
Negative-vector-chirality 120◦ spin structure in the defect- and distortion-free
quantum kagome antiferromagnet YCu3(OH)6Cl3

A. Zorko,1, ∗ M. Pregelj,1 M. Gomiľsek,1, 2 M. Klanǰsek,1 O. Zaharko,3 W. Sun,4 and J.-X. Mi4
1Jožef Stefan Institute, Jamova c. 39, SI-1000 Ljubljana, Slovenia

2Centre for Materials Physics, Durham University, South Road, Durham, DH1 3LE, UK
3Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland

4Fujian Provincial Key Laboratory of Advanced Materials,
Department of Materials Science and Engineering, College of Materials,

Xiamen University, Xiamen 361005, Fujian Province, People’s Republic of China
(Dated: July 12, 2019)

The magnetic ground state of the ideal quantum kagome antiferromagnet (QKA) has been a long-
standing puzzle, mainly because perturbations to the nearest-neighbor isotropic Heisenberg Hamil-
tonian can lead to various fundamentally different ground states. Here we investigate a recently
synthesized QKA representative YCu3(OH)6Cl3, where perturbations commonly present in real
materials, like lattice distortion and intersite ion mixing, are absent. Nevertheless, this compound
enters a long-range magnetically ordered state below TN = 15 K. Our powder neutron diffraction
experiment reveals that its magnetic structure corresponds to a coplanar 120◦ state with negative
vector spin chirality. The ordered magnetic moments are suppressed to 0.42(2)µB , which is consis-
tent with the previously detected spin dynamics persisting to the lowest experimentally accessible
temperatures. This indicates either a coexistence of magnetic order and disorder or the presence of
strong quantum fluctuations in the ground state of YCu3(OH)6Cl3.

INTRODUCTION

The two-dimensional quantum kagome antiferromag-
net (QKA) is a paradigm of geometrical frustration. It
has been intensively studied in the last two decades,
mainly because the properties of its predicted spin-liquid
ground state turned out to be extremely puzzling [1–3].
Due to a lack of proper approximations it remains un-
clear, even in theory, whether this state should be gapped
or gapless [4–9]. Moreover, various perturbations to
the nearest-neighbor isotropic Heisenberg Hamiltonian,
like structural distortion and disorder-induced random-
ness [10–12], inter-layer [13] and further-neighbor [14–
21] exchange interaction, as well as magnetic anisotropy
[12, 20–28] may all play an important role in stabiliz-
ing very different ground states, from spin liquids and
valence-bond solids to magnetically ordered states. Ex-
perimentally, these perturbations usually cannot be con-
trolled in a given material and are rather poorly deter-
mined [29]. Therefore, experimental realizations of the
QKA model, where such perturbations are minimized
and limited in number are of paramount importance.

The recently synthesized YCu3(OH)6Cl3 compound
[31] features a perfect-symmetry kagome lattice of Cu2+

(S = 1/2) ions (Fig. 1). This avoids the issue of reduced
symmetry present in some QKA representatives, includ-
ing the paradigmatic herbertsmithite [29], where a sub-
tle lattice distortion was found at low temperatures [32].
Most QKA representatives, including herbertsmithite,
also suffer from strong intersite ion disorder leading to
the famous QKA impurity problem [29, 33]. Due to the
very large size of the Y3+ ions there is no detectable inter-
site ion disorder present in YCu3(OH)6Cl3 [31]. Hence,

because of its much lower level of perturbations to the
ideal isotropic Heisenberg Hamiltonian, YCu3(OH)6Cl3
was initially expected to provide novel insight into the
pressing issue of the spin-liquid ground state of the QKA
model. Indeed, after the first bulk magnetic character-

FIG. 1. A perfect kagome lattice (lines) of Cu2+ spin-
1/2 ions (orange) is established in the ab plane of the
YCu3(OH)6Cl3 compound. The Y3+, O2−, H+, and Cl− ions
are shown in gray, red, turquoise, and green, respectively.
A coplanar magnetic structure (arrows) with negative vec-
tor spin chirality corresponding to the magnetic propagation
vector k = (0, 0, 0.5) and an average magnetic moment of
µ = 0.42(2)µB per Cu2+ site is established below TN = 15 K.
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TABLE I. Fractional atomic coordinates and lattice parameters of YCu3(OH)6Cl3 measured at 20 K within the space group
P 3̄m1 (No. 164). The refinement was performed using the FullProf Suite [30].

