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Abstract  
The near wake of the polygonal cylinder with the side number N = 3 ~ ∞ is systematically studied based on particle 
image velocimetry (PIV) and load-cell measurements. Each cylinder is examined for two orientations, with either one 
leading side or leading corner. The Reynolds number Re = (1.0 ∼ 6.0) × 104, defined by the longitudinally projected 
cylinder width. The dependence of the wake characteristic parameters on the cylinder orientation and N is discussed, 
and wake scaling analysis is conducted based on these parameters. It is found that the velocity deficit and half width of 
the wake scale well with the reverse flow zone length and recirculation bubble width, whilst the Strouhal number, drag 
and fluctuating lift coefficients scale well with the vortex formation length and wake width. The unveiled scaling 
relationships cast insight into the intrinsic physical connections between the aerodynamic forces and vortex formation 
and between the polygonal cylinder wakes of N = 3 ~ ∞, suggesting that the understanding of the time-mean wake 
behind individual polygonal cylinder can be unified to that of the circular cylinder wake. 
 

1 Introduction 

Polygonal cylinders find their applications in various 
engineering areas, e.g. fluid machineries, power 
generation systems, architecture and ocean engineering. 
The flow around polygonal cylinders exhibits 
well-known bluff-body aerodynamic features, such as 
laminar–turbulent transition, flow separation, vortex 
formation, and vortex shedding, leading to the 
well-known Karman vortex street under the effects of the 
so-called local absolute instability and global convective  

 
 
 
 
 

instability (Tian et al. 2011; Kim et al. 2015; Huerre and 
Monkewitz 1990). It has been widely acknowledged that 
there exists a limited region of absolute instability behind 
the circular cylinder, where any disturbance is 
exponentially amplified leading to global instability in 
the entire wake. This region of absolute instability is 
responsible for the vortex formation, frequency selection, 
and hence the base pressure on the cylinder. The motion 
of the vortices in the wake is then governed by the 
equation of convective instability (Triantafyllou et al. 
1986; Monkewitz and Nguyen 1987; Unal and Rockwell 
1988). It is expected that the two types of instability play 
an important role in flows around polygonal cylinders 
because of their similar cylinder-type geometries. 
However, owing to the discretized side number N, the 
polygonal cylinders are featured with the periodically 
arranged flat surfaces and apexes, which strongly 
influence the flow separation point and separation angle, 
and hence the near wake as well as the extent of the 
absolute instability region. Eventually, the vortex 
shedding behaviors differ from one to another. So do the 
fluid forces on the cylinders and the signatures of the 
wakes from those of a circular cylinder. It is therefore of 
fundamental interest to understand how the polygonal 
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cylinders differ in their wake characteristics from that of 
the circular cylinder and how they depend on N. For 
instance, the polygonal cylinder with 8N ≤  is 
generally characterized by the flow separation points 
fixed at their corners, which are insensitive to the 
Reynolds number (Re), and the laminar–turbulent 
transition does not occur over a wide Re range, e.g. (1.0 
∼ 6.0) × 104. The drag on a polygonal cylinder of finite 
N is in general larger than that on a circular cylinder (N = 
∞) in the subcritical flow regime. Given 12N ≥ , the 
critical Reynolds number Rec where the transition to 
turbulence starts to occur in the boundary layer is smaller 
than, though approaching with increasing N, that of the 
circular cylinder (Xu et al. 2017). 

The near wake of cylinders, be square or circular 
cross-section, be single or two, is often characterized by 
the vortex formation length Lf

* and the wake width Dw
*, 

where asterisk denotes normalizations by cylinder 
characteristic width D (e.g. Bloor 1964; Gerrard 1966; 
Griffin 1995; Alam et al. 2011; Wang et al. 2018). It has 
been established that the two characteristic length scales, 
St and the fluid forces on the cylinder are correlated 
(Cetiner and Rockwell 2001; Carberry et al. 2001). Hu et 
al. (2006) investigated the effect of the corner radius of a 
square cylinder on the wake. They found that Lf

* was 
gradually prolonged with increasing corner radius, 
whereas the wake half width δ1/2 shrank. They concluded 
that the variation of Lf

* and δ1/2 depended on the flow 
separation angle which was determined by the curvature 
of the corner. It seems plausible that there exists 
interrelationship between the fluid forces, St, Lf

*, δ1/2 and 
flow separation angle. 

However, this interrelationship between fluid forces 
and wake structures and its dependence on N have not 
been systematically studied and have yet to be unveiled 
for the polygonal cylinder wake. Other issues such as the 
general characteristics of the mean velocity and 
Reynolds stresses in the near field, their downstream 
evolution and correlations with the fluid forces, 
especially their dependence on N, are also of 
fundamental and practical importance. A thorough 
understanding of these issues may provide an important 
reference to wake instability studies. In this work, we 
aim to address the above issues based on extensive 

particle image velocimetry (PIV) and fluid forces 
measurements. Experimental details are given in Section 
2. Statistical quantities and scaling analysis of the 
polygonal cylinder wake are presented in Section 3. 
Finally, the main conclusions are summarized in Section 
4 

2 Experimental Details 

Experiments were conducted in an open-circuit 
low-speed wind tunnel with a square working section of 
0.5m×0.5m×2.0m. The flow speed U∞ within the test 
section ranges from 2m/s to 40m/s and the streamwise 
turbulence intensity is less than 0.5% for the velocity 
range of the present concern. The polygonal cylinder was 
mounted horizontally in the symmetry plane of the 
working section, as shown in Fig. 1 where a hexagonal 
cylinder was installed. Two large thin plates were 
attached at the ends of the cylinder in order to suppress 
the end effect. The test models included the polygonal 
cylinders of side number N = 3 ~ 8, 12, 16 and a circular 
cylinder (N = ∞). Measurements were conducted for two 
orientations of each polygonal cylinder, with either a 
leading corner or a leading side (see Fig. 1 for notations 
and abbreviations). In order to obtain the same Re at the 
same U∞ and the same blockage ratio for all cylinders, 
two sets of cylinder models were designed for the 
polygons of even N to ensure D = 25mm for both corner 
and face orientations (Fig. 1). For odd N, one set of 
model is adequate as its two orientations are associated 
with the same D. The blockage of all polygonal cylinders 
is 5%. The cylinder length L between the two end plates 
was 420mm, giving an aspect ratio L/D = 16.8, at which 
the blockage as well as the three-dimensional end effect 
is negligible. The Reynolds number, Re = U∞D/ν, is (1.0 
~ 6.0)×104, where ν is the kinematic viscosity of air. 

