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ABSTRACT
The impact of 2-body scattering on the innermost density profiles of dark matter haloes is well
established. We use a suite of cosmological simulations and idealized numerical experiments
to show that 2-body scattering is exacerbated in situations where there are two species of
unequal mass. This is a consequence of mass segregation and reflects a flow of kinetic energy
from the more to less massive particles. This has important implications for the interpretation
of galaxy sizes in cosmological hydrodynamic simulations, which nearly always model stars
with less massive particles than are used for the dark matter. We compare idealized models
as well as simulations from the EAGLE project that differ only in the mass resolution of the
dark matter component, but keep subgrid physics, baryonic mass resolution, and gravitational
force softening fixed. If the dark matter particle mass exceeds the mass of stellar particles, then
galaxy sizes – quantified by their projected half-mass radii, R50 – increase systematically with
time until R50 exceeds a small fraction of the redshift-dependent mean interparticle separation,
l (R50 � 0.05 × l). Our conclusions should also apply to simulations that adopt different hydro-
dynamic solvers, subgrid physics, or adaptive softening, but in that case may need quantitative
revision. Any simulation employing a stellar-to-dark matter particle mass ratio greater than
unity will escalate spurious energy transfer from dark matter to baryons on small scales.
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1 IN T RO D U C T I O N

Cosmological simulations of collisionless dark matter (DM) make
reliable predictions for the innermost structure of DM haloes. Such
simulations incur relatively modest computational cost and have
been repeated at ever increasing resolution, exposing the limits
of their reliability (see e.g. Stadel et al. 2009; Navarro et al.
2010). Controlling for other numerical parameters – such as time-
stepping, integration accuracy, and gravitational softening – their
main impediment is 2-body relaxation, which sets a lower limit to
the spatial resolution of any N-body simulation (Power et al. 2003;
hereafter P03; Ludlow, Schaye & Bower 2019; hereafter LSB19).
This limitation is well understood and readily accounted for, leading
to widespread agreement on the innermost structure of DM haloes.

Such simulations provide the rudimentary infrastructure for
modelling galaxy formation, offering a tangible connection to
observational astrophysics. Current approaches to this problem
follow semi-analytic or halo occupation methods – here the physics
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of galaxy formation is divorced from the evolution of DM – or
simultaneously model the co-evolution of DM and baryonic fluids.
In both approaches, subresolution models for galaxy formation re-
quire calibration against observables before sensible predictions for
galaxy populations can be made. This may overshadow the complex
non-linear coupling between numerical and subgrid parameters, and
may mask subtle numerical effects.

One possible issue – which we highlight in this letter – is
the importance of 2-body relaxation for the stellar component
of simulated galaxies. Stars are treated as collisionless particles
in cosmological simulations and, like DM, their dynamics must
be subject to 2-body scattering. Galaxies formed in cosmological
simulations, while calibrated to resemble observed systems, may
therefore evolve in a way that is subject to numerical artefact.

In Section 2 we discuss the importance of 2-body scattering
in N-body simulations, emphasizing differences between uniform
resolution runs and those involving mixtures of DM and stars of
unequal mass, which is the conventional approach. We present sim-
ple numerical experiments that illustrate the effects. In Section 3.1
we describe the cosmological simulations used to test the impact of
2-body scattering on the evolution of stellar systems; their results
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are presented in Sections 3.2 and 3.3. We provide some closing
remarks in Section 4.

2 2 -BODY R ELAXATION IN A N IDEALIZE D
G A L A X Y- H A L O MO D E L

Cosmological simulations involve mixtures gas, stars, and DM
particles typically of unequal mass. When collisions cannot
be ignored, their evolution is subject to 2-body scattering and,
when masses are unequal, to energy equipartition (e.g. Spitzer
& Hart 1971). The net energy exchange between species due to
these processes can be described by a diffusion equation, with
coefficients that depend on their initial phase-space distributions,
and the ratio of particle masses.