Atom Wyckoff Site x y z Occupancy
Y11 1b 3̄m. 0.0000 0.0000 0.5000 0.95(5)
Y12 2c 3m. 0.0000 0.0000 0.378 (fixed) 0.05(5)
Cu 3f .2/m. 0.5000 0.5000 0.5000 1
Cl1 2d 3m. 0.3333 0.6667 0.8668(5) 1
Cl2 1a 3̄m. 0.0000 0.0000 0.0000 1
O 6i .m. 0.1899(9) 0.3899(18) 0.3624(3) 1
H 6i .m. 0.2058(8) 0.4118(16) 0.1920(6) 1

Lattice constants a = 6.7474(1) c = 5.5905(1) α = β = 90◦ γ = 120◦

izations this system was suggested as a new promising
spin-liquid candidate, since no strong anomalies were de-
tected in either its magnetization [31], or in its heat ca-
pacity [34] down to the lowest accessible temperatures
despite its sizable Weiss temperature of −99 K [31].

However, more sensitive local-probe muon spin relax-
ation (µSR) measurements have recently disclosed static
internal magnetic fields that develop in YCu3(OH)6Cl3
below TN = 15 K [35, 36]. The magnetic ordering at TN

is, in fact also witnessed in an increase of the bulk magne-
tization below TN and in heat capacity as a broad maxi-
mum at TN [35]. However, the order appears to be rather
unconventional, as it progressively sets in and is fully es-
tablished over the whole sample only for T . TN/3 [35].
Moreover, persistent spin dynamics was detected by µSR
at temperatures as low as T/TN = 1/300 [35]. This might
have various origins, including emergent spin excitations
of correlated spin-loop structures [37], or fragmentation
of magnetic moments into an ordered and a fluctuating
part, e.g, as proposed for some partially ordered magnetic
states on the kagome lattice [25] and for incommensurate
ordered states [38].

The fundamental question of why YCu3(OH)6Cl3 has
a magnetically ordered ground state instead of a spin
liquid needs to be addressed, even more so because
the number of relevant perturbations to the isotropic
nearest-neighbor Heisenberg Hamiltonian is substantially
reduced in this compound, making it closer to the ideal
QKA than most of the known spin-liquid QKA repre-
sentatives. In order to be able to address this important
question, a proper characterization of the magnetic order
is required, which calls for complementary experiments,
like neutron diffraction. We note that an earlier neu-
tron diffraction experiment failed to detect any magnetic
Bragg peaks [36]. It needs to be stressed though, that
this experiment was focused on structural refinement and
was, therefore, quite coarse in resolution. Here we re-
port the results of a neutron diffraction study with much
better resolution and statistics, which provides clear ev-
idence of the appearance of magnetic Bragg peaks below
TN . These are assigned to a uniform 120◦ magnetic order

with negative vector spin chirality (Fig. 1), the magnetic
propagation vector k = (0, 0, 0.5) and an average ordered
magnetic moment of µ = 0.42(2)µB at 1.5 K. The origin
of this magnetic order is discussed in terms of magnetic
anisotropy and exchange interactions beyond the nearest-
neighbor Heisenberg exchange.

EXPERIMENTAL DETAILS

Powder neutron diffraction was performed on the DMC
powder diffractometer at the Paul Scherrer Institute, Vil-
ligen, Switzerland. 2.3 g of sample was put in an Al
sample can measuring 6 mm in diameter. The mea-
surements were performed at 1.5 K and 20 K at a fixed
incoming-neutron energy corresponding to a wave length
of λ = 4.506 Å. The high background in the neutron
diffraction patterns is due to strong incoherent scattering
from the hydrogen nuclei present in the sample. In order
to detect weak magnetic Bragg reflections, high-statistics
runs were collected, with the measurement time of 60 h
at each temperature. All measurements were performed
on a sample from the same batch as the one used in our
previous µSR investigation [35].