The flow field behind the cylinder was measured 
using a standard LaVision planar PIV system. Flow 
illumination was provided using a double-pulsed 
Nd-YAG Laser source with a wavelength of 532nm and 
a maximum energy output of 120mJ per pulse. A high 
sensitivity Imager Pro X CCD camera with a resolution 
of 2048 pixels × 2048 pixels was deployed together with 
a Nikon 50mm (f: 1.8) objective lens. Flow was seeded 
with smoke particles of about 1 µm in diameter, 
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generated from paraffin oil via Laskin nozzles. 
The origin of the coordinate system is at the center 

of the polygonal cylinder (Fig. 1). The field of view 
(FOV) was fixed at -0.8 ≲ 𝑥/𝐷 ≲  8.0 and -2.0 
≲ 𝑦/𝐷 ≲ 2.0. The sampling rate of PIV was 4 Hz, more 
than 1000 pairs of double-framed images for each case 
were taken to ensure a good convergence for all 
concerned statistical quantities. A careful assessment of 
the St values reported previously in Xu et al. (2017), 
measured at the same Re, indicates that the present 
sampling rate has no phase-locking issues for all the 
testing cases. That is, a random sampling was achieved at 
all phases of the shedding cycle. The raw PIV images 
were processed using DaVis 7.2, with a final 
interrogation window (IW) size of 32 × 32 pixels and 50% 
overlap, resulting in a spatial resolution of 1.85 mm 
based on the IW size. 

 
Fig. 1 Schematic of the experimental setup (not to scale), including 

one example of the test model and its two orientations. In the 

notation of NF or NC, N denotes the polygon side number and F 

and C stand for the face and corner orientations, respectively. 

The drag and lift forces on the cylinder were 
measured using a load-cell (Kistler 9317B). The cylinder 
was fixed vertically in the wind tunnel. The cylinder was 
connected to the load-cell at the bottom and was 
supported at its upper end by a preload bolt to minimize 
structural vibration (Fig. 2). The force signals were 
amplified by a charge amplifier (Kistler 5073A) and then 
sampled at 5 kHz by an NI A/D (analog/digital) board 
(PCI - 6221) for a sampling duration of 5s. The Strouhal 

number is defined as St = fsD/U∞, where fs was the 
predominant vortex shedding frequency, extracted from 
the spectrum of the load cell signal. More information 
about measurement methods on aerodynamic forces and 
St can be found in Xu et al. (2017). 

 

Fig. 2 Schematic of the force measurement set-up. 

3 Results and discussion 

3.1 Instantaneous wake structure 

Fig. 3 presents the instantaneous vorticity fields 

/zD Uω ∞  of representative polygonal cylinders, where

/ /z v x u yω = ∂ ∂ −∂ ∂ , and u, v are the instantaneous 
velocities in the x and y direction, respectively. The 
cylinder upper surface flow separation points are also 
marked on the surface of the cylinder. According to Xu 
et al. (2017), at this Re, the separation point on the 
polygonal cylinders are fixed at a corner. The separated 
shear layer can be seen by the large magnitude (negative) 
vorticity regions detached from cylinder surface after 
flow separation point. This separated shear layer is then 
rolled up from the upper and lower surfaces in an 
alternative manner to form the classical Karman vortex 
street. 

The samples displayed in Fig. 3 are chosen at a 
similar vortex shedding phase, from which it is possible 
to reflect the vortex formation distance and the wake 
width behind the cylinder. Comparing with the circular 
cylinder, in NC cylinders, 4C has a large formation 
distance and 8C has a small one. These are in fact the 
largest and the smallest case, which will be discussed in 
details in section 3.3. In NF cases, 3F and 5F are the 
largest and smallest. In terms of wake width, it can be 
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inferred that 8C and 5F have a small wake width while 
6C and 4F (≈ 3F) have the largest. It is also possible to 
speculate the vortex strength (circulation) from these 
instantaneous flow fields. That is, a larger wake width 
could indicate stronger vortex strength.  

In this study, we will focus on the vortex formation 
distance and wake width. Investigation of the strength of 
the coherent vortices is left to a future work.  
 

	

Fig. 3 Contours of the instantaneous vorticity fields overlaid with velocity vectors for representative polygonal cylinders at Re = 1.6×104. 

The upper surface flow separation points are marked by the dots. (a) ~ (c) corner orientation; (e) ~ (h) face orientation. 

 

3.2 Statistical characteristics of near-wake 

It has been documented in Xu et al. (2017) that the 

transition from laminar to turbulence occurs in the 

boundary layer around the cylinders of N = 12 and 16 

given Re ≥ 3 × 104. Fig. 4 presents the iso-contours of 

U  for a few representative cylinders at subcritical Re 

and supercritical Re for N = 12 and 16. In this paper, the 

overbar and the prime represent the time-averaged and 

the fluctuating components, respectively, that is, the 

instantaneous flow velocities }{ }{, ,u v U u V vʹ ʹ= + + . The 

reverse flow zone boundary is demarcated by the contour 

level U  = 0, whose longitudinal extent is correlated 

with the drag on the cylinder (He et al. 2014). The 

configurations of 8C and 5F are characterized by a much 

smaller reverse flow zone than those of the circular and 

square cylinders at Re = 1.6 × 104, implying smaller CD. 