Following Binney & Tremaine (2008), we consider the collisional
relaxation time of such a system, neglecting the gas component. We
define the particle mass ratio, μ ≡ m1/m2 ≥ 1, and the fraction of
mass in m2: ψ ≡ M2/M1 = N2 m2/N1 m1, where Ni are the number
of particles of species i. A test particle that traverses a system
of size R will experience δn = δn1 + δn2 ≈ 2 π (�1 + �2) b db

collisions with impact parameters in the range (b, b + db), where
�1 = N1/π R2 and �2 = ψ μ N1/π R2 are the surface densities
of species 1 and 2, respectively. From the impulse approximation,
any single encounter results in a small velocity perturbation (δv �
v) perpendicular to the particle’s direction of motion; its trajectory
is unaltered. Regardless of its mass, velocity perturbations are of
order |δvi | ≈ 2 G mi/(b v) for encounters with particles of mass mi.
Such encounters add incoherently and their cumulative effect will
be given by integrating δv2

1δn1 + δv2
2δn2 over some range of impact

parameters, bmin to bmax. The relative square velocity change after
traversing the system is given by

�v2

v2
= 8

N1
ln �

(1 + ψ/μ)

(1 + ψ)2
, (1)

where we have assumed a typical velocity v2 ≈ G N1 m1 (1 +
ψ)/R, and � ≡ bmax/bmin is the Coulomb logarithm.

For cosmological simulations equation (1) can be simplified
if we identify species 1 with DM and species 2 with stars;
ψ is then the stellar-to-DM halo mass ratio, typically �0.05.
Assuming equal numbers of baryon and DM particles μ = (	M

− 	bar)/	bar, where 	M and 	bar are the cosmic densities of
matter and baryons, respectively. In this case μ ≥ 1 and ψ �
1, and the ratio of bracketed terms in equation (1) is close to
unity and may be ignored. If we further assume bmax = R and set
bmin = b90 = G (m1 + m2)/v2 as the impact parameter yielding 90◦

deflections, then � = N1 (1 + ψ)/(1 + μ−1) ≈ N1 and equation (1)
reduces to �v2/v2 ≈ 8ln N1/N1. The relaxation of both species is
driven by encounters with massive particles.

The number of orbits a particle must complete so that �v2/v2

≈ 1 defines the relaxation time, trel = torb/(�v2/v2). In units of the
Hubble time (roughly the orbital time at the radius,1 r200), tH ≈
2 π r200/V200, this can be expressed

κrel ≡ trel

tH
= N1

8 ln N1

torb

tH
=

√
200

8

N1

ln N1

(
ρ

ρcrit

)−1/2

, (2)

1We define r200 as the size of a sphere centred on the particle with the
minimum potential energy that encloses a mean density of 200 × ρcrit, where
ρcrit(z) = 3 H (z)2/(8 π G) is the critical density. The corresponding mass
is M200 = (800/3) π r3

200ρcrit and circular velocity, V200 = √
G M200/r200.

where N ≡ N(r) is the enclosed particle number, ρ(r) the enclosed
density, and torb = 2 π r/V is the local orbital time2 (P03). When
other numerical parameters are chosen wisely, trel sets a minimum
resolved spatial scale within which collisions cannot be ignored. The
solution to equation (2) thus defines a ‘convergence radius’, rconv,
which marks the location at which κ rel ∼ 1 (see e.g. P03; LSB19).

The value of κ rel corresponding to a certain level of convergence
must be obtained empirically by comparing simulations of differing
mass resolution. P03 found that, for DM-only simulations, the
circular velocity profile, Vc(r), of an individual Milky Way-mass
halo converges to ≈10 per cent at the radius where κ ≈ 0.6;
similar convergence in the average Vc(r) profiles requires a less
conservative value, κ ≈ 0.18, regardless of halo mass (LSB19). A
convenient approximation is given by rconv = 0.174 κ

2/3
rel l, where

l = Lbox/N
1/3
part is the mean interparticle spacing in physical units,

and κ rel = 0.18 (LSB19).
When μ 
= 1, 2-body collisions also lead to a segregation of the

two components: massive particles will, on average, lose energy to
less massive ones, causing them to congregate in halo centres while
heating the low-mass component. This ‘mass segregation’ signals
the onset of energy equipartition.

