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Abstract

We propose a near explosive random coefficient autoregressive model (NERC) to obtain predic-
tive probabilities of the apparition and devolution of bubbles. The distribution of the autore-
gressive coefficient of this model is allowed to be centered at an O(T−α) distance of unity, with
α ∈ (0, 1). When the expectation of the autoregressive coefficient lies on the explosive side of
unity, the NERC helps to model the temporary explosiveness of various asset prices. We study
the asymptotic properties of the NERC and provide a procedure for inference on the parame-
ters. In empirical illustrations, we obtain predictive probabilities of bubbles or flash crashes in
financial asset prices.
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1 Introduction and motivations

A distinctive feature of the last two decades has been the prolonged build-ups and sharp collapses

in asset markets in the industrialized and developing worlds. Such patterns are often labeled

‘bubbles’, and a rich literature has developed that provides mechanisms for their formations and

empirical techniques for their detection. The purpose of this paper is to complement the literature

by providing a model for making probabilistic forecasts about the emergence, evolution and collapse

of bubbles, together with so-called flash crashes which take the form of downward bubbles.

To achieve such a purpose, we need a working definition of bubbles and flash crashes. The liter-

ature does not appear to have converged to a commonly agreed definition (e.g. Hamilton, 1986, and

Granger and White, 2011) but a stylized feature is that bubbles in a time series yt are characterized

by sustained positive growth, flash crashes by sharp negative growth. As commonly understood,

a bubble eventually bursts so the sustained growth is only temporary and the subsequent collapse

brings yt to ‘normal times’. It is often understood that ‘sustained growth’ refers to processes that

exhibit exponential growth rates, whereas ‘normal times’ are characterized by mean reversion or

stationarity for some transforms of the data. The duration of the bubble or flash crash must also

relate to the frequency of the data and the available sample: equity price bubbles measured at

monthly or quarterly frequencies generally last at most a few years – see Figure 1, Panel (a) –

although some lasting bubbles have been detected over longer spans – e.g. Figure 1, Panel (b). As

seen in Panel (c) , some series experience a substantive growth over a few periods, but the ensuing

devolution may not necessarily take the form of a sharp drop. Finally, stock market flash crashes

are observed at intraday frequencies: see Panel (d) for an example of a crash over a few minutes.

Our interest in this paper is to obtain predictive probabilities for bubble and flash crash episodes

in a local-asymptotic framework. Bubbles are, here, defined via their time series properties, hence

following the time series approach Granger and White (2011) rather than relying on a structural

decomposition that studies deviations from fundamental dynamics. Local-asymptotics, in which

parameters relate to the available sample size, say T , have successfully been used many times

in the econometrics literature, and recently in the context of bubble detections, see Phillips, Wu

and Yu (2011). Here, we allow not only parameters, but also the timing and duration of events
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Figure 1: The figure presents examples of data series. Panels (a)-(c) produce monthly data from
Robert Shiller’s website: the S&P 500 index on (a) and (b) , the cyclically adjusted Price/Earning
Ratio and the long term interest rate on Panel (c). Panel (d) is the Nasdaq index expressed in Tick
time after 3:00PM EST on May 6, 2010. The data were downloaded from a Bloomberg Terminal
as CCMP index (Bid).

to be expressed in relation to T : letting the latter tend to infinity allows to express magnitudes

and derive distributions that prove useful in forecasting. This is a procedure which is common, for

instance, when modeling and testing for structural breaks where the timing of the breaks is referred

to in relation with the sample size (see, e.g., Andrews, 1993b, Perron, 1996, Bai and Perron, 1998,

and Magnusson and Mavroeidis, 2014) and bears some resemblance with the literature on “in-fill”

asymptotics (Jiang, Wang and Yu, 2017). As a consequence, we define probabilistic bubble episodes

of duration h as exhibiting sustained growth, i.e. such that gt,h ≡ yt+h/yt is greater than unity. In

a non-local asymptotic framework, this leads to defining the probability of a bubble episode at time

t, of duration h and magnitude γ > 1 as the conditional probability Pr(gt,h > γ| It). When the

data generating process or the timing and duration (possibly also the magnitude) are expressed as
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functions of the sample size in a local-asymptotic setting, the definition is better expressed in the

limit as the sample size increases to infinity: the contrast between seemingly related finite sample

dynamics become starker.

We start with defining the probability of occurrence of a bubble in a local-asymptotic framework:

it allows to assess the relevance of models and compare their applicability in this context. It also

justifies introducing a new modeling strategy, which is the main focus of the paper.

Definition 1 Let the local-asymptotic process (yT,s) be defined for 0 ≤ s ≤ T. Consider two non-

negative deterministic mappings for local time, τ(T,t), and duration, χ(T,h) for some parameters

(t, h) ∈ R2
+, such that τ(T,t) ≤ T and, as T →∞,

(
τ(T,t), χ(T,h)

)
→ (∞,∞) with χ(T,t)/τ(T,t) → 0.

The probability of the process experiencing a bubble episode of magnitude γ > 1 at local time τ(T,t)

and of duration χ(T,t) is defined as

πt,h (γ) = lim
T→∞

Pr(gτ(T,t),χ(T,h)
> γ

∣∣∣ Iτ(T,t)),
where gs,u ≡ yT,s+u/yT,s is the growth between dates s and s+u, and Is is the sigma-field generated

by (yT,j)j≤s.

The local time and duration mappings are specific to the models considered so, in empirical

applications, the modeler who wishes to forecast the probability of bubbles will need to define these

mappings appropriately. Typical mappings encountered in the econometric literature for local time

and duration relate to the sample size, as parameterized by (t, h) ∈ [0, 1]2, i.e., τ(T,t) = btTαc and

χ(T,h) =
⌊
hT β

⌋
, for (α, β) ∈ [0, 1]2 and where b·c denotes the integer part. In the literature on

deterministic breaks detection, Bai and Perron (1998) for instance parameterize the break date

as a fraction btT c of the sample size, i.e., with α = 1. In the context of long run forecasting,

predictive regressions and impulse responses, an extensive literature considers α = β = 1 — see,

inter alia, Richardson and Stock (1989), Stock (1996), Phillips (1998), Kemp (1999), Valkanov

(2003), Gospodinov (2004) and Pesavento and Rossi (2006) — as opposed to the fixed horizon case

β = 0. More recently, Mikusheva (2012) allows for intermediate impulse responses, such as when

β ∈ (0, 1) . In this paper we consider more general parameterizations, but Definition 1 assumes that
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the duration is such that, as T →∞, χ(T,t)/τ(T,t) → 0, i.e., the duration of the episode is short to

ensure that bubbles eventually end if a sample of sufficient length is observed.