The reverse flow zone contracts by typically 75% from 

the subcritical (Fig. 4a3, 4a6) to supercritical (Fig. 4b) 

cylinders due to the occurrence of the transition in the 

boundary layer. 

The iso-contours of the streamwise Reynolds 

normal stress u uʹ ʹ  are shown in Fig. 5. The 4F case is 

characterized by the highest u uʹ ʹ  peak value of 0.18
2U∞  at x* ≈ 1.5, where the narrowest distance between 

the two peaks occurs. On the other hand, the cases of 8C 

and 5F are associated with the lowest peak value (0.12
2U∞ ) that occurs at x* ≈ 1.2. In the supercritical regime 

(12C and 16F, Re = 5.1×104), the region of large u uʹ ʹ  
contracts significantly, in line with the variation of the 

reverse flow zone, the peak being closest to the cylinder. 

 

zD Uω ∞/
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Fig. 4 Iso-contours of time-averaged streamwise velocity U /U∞ for representative polygonal cylinders. Dashed lines denote negative level. 

The boundaries of the reverse flow zones, along which U = 0, are highlighted by thick solid lines. The contour increment is 0.1. 

 

 

Fig. 5 Iso-contours of streamwise Reynolds normal stress 2/u u U∞ʹ ʹ . The contour increment is 0.01.

The single peak on the centerline can be seen 

clearly in the iso-contours of v vʹ ʹ  (Fig. 6). It can be 

deduced that the oppositely signed vortices are initially 

convected towards the centerline before moving apart 

laterally, when the lateral separation between their vortex 

trajectories is smallest, the maximum centerline v vʹ ʹ  
occurs. The 4F case is associated with the highest v vʹ ʹ    

of 0.36 2U∞  at x* = 2.4. On the other hand, the peak of 

v vʹ ʹ  is smallest for the circular cylinder compared with 

all the other cases in the subcritical regime. As in the 

case of u uʹ ʹ , the maximum v vʹ ʹ  is appreciably lower 

and also occurs more closely to the cylinder for 12C and 

16F in the supercritical regime than those in the 

subcritical regime. 

It will be shown that cases 4C and 3F are 

characterized by the largest velocity deficit or reverse 

flow zone length next, and 4F have the strongest 

streamwise and lateral velocity fluctuations (Fig. 5 and 

Fig. 6). On the other hand, cases 8C and 5F show the 

smallest velocity deficit (or reverse flow zone) and 

velocity fluctuations. Then, we will examine the 

Reynolds shear stress u vʹ ʹ , recirculation bubbles and 

mean vorticity fields focusing on these special cases at 

Re = 1.6×104. 
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Fig. 6 Iso-contours of lateral Reynolds normal stress 2/v v U∞ʹ ʹ . The contour increment is 0.02. 

The u vʹ ʹ  contours (Fig. 7) display an 

anti-symmetric pattern about the centerline. The u vʹ ʹ  is 

positive above the centerline and negative below inside 

the reverse flow region; the signs are swapped outside. 

Such a four-quadrant-type pattern, originated from the 

generation of vortices, is the same as behind a circular 

cylinder (Kim et al. 2006) and a square cylinder (Qu et 

al. 2017). Apparently, this pattern is insensitive to the 

bluff body shape. The region of large u vʹ ʹ  outside the 

reverse flow region is associated with strong velocity 

fluctuation. The u vʹ ʹ  magnitude is largest at x* ≈ 2 for 

6C and 4F, about 0.09 2U∞ . The maximum magnitude in 

u vʹ ʹ  is about 0.07 2U∞～ 0.08 2U∞  for the other cases, 

including the circular cylinder. Note that 4C and 3F have 

the largest reverse flow zones for the two orientations, 

respectively, while 8C and 5F have the smallest. The size 

of the reverse flow zone of the circular cylinder and 16F 

falls between. 

 

Fig. 7 Iso-contours of Reynolds shear stress 2/u v U∞ʹ ʹ  and its relation to the reverse flow zone, as highlighted by a red-colored curve (Re = 

1.6×104). The contour increment is 0.01. 

Fig. 8 presents the recirculation bubble defined by 

the separation streamline that starts at the separation 

point (see Fig. 3), encloses the pair of symmetrical mean 

recirculation zone and the mean shear layers indicated by 

the mean vorticity	 /zD Uω ∞
, where zω =

/ /V x U y∂ ∂ − ∂ ∂ . The recirculation bubbles behind 8C 

and 5F cylinders are markedly smaller than those behind 

4C, 3F, 16F and the circular cylinder. The reverse flow 

zone (Fig. 7) and the recirculation bubble (Fig. 8) are 

different in geometry, the former passing through the 

center of the recirculation bubble (one on each side of 

the centerline), where the local velocity is zero, and the 
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latter tracing back to the separation points (Kim et al. 

2006; Shi and Feng 2015). The mean shear layer 

essentially follows the recirculation bubble boundary, 

with the decreasing zω  downstream. Clearly, cases 8C 

and 5F are associated with the smallest recirculation 

bubble sizes and hence the smallest regions of high shear 

(high zω ), while 4C and 3F are the opposite, showing 

the largest recirculation bubble and high-shear region, 

exceeding their counterparts of 16F and the circular 

cylinder. It is interesting to find from a comparison 

between cases 4C and 4F that, although 4C has more 

streamlined windward surface and aft-body, its reverse 

flow zone and the recirculation bubble are both larger. 