RESULTS

Neutron diffraction

The neutron diffraction pattern above TN (at 20 K)
can be perfectly reproduced using the trigonal crystal-
structure model with the P 3̄m1 symmetry (space group
No. 164) initially found by Sun et al. using X-ray diffrac-
tion (XRD) [31]. Due to high sensitivity of neutrons to
light nuclei, the position of the hydrogen atoms is bet-
ter determined here than in the previous XRD study.
The good agreement between the model and our mea-
surements shown in Fig. 2(a) confirms the high quality of
our sample. The refined parameters of the crystal struc-
ture are summarized in Table I. They comply with the
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FIG. 2. (a) The neutron-diffraction pattern of
YCu3(OH)6Cl3taken at 20 K. The calculation is based
on the P 3̄m1 space group with trigonal symmetry that
accounts well for the crystal structure. The difference
between the observed and the calculated diffraction patterns
is translated vertically for clarity. (b) The additional (mag-
netic) Bragg peaks that appear below TN = 15 K are marked
by arrows in the dataset taken at 1.5 K. Here, the dataset at
20 K is translated vertically for clarity.

previously published XRD results at higher temperature
[31] and the recently published neutron-diffraction results
at 1.6 K [36]. The precision of some of the derived crystal-
structure parameters is not very high, as the focus of our
study was on the magnetic order, which is why a large
wavelength of the incoming neutrons was chosen. This
allowed for better sensitivity at low q’s where weak mag-
netic reflections were expected to appear. As a result,
the occupancy of the sites Y11 and Y12 have significant
uncertainties. We note that the solution with a single
Y site at the Wyckoff position 1b, as suggested by the
recent neutron diffraction experiment [36], is consistent
with our data.

The diffraction pattern below TN (at 1.5 K) reveals
the emergence of additional weak Bragg reflections, high-
lighted by arrows in Fig. 2(b), while the dominant re-
flections present already above TN remain unchanged.
As there is no structural transition in YCu3(OH)6Cl3 at
least down to 1.6 K [36], these new reflections are a finger-
print of long-range magnetic order appearing below TN .

The positions of the magnetic reflections correspond to
the magnetic propagation vector k = (0, 0, 0.5), signi-
fying a q = 0 type magnetic structure [14] within the
ab kagome planes and the antiferromagnetic nature of
the magnetic order between neighboring kagome planes.
The width of the magnetic Bragg reflections, being of the
same order as the width of the structural Bragg reflec-
tions, reveals that the correlation length of the magnetic
order is very large.

We tackle the problem of determining the magnetic
structure in YCu3(OH)6Cl3 within the framework of rep-
resentation analysis [39], using the FullProf Suite [30].
This analysis reveals that the little group for the propa-
gation vector k = (0, 0, 0.5) has six irreducible represen-
tations (irreps) Γi. From these only three occur at the
copper crystallographic site (Wyckoff position 3f), where
the magnetic representation Γ is decomposed as

Γ = 0Γ1 + 2Γ2 + 0Γ3 + 1Γ4 + 3Γ5 + 0Γ6. (1)

According to Landau’s theory of second-order phase tran-
sition, the magnetic structure can correspond to only
one of the three non-zero irreps [39]: either the one-
dimensional Γ2 or Γ4, or the two-dimensional Γ5. The
normalized basis vectors ψj

i for these representations are
given in Table II. Here the index i corresponds to a spe-
cific irrep while the index j counts its di ·ni basis vectors,
where di is the dimensionality of Γi and ni its multiplicity
in the decomposition given by Eq. (1). The correspond-
ing spin structures are shown in Fig. 3. For Γ5 where
the basis vectors are complex and three pairs related by
complex conjugation can be formed, we rather show their
six linear combinations ψ̃j

5 =
∑

k akψ
k
5 that constitute an

equivalent real basis of this irrep [25]. The spins on each
site are normalized for all basis vectors, except for the
antiferromagnetic vectors ψ̃3