Definition 1 enforces a dichotomy between processes that may generate bubbles and those that

do not. To clarify this, we present a few examples in Appendix A.2 and summarize them in Table

1. In the first three examples of (i) deterministic polynomial growth, (ii) near stochastic trends

or (iii) Froot-Obsfeld (1991) intrinsic bubbles, none of the processes can exhibit bubbles or flash

crashes in the way we define them here, since they all yield πt,h (γ) = 0 for γ > 1.

The simplest model for bubble dynamics may be the AR(1) with an autoregressive coefficient,

say ρ, which has to be above unity – yet close to it to be empirically relevant – to generate an

exponential growth, e.g. stochastic processes that can be modeled as in Examples (iv) and (v) in

Table 1. Yet, the explosive autoregressive root must be temporary and the coefficient ρ must shift

to a value below unity during normal times as in Example (vi) that was proposed by Blanchard

and Watson (1982). Examples (iv)-(vi) do generate bubbles according to our definition. Yet these

models generate bubbles with probability one since there exists γ > 1 such that πt,h (γ) = 1. Hence

these models cannot distinguish between permanent and temporary bubbles (as opposed to (vii)

in Table 1, i.e. the model we propose in this paper). Some authors have assumed the presence

of deterministic breaks in ρ (e.g. Phillips, Wu and Yu, 2011 or Phillips, Shi and Yu, 2015), as

exemplified in Figure 2, Panel (a), but such breaks are by construction unpredictable. It is therefore

necessary for forecasting purposes to assume that ρ shifts randomly, denote the resulting process ρt

then.1 Proposals that derive from Blanchard and Watson (1982) often require for tractability that

regimes present fixed transition or unconditional probabilities making them periodic, in a sense.

This is an assumption we want to avoid here as we do not want to specify ex ante the probability

of observing bubbles. All the models above that accomodate the existence of bubbles can generate

both upward and downward trajectories. Hence, when yt < 0, our definition can be generalized to

negative bubbles, also called “flash crashes” (not to be confused with the implosion of bubbles as

studied by Phillips and Shi, 2017) by considering negative changes yt+h − yt < 0, while ensuring

1An additional benefit of specifying that the autoregressive coefficient is stochastic – as opposed to subject to
deterministic breaks – is that we can draw inference on the whole sample and there is no need to resort to rolling or
recursive windows to test the presence of a bubble and estimate its magnitude; the absence of deterministic breaks
also avoids the usual trimming of observations at the beginning or end of the sample.
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gt,h > 1. In this sense, bubbles and flash crashes are symmetric in the sense that they pertain to the

same dynamic models: they differ in that, during the episode, the change is positive or negative: a

flash crash is a period of fast decay, which may differ from the dynamics that follow the burst of a

bubble (we show in the empirical applications below that the restriction yt < 0 needs not constrain

the analysis, but requires a careful choice of a reference point).

We propose in this paper a simple time-series model that accommodates both ‘quiet’ and bubble

periods, and where bubbles arise and disappear as a function of a latent process (which in standard

pricing models may relate to the stochastic discount factor). A flexible way to achieve such a

purpose is found in the literature on random coefficient autoregressive models (RCAR), see e.g.

Nicholls and Quinn (1982) and Granger and Swanson (1997). The simplest version assumes that the

variable of interest, yt, follows an autoregressive process of order 1, yt = ρtyt−1 + ηt, with random

autoregressive coefficient ρt which is identically and independently distributed (iid). When ρt takes

values on either side of unity with nonzero probabilities, (yt) exhibits rich dynamics with ‘mean

reverting’ and explosive periods, see Figure 2, Panel (b). The assumption that ρt is iid is made for

simplicity and may appear unusual considering the literature on time-varying parameters which are

often assumed to follow random walks. But in a dynamic setting, ρt ∼ iid generates rich dynamics

since the h-period growth gt,h = yt+h/yt involves the product
∏h
i=1 ρt+i = exp

∑h
i=1 log ρt+i when

ρt+i > 0, i.e., the exponential of a partial sum which replicates the persistence that is often assumed

in time-varying parameter models, see Figure 2(d) for a simulated example.

RCAR processes have been used to model bubbles but with limited success so far (see e.g.

Hwang and Basawa, 2005 and Homm and Breitung, 2012). A reason is that to be empirically

relevant, the distribution of ρt must not only remain very concentrated and close to unity but

it should also depend on the size of the sample period, T . Indeed it is well known that explosive

autoregressive coefficients, even with small departures from unity, may generate very large values of

the process over short samples. Hence we borrow here from the literature on local-asymptotics (e.g.

Aue, 2008): we model the distribution of ρt so the proximity of E [ρt] and V [ρt] to, respectively,

unity and zero relates to the observable sample size and a concentration parameter α. Increasing α

would generate higher concentration of the random coefficient ρt near unity. As mentioned above,
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the duration of bubble episodes must also relate to the sample size, hence the local asymptotic

framework is well suited for this purpose. We design a parametric setting to ensure that the

magnitude of V [ρt] remains large enough for the random nature of ρt to matter asymptotically (in

contrast with Aue, 2008). A consequence is that we are able to make probabilistic forecasts about

the evolution of bubbles that are direct functions of values taken by a latent Brownian motion. In

empirical work, the modeler can test candidate variables for this latent process and thus possibly

improve the probabilistic forecasts.

The content of the paper is as follows. In Section 2, we propose a model along the lines and with

the purposes delineated above, then derive its asymptotic properties. In Section 3, we show how

these properties can be used to provide probabilistic forecasts of bubbles or crashes conditional on

the observed history. In Section 4, we delineate an empirical inference procedure and then provide

an extensive empirical application to several datasets plotted in Figure 1. Section 5 concludes. The

Appendix, Section A, provides (i) an additional discussion of the related literature, (ii) examples

of processes that may or not exhibit bubbles, (iii) further results on the inference procedure;

and Section B collects the proofs of the propositions. Supplementary Material containing further

technical results is available online. Throughout the paper, b·c denotes the integer part; 1{·} the

indicator function that takes value one if {·} is true and zero otherwise; and R+,∗ the set of strictly

positive real scalars.