The simple 2-component toy model of Spitzer (1969) suggests
that the segregation time-scale, tseg, is shorter than trel by a factor
roughly equal to the ratio of the particle masses:

tseg = trel

μ
≈ N1

8 ln N1

torb

μ
. (3)

Homogeneous mixtures of particles of different mass will there-
fore segregate at radii rseg ≥ rconv provided μ ≥ 1. A simple
estimate of rseg therefore follows from equation (2) (or from
rconv = 0.174 κ

2/3
rel l) if κ rel is replaced by κseg = μκrel. Whether

equipartition can be reached, however, depends on the ratios of par-
ticle mass, μ, and of the total mass of each component, M1/M2, and
rseg should therefore be viewed as an upper limit. (Simple analytic
estimates and numerical results suggest that full equipartition may
not be possible if M1 � M2 μ−3/2, which is almost always the case
in DM-dominated galaxies.)

As μ → 1, the importance of mass segregation diminishes.
Nevertheless, different species may still structurally evolve through
2-body scattering and, as we show below, this evolution is sensitive
to the initial segregation of each component. (The sensitivity to
initial segregation becomes clear when comparing the idealized
tests presented in Fig. 1 to the collisionless cosmological runs in
Fig. 2, which start with both species equally mixed).

Fig. 1 shows results from numerical experiments designed to
illustrate these effects. We consider here idealized equilibrium
systems composed of a galaxy embedded within a DM halo. Both
are modelled as spherical, collisionless Hernquist (1990) spheres
with galaxy-to-halo mass ratio Mgal/Mh = 0.027 (close to the ‘peak’
galaxy formation efficiency of Behroozi, Wechsler & Conroy 2013)
and ratio of scale radii rhalf/ah = 0.25 (rhalf and ah are the galaxy half-
mass radius and halo scale radius, respectively). Initial conditions,
constructed using GalIC (Yurin & Springel 2014), differ only in
the stellar-to-DM particle mass ratio, μ. GalIC assigns particle
phase-space coordinates iteratively in order to optimally match an

2A more common definition of the relaxation time is based on the number
of crossings a particle must execute such that �v2/v2 ≈ 1, which differs
from our definition by a factor torb/tcross = π . We adopt the orbital time to
define trel for consistency with P03: in this case, torb/tH ≈ (r/V)/(r200/V200)
results in equation (2).
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Figure 1. Circular velocity profiles of DM (blue lines) and stars (red lines)
in a set of idealized numerical simulations starting from equilibrium initial
conditions (dashed curves). The DM halo is sampled with N1 = 5 × 104

particles; the stellar component, also modelled using collisionless particles,
has a mass fraction of 2.7 per cent of the system’s total mass, but a total
number of particles N2 ∝ μ N1, where μ = 1, 2, 5, and 25 (top to bottom, left
to right). Different tints and shades correspond to earlier and later outputs
of the simulation, respectively, which are spaced linearly from t = 0 to t ≈
13.3 Gyr. For individual profiles, the thick lines extend to the convergence
radius dictated by 2-body relaxation (equation 2, with κ rel = 0.6), and arrows
mark the radius rseg (equation 3).

underlying analytic distribution function, which is itself a stable
solution to the collisionless Boltzmann equation and therefore in
collisionless equilibrium.3 We adopt N1 = 5 × 104 (for DM), and
consider μ= 1, 2, 5, and 25. All runs used the same softening length,
ε/lh = 0.1 (lh = [3/4 π N1]1/3 is the Wigner–Seitz radius), and were
evolved using GADGET-2 (Springel 2005) for t ≈ 13.3 Gyr. (We
have verified that our simulation results are robust to small changes
in time-stepping and softening length.) Because these systems are
initially in collisionless equilibrium, any evolution away from the
initial state must be driven by 2-body scattering.

Different panels correspond to different μ, as indicated. Solid
blue curves show Vc,1(r) for the DM, and solid red curves show
Vc,2(r) for stars; tints and shades encode the time evolution, which
increases linearly from t = 0 (light) to t ≈ 13.3 Gyr (dark). Dashed
lines of corresponding colour show the initial profiles used to
construct the galaxy/halo models. For each curve (except the initial
profiles) thick lines extend down to the convergence radius expected
from equation (2) (for κ rel = 0.6); thin lines extend to the radius
enclosing 100 DM particles.