Finally, it is worth pointing out that a large reverse flow 

zone or recirculation bubble does not necessarily mean a 

big region of large magnitude in u vʹ ʹ ; this is evident if 

we compare the cases of 4C and 3F with 6C and 4F in 

Fig. 7 and Fig. 8. 

 
Fig. 8 Contours of the mean vorticity fields overlaid with streamlines, the white solid line encloses the recirculation bubble. Note that the 

asymmetry of the zω  contours is attributed to the laser shadow effect. (Re = 1.6×104). 

3.3 Wake characteristic parameters 

The several wake characteristic parameters to be 

investigated are defined in Fig. 9 based on the statistical 

quantities in the wake, where the cylinder configuration 

6C is shown for illustration. Following the conventions, 

the vortex formation length Lf
* is defined as the 

streamwise position where the root mean square (RMS) 

value rmsuʹ  of the fluctuating streamwise velocity uʹ  
on the centerline reaches the maxima (Bloor 1964; Alam, 

Zhou & Wang 2011). The characteristic wake width Dw
* 

is defined to be the lateral separation between the two 

maxima in rmsuʹ  at the position x* = Lf
* (Griffin 1995). 

The streamwise length Lr
* of the reverse flow zone is the 

distance from the cylinder center to the position where 

U /U∞ = 0 on the centerline. The recirculation bubble 

width Db
* is defined to be the maximum distance between 

the two separation streamlines. 

 

Fig. 9 Definitions of the wake characteristic parameters. The U  

contours, }{ ,U V  streamlines and rmsuʹ  are extracted from the 

case 6C at Re = 1.6×104. 

The dependence of Lf
*, Lr

*, Dw
* and Db

* on N and 

orientation is presented in Fig. 10 and Fig. 11 at different 

Re. It can be found that these parameters do not depend 
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strongly on Re. The NC and NF orientations exhibit 

different behaviors for N ≤ 8. For example, for the NC 

case at Re = 1.6×104, Lf
* shows a marginal rise and then 

a significant monotonic drop for 8N ≤ . For N > 8, Lf
* 

approaches a constant of about 1.5. However, for the NF 

case, Lf
* drops initially until N = 5 and then rises above 

the NC cases, reaching its peak at N = 8. For N ≥ 12, Re 

plays an important role due to the boundary layer 

transition. At Re > 3×104, the boundary layer transition 

postpones the flow separation, resulting in a further 

decline in both Lf
* and Lr

* for N = 12 and 16 (the critical 

Reynolds numbers Recr are about 3×104 and 4×104 for 

12C and 16C, respectively, according to the research of 

Xu et al. 2017). 
Apparently, the variation of Lr

* follows closely that 
of Lf

*, though the former is smaller. Moreover, given for 
the NF orientation, Lr

* is approximately equal to Lf
* for 

all N, regardless of the occurrence of the transition. In 
contrast, for the NC orientation Lr

* appears more 
sensitive to the transition, which is in line with the 
variation of CD and St reported in Xu et al. (2017); the 
difference between Lf

* and Lr
* is more pronounced as Re 

increases as the transition influences Lr
* more than Lf

*. 
This may be confirmed from Fig. 10. 

 

Fig. 10  Dependence on N of the vortex formation length Lf
* and the streamwise length Lr

* of the reverse flow zone for different Re. 

 
Fig. 11  Dependence on N of the wake width Dw

* and the bubble width Db
* for different Re. 

The variations in Dw
* and Db

* with N (Fig. 11) 
appear similar, but the difference between Dw

* and Db
* is 

larger than that between Lf
* and Lr

*, i.e., (Db
* - Dw

*) > 
(Lf

*- Lr
*). Again, given N ≤ 8, the NC orientation behaves 

differently from the NF orientation for all Re. At Re = 
1.6×104, Dw

* is a strong increasing function of N for 
3 6N≤ ≤  of the NC orientation but, after reaching the 
peak at N = 6, declines to the minimum value at N = 8. 
For the NF orientation, Dw

* reaches the minimum at 
5N =  and then rises till N = 8. At larger Re, the Dw

* 
and Db

* for N = 12 and 16 decrease further because of 

the transition occurring.	

3.4 Scaling analysis 

Next, the scaling analysis of wake characteristics 

physical quantities and force coefficients is carried out 

according to the wake parameters discussed above. 

3.4.1 Scaling of the wake characteristics 

Fig. 12(a, b) compares the variation in the centerline 

velocity deficit 1 min( ) ( )U x U U x∞= −  for all cylinders, 

where minU  (x) is the centreline velocity for a fixed x. 
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The reverse flow zone length Lr
*

 is the distance from the 

cylinder center to the second intersection point (the first 

being the rear stagnation point on the cylinder) between 

U1(x)/U∞ and U1/U∞ = 1 where minU = 0, indicated by 

the dashed line in Fig. 12 (a, b).  

 
Fig. 12 (a), (b) The centerline streamwise velocity deficit U1 in the 

wakes at Re = 1.6×104. (c), (d) Dependence of the scaled velocity 

deficit U1/(fsDb) on x/Lr. 

It can be found that the maximum U1 (x) is 

approximately 1.2U∞ for all cylinders, irrespective of 

the cylinder orientation. The exception is 4F case, whose 

value is about 1.05U∞. The 4F case is characterized by a 

flat surface facing normally to incoming flow and 

meanwhile a lack of aft-body, different from other 

cylinders. The velocity recovery rate is determined by 

1 /U x∂ ∂  after the occurrence of the maximum U1 

(U1,max), not necessarily proportional to Lr . In this paper, 

subscript max denotes the maximum value. Among the 

corner orientations, case 8C has the highest recovery rate 

and 6C has the slowest, albeit with an intermediate Lr 

(Fig. 12a). On the other hand, among the face 

orientations, case 5F has the highest recovery rate, and 

4F the slowest, although associated with a very small 

U1,max and an intermediate Lr (Fig. 12b). It can be 

inferred that the cases of 6C and 4F are characterized by 

vortices of higher strength or circulation than the others 

in the near wake, resulting in the lowest base pressure 

and velocity recovery, and 8C and 5F cases are opposite. 