Table 1: Examples of stochastic processes with corresponding probabilities of bubbles or crashes as
given by πt,h (γ) in Definition 1. xt is weakly stationary, ηt and ut are independent iid processes.
Details for (i)-(vi) are given in Appendix A.2. Example (vii) is the focus of this paper and is
delineated in Section 2.

(i) Trend yt = βt + xt, βt ∼ cβtν , ν > 0, πt,h (γ) = 0
(ii) STUR yt = ρtyt−1 + ηt, ρt − 1 = Op(T

−1), πt,h (γ) = 0

(iii) Froot-Obsfeld yt = cη(
∑t

j=1 ηj)
λ, λ > 0, πt,h (γ) = 0

(iv) Explosive yt = ρtyt−1 + xt, ρs > 1 + ε, ε > 0, for s ∈ [t, t+ h], πt,h (γ) = 1
(v) Local Explosive yt = ρtyt−1 + xt, T

α (ρs − 1)→ φ > 0, s ≥ t, α ∈ (0, 1), πt,h
(
eφh
)

= 1

(vi) Blanchard-Watson yt = ρπtyt−1 + ηt, ρ > 1 and πt
iid∼ Bernoulli(π), πt,h(limT→∞(ρπ)h) = 1

(vii) NERC yt = e
φ+λTα/2ut

Tα yt−1 + ηt, α ∈ (0, 1), φ+ λ2 ≥ 0, πt,h (γ) ∈ [0, 1]
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Figure 2: The figure presents simulated paths of near explosive AR(1) and NERC(1) processes driven by the

same ηt
i.i.d∼ N(0, 1) with T = 500 and α = 1/2. Panel (a): a near explosive AR(1) yt = eφ0/

√
T yt−1 +ηt with

φ0 = .625 so ρ0,T = 1.028. Panel (b): a NERC(1) with (φ, λ) = (.5, .5) so E(ρt) = 1.028. The innovations

ut
i.i.d∼ N(0, 1). Panel (c): a bubble process with breaks as in PY, equation (15). The bubble starts at date

τe = 320 and ends at date τf = 420 where the process reverts to the value observed at date τe. Prior to

τe and after τf , the process follows a random walk driven by ηt. Panel (d): the stochastic slope parameter

ρ̄t−40,40 of the NERC(1) simulated in Panel (b).

2 A near-explosive random coefficient autoregressive process

This section presents the model we propose and studies its asymptotic properties.
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2.1 The model

We consider the data generating process (DGP) yt as a Near Explosive Random Coefficient autore-

gressive process, NERC(1), defined, for t = 1, · · · , T +H, by

yt = ρtyt−1 + ηt, (1)

ρt = exp

{
φ

Tα
+

λ

Tα/2
ut

}
,

where (φ, λ, α) ∈ R × R+,∗ × (0, 1), ut is i.i.d with zero mean and unit variance, T refers to the

observable sample size and H = O (T ) is the maximum forecast horizon. Model (1) constitutes a

double array where the distribution of yt depends on the sample size T but for notational conve-

nience, we omit the dependence on T unless explicitly required.

When λ = 0, V[ρt] = 0 which corresponds to the model of Phillips and Magdalinos (2004, hence-

forth PM, and 2007), see also Phillips, Wu and Yu, 2011, and Phillips and Yu, 2011; respectively

PWY and PY henceforth. Letting λ 6= 0 constitutes a nontrivial extension to PM. Also, under the

standard RCAR model (α = 0) consistency results do not exist under the assumption of explosive

behavior, E(ρ2
t ) > 1. Figure 2 illustrates the point that the NERC model can accommodate the

inception and collapse of bubbles without resorting to deterministic breaks. When λ > 0, the cu-

mulated stochastic innovations ut induce ρ̄t,h = h

√∏h
i=1 ρt+i to hover on either side of unity (Panel

(d)), leading to the build-up or collapse of the NERC process (Panel (b)).

Throughout the paper, we make the following assumptions concerning Model (1).

Assumption A: The process admits an origin y0 = op (1).

Assumption B: The innovations ut and ηt are mutually independent processes such that ut ∼

i.i.d.(0, 1), ηt ∼ i.i.d.(0, σ2
η), with

E[|ηt|ν ] <∞ for ν ≥ 2

α
;

E[eλut ] <∞ for λ ≥ 0 and E[u3
t ] = 0.

Assumption A is made for ease of exposition in the presence of explosive dynamics. It ensures
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that y0 plays no role asymptotically, since y0 = op (y1) . It avoids imposing different assumptions on

y0 depending on model parameters and implies that yt possesses finite second moments for finite

T . Related assumptions are also found in Aue (2008) but with different consequences (see Remark

1 in the Appendix, Section A.1).2

In Assumption B, we specify ut as i.i.d., as opposed to the random walk often considered (e.g.

by Stock and Watson, 1998). This is a simplification that ensures that the presence of explosiveness

between yt and yt+h relates to the value of the moving average of the innovations ūt,h = 1
h

∑h
i=1 ut+i

via the geometric average ρ̄t,h = h

√∏h
i=1 ρt+i = exp

{
φ
Tα + λ

Tα/2
ūt,h

}
as in:

yt+h = ρ̄ht,hyt + η̄t,h, (2)

where the multistep errors η̄t,h satisfy Et[η̄t,h] = 0. The process yt may exhibit an explosive pattern

between t and t+ h if φ+ λTα/2ūt,h > 0. This can happen even when the drift term φ is negative.

The model is specified in (1) in terms of the proximity of log ρt to zero rather than of ρt to unity

(as in some of the earlier literature) to restrict the support of ρt to R+ and clarify the mapping

between the values of (φ, λ) and the corresponding properties of yt.

Assumption B implies that all moments of ut exist and that its distribution is symmetric.