DM profiles are reasonably stable for r � rconv, as is the case
for stars if μ = 1. Note, however, that as μ increases, the curves
deviate systematically from their initial profile at radii �rconv; this

3We have verified that GalICs yields stable particle configurations for our
experiments by carrying out tests for which μ = 1 (to eliminate mass
segregation) and N1 = 106 (to suppress 2-body scattering). Our tests confirm
that the mass profiles of species 1 and 2 remain stable at r � rconv for a
Hubble time.

Figure 2. Median (z = 0) circular velocity profiles of DM haloes in
simulations of collisionless particle mixtures. Different panels correspond
to different masses, M200, which increase from M200 = 108.5 M by
successive factors of 8 between panels. Blue curves correspond to the run
with NDM = Ngas = 1883 (μ = 5.36); orange curves to the one with Ngas =
1883 and NDM = 7 × 1883 (μ = 0.77). Solid curves represent DM particles
whereas dashed curves represent ‘gas’ particles. Grey curves correspond to
the median Vc(r) profiles of haloes in our single-component DM-only run
carried out with Npart = 7523 particles. For all profiles we use thick line
segments for r > 0.055 l and thin lines extend to the P03 convergence radius
(κ = 0.6). Downward pointing arrows denote the radius rseg = 0.055 μ2/3 l,
below which we expect substantial segregation of DM and ‘gas’ particles in
the μ = 5.36 run.

is particularly true for stars. The arrows mark rseg calculated from
equation (2) after replacing trel by tseg = trel/μ . For μ � 5, these
arrows track more closely the radii at which Vc(r) profiles first
show noticeable differences from their initial values. Note also
that the segregation of the stars and DM is much more prominent
when μ is large: DM haloes develop denser centres while the
stellar component gradually expands. Importantly, even for μ =
1 there is considerable evolution in Vc,2(r) for r � rconv. This is
because 2-body collisions will tend to homogenize populations that
are initially segregated. 2-body scattering can be thought of as a
diffusion process with different coefficients describing the first-
and second-order processes. For particular initial configurations –
which depend on μ, M1/M2, and the spatial segregation of each
species – energy equipartition may give rise to mass segregation.
For the particular case of μ = 1 the diffusion coefficients are equal,
and 2-body scattering will lead to a mixing of the two components.
In that case, a centrally compact stellar component will tend to
become more diffuse with time, as seen in the upper left panel of
Fig. 1, even if it was constructed to be in collisionless equilibrium
initially (note that scattering-driven diffusion is largely confined to
within the convergence radius, as expected for μ = 1).

3 C O S M O L O G I C A L S I M U L AT I O N S

3.1 Simulation set-up

DM haloes and their associated galaxies form hierarchically through
accretion and mergers and are, at best, quasi-equilibrium structures.
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Table 1. Basic numerical parameters used for our cosmological simula-
tions. N1 refers to the number of ‘dark matter’ particles of species 1; N2 to
the number of ‘gas’ particles, species 2. The corresponding particles masses
are m1 and m2, respectively, and their ratio is denoted μ ≡ m1/m2; Lbox is the
simulation box size. The run type is also provided: DMO refers to runs for
which both species were assumed to be collisionless particles, and ‘EAGLE’
refers to hydrodynamical runs carried out using the Reference model of the
EAGLE project.

N1 N2 m1 m2 μ Lbox Type
(105 M) (105 M) (Mpc)

7523 0 1.8 0 – 12.5 DMO
1883 1883 97.0 18.1 5.36 12.5 DMO
7 × 1883 1883 13.9 18.1 0.77 12.5 DMO
3763 3763 97.0 18.1 5.36 25.0 EAGLE

7 × 3763 3763 13.9 18.1 0.77 25.0 EAGLE

It is therefore worthwhile to test the importance of mass segregation
and 2-body scattering in cosmological simulations that include two
particle species. The remainder of the paper will focus on such
simulations.

All cosmological runs used parameters consistent with
the Planck Collaboration XVI (2014) data release: h ≡
H0/(100 km s−1 Mpc−1) = 0.6777 is the Hubble parameter; σ 8 =
0.8288 the (z = 0) rms density fluctuation in 8 h−1Mpc spheres;
and 	M = 1 − 	� = 0.307 and 	bar = 	M − 	DM = 0.04825, are
the energy density parameters in units of ρcrit.