5 and ψ̃6
5 , because it is im-

possible to form a net zero-magnetization state for three
normalized collinear spins. The basis vectors ψ1

2 , ψ1
4 and

ψ̃2
5 , ψ̃5

5 correspond to non-collinear structures within the
kagome plane, the so-called 120◦ states, which satisfy
the condition

∑
i Si = 0 on each spin triangle. The other

basis vectors describe either ferro-, ferri- or antiferromag-
netic collinear structures. The coplanar 120◦ structures
can be further distinguished based on their vector chiral-
ity

κ = 2
3
√

3S2
(S1 × S2 + S2 × S3 + S3 × S1). (2)

Its projection on the c axis is +1 for ψ1
2 and ψ1

4 , while
it is −1 for ψ̃2

5 and ψ̃5
5 . The sign of these projections is

determined by the anticlockwise site assignation shown
in Fig. 3. Although the two positive-chirality structures
are related by a global 90◦ rotation of spins, the repre-
sentations Γ2 and Γ4 differ in that an out-of plane fer-
romagnetic component can be added within the former
but not within the latter representation. This gives rise
to the so-called umbrella structure for Γ2 [39].
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TABLE II. The basis vectors ψj
i of the irreducible representations (irreps) Γ2, Γ4 and Γ5 of the space group P 3̄m1 for the

magnetic propagation vector k = (0, 0, 0.5) occurring in the magnetic representation at the magnetic site (1/2, 1/2, 1/2) of
atom 1 and its two crystallographically equivalent sites. The representation analysis was performed using the BasIreps program
incorporated in the FullProf Suite [30]. The listed basis vectors are scaled to yield normalized magnetic moments in the complex
plane.

irrep Basis Atom 1 Atom 2 Atom 3
vector ma mb mc ma mb mc ma mb mc

Γ2 ψ1
2

1√
3 − 1√

3 0 1√
3

2√
3 0 − 2√

3 − 1√
3 0

ψ2
2 0 0 1 0 0 1 0 0 1

Γ4 ψ1
4 1 1 0 −1 0 0 0 −1 0

Γ5 ψ1
5 1 0 0 0 − 1

2 − i
√

3
2 0 1

2 − i
√

3
2

1
2 − i

√
3

2 0
ψ2

5 0 1 0 1
2 + i

√
3

2
1
2 + i

√
3

2 0 − 1
2 + i

√
3

2 0 0
ψ3

5 0 0 1 0 0 − 1
2 − i

√
3

2 0 0 − 1
2 + i

√
3

2
ψ4

5 0 −1 0 − 1
2 + i

√
3

2 − 1
2 + i

√
3

2 0 1
2 + i

√
3

2 0 0
ψ5

5 −1 0 0 0 1
2 − i

√
3

2 0 − 1
2 − i

√
3

2 − 1
2 − i

√
3

2 0
ψ6

5 0 0 1 0 0 − 1
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√
3

2 0 0 − 1
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FIG. 3. The spin structures corresponding to the basis vectors of the irreducible representations Γi for the magnetic propagation
vector k = (0, 0, 0.5) occurring at the magnetic Cu2+ site in YCu3(OH)6Cl3. For Γ2 and Γ4 the basis vectors are given in
Table II, while the six presented spin structures of Γ5 correspond to the linear combinations ψ̃1

5 = iAψ1
5 + B++ψ

2
5 + B−+ψ

4
5

+ iAψ5
5 , ψ̃2

5 = B−−ψ
1
5 − iAψ2

5 − iAψ4
5 + B+−ψ

5
5 , ψ̃3

5 = C+ψ
3
5 + C−ψ

6
5 , ψ̃4

5 = Aψ1
5 + iB−−ψ

2
5 + iB−+ψ

4
5 − Aψ5

5 , ψ̃5
5 =

iB++ψ
1
5 − Aψ2

5 + Aψ4
5 + iB+−ψ

5
5 , and ψ̃6

5 = D+ψ
3
5 + D−ψ

6
5 , where A=1/

√
3, B±±= (±1± i/

√
3)/2, C±= (−

√
3± i)/4, and

D±= (1 ± i/
√

3)/
√

8, which represent a real basis of Γ5 [25]. The chosen assignation of the three magnetically nonequivalent
sites in Eq. (2) is shown for ψ1