This implies that the parameters φ and λ2 play similar roles in determining the magnitude of the

expectation and variance of ρt:

E[ρt] ≡ ρ = 1 +
φ+ 1

2λ
2

Tα
+O(T−2α) (3)

V[ρt] =
λ2

Tα
+O(T−2α) (4)

Letting α ∈ (0, 1) allows the process yt to exhibit explosiveness in finite samples (as opposed to

near unit root behavior when α = 1; see PM). It allows also to derive an asymptotic distribution

theory with consistent parameter estimators, where inference is feasible and which results in the

normality of carefully chosen predictive densities, see below.

2In empirical work, we may assume that the process of interest is defined by zt = yt + z0 with nonzero z0 so zt
satisfies zt − z0 = ρt(zt−1 − z0) + ηt, in which case yt denotes the deviation of zt from the origin of the sample under
analysis.
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Assumption B implies also that a strong approximation is possible, (see Csörgõ and Horváth,

1993, and PM) and there exist independent standard Brownian motions W, B such that, as T →∞,

sup
s∈[0,T 1−α]

∣∣∣∣∣∣T−α/2
bsTαc∑
t=1

ut −Ws

∣∣∣∣∣∣ = oa.s.(1) and sup
r∈[0,T 1−α]

∣∣∣∣∣∣T−α/2σ−1
η

brTαc∑
t=1

ηt −Br

∣∣∣∣∣∣ = oa.s.(1). (5)

Throughout the paper, asymptotic behaviors depend on the sign of log E[ρ2
t ] ∼ 2T−α(φ + λ2) (see

Granger and Swanson, 1997, for a discussion) so we define:

c = φ+ λ2. (6)

2.2 Asymptotic properties

The first step of our analysis is to provide the asymptotic distribution for the NERC model. We

prove in the Appendix the following proposition.

Proposition 1 Let the process yt be defined for t ≥ 0 by (1) under Assumptions A and B. Then,

for r ∈ [0, (T +H)T−α], as T →∞,

T−α/2ybrTαc ⇒ σηKφ,λ(r),

where ⇒ denotes weak convergence of the associated probability measure and Kφ,λ is defined, for

(φ, λ) ∈ R× R+,∗ and r ∈ R+, as

Kφ,λ(r) =

∫ r

0
exp{(r − s)φ+ λ(Wr −Ws)}dBs, (7)

with W and B independent standard Brownian motions defined as the limits in expression (5).

Proposition 1 shows that several cases arise depending on whether the distribution of Kφ,λ(r)

remains bounded. Indeed, V[Kφ,λ(r)] =
∫ r

0 e
2csds. When λ = 0, Kφ,λ(r) reduces to the Ornstein-

Uhlenbeck diffusion considered in PM. When c ≤ 0, the magnitude of yt, t = brTαc for r ≤

(T +H)T−α, is similar to that which PM obtain, with V[yt] = O(Tα) if c < 0 and V[yt] = O(T )
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if c = 0. When c > 0, the process with fixed origin exhibits explosiveness in its second moment as

pointed out by Hwang and Basawa (2005): V[yt] = O(Tαe2cT 1−α
).

Although we do not consider it explicitly, the proposition above can be extended to cover α = 1

as the following corollary shows.

Corollary 1 Proposition 1 also holds when α = 1:

T−1/2ybrT c ⇒ σηKφ,λ(r) for r ∈ [0, 1 +H/T ] and as T →∞.

Corollary 1 shows that explosive patterns may only arise in yt if α < 1: indeed when α = 1

and for r ∈ [0, 1], ybrT c = Op

(√
T
)

, i.e. the magnitude of a (stochastic) unit root process, see

Granger and Swanson (1997). The local-asymptotic assumption α = 1 is considered in Lieberman

and Phillips (2017). In this paper, we restrict our attention to the case α ∈ (0, 1).

The following proposition gives the asymptotic behavior of the growth in yt.

Proposition 2 Let the process yt be defined for t ≥ 0 by (1) under Assumptions A and B. Then

for (r, r + s) ∈ (0, (T +H)T−α]2 with s > 0, as T →∞,

gbTαrc,bTαsc =
ybTαrc+bTαsc

ybTαrc
⇒ exp{φs+ λ(Wr+s −Wr)}+

∫ r+s
r eφ(r+s−u)+λ(Wr+s−Wu)dBu∫ r

0 e
φ(r−u)+λ(Wr−Wu)dBu

, (8)

Conditional on IbTαrc, the following limit holds

T−α/2ybTαrc(gbTαrc,bTαsc − e
φs+λ(Wr+s−Wr)

)
∣∣∣ IbTαrc ⇒ ∫ r+s

r
eφ(r+s−u)+λ(Wr+s−Wu)dBu. (9)

Proposition 2 provides the key results that we use in the next section when forecasting bubbles.

Expression (8), which holds even for λ = 0 (as in PM) provides the asymptotic distribution of ratios

of yt separated by a time interval where both the dates and distances are expressed as a function

of the sample size; expression (9) considers the same ratio whose distribution is conditional on

information available at time t = bTαrc. In deriving the latter expression, we notice that numerator

and denominator on the right hand side of expression (8) are independent and that T−α/2ybrTαc

admits the limit given in Proposition 1. We show in the next section how the Proposition 2 can be

used to make probabilistic forecasts.
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3 Probabilistic Forecasts of Bubbles and Crashes

An attractive feature of the model we propose, is that it provides a distributional assumption on ρt

contrary to models where ρt breaks deterministically. As a consequence, we can answer questions

on the probability that a bubble forms, bursts, continues and so on. We show in this section, how

the NERC model can be used to assess simply the probability that bubbles or crashes form over a

given horizon. We only discuss bubble episodes here since the definition of flash crashes coincides

with bubbles, except that they concern processes that take negative values.

3.1 Predictive probabilities

Definition 1 enforces a dichotomy between processes that generate bubbles and those that do not.

As discussed in the introduction, we provide some examples (Appendix A.2) where the probability

of bubble prediction πt,h(γ) = 0 or 1 for all horizons χ(T,h) = o(τ(T,t)).