We use three cosmological simulations that echo those used
by Binney & Knebe (2002) to investigate 2-body scattering in
cosmological DM-only simulations. The first evolves the DM with
Npart = 7523 equal-mass particles (mDM = 1.8 × 105 M). The
second uses two particle species of equal abundance, N1 = N2 =
1883, but with a mass ratio μ = 	DM/	bar ≈ 5.36; this run is
analogous to most cosmological hydrodynamical simulations (DM
and baryons are sampled with equal particle numbers) but differs
by modelling both species as collisionless fluids. The masses of
DM (species 1) and ‘gas’ particles (species 2) are, respectively,
mDM = 97.0 × 105 M and mgas = 18.1 × 105 M. The final run
also adopts a two collisionless components, but with unequal parti-
cle numbers: N1/7 = N2 = 1883 and hence μ = (1/7) 	DM/	bar ≈
0.77 (or mDM = 13.9 × 105 M). Initial conditions were created
from those described above by splitting DM particles into seven
equal-mass particles and arranging them on a cubic lattice in a
manner that preserves a force-free unperturbed particle load. All
runs used a linear box size of Lbox = 12.5 Mpc (comoving) and
identical phases and amplitudes for mutually resolved modes. They
differ only in the number of particles of species 1, and hence in μ.

The particle mixture models were repeated for the second set of
simulations (in a larger volume; Lbox = 25 Mpc) but with species 2
treated as a gaseous fluid (Ngas = N2 = 3763). These runs employ
cooling, star formation, and feedback from stars and active galactic
nuclei in accord with the Reference model of the EAGLE program
(see Schaye et al. 2015). They differ only in the number of DM
particles: one has NDM = Ngas = 3763 (μ ≈ 5.36) and the other
NDM = 7 × Ngas = 7 × 3763 (μ = 0.77). At z = 0, star particles
have an average mass of roughly 65 percent of the primordial gas
particle mass (stars lose mass to gas particles through stellar winds
as they evolve). As a result, μ� ≡ mDM/<m�〉 ≈ 1.18 in our runs,
but we neglect this small departure from unity. The main numerical
aspects of our cosmological simulations are provided in Table 1.

All runs used the same softening length for both species, which is
a fixed fraction of the mean baryonic interparticle separation:4 ε/l =
0.04 (comoving) for z > 2.8, and ε/l = 0.01 (physical) thereafter.
Haloes were identified using SUBFIND (Springel et al. 2001), which
returns the coordinate of the particle with the minimum potential
energy, xMB, as well as r200, M200, and V200.

As in Fig. 1, we focus our analysis on the circular velocity profiles
of each mass component, and use subscripts to denote the relevant
species. (For example, Vc,1(r) refers to the circular velocity profile
of particles of mass m1.) Hereafter, for clarity, we drop explicit
reference to DM or baryonic particles, even in the hydrodynamic
runs, but instead identify DM with species 1 and stars with species
2. We do not consider the mass profiles of gas particles in our
hydrodynamic simulations.

3.2 Cosmological simulations with unequal-mass collisionless
particles

Fig. 2 shows the median (z = 0) circular velocity profiles of haloes
in four separate mass bins in our collisionless cosmological runs.
Grey curves correspond to the uniform resolution (Npart = 7523)
simulation, which can be used to assess convergence in the lower
resolution runs. Blue curves correspond to the run with N1 = N2 =
1883 (μ = 5.36); orange to the one with N1/7 = N2 = 1883 (μ
= 0.77). Thick lines extend down to rconv = 0.055 l (LSB19),
where l is the mean interparticle spacing5 of particles of mass
m1; thin lines to the rconv expected from equation (2) with κ rel =
0.6. To aid the comparison, all curves have been normalized to
V0 = √

G M200,i/r200, where M200,i is the mass of species i enclosed
by r200.