Monkewitz and Nguyen (1987) and	 Huerre and 

Monkewitz (1990), among others, demonstrated that the 

reverse flow and the velocity deficit recovery rate are 

closely related to the local absolute instability in the near 

wake, i.e. the size of this instability region is marginally 

larger than that of the reverse flow zone. It is therefore 

inferred that the cases of 8C and 5F have a smaller 

absolute instability region, and any source of instability 

originated from the boundary layer around the cylinder 

will have a smaller influential area to get amplified. As a 

result, the 8C and 5F cases are associated with a weaker 

instability region and hence smaller and weaker vortices. 

On the other hand, the cases of 6C and 4F are opposite. 

This is fully consistent with the discussion above. 

Apparently, U1 at a given x is very different from 

one cylinder to another. However, the rescaled velocity 

deficit U1/(fs Db), where Db is recirculation bubble width, 

collapses reasonably well for most of the cylinders if the 

abscissa is scaled as x/Lr (Fig. 12c, d). As suggested by 

Huerre and Monkewitz (1990), U1, Lr, Db and fs are the 

controlling parameters for the local absolute instability 

and the vortex shedding process of the circular cylinder, 

and in turn scale with the near-wake velocity deficit. 

Evidently, the argument is also valid for the polygonal 

cylinder wakes. For the same reason, Lr and Db are used 

as the characteristic length scale when the wake half 

width δ1/2 is examined. 
It can be found that the maximum U1/(fs Db) occurs 

at / 0.75rx L ≈  in Fig. 12(c, d). Close to the cylinder 

( 0.75 / 1.5rx L≤ ≤ ), at the present Re range, the viscous 

dissipation effect should be negligibly small, the scaled 
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velocity deficit U1/(fs Db) is characterized by the same 

recovery rate, which suggests a similar (relative) 

pressure gradient and vortex shedding characteristics 

among all cases. In the range 1.5 / 2.5rx L< ≤ , the 

recovery rate of U1/(fs Db) shows some differences, 

probably due to different extent of vortex interactions 

there. Further downstream, for / 2.5rx L > , U1/(fs Db) 

decays fairly slowly and remains in the range of U1/(fs Db) 

= 1.8 ~ 2.0 for different wakes, indicating that pressure 

gradient may have become negligibly small. However, 

the cases of 4F (square cylinder) and N = ∞ (circular 

cylinder) are exceptional. The base pressure coefficient 

is Cpb = -1.7 for 4F but only Cpb = -1.2 for N = ∞, as 

reported by Bearman and Obasaju (1982) and Nishimura 

and Taniike (2001), respectively, which represent 

perhaps two extreme cases. It may be inferred that the 

base pressure values of the polygonal cylinders are 

probably between that of 4F and N = ∞. A lower base 

pressure should produce a large adverse pressure 

gradient, hence corresponds to a slow velocity recovery 

rate. 

Define the wake half width δ1/2 by the lateral 

distance between the two points where 10.5U U U∞ − = . 

The δ1/2 decreases first to its minimum δ1/2,min at x = Lr 

(Fig. 13a, b), in line with the recirculation bubble shape 

behind the cylinder (Fig. 8), and then increases gradually. 

The δ1/2,min of 4C is the largest among the corner 

orientations and that of 3F among the face orientations. 

On the other hand, 8C and 5F are characterized by the 

smallest δ1/2,min for the corner and face orientations, 

respectively. Beyond x* = 4, the largest δ1/2 occurs with 

6C and 4F, and the smallest δ1/2 with 3C and 5F. The δ1/2 

is also quite small for the circular cylinder. 

The fact that δ1/2 decreases to its minimum at x = Lr 

suggests that individual vortices behind the cylinders are 

convected initially inwards to the centerline until x = Lr 

before moving outwards, although the vortices are still in 

the formation process in this stage, that is, they have not 

yet detached from the shear layer (Fig. 13a, b). This casts 

some light upon the fact that Lr is a streamwise scaling 

factor for δ1/2. It is found that δ1/2 is laterally proportional 

approximately to Db. Using the two scaling factors to 

scale the abscissa and ordinate, respectively, in Fig. 13(a, 

b), and then δ1/2/Db collapses fairly well for / 2rx L ≤  

(Fig. 13c, d). For the range of 1 / 2rx L≤ ≤ , the growth 

rate of δ1/2/Db is almost linear and identical for different 

cylinders (except the circular cylinder), apparently 

resulting from the same velocity recovery rate for these 

polygonal cylinders over this streamwise range (Fig. 13c, 

d). For / 2rx L > , the variation rate becomes much 

smaller, exhibiting an obvious dependence on N and the 

cylinder orientation, due to the viscous dissipation and 

the vortex interactions downstream.  

 

Fig. 13 (a), (b) The wake half width *
1/2δ  for all cylinders at Re = 

1.6×104. (c), (d) Dependence of Db scaled δ1/2 on x/Lr. The dashed 

line is the straight line least-square-fitted to the data of all 

polygonal cylinders, excluding the circular cylinder, over

1 / 2rx L≤ ≤ . 

A comparison between Fig. 12(c, d) and Fig. 13(c, d) 
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indicates that the recirculation bubbles resemble each 

other if scaled with Lr and Db, irrespective of the corner 

or face orientation, at least for the Re range examined. 

The result suggests that 8C and 5F are associated with 

the smallest size of the recirculation bubble and of 

absolute instability region, which directly account for the 

weakest strength of the vortices in the near wake. 