2 . The spin structures ψ1
2 and ψ1

4 have positive vector chirality +1 [see Eq. (2)] for each triangle
when projected on the c axis, while this projection is -1 for the ψ̃2

5 and ψ̃5
5 states. These chirality vectors are perpendicular to

the kagome planes and are denoted by ± signs inside the triangles. The vector chirality of all other structures is zero.

The refinement of the magnetic structure model to the
magnetic diffraction pattern, i.e., to the difference be-
tween the diffraction pattern recorded at 1.5 K and the
one at 20 K, is shown in Fig. 4 for all the relevant irreps.
The corresponding parameters are summarized in Ta-
ble III. First, we note that our powder neutron-diffraction

experiment does not distinguish between the spin struc-
tures ψ̃1

5 and ψ̃4
5 , ψ̃2

5 and ψ̃5
5 , and ψ̃3

5 and ψ̃6
5 . Therefore,

we can focus on one of them for each pair when consid-
ering the irrep Γ5. For the irrep Γ2 the agreement is
worse than for the other two allowed irreps, giving by far
the largest reduced χ2 value after refinement [Fig. 4(a)].
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TABLE III. The in-plane (µab) and the out-of-plane (µc) com-
ponents of the ordered magnetic moment µ for the different
spin structures corresponding to the allowed irreducible rep-
resentations (irreps). The quality of the refinement for each
structure is given by the reduced χ2 value.

irrep Vector Atom µab/µB µc/µB µ/µB χ2

Γ2 ψ1
2 1–3 0.48(2) 0 0.48(2) 2.57

Γ4 ψ1
4 1–3 0.33(2) 0 0.33(2) 1.61

Γ5 ψ̃5
5 1–3 0.42(2) 0 0.42(2) 1.23

ψ̃6
5 1, 2 0 0.26(1) 0.26(1) 1.40

3 0 -0.52(2) 0.52(2)
0.68ψ̃5

5 + 0.32ψ̃6
5 1, 2 0.36(4) 0.14(4) 0.39(5) 1.22

3 0.36(4) -0.27(7) 0.46(6)

In this solution only the in-plane component ψ1
2 is in-

cluded, because the ferromagnetic out-of-plane compo-
nent ψ2

2 gives a strong reflection at 105◦, which is not
experimentally observed. For the other one-dimensional
irrep Γ4, also yielding a coplanar spin structure with
positive vector chirality, the agreement with experiment
is somewhat better, although it severely underestimates
the intensity of the Bragg peak at 88◦ [Fig. 4(b)]. A
much better agreement is obtained for the coplanar spin
structure with negative vector chirality ψ̃5

5 from the two-
dimensional Γ5 [Fig. 4(c)]. On the other hand, for this
irrep, the in-plane ferromagnetic spin structure ψ̃4

5 does
not fit the experiment well, as it yields a strong reflec-
tion at 23◦, which is absent in experiment. However,
the collinear out-of-plane spin structure ψ̃6

5 is consistent
with the observed magnetic Bragg peaks [Fig. 4(d)], even
though it gives a somewhat worse agreement with ex-
periment than the ψ̃5

5 spin structure. We note than a
marginally better agreement than for the pure coplanar
spin structure ψ̃5

5 is obtained for a linear combination of
the basis vectors 0.68ψ̃5

5 + 0.32ψ̃6
5 . Within this best-fit

model, the relative uncertainty of the two mixing coef-
ficients is, however, quite big (15%). Consequently, the
uncertainty of the ordered moments within this model is
also increased compared to the pure ψ̃5

5 model (see Ta-
ble III). Independent of the model, we find that the mag-
nitude of the ordered moments is significantly reduced
from the full value of 1− 1.2µB expected for Cu2+.