This figure prompts a few comments. First, notice that, for
simulations involving particle mixtures, the Vc,1(r) profiles agree
reasonably well with those of equal-mass haloes in the uniform
resolution run (the solid coloured curves align closely with the grey
curves). The largest differences in Vc(r) are �10 per cent for r >

rconv, as expected. Particles of mass m2, however, behave differently
depending on μ. For μ ≈ 0.77 (dashed orange lines), the circular
velocity profiles of species 1 and 2 are similar: both deviate by
�10 per cent from the high-resolution run for all r > rconv and
all halo masses considered. This is expected: since μ is close to
1, and both species are initially well mixed, it follows that tseg ≈
trel and rseg ≈ rconv, and both species should remain approximately
homogeneous at r � rconv at all times. For μ ≈ 5.36, however, this
is not the case: for r � rseg, Vc,2(r) is considerably lower than what
is expected for a purely collisionless system, consistent with mass
segregation driven by 2-body scattering (this confirms the results of
Binney & Knebe 2002). The radius below which this suppression
becomes significant coincides roughly with rseg (downward point-
ing arrows), approximated by rseg = 0.174 (μκrel)2/3 l ≈ 3.1 rconv

(assuming κ rel = 0.188; LSB19).

3.3 Impact of 2-body scattering on galaxy sizes

Many cosmological simulations spawn one star particle per gas par-
ticle, which typically have comparable masses but are ≈	bar/(	M

− 	bar) times less massive than the DM particles. Other simulations

4For Np = 7523, we use the DM interparticle spacing.
5If we were to use instead l = Lbox/Ntot , where Ntot = N1 + N2, rconv would
be smaller by a factor of 21/3 ≈ 1.26. This will not affect the interpretation
of our results, so we opt for the more conservative estimate of rconv.
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Figure 3. Projected half-mass radius as a function of stellar mass at z = 0,
0.5, 1, and 2. Dashed (blue) lines correspond to μ = mDM/mgas = 5.36 and
solid (orange) lines to μ = 0.77. Thin lines, repeated in all panels, show the
z = 0 relations for comparison. The vertical dashed and dotted lines indicate
the mass scales of 100 and 2000 × mgas, respectively; red lines mark rconv

for the DM component of the μ = 5.36 run; arrows mark the spline softening
lengths, 2.8 × ε, above which gravitational forces are exactly Newtonian.
The much stronger evolution of R50 when μ = 5.36 is due to numerical
mass segregation. For comparison, we plot circularized half-light radii for
early- and late-type galaxies in SDSS (thick black line; Shen et al. 2003)
and GAMA (points; Lange et al. 2015) at z=0.

attempt to increase the resolution of the stellar component by gener-
ating multiple star particles per gas particle which are considerably
less massive (e.g. Dubois et al. 2014; Revaz & Jablonka 2018).
Galaxies formed in both types of simulations may be subject to
equipartition effects, which may have important implications for
the interpretation of galaxy sizes, among other properties.

What impact does equipartition have on galaxy sizes in cosmo-
logical hydrodynamical simulations? Fig. 3 summarizes the results
of our tests. Each panel shows the median projected half-stellar
mass radii, R50, as a function of galaxy stellar mass (masses are
defined using bound stellar particles within a 100 physical kpc
aperture centred on xMB) at four different redshifts: z = 0, 0.5, 1,
and 2. We use blue curves for μ = 5.36 and orange curves for μ

= 0.77. The vertical dashed lines correspond to 100 primordial gas
particles, dotted lines to 2000. These runs use identical baryonic
mass resolution, force softening (arrows indicate 2.8 × ε) and
subgrid physics models; they differ only in DM particle mass.

Galaxy sizes show clear differences between these runs, both in
their mass and redshift dependence. Consider first z = 0 (upper
left panel). For μ = 5.36, the median size–mass relation flattens
abruptly for stellar masses M� � 2000 mgas (dotted vertical line)
below which R50 ≈ 2.8 kpc, regardless of M�. For μ ≈ 0.77 this
is not observed: sizes continue to decrease monotonically with
decreasing M� to the lowest mass-scale considered (≈10 stellar
particles). Similar results are seen at z = 0.5 for μ = 5.36, although
in this case R50 levels-off at lower mass (M� ≈ 108.7 M), and
correspondingly smaller size (R50 ≈ 2 kpc). For μ = 0.77 galaxy
sizes evolve very little from z = 0.5 to z = 0 (thin lines, repeated in
all panels, show the z = 0 size–mass relations for comparison).