 
Fig. 14 (a), (b) RMS of streamwise fluctuating velocity rmsuʹ  

along the centerline at Re = 1.6×104; (c), (d) Dependence of rmsuʹ /

,maxrmsuʹ  on x/Lf. 

The variation in rmsuʹ  along the centerline (Fig. 14a, 

b) exhibits a similar trend for all cylinders, that is, 

increasing rapidly to the maximum value ,maxrmsuʹ  and 

then decreasing before rising again rather slowly. The 

largest ,maxrmsuʹ  occurs at x* ≈ 2 for 6C and 4F, cases 8C 

and 5F are associated with the smallest ,maxrmsuʹ  that 

occurs at x* ≈ 1.3; the circular cylinder has the lowest 

rmsuʹ  beyond x* = 3. Although the centerline rmsuʹ  is 

significantly different from one cylinder to another, its 

streamwise variation rescaled with Lf (Fig. 14c, d), at 

which the oppositely signed vortices interact most 

strongly, are almost the same for different cylinders. 

Indeed, it has been shown that Lf is about the same as Lr, 

especially for this Re, and δ1/2 reaches the minimum (Fig. 

13) at Lf or Lr, with the mean separation streamlines 

intersect with the centerline. The rmsuʹ  then drops to 0.6 

~ 0.8 ,maxrmsuʹ  at / 2fx L ≈ . It is plausible that the 

decrease in the centerline rmsuʹ  over this streamwise 

range is attributed to the steady vortices moving away 

laterally from the centerline, which is internally 

consistent with the δ1/2 variation for 1 / 2rx L< <  in Fig. 

13(c, d). Beyond / =2fx L , rmsuʹ  rises again, regardless 

of N and the cylinder orientations, though much less 

rapidly than that for / 1fx L < , probably due to the 

increased vorticity diffusion and vortex distortion 

downstream. As the case of 1/2 / bDδ  in Fig. 13(c, d), 

rmsuʹ / ,maxrmsuʹ  is less dependent on N and the cylinder 

orientation for 2 ( 2 )f rx L L< ≈ . 

 

 
Fig. 15 (a), (b) RMS of the lateral fluctuation velocity rmsvʹ  along 

the centerline at Re = 1.6×104. (c), (d) Dependence of ,max/rms rmsv vʹ ʹ  

(a)

(b)

1 2 3 4 5 6 7
0.1

0.2

0.3
 3F
 4F
 5F
 6F
 7F
 8F
 12F
 16F
 Cir

	

	

u'
rm
s/U

0

x/D

Face orientation
1 2 3 4 5 6 7

0.1

0.2

0.3
 3C
 4C
 5C
 6C
 7C
 12C
 8C
 16C
 Cir

	

	

u'
rm
s/U

0

x/D

Corner orientation

1 2 3 4 5 6 7
0.1

0.2

0.3
 3C
 4C
 5C
 6C
 7C
 8C
 12C
 16C
 Cir

	

	

u'
rm
s/U

0

x/D

Corner orientation

0 1 2 3 4 5
0.4

0.6

0.8

1.0

1.2
 3C
 4C
 5C
 6C
 7C
 8C
 12C
 16C
 Cir

	

	

u'
rm
s/m

ax
(u
' rm
s)

x/Lf

Corner orientation

0 1 2 3 4 5
0.4

0.6

0.8

1.0

1.2
 3F
 4F
 5F
 6F
 7F
 8F
 12F
 16F
 Cir

	

	

u'
rm
s/m

ax
(u
' rm
s)

x/Lf

Face orientation

(c)

(d)

m
ax

/
rm
s

rm
s

u
u

ʹ
ʹ
，

x*

∞
∞

m
ax

/
rm
s

rm
s

u
u

ʹ
ʹ
，

1 2 3 4 5 6 7
0.1
0.2
0.3
0.4
0.5
0.6
0.7

 3C
 4C
 5C
 6C
 7C
 8C
 12C
 16C
 Cir

	

	

v' r
m
s/U

0

x/D

Corner orientation

1 2 3 4 5 6 7
0.1
0.2
0.3
0.4
0.5
0.6
0.7

 3F
 4F
 6F
 7F
 8F
 12F
 16F
 5F
 Cir

	

	

v' r
m
s/U

0

x/D

Face orientation

1 2 3 4 5 6 7
0.1

0.2

0.3
 3F
 4F
 5F
 6F
 7F
 8F
 12F
 16F
 Cir

	

	

u'
rm
s/U

0

x/D

Face orientation

1 2 3 4 5 6 7
0.1

0.2

0.3
 3C
 4C
 5C
 6C
 7C
 8C
 12C
 16C
 Cir

	

	

u'
rm
s/U

0

x/D

Corner orientation
(a)

(b)

0 1 2 3 4 5
0.2

0.4

0.6

0.8

1.0

1.2
 3C
 4C
 5C
 6C
 7C
 8C
 12C
 16C
 Cir

	

	

v' r
m
s/m

ax
(v
' rm
s)

x/L'f

Corner orientation

0 1 2 3 4 5
0.2

0.4

0.6

0.8

1.0

1.2
 3F
 4F
 5F
 6F
 7F
 8F
 12F
 16F
 Cir

	

	

v' r
m
s/m

ax
(v
' rm
s)

x/L'f

Face orientation

(c)

(d)

m
ax

/
rm
s

rm
s

v
v

ʹ
ʹ
，

x*

∞
∞

,/ f vx L ʹ

m
ax

/
rm
s

rm
s

v
v

ʹ
ʹ
，



Page 12 of 15                                                                        Experiments in Fluids (2019)	

on ,/ f vx L ʹ . 