DISCUSSION

Our refinements yield two candidate magnetic struc-
tures that are almost indistinguishable regarding the
quality of the fit (Fig. 4): the in-plane coplanar 120◦
spin structure with negative vector chirality given by
the basis vector ψ̃5

5 and the spin structure represented
by a linear combination of two basis vectors from Γ5,
0.68ψ̃5

5 + 0.32ψ̃6
5 , where the collinear out-of-plane com-

ponent ψ̃6
5 is added to the same in-plane coplanar com-
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FIG. 4. Simulations of the experimental magnetic diffraction
pattern obtained by subtracting the dataset taken at 20 K
from the dataset taken at 1.5 K, which conform to models
based on different irreducible representations Γi of the lit-
tle group corresponding to the magnetic propagation vector
k = (0, 0, 0.5). The positions of all the predicted magnetic
reflections for this k are marked by green ticks. The qual-
ity of the fit for each model is reflected in the reduced χ2

values, which are summarized in Table III together with the
corresponding average magnetic moments.

ponent. These two spin structures can, however, be dis-
tinguished based on their energy. The isotropic Heisen-
berg exchange model with dominant antiferromagnetic
interactions prefers either coplanar or more complex spin
structures with larger magnetic unit cells in the kagome
plane, the latter if interactions beyond the nearest neigh-
bors are considered [14, 16–18]. In YCu3(OH)6Cl3 the
in-plane component of the magnetic propagation vector
is zero, therefore, already the basic triangular unit is rep-
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resentative for the energy considerations.
The distinction between the coplanar structures with

positive and negative vector chirality is made by mag-
netic anisotropy. The antisymmetric Dzyaloshinshii-
Moriya (DM) anisotropy D · Si × Sj , where D is the
DM vector, directly couples to the vector spin chirality
of Eq. (2). The out-of-plane DM component Dz there-
fore acts as an easy-plane [22] and selects either the state
with positive vector chirality for Dz < 0 or the state
with negative vector chirality for Dz > 0, the latter
apparently being the situation in YCu3(OH)6Cl3. For
the former state, the in-plane DM component Dp causes
out-of-plane canting of the spin structure, i.e., an admix-
ture of the ψ2

2 state, leading to the umbrella structure,
while the state with negative chirality remains copla-
nar even for finite Dp [22]. To explain the possible ad-
mixture of the antiferromagnetic collinear state within
Γ5, as suggested by our experiment, symmetric exchange
anisotropy ∆Sz

i S
z
j with ∆ > 0 needs to be included [25],

since such anisotropy acts as an easy-axis anisotropy per-
pendicular to the kagome plane. Therefore, we consider
the Hamiltonian

H =
∑
4

(
J1SiSj + Dij · Si × Sj + ∆Sz

i S
z
j

)
, (3)

where J1 is the nearest-neighbor isotropic exchange in-
teraction and the sum runs over the three spins in the
basic triangular unit. For an ordered magnetic moment
µ = gµB 〈S〉 in the coplanar ψ̃5

5 spin structure, where g
and µB are the g-factor and the Bohr magneton, respec-
tively, while 〈S〉 denotes the expectation value of the spin,
this Hamiltonian yields the classical energy per spin site
E(ψ̃5

5) = − 1
2 (J1 +

√
3Dz)(µ/gµB)2. In the antiferromag-

netic spin structures ψ̃6
5 the ordered magnetic moment

µ on one of the sites in the triangle is accompanied by
two moments µ/2 on the other two sites (see Fig. 3) and
the classical energy is E(ψ̃6

5) = − 1
4 (J1 + ∆) (µ/gµB)2.

Taking into account the magnitude of the in-plane and
the out-of plane magnetic moment components for the
solutions ψ̃5

5 and 0.68ψ̃5
5 + 0.32ψ̃6

5 (Table III), we obtain
the corresponding energies E(ψ̃5

5) = −0.088 J1
g2 −0.153 Dz

g2

and E(0.68ψ̃5
5 +0.32ψ̃6

5) = −0.083 J1
g2 −0.112 Dz

g2 −0.020 ∆
g2 .