Building on the discussion and in line with Definition 1, we obtain, in the remainder of this pa-

per, predictive probabilities of bubbles and crashes under the NERC model with τ(T,t) = btTαc and

χ(T,h) = bhTαc (for notational ease, we omit below the subscripts in τ and χ) Proposition 2 shows

that the conditional distribution can be stated as gt,h| Iτ = exp
{
φ χ
Tα + λ

(
W τ+χ

Tα
−W τ

Tα

)}
+

Tα/2

yτ

∫ tτχ
Tα
τ
Tα

exp
{
φ( τ+χ

Tα − u) + λ
(
W τ+χ

Tα
−Wu

)}
dBu + op(

Tα/2

yτ
ec

χ
Tα ), which allows to provide the

following Corollary to Proposition 2.

Corollary 2 Under the assumptions of Proposition 2, and for (t, t+ h) ∈ [0, (T +H)T−α]
2

with

h > 0, predictive probabilities defined in Definition 1 satisfy, as T →∞,

πt,h (γ) ∼ P

(
e
φh+λ(Wt+h−Wt)

+
Tα/2

ybtTαc

∫ t+h

t
eφ(t+h−u)+λ(Wt+h−Wu)dBu > γ

∣∣∣∣∣ IbtTαc
)
. (10)

Values of predictive probabilities πt,h (γ) can be obtain by simulation of the right-hand side of

expression (10). Cases of interest comprise, in particular, πt,h (yτ/yτ−χ) , which is the probability

that the growth observed over the latest χ period carries over to the next χ periods. Also of interest

is, e.g., πt,h (rτ,χ) when yτ+χ/yτ denotes χ-period log returns of assets and rτ,χ is the risk free rate

of return and is part of the information set at time τ.
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3.2 Simulation

To study the patterns generated by predictive probabilities, we simulate using 105 Monte Carlo

replications the values of πt,h (γ) defined in (10) for γ = 1.05 and α = .8. We consider (φ, λ) ∈

{−1, 0, 1} × {0, 5, 1, 2, 3}, and h ∈ {1, 6, 24}. In Figure 3, we report simulated πt,h (γ) for a large

sample size T = 1000 where 900 ≤ t ≤ 1000. Figure 4 records similar simulations for a smaller

sample size T = 200 and we let 100 ≤ t ≤ 200.

When φ = −1 and for the range of (λ, h) considered, with γ > 1, both figures report probabilities

that hover below .50 and that decrease with h since the latter impacts positively the variance of

conditional forecasts. Probabilities reported in Figure 3 hardly vary with t, which shows that they

are obtained from the ergodic distributions of the weakly stationary process. This is not the case

when γ is time varying (e.g. a risk free rate) or for the smaller sample size reported in Figure 4

where predictive probabilities tend to decrease as t increases.

For positive values of φ, the probabilities process reported in Figure 3 tend to be more dispersed

as of function λ and get closer to 0.5 as λ and h increases. They are also more stable as a function

of t for larger values of λ. In the relatively large sample considered in the figure, the predictive

probabilities are always below .5 except when φ = 1 and h = 24. By contrast, in the smaller sample

size recorded in Figure 4, πt,h (γ) > .5 for smaller values of h when φ > 0. This reflects the larger

E
(
ρ2
t

)
induced by the smaller T. Notice also that for so small a sample, the probabilities exhibit

trending patterns as function of t.

4 Empirics

This section is concerned with putting the analytical results derived above into empirical use. We

first provide an implementation scheme and then an empirical illustration to various datasets.

4.1 Implementation Scheme

To provide predictive probabilities πt,h (γ) as in Definition 1 and expression (10), which involves

the parameters of the model, (φ, λ, α) , we need to perform inference over the latter. The im-

14



λ=0 λ=0.5 λ=1 λ=2 λ=3 

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

900 950 1000

h  =1

\phi   = −1

φ=
 −

1
φ=

 0

λ=0 λ=0.5 λ=1 λ=2 λ=3 

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

900 950 1000

h  =6

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

900 950 1000

h  =24

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

900 950 1000

φ=0

φ=
 1

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

900 950 1000

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

900 950 1000

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

900 950 1000

φ=1

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

900 950 1000

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

900 950 1000

Figure 3: The figure presents records simulated probabilities πt,h(γ) for γ = 1.05 and 900 ≤ t ≤ 1000
and α = .8. Each row records a different value of φ ∈ {−1, 0, 1}, and each column a value of the
horizon h ∈ {1, 6, 24}; the graphs record different values of λ ∈ {0, .5, 1, 2, 3}. The number of Monte
Carlo replications is 5× 104.

plementation scheme we suggest therefore consists in obtaining confidence sets for the value of

the parameters (φ, λ) . They are then used for deriving the predictive probabilities of bubbles and

crashes. Simulation evidence shows that fixing α ∈ (0, 1) bears little impact in finite samples on

inference regarding the dynamic properties of yt.
3

As is common in the context of local asymptotics, consistent estimators of the localizing param-

eters (φ, λ) may be infeasible when c ≥ 0.4 Hence, we resort to the technique that is now standard

under local asymptotics and consists in inverting a test statistic. There exists a significant literature

where such an approach is used for inference in the near-unit root framework (originating in Stock,

3Indeed, α constitutes essentially a scaling parameter for the moments of ρt in (3)-(4).
4Hence, we do not consider the nonlinear Kalman or particle filters. We do not consider either quasi-maximum

likelihood estimators (QMLE) as these are known to present consistency issues in the ERCA (i.e. when α = 0, see
Berkes et al., 2009) or to depend on nuisance parameters (σ2

η, see Aue and Horváth, 2011 and Lieberman and Phillips,
2017) for which no estimator has been proved consistent in the explosive case.
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Figure 4: The figure presents records simulated probabilities πt,h(γ) for γ = 1.05, 100 ≤ t ≤ 200
and α = .8. Each row records a different value of φ ∈ {−1, 0, 1}, and each column a value of the
horizon h ∈ {1, 6, 24}; the graphs record different values of λ ∈ {0, .5, 1, 2, 3}. The number of Monte
Carlo replications is 5× 104.

