



at the previous times to take into account the history contribution, diversely from the Riemann-

Liouville based formulation, for which the history contribution employed the previous values of 

both variables u and q. Note that due to the non-local behaviour of the fractional operators, the 

computational of the history contribution is required, which turns the analyses of this kind of 

problems quite expensive from the computational point of view. Here, another advantage of the 

CD-BEM formulation appears, that is, the choice of the time-step is not so strongly dependent on 

the order of the time derivative as it was in the Riemann-Liouville approach previously presented 

by the authors. In fact, all the analyses in each example were carried out with the same time-step, 

regardless the value of . But the main advantage brought by the proposed formulation is the 

possibility of analyzing problems with small values of . Indeed, a value so small as  = 0.05 was 

employed and the numerical results presented a good agreement with the analytical solution. Note 

that the solution of problems presenting such a small value of  are hardly found in the numerical 

methods literature, encouraging the authors to state that the CD-BEM formulation is capable of 

covering all the range 0 <   1.0, the inclusion of the equality sign in the range of the variable  

being justified since the classical diffusion problem is considered as a particular case of the 

anomalous diffusion. Finally, the results presented here encourage further developments and these 

could be the implementation of more accurate approximations for the Caputo derivative in the 

domain integral, the use of time-steps with variable lengths and, mainly, the development of a 

similar formulation for the solution of the wave-diffusion problem, for which 1 <  < 2. The CD-

BEM formulation also demonstrates that the Boundary Element Method can be used as a powerful 

tool for the solution of fractional calculus problems. 

 

The development of a BEM formulation concerned with the solution of the anomalous diffusion 

equation for two-dimensional problems is the main contribution, the novelty, of this work. The use 

of the Weighted Residuals Method as the initial step towards the development of this formulation 

seems to be advantageous, according to the authors’ previous experience in dealing with this kind of 

problems, with the resulting BEM integral equation easily obtained. In the absence of a proper 

fundamental solution, that is to say, of a fundamental solution for the anomalous diffusion equation, 

the fundamental solution of steady-state classical diffusion problem plays the role of the weighting 

function, resulting in a D-BEM type formulation. Called CD-BEM for general purposes, this 

formulation is based on the direct use of the Caputo derivative. Thanks to this approach, in order to 

take into account the history contribution, which is required for the computation of the variables u 

and q at the present time, only the values of u at the previous times are employed and, consequently, 

require storage, diversely from the authors’ Riemann-Liouville based formulation, for which the 

history contribution computation requires the storage of the previous values of both variables u and 



q. Note that the history contribution computation is required due to the non-local behaviour of the 

fractional operators, which turns the analyses of this kind of problems quite expensive from the 

computational point of view. Here, another advantage of the CD-BEM formulation appears, that is, 

the choice of the time-step is not so strongly dependent on the order of the time derivative as it was 

in the Riemann-Liouville approach previously presented by the authors. In fact, all the analyses in 

each example were carried out with the same time-step, regardless the value of . But the main 

advantage brought by the proposed formulation is the possibility of analyzing problems with small 

values of . Indeed, a value so small as  = 0.05 was employed and the numerical results presented 

a good agreement with the analytical solution. Note that problems presenting such a small value of 

 are hardly found in the numerical methods literature, encouraging the authors to state that the CD-

BEM formulation is capable of covering all the range 0 <   1.0, the inclusion of the equality sign 

being justified since the classical diffusion problem can be treated as a particular case of the 

anomalous diffusion problem. Finally, the results presented here encourage further developments 

and, among these, the implementation of more accurate approximations for the Caputo derivative in 

the domain integral, the use of time-steps with variable lengths and, mainly, the development of a 

similar formulation for the solution of the wave-diffusion problem, for which 1 <  < 2, should be 

cited. The CD-BEM formulation also demonstrates that the Boundary Element Method can be used 

as a powerful tool for the solution of fractional calculus problems. 
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Caption to the Figures 

 

Figure 1. Identification of the angles for the computation of c(). 

 

Figure 2. Mesh with n = 48 and n = 256 employed in the first and in the second examples. 

 

Figure 3. Domain under initial condition: results for u(/2,/4,t). 

 

Figure 4. Domain under initial condition: results for u(x,/4,0.25). 

 

Figure 5. Domain under initial condition: results for u(x,/4,2.0). 

 

Figure 6. Domain with Dirichlet boundary conditions: results at u(L,L/2,t). 

 

Figure 7. Domain with Dirichlet boundary conditions: results at u(x,L/2,0.25). 

 

Figure 8. Domain with Dirichlet boundary conditions: results at u(x,L/2,1.0). 

 

Figure 9. Circular domain: mesh 1 with n = 16 and n = 144. 

 

Figure 10. Circular domain: mesh 2 with n = 32 and n = 544. 

 

Figure 11. Circular domain: mesh 3 with n = 64 and n = 2368. 

 

Figure 12. Circular domain: convergence study for t= 8.0. 

 

Figure 13: Circular domain: convergence study for t= 20.0. 

 

Figure 14: Circular domain: convergence study for  = 0.5.  

 

Figure 15: Circular domain: results for u(r,ts), with ts = 1.0, 4.0, 20.0, 60.0 and  = 1.0. 

 

Figure 16: Circular domain: results for u(r,ts), with ts = 1.0, 4.0, 20.0, 60.0 and  = 0.8. 

 



Figure 17: Circular domain: results for u(r,ts), with ts = 1.0, 4.0, 20.0, 60.0 and  = 0.5. 

 

Figure 18: Circular domain: results for u(r,ts), with ts = 1.0, 4.0, 20.0, 60.0 and  = 0.2. 

 

Figure 19: Circular domain: results for u(r,ts), with ts = 1.0, 4.0, 20.0, 60.0 and  = 0.05. 

 

Figure 20: Circular domain: results for u(5,t). 

 

Figure 21. Square Domain: mesh 3 with n = 160 and n = 3200. 

 

Figure 22. Square Domain: isotropic medium, convergence study for t= 10.0. 

 

Figure 23. Square Domain: isotropic medium, convergence study for t= 15.0. 

 

Figure 24. Square Domain: anisotropic medium, convergence study for t= 10.0. 

 

Figure 25. Square Domain: anisotropic medium, convergence study for t= 15.0. 

 

Figure 26. Square domain: isotropic medium, results for u(L/2,L/2,t). 

 

Figure 27. Square domain: anisotropic medium, results for u(L/2,L/2,t). 

 

Figure 28. Square domain: isotropic medium, results for u(x,L/2,10). 

 

Figure 29. Square domain: isotropic medium, results for u(x,L/2,10). 
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