 

In distinct contrast to rmsuʹ , the centerline rmsvʹ  
(Fig. 15a, b) displays only one single peak, that is, rmsvʹ  

increases rapidly to its maximum ,maxrmsvʹ  and then 

decays slowly downstream. The rmsvʹ  is also different 

from rmsuʹ  in its decay rate which is almost the same for 

all cylinders and approximately linear with respect x. 

This is probably due to the combined effect of vortices 

moving laterally away from the centerline and decaying 

in strength once beyond the characteristic length ,f vL ʹ  

where ,maxrmsvʹ  occurs. Physically, ,maxrmsvʹ  corresponds 

to the smallest separation between the oppositely signed 

vortices. Thus, both Lf and	 ,f vL ʹ  are linked to Lr. A 

comparison between Fig. 15(a, b) and Fig. 14(a, b) 

indicates that the variation of ,f vL ʹ  resembles that of Lf, 

though ,f vL ʹ≳ Lf, their difference being up to ~ 0.5D, 

such as case 16C. The dependence of the centerline 

,max/rms rmsv vʹ ʹ  on ,/ f vx L ʹ  (Fig. 15c, d) exhibits a better 

collapse for all cylinders than that of the centerline rmsuʹ /

,maxrmsuʹ  on / fx L . The result indicates that ,f vL ʹ  could 

be also used to define the vortex formation length in the 

cylinder wake. Fig. 14(c, d) and Fig. 15(c, d) suggest that 

the near field variation of the centerline rmsuʹ / ,maxrmsuʹ  or 

,max/rms rmsv vʹ ʹ  with / fx L  or ,/ f vx L ʹ  in the wake of a 

polygonal cylinder can be approximately predicted by 

that of the circular cylinder. 

3.4.2 Scaling of the force coefficients 

Xu et al.	 (2017) found that the corrected flow 

separation angle ξ is a proper scaling factor for CD and St 

of polygonal cylinders for both subcritical and 

supercritical Re conditions, if transition ever occurs. The 

ξ is calculated from the actual flow separation angle θs, 

which is the angle between the polygon side upstream of 

the separation point and the incoming flow direction. The 

determination of θs relies on careful flow visualization 

around the cylinder surface, which is sometimes difficult 

due to the high-frequency oscillation of the flow 

separation points. Therefore, it is of importance to find 

alternative scaling factors to scale CD and St as well as 

CL, rms, where subscript rms denotes the root mean square 

value of instantaneous lift coefficient CL. 

 
Fig. 16 Dependence of CD on Dw

* at different Re. The dashed 

lines are the least square fit to the data of all cylinders. 

A connection between CD on a cylinder and the 

wake width has been reported previously (e.g. Apelt et al. 

1973；Griffin 1995). Griffin (1995) showed that a larger 

Dw
* was associated with a lower base pressure coefficient 

Cpb and hence larger drag. However, this connection has 

not been quantified. Indeed, the CD data can display a 

good collapse onto a linear curve, viz. 

            *1.935 0.45,D wC D= −              (1) 

when plotted against Dw
* (Fig. 16), irrespective of N and 

the cylinder orientation. Since the transition from 

laminar to turbulence occurs in the boundary layer for 

cases N =12 and 16, the excellent collapse for all the Re 

suggests that the correlation equation (1) is valid for the 

Re range examined, including the polygonal cylinder 

wake in the supercritical regime (such as 16C and 16F). 

Wygnanski et al. (1986) demonstrated that the 

momentum thickness Θ is an important characteristic 

length scale in the small-deficit wake, i.e., the far wake, 

and that 2Θ = CDD by definition. Fig. 16 unveils that Dw
* 

is an alternative characteristic length scale for the 

polygonal cylinders. However, being the characteristic 

wake width defined at the vortex formation length, Dw
* 

can be readily measured from the near-wake velocity 

distribution. 

Since CD and ξ were previously found to be linearly 

correlated by 0.0128 0.9DC ξ= +  (Xu et al. 2017), the 

empirical relation between Dw
* and ξ can then be derived 

directly from equation (1), viz.  
*=151.17 105.47.wDξ −              (2) 
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Fig. 17 Relation between Dw
* and ξ at Re = 5.1×104. 

Fig. 17 compares equation (2) with the experimental 

data at Re = 5.1×104, where ξ is extracted from Xu et al. 

(2017). The significance is that when the flow field 

information right around the cylinder is unavailable, ξ 

and hence the averaged flow separation angle θs (whose 

instantaneous value may oscillate randomly) may be 

estimated from Dw
* via equation (2). Since the relation 

0.0128 0.9DC ξ= +  was demonstrated to work for Re = 

(2	~ 10) × 104, equation (2) is also valid for the same Re 

range. 

The scaling analysis of St turns out to be more 

challenging. After many trial and error attempts, we 

define a St+ as following, 

              St+ = StDw
* = fsDw/U∞.           (3) 

The St+ data collapse very well for all polygons if plotted 

against Lf
*, as shown in Fig. 18, regardless of N, the 

cylinder orientation and Re. The data are 

least-square-fitted to a second order polynomial, viz. 

     * 2 *0.0145 0.069 0.081.f fSt L L+ = − + +        (4) 

 

Fig. 18 Dependence of St+ on Lf
* at different Re. The dashed lines 

are the least square fit to the data of all cylinders. 

St+ essentially compromises the observations from 

St and CD, which behaved quite differently, and appears 

insensitive to Re. It may be inferred from the quadratic 

relation of equation (4) that the maximum St+= 0.163 

occurs at Lf
* = 2.38. Finding the polygon to yield this 

maximum St+ could be of practical significance. It will 

be demonstrated that Dw scales with the fluctuating lift 

coefficient in Fig. 19, equation (3) thus suggests that the 

maximum St+ may have implication on the most 

energetic mixing effect or the highest oscillating motion 

power output given a flexibly mounted cylinder because 

of the strongest fluctuating lift. However, the theoretical 

maximum St+ could be difficult to achieve in reality due 

to the discretized N. It may occur with a polygon at a 

particular angle of attack. Determining this angle of 

attack is beyond the scope of this study and we leave it 

for a future work. 