Comparing these values, we find that the composite spin
structure 0.68ψ̃5

5 + 0.32ψ̃6
5 is energetically favorable only

if the condition ∆ > 0.25J1 + 2.0Dz is satisfied.
Both types of exchange anisotropies are spin-orbit-

coupling induced relativistic corrections to the isotropic
Heisenberg Hamiltonian. Their expected values are of
the order D/J1 ≈ ∆g/g and ∆/J1 ≈ (∆g/g)2 [40]. For
the Cu2+ ions the g-factor anisotropy is of the order
∆g/g ≈ 0.15 [41]. The DM anisotropy is therefore usu-
ally dominant for Cu-based kagome lattices [42, 43]. We
thus conclude that the required ∆/J1 ratio for the com-
posite spin structure 0.68ψ̃5

5 + 0.32ψ̃6
5 to be stable is at

least an order of magnitude larger than can be reasonably

expected. The pure coplanar spin structure with negative
vector chirality ψ̃5

5 is, therefore, the most likely ground
state of YCu3(OH)6Cl3. We note, that since powder neu-
tron diffraction experiment does not distinguish between
this state and the other negative-vector-chirality state ψ̃2

5
from the same irrep, any linear combination of the two
states is possible. Only the experiment on a single crystal
could exactly determine the spin structure.

The observed spin structure of YCu3(OH)6Cl3 corre-
sponds to the so-called q = 0 magnetic order in a given
kagome plane, which is one of the regular magnetic or-
ders of this lattice [14]. In the case of classical spins this
state with negative vector spin chirality can be stabi-
lized by an infinitesimal DM interaction Dz > 0 [21, 22].
However, in the case of quantum spins, the DM interac-
tion needs to surpass a threshold value for the ordered
state to replace a spin-liquid ground state if only the
nearest-neighbor isotropic exchange interaction is con-
sidered. The majority of theoretical studies suggest that
the quantum-critical point between a spin-liquid and the
q = 0 ordered state should occur around Dz ∼ 0.1J1
[12, 21, 23, 28]. We note, though, that a much lower crit-
ical value of Dz ∼ 0.012(2)J1 was recently suggested by a
theoretical approach that favors a gapless U(1) spin liq-
uid as the ground state in absence of the DM interaction
[26].

As an alternative to the DM component Dz be-
ing responsible for stabilizing the ordered state in
YCu3(OH)6Cl3, the same state could also be stabilized
by exchange interactions beyond nearest neighbors. A fi-
nite next-nearest-neighbor interaction J2, for example,
decreases the above-mentioned quantum critical point
and stabilizes the q = 0 ordered state above J2/J1 ≈ 0.15
[28]. Indeed, the q = 0 ordered state is stable even in the
absence of the DM interaction in the parameter range
0.2 − 0.5 . J2/J1 . 1.7 [16, 18, 21], while a finite DM
component Dz further shifts these boundaries in favor of
the ordered state [21]. The latter effect is due to the fact
that the isotropic Heisenberg antiferromagnetic interac-
tion on the basic triangular unit is more frustrated than
the DM interaction – e.g., in the above-presented energy
calculation of the coplanar state ψ̃5

5 , the DM contribution
is effectively multiplied by a factor

√
3 when compared to

the J1 contribution. The DM component Dz, therefore,
tends to reduce quantum fluctuation in favor of magnetic
ordering. The same is true for the in-plane DM compo-
nent Dp, which also disfavors some spin structures from
the GS manifold of the isotropic Hamiltonian and should
be even more efficient than the Dz component in sup-
pressing quantum fluctuations [43].