1991 and Andrews, 1993a).5 Inference is performed by constructing asymptotic confidence sets us-

ing grid search over the set of parameters that are not rejected under the null. The technique relies

on introducing a scalar function δθ,T of y1, ..., yT (a test statistic) that satisfies δθ,T ⇒ Dθ, where

θ = (φ, λ)′ ∈ Θ constitutes the parameter of interest and Dθ denotes a distribution that depends on

θ. Under the null H0 : θ = θ0, Stock (1991) constructs asymptotic 100×(1− ω) % confidence sets as

Θω ⊂ Θ consisting of the values θ0 that are not rejected at the 100× ω% significance level by Dθ0 .

The confidence sets are constructed in practice by grid search over the set Θ, computing for each

θ ∈ Θ the statistic δθ,T and evaluating it against Dθ (which is here obtained by simulation).6 The

5This technique is also common in the context of weak instruments where there exists no fully robust estimation
method, but robust tests can be constructed (see Dufour, 1997, and Staiger and Stock, 1997). For papers that discuss
the mechanics of the inversion of robust tests to form confidence sets, see Andrews and Stock (2005) and references
therein.

6In this setting, the least rejected parameter θ∗ may constitute a biased estimator of θ but median-unbiased
estimation is feasible under the weak convergence assumption, provided that the quantile function is monotonic
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grid-bootstrap of Hansen (1999) (see also Mikusheva, 2007) improves on the inference by replacing

the asymptotic distribution Dθ by a bootstrap analog under the null.

Here we conduct inference using a unique moment condition under the null H0 : (φ, λ) =

(φ0, λ0) , such that EH0 [ρT ] = ρ0. The test we choose for simplicity follows from regressing yt on

yt−1 and we set the statistic δθ,T to be the OLS estimator ρ̂ − ρ0 scaled by the asymptotic rate

given the following proposition (proof in the Appendix).

Proposition 3 Let the process yt be defined for t ≥ 0 by (1) under Assumptions A and B, with

λ 6= 0. Letting c = φ+λ2, the OLS estimator ρ̂ in the regression of yt on yt−1 satisfies, as T →∞ :

(i) if c < 0, δθ,T = T
1+α
2 (ρ̂− ρ)

L→ N
(
0,−2φ+ λ2

)
,

(ii) if c ≥ 0, δθ,T = Tα (ρ̂− ρ)⇒ λ
√
φ+ 3λ2

Vθ
Zθ
,

where Vθ and Zθ are uncorrelated variables defined as the limits of the standardized random variables

VT =
∫ T 1−α

0 e2(φr+λWr)dWr and ZT =
∫ T 1−α

0 e2(φr+λWr)dr.

The statistic δθ,T =
[
T

1+α
2 1{c<0} + Tα1{c≥0}

]
(ρ̂− ρ) corresponds to using the moment con-

dition Cov
(
yt − ρ0yt−1, yt−1

)
= 0 under H0, which is defined for all parameter values owing to

Assumption B. The limiting distribution Dθ is given by Proposition 3 and can be simulated under

H0. The variance σ2
η constitutes a scaling parameter that does not affect the asymptotic distribu-

tion of ρ̂− ρ0, so it is irrelevant in our inference technique (as opposed to other existing methods,

see Berkes et al., 2009). Also, α is not identified using the method: it constitutes only a scaling

parameter since it does not enter the asymptotic distributions in Proposition 3. Following Phillips

(2014) we recognize that as |φ| → ∞ or λ → ∞, the asymptotic distribution of the estimator

becomes diffuse, so the confidence sets may become empty when the true data generating process

does not present local parameters. We derive the asymptotic power of the test in the Appendix,

Section A.3.1, and show that although we obtain valid asymptotic confidence sets under the null,

the asymptotic power may be low and the proposed confidence sets may be too wide. We assess

their coverage probabilities by simulation in Table 2. The table reports the simulated coverage for a

nominal size of .8 (using the asymptotic distribution of the test statistic) when the test is computed

(Stock, 1991, Andrews, 1993a), see also Dufour, Khalaf and Maral (2006) for a discussion of its properties in relation
to Hodges and Lehmann (1963) estimators. When δθ,T is a Generalized Method of Moments (GMM) statistic, θ∗

can be seen as the continuously-updated estimator (see Stock, Wright and Yogo, 2002) and it inherits its properties.
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Table 2: The table reports the Monte Carlo coverage probabilities of confidence interval constructed
using the test statistic over a sample of size T = 1000 for a nominal probability of 0.80 using the
asymptotic distribution. Parameters are set to α = 0.9; the rows report the value of φ and the
columns report the values of λ. The number of Monte Carlo replications is 104 and asymptotic
distributions are computed using samples of 5× 104 observations.

Coverage Probability for a nominal .80
λ= 0 0.25 0.5 1 2

φ = -1 0.846 0.846 0.844 0.770 0.764
-0.5 0.837 0.847 0.851 0.774 0.760

0 0.900 0.761 0.757 0.763 0.772
0.5 0.955 0.758 0.740 0.762 0.783

1 1.000 0.722 0.741 0.765 0.778

over a sample of size T = 1000. Table 2 shows that the coverage of confidence sets is close to the

nominal – although the test is slightly liberal for larger values of λ. When λ = 0, confidence sets

are as conservative as reported in Phillips (2014).

Once an asymptotic 100× (1− ω) % confidence set Θω is obtained for (φ, λ) , we can compute

the set Πω
t,h (γ) of predictive probabilities πt,h (γ) obtained for each element of Θω. The probabilities

of interest are

(
π̂min
t,h (γ) , π̂max

t,h (γ)
)

=

(
inf

πt,h(γ)∈Πωt,h(γ)
πt,h (γ) , sup

πt,h(γ)∈Πωt,h(γ)
πt,h (γ)

)
,

as well as π̂medt,h (γ) defined as the median of Πω
t,h (γ) . Probabilities

(
π̂min
t,h (γ) , π̂max

t,h (γ)
)

correspond

here to the standard procedure that consists in not reporting predictive intervals that are evaluated

at the point estimates of the parameters of the DGP, but instead in reporting those that take full

account of parameter estimation uncertainty.