On the other hand, combining equations (1) and 

equation (3) with the empirical relation 0.6= DC Stζ  (Xu 

et al. 2017) may yield ( )0.4 *~D fC St f Lζ + = , where ζ is 

an empirical constant, about 0.2. This implies that it is 

possible to use the empirical relations to estimate CD and 

hence St from Lf
*, that is, from the information of the 

streamwise velocity along the centerline. 

Hu et al. (2006) found that the sectional circulation 

Γp around their cylinder (square prism) is proportional to 

CD. The Kutta-Joukowski lift theorem (Anderson 2010) 

states that ( )L pC t Γ∝ . Since CL,rms, calculated from the 

cyclic oscillation of CL(t), is proportional to the latter and 

DC ∝  Dw
*, as demonstrated in Fig. 16, one may infer 

that CL,rms is linearly correlated with Dw
*. Fig. 19 presents 

the correlation between CL,rms and Dw
* and the data 

indeed collapse reasonably well, which are 

least-square-fitted to a linear curve CL,rms = 

0.226Dw
*+0.193. The data for the configurations of 3C 

and 4F deviate greatly from the curve. To explain this 

deviation, we define ls as the distance from the flow 

separation point to the leeward surface of the cylinder 

(see Fig. 20), which approximately indicates the extent 

of the direct impact of the separated flow on the cylinder 
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body, i.e., the effect of the negative pressure in the flow 

separation region on the upper and bottom surface of the 

cylinder. A larger ls suggests a larger lift fluctuation 

given the same Re. Note that ls = 0 for 3C but ls = D for 

4F, representing the two extremes. On the other hand, ls 

= 0.4	~ 0.8D for other polygonal cylinders. Accordingly, 

3C and 4F are associated with the minimum and the 

maximum lift fluctuation (Fig. 19), respectively. 

 
Fig. 19 Relation between Dw

* and CL, rms at Re = 1.6×104. The dashed line is the least square fit to the data without 3C and 4F. 

 
Fig. 20 Definition of ls. (a) ls = 0 for 3C; (b) ls = D for 4F; (c) ls = 

0.5D for 6F. 

4 Conclusions 

In this paper, two sets of scaling parameters are 

identified: (i) the reverse flow zone length Lr and the 

recirculation bubble width Db determined from the 

time-averaged velocity field U , (ii) the vortex 

formation length Lf and the wake width Dw extracted 

from the fluctuating velocity rmsuʹ  field. The mechanism 

of vortex formation from the polygon surface is reflected 

uniquely in these length scales. On the other hand, the 

empirical relations between these scaling factors and 

various kinematic and dynamic quantities clearly suggest 

that the understanding of the polygonal cylinder wake 

could be unified to that of the circular cylinder wake, that 

is, the shape and orientation information of the polygons 

is irrelevant as long as appropriate longitudinal and 

transverse length scales are used. More conclusions are 

drawn below.  

(1) The characteristic properties (U1, δ1/2, Lr and Db) of 

the near wake mean velocity field exhibit a 

significant dependence on N and the cylinder 

orientation. The 8C and 5F cases show the smallest 

U1, Lr, Db and the most rapid centerline velocity 

recovery for the corner and face orientations, 

respectively. The results are connected to the small 

adverse pressure gradient in the reverse flow zone 

for 8C and 5F cases, due to their very weak vortex 

strength compared with other cases. On the other 

hand, the 6C and 4F cases are characterized by the 

largest vortex strength and adverse pressure gradient 

in the reverse flow zone, resulting in the smallest 

velocity recovery rate. 

(2) The fluctuating velocities rmsuʹ  and rmsvʹ  display a 

great disparity for different N and cylinder 

orientations. However, the centerline rmsuʹ / maxrmsuʹ ，  
collapses reasonably well if x is scaled by Lf. In 

general, the centerline rmsuʹ / maxrmsuʹ ， reaches its 

maximum at the end of the vortex formation, i.e. x = 

Lf
 , and then declines until 2 fx L≈ , followed by a 

slow rise. The centerline rmsvʹ / maxrmsvʹ ，  displays a 

reasonable collapse if x is scaled by the 

characteristic length ,f vL ʹ  defined as the distance 

between the cylinder center and the downstream 

position where the maximum rmsvʹ  occurs. 

(3) The force coefficients (CD, CL,rms) and Strouhal 

number (St) all depend heavily on N and the cylinder 
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orientation. Since U1, which scales with Db·fs and 

the longitudinal extent of the reverse flow region Lr 

are closely related to the local absolute instability 

that governs the vortex shedding process, it is 

expected that Lr and Db, behaving similarly to Lf and 

Dw respectively, are linked to CD, CL,rms and St. 

Firstly, CD is found to be linearly correlated with 

Dw
*. So is CL, rms. The measured data are reasonably 

fitted to CD = 1.935Dw
*－ 0.45 and CL,rms = 

0.226Dw
*+0.193, respectively. An alternative 

Strouhal number St+ = StDw
* is also found to scale 

with Lf
*; the data are fitted very well to 

+ * 2 *0.0145 0.069 0.081f fSt L L= − + + . Secondly, Xu 

et al. (2017) found that CD scales linearly with the 

corrected flow separation angle ξ. Then, ξ and Dw
* 

should be linearly correlated, as confirmed presently 

(Fig. 17). Finally, the empirical relation 0.6
DC Stζ = , 

proposed by Xu et al. (2017), effectively establishes 

an interrelationship between Lf and Dw. The scaling 

relations established in this work are independent of 

N, Re and the cylinder orientation. 
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