Note as well that, for the different μ values, sizes begin to
converge at higher redshift: by z = 2, for example, they are vir-
tually indistinguishable for galaxies resolved with more than ≈100
particles. Intriguingly, convergence is attained at all z provided
sizes exceed the physical convergence radius of haloes in the μ =
5.36 run (shown here as rconv = 0.055 l and highlighted using a red
horizontal line; see LSB19).

Although using μ ≈ 1 will minimize the spurious transport of
energy between particle species, we emphasize that by itself it does
not guarantee that the simulations are immune to numerical effects.
Convergence tests that simultaneously increase both the DM and
baryonic resolution, and use μ ≈ 1, are required to test in which
regime the results are robust.

4 SUMMARY AND DI SCUSSI ON

Previous studies of galaxy sizes in cosmological simulations report
trends similar to those in Fig. 3 for μ = 5.36. In EAGLE, Furlong et al.
(2017) note that galaxy sizes increase systematically with increasing
M� and with decreasing redshift. They identified a sample of passive
galaxies between z = 1.5 and 2 that remain quiescent centrals until
z = 0: all grow in size between their identification redshift and z =
0. They report that compact centrals at z = 2 grow secularly by
‘stellar migration’ to the present day.

Campbell et al. (2017) present convergence tests of projected
half-mass radii in the Apostle simulations (Sawala et al. 2016, μ

≈ 5.36). Comparing low-, intermediate-, and high-resolution runs
they show that R50 flattens at a characteristic scale comparable to the
spline softening length. Our results indicate that sizes are subject
to spurious growth below scales comparable to the convergence
radius (≈ 0.055 l) which are close to those quoted by Campbell
et al. (2017). We can distinguish between softening and 2-body
scattering as the culprit for this resolution dependence using the
redshift evolution of R50. If softening is the cause, then R50 ≈
ε should set the minimum size at all redshifts, whereas 2-body
scattering would give rise to a slow growth of R50 for poorly resolved
galaxies. Our results support the latter explanation (Fig. 3).

Similar results were recently reported for galaxy sizes in the
Illustris TNG50 simulation (Pillepich et al. 2019). In TNG50,
for which μ ≈ 5.3, the sizes of low-mass galaxies flatten at
systematically larger physical scales, and at higher stellar masses,
as mass-resolution decreases. These results are not consistent with
softening setting a minimum physical size to low-mass galaxies.
In TNG100, Genel et al. (2018) also report a flattening of sizes
for low-mass galaxies, an effect that becomes more pronounced for
quiescent systems. They also note that, during quenched phases,
galaxy sizes increase systematically with time, particularly among
poorer resolved low-mass systems, despite little growth in stellar
mass over the same period. The secular growth of sizes of non-
star-forming galaxies (e.g. dwarfs or ellipticals) is an expected
consequence of (spurious) energy equipartition between stellar and
DM particles.

Our explanation is that 2-body scattering leads to a slow diffusion
of stellar particles out of the dense central regions of galaxies. This
is consistent with the simulations of Revaz & Jablonka (2018, μ

= 21.9), in which quenched dwarf galaxies grow systematically
in size with decreasing z, despite their passive evolution. Indeed,
Revaz & Jablonka (2018) hypothesize that this result is due to 2-
body scattering.

We note that hydrodynamical simulations involve gas particles
that may also be subject to mass segregation if their masses differ
from those of the DM, but in this case there is a compounding effect:
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collisions with DM particles also tend to heat gas particles as the ki-
netic energy associated with velocity perturbations thermalizes (see
Steinmetz & White 1997, for details). Disentangling these effects
(mass segregation and gravitational heating) will be challenging,
and requires further study.

Finally, we note that assessing the impact of equipartition on
galaxy sizes does not require time-consuming, high-resolution
simulations of large volumes. Since the effect appears limited to
haloes/galaxies of relatively low-particle number it can be gauged
by comparing runs in relatively small volumes that reach the target
stellar mass resolution but vary μ. 2-body scattering may also affect
velocity dispersion and anisotropy profiles, angular momentum
distributions, and gas fractions. These issues will be addressed in a
follow-up paper.
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