In practice, our simulations and empirical evaluations show that although the choice of α mat-

ters for the computation of δθ,T , it does not seem to impact significantly the resulting predictive

probabilities or the power of the testing procedure for values α ≥ 1/2: it acts as a scaling parameter

for the range of parameter values searched over in the grid. A possible refinement would set α by

a simulation aimed at maximizing the weighted average power of the test suggested in Proposition

3 over Θ. This would however induce a significant computational cost.
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Whether the predictive probabilities are those of a bubble or a crash depends in practice on the

sign of yt. In the empirical application, we assume that yt denotes the deviation of the observed

data from its initial observation. Whether yt is negative of positive will yield predictive probabilities

of crashes or bubbles. A careful choice of the sample of interest may lead the modeler to target her

interest specifically to either type of episode (see the examples below).

4.2 Application

We now turn to an empirical illustration of the proposed method for constructing ranges of pre-

dictive probabilities. We consider in turn applications to stock market returns, long term interest

rates and PER (all downloaded at the monthly frequency from Robert Shiller’s website) as well

to the detection of flash crashes (NASDAQ Index downloaded from Bloomberg as CCMP index at

the tick frequency starting at 3:00PM EST on May 6, 2010). All series are presented in Figure 1.

Datasets and codes for replication are provided on the authors’ websites. In these applications, we

compute for each date t, the confidence sets for the probability that gt,h at horizon h ∈ {1, 6, 24} is

greater than some value γ (which is taken at specific values when these are natural in the context

of each example). In all examples, probabilities are computed recursively using only data observed

at t and we report in each case
(
π̂min
t,h (γ) , π̂max

t,h (γ)
)

for ω = 0.10, as well as π̂medt,h (γ) . As in PWY,

we proceed to a bias correction by simulating the finite sample counterpart of the distribution Dθ.

The results are presented in Figures 5 to 8. In each figure, graphs on the left-hand side report the

data and observed growth (adjusted scales) and graphs on the right-hand side report the statistics

referring to growth probabilities. Figures 5 to 8 show that we obtain, using the NERC, probabilities

that are neither zero nor unity as in the examples of Table 1.

Figure 5 considers the logarithm of the S&P 500 index since the early 1950s with γ = 1.004,

which corresponds to an annual rate of growth of 5% – approximately the long run nominal growth

of the economy. Throughout the sample, π̂min
t,h (γ) < 0.5 yet close to it (a random walk yields zero

probability of a bubble according to our local-asymptotic definition but Pr (yt+h/yt > 1| It) = 0.5

for t finite and h ≥ 1), and π̂max
t,h is strictly less than unity over the first two thirds of the sample,

with π̂medt,h (γ) close to 0.66. π̂max
t,h (γ) increases over the sample to stabilize at 1, reflecting the
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growth of the data which does not preclude the possibility of explosive growth.

Comparable results are reported in Figure 6 for the logarithm of the long term interest rates

since the early 1960s with γ = 1. We notice the stability of the estimated probabilities. The

main difference with the previous figure is that since the interest rate reverts towards the end of

the sample to the values observed at the beginning, minimum and maximum probabilities shift

downwards, with π̂max
t,h (γ) < 1, towards the end of the sample, which widens the range of predictive

probabilities.

The following figure, Figure 7, also presents a widening of the range of predictive probabilities.

This figure reports the high frequency NASDAQ index in tick time with γ = 1. It is typical of a

so-called “flash crash”. In the first two thirds of the sample, the median predictive probability is

drifting upward and the probability range is indicative of a negative bubble, with bounds that widen

on the stationary side once the flash crash has been corrected. We also notice the range of predictive

probabilities increases with the horizon h. Finally, Figure 8 reports results for the logarithm of the

average PER over a long period with γ = 1. We notice several episodes of buoyancy where the

predictive probability range narrows and shifts upwards. In those episodes, π̂min
t,h (γ) moves to values

above 0.5 as expected under (temporary) explosiveness.

All applications above are performed with an expanding window, hence the relative stability in

the predictive probability range. If the modeler is willing to use rolling windows of observations or

a time varying threshold γ, she will obtain more variation in the predictive range.

5 Conclusion

The paper proposes a local asymptotic model that builds on random coefficient autoregressive

processes and shows how this NERC model can be applied to the modelling of asset prices.

We show that the process generated by a NERC converges towards the stochastic integral of

a geometric Brownian motion, and derive the asymptotic distributions of OLS estimators of the

first-order autocorrelation coefficient. We then provide a technique of inference on the parameters

of the process based on inverting a test statistic.

As with some existing models for bubbles, the presence of a random coefficient introduces flex-
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Figure 5: Predictive probabilities for the logarithm of the monthly S&P 500 stock index. The left
column reports the actual series as well as the growth gt,h = yt+h/yt for horizons h = 1, 6 and 24
in, respectively, the top, middle and bottom rows. The log price data are scaled to match the mean
and range of gt,h. The benchmark γt for computing probabilities is set to 1.004 for all horizons.
The column on the right reports probabilities π̂min

t,h (γt) , π̂
max
t,h (γt) and π̂medt,h (γt) . Minimum and

maximum are computed over the set of parameters which are not rejected at a nominal size of 0.10.

ibility in the modelling of multiple bubbles. Here, bubbles may – or not – appear, and by avoiding

regime switching, we do not imply that they regularly do. Instead, their existence depends on the

values taken by a latent process that relates to the stochastic discount factor. The generalization

we propose presents benefits that are similar to the univariate locally explosive AR(1) with breaks

of Phillips, Wu and Yu (2011), while allowing for full-sample inference. Also our flexible model

allows the so-called bubbles either to reflect nonstationary behavior or be caused by large deviations

within a strictly stationary model.

Under the NERC, it is also possible to provide density forecasts and establish statements on

the probability of bubbles. We apply our methodology to various U.S. financial datasets.