The Heisenberg interactions with even more distant
neighbors further complicate the theoretically predicted
phase diagram [14, 15, 17–21]. Although these inter-
actions are negligible in the paradigmatic QKA repre-
sentative herbertsmithite [44], they turn out to be rele-
vant in some other QKA representatives. For instance,
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in kapellasite where the Zn2+ ions occupy the center of
hexagons instead of the inter-layer site occupied in her-
bertsmithite, the diagonal exchange interaction across
the kagome hexagon in fact dominates over the nearest-
neighbor interaction [17, 45]. The competition between
the two is responsible for a gapless spin-liquid ground
state of this material, which, however, hosts unusual non-
coplanar dynamical short-range correlations of a so-called
cuboc2 regular magnetic order from the classical spin pic-
ture [46]. Moreover, for vesignieite it was recently argued
that a complex triple-k octahedral spin structure is sta-
bilized by a dominant antiferromagnetic third-nearest-
neighbor exchange [47]. The q = 0 ordered state found
in YCu3(OH)6Cl3, on the other hand, is generally stable
in a region of the phase diagram where J1 and J2 inter-
actions dominate [15, 18, 19]. Therefore, we do not ex-
pect exchange interactions beyond the second neighbors
to play any significant role in this compound. Lastly,
we note that magnetic ordering in kagome materials can
also be induced by the interlayer exchange coupling [13].
However, the required value of the interlayer exchange is
very high, J⊥/J1 & 0.15, which is unlikely to be satisfied
in YCu3(OH)6Cl3, where the neighboring kagome layers
are separated by chlorine ions and the interlayer distance
is as large as 5.6 Å.

Finally, our refinement yields an ordered magnetic mo-
ment of µ = 0.42(2)µB per Cu2+ site, which is signifi-
cantly short of the full value of 1−1.2µB expected for this
ion. The origin of this strong reduction may be two-fold.
Firstly, it can be due to strong quantum renormalization
effects, as theoretical predictions suggest that the ordered
magnetic moments should be strongly reduced close to
the quantum critical point at Dz/J1 ∼ 0.1 [18, 23]. Al-
ternatively, the observed reduction of the average ordered
magnetic moment can occur even for classical spins, be-
cause some of the order parameters described by the ir-
reps of the kagome lattice correspond to configurations
in which spins are not of unit length [25]. Consequently,
there exist extended regions in parameter space where ei-
ther multiple types of order have to coexist, or partial or-
der that coexists with a magnetically disordered phase is
established. In the latter scenario, magnetic fluctuations
arising from an extensive fraction of disordered spin de-
grees of freedom would persist down to zero temperature.
This is a possible explanation of the persistent spin dy-
namics observed in YCu3(OH)6Cl3 by µSR experiments
[35], while the alternative possibility of an incommensu-
rate magnetic order being at the origin of the persistent
spin dynamics is ruled out by the magnetic propagation
vector k = (0, 0, 0.5) found in our experiment.

CONCLUSIONS

Our powder neutron diffraction experiments on
YCu3(OH)6Cl3 have disclosed clear magnetic Bragg

peaks that appear below TN = 15 K. Their positions and
intensities are consistent with a negative-vector-chirality
120◦ coplanar spin structure within the kagome planes
with antiferromagnetic order between the neighboring
planes, as described by the magnetic propagation vector
k = (0, 0, 0.5). The detected magnetic order is partial
in the sense that the ordered magnetic moment amounts
to only µ = 0.42(2)µB at 1.5 K. This strong moment
reduction may either arise from strong quantum fluctu-
ations due to the vicinity of a quantum critical point
[23], or from a coexistence of order and disorder, which
could be ubiquitous even in classical kagome systems
[25]. This explains the previously observed spin dynam-
ics that persists down to extremely low temperatures
[35]. Either Dzyaloshinskii-Moriya anisotropy or further-
neighbor exchange interactions could be responsible for
stabilizing the observed magnetically ordered state in-
stead of a quantum-spin-liquid state. The selection of
the negative-vector-chirality state out of the degenerate
manifold of classical states of the isotropic Heisenberg
Hamiltonian is attributed to the Dzyaloshinskii-Moriya
anisotropy Dz > 0. Additional experiments, e.g., elec-
tron spin resonance, which is extremely sensitive to mag-
netic anisotropy [42, 43, 48, 49], and theoretical calcula-
tions of the relevant exchange interactions, e.g., using ab
initio [44, 50] or exact-diagonalization approaches [51],
are required to determine the precise microscopic Hamil-
tonian of YCu3(OH)6Cl3 and thus to address the origin
of magnetic ordering in this material in detail.
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