Possible extensions of the NERC(1) comprise multivariate models where a unique latent process
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Figure 6: Predictive probabilities for the U.S. monthly long run interest rate. The left column
reports the actual series as well as the growth gt,h = yt+h/yt for horizons h = 1, 6 and 24 in,
respectively, the top, middle and bottom rows. The interest rate data are scaled to match the
mean and range of gt,h. The benchmark γt for computing probabilities is set to 1 for all horizons.
The column on the right reports probabilities π̂min

t,h (γt) , π̂
max
t,h (γt) and π̂medt,h (γt) . Minimum and

maximum are computed over the set of parameters which are not rejected at a nominal size of 0.10.

may be causing bubbles that spill over into different markets (as in PY). This might require relaxing

the assumption that ut is i.i.d. In turn, it would then be possible to filter out an estimate of the

latent process ut or the stochastic discount factor. Alternatively, our results allow to postulate and

test candidate variables for ut.
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Figure 7: Predictive probabilities for the logarithm of the Nasdaq bid index (labeled CCMP on
Bloomberg Terminals) in tick time from 3:00PM EST on May 6, 2010. The left column reports
the actual series as well as the growth gt,h = yt+h/yt for horizons h = 1, 6 and 24 in, respectively,
the top, middle and bottom rows. The log index data are scaled to match the mean and range
of gt,h. The benchmark γt for computing probabilities is set to 1 for all horizons. The column
on the right reports probabilities π̂min

t,h (γt) , π̂
max
t,h (γt) and π̂medt,h (γt) . Minimum and maximum are

computed over the set of parameters which are not rejected at a nominal size of 0.10.

A Appendix

A.1 Discussion of related literature

The model we study in this paper belongs to the class of RCAR models as proposed and studied by

Andel (1976), Nicholls and Quinn (1982), Bougerol and Picard (1992), McCabe and Tremayne

(1995) and Granger and Swanson (1997). The local asymptotic framework we use builds on

Bobkoski (1983), Chan and Wei (1987), Phillips (1987) and the more recent work of Giraitis and

Phillips (2006) and PM.

Several authors have studied nonstationary RCAR models under non local parameters (i.e.
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Figure 8: Predictive probabilities for the logarithm of the monthly Price Earning Ratio (PER). The
left column reports the actual series as well as the growth gt,h = yt+h/yt for horizons h = 1, 6 and
24 in, respectively, the top, middle and bottom rows. The log PER data are scaled to match the
mean and range of gt,h. The benchmark γt for computing probabilities is set to 1 for all horizons.
The column on the right reports probabilities π̂min

t,h (γt) , π̂
max
t,h (γt) and π̂medt,h (γt) . Minimum and

maximum are computed over the set of parameters which are not rejected at a nominal size of 0.10.

α = 0 in our framework). The unit root hypothesis may then take several forms: E[ρt] = 1, or

E
[
ρ2
t

]
= 1; see Granger and Swanson (1997) for a discussion.7 When log E

[
ρ2
t

]
> 0, Hwang and

Basawa (2005) name this model an Explosive Random Coefficient Autoregressive model (ERCA):

they study processes such that log E
[
ρ2
t

]
≥ 0 and E

[
log ρ2

t

]
< 0 (which are strictly stationary but

do not possess finite second moments).8 An empirical analysis of the ERCA model with E [ρt] > 1

was also made by Charemza and Deadman (1995) in the context of periodically collapsing bubbles

7Several Lagrange-Multiplier tests of the unit root hypothesis have been proposed in this framework, see Ley-
bourne, McCabe and Tremayne (1996), Hwang and Basawa (2005), Distaso (2008) and Aue and Horváth (2011).

8We assume ηt homoskedastic since expression (1) implies that yt exhibits conditional heteroskedasticity: for
ρt ∼ i.i.d.

(
ρ, σ2

ρ

)
then

E [yt|yt−1] = ρyt−1, Var [yt|yt−1] = σ2
ρy

2
t−1 + σ2

η

see inter alia Tsay (1987) and Hwang and Basawa (2005). These authors, as well as others, have also proposed
functional forms that differ from (1) and that belong to the classes of double-autoregressive or bilinear processes.
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(see also, Aue and Horváth, 2011, and Wang and Ghosh, 2008).

The NERC also differs from Markov-Switching models such as considered by Hall, Psaradakis

and Sola (1999) and Fulop and Yu (2014) where bubbles have constant expected duration. Yet, in

our model the distribution of ρt is allowed to be bi- or multi-modal so that apparent “regimes” are

not precluded.

Local-asymptotic RCARs have also been studied in the literature under differing parametric

setting. The following two remarks review them.

Remark 1 The model we propose deviates non-trivially from that of Aue (2008, Aue henceforth)

in that we allow for a greater role played by the stochastic variation in ρt. In his setting E [ρt] −

1 = O (T−α) with α ∈ (1/2, 1) , and V [ρt] = o
(
T−1

)
which implies that V [ρt] lies in a tighter

neighborhood of zero and so does not asymptotically impact9 the tail distributions or explosiveness

of yt. In his framework, the asymptotic distribution of the least-squares estimator of the AR(1)

regression parameter coincides with PM. Our assumptions modify Aue to the situation where V [ρt]

lies further away from zero and we show that this affects significantly the asymptotic distributions.

For ease of exposition, we impose in turn the restriction, not present in Aue, that the first two

moments of ρt shrink at the same rate.

Remark 2 Recent proposals were developed in parallel to our work by Lieberman and Phillips

(2017). Their paper consists of two parts.

(i) First, they study a model where ρt (using the notation above) is time varying but non-stochastic.

Extending the results of Lieberman (2012), under the assumption of positive lower bounds for the

derivatives of ρt with respect to the parameters, Lieberman and Phillips (2017) develop Quasi-

Maximum Likelihood Estimation (QMLE). It easy to see that our model does not satisfy such a

requirement10, which makes the QMLE results inapplicable.

(ii) Second, they study a model where ρt is stochastic with shrinking variance. Their focus is

the near stochastic unit root model and their parametric framework assumes, with our notation,

9In Aue, conditions log E
[
ρ2t
]
< 0 and E

[
log ρ2t

]
< 0 are asymptotically equivalent.

10Their assumption A3 requires that |∂ρt/∂φ| and |∂ρt/∂λ| admit bounded support with lower bound that is
strictly positive. Here ∂ρt/∂φ = T−αρt and ∂ρt/∂λ = T−α/2utρt so the assumption does not hold as T →∞.

25



that (φ, λ) = (0, 1) and α = 1.11 Here, by contrast, we assume α ∈ (0, 1) , so we consider cases

where the variance of ρt is of higher magnitude, our focus being on dynamics that may possibly be

characterized as near explosive. We show below that the implications differ.

A.2 Examples

This definition enforces a dichotomy between processes that qualify as bubbles and those that do

not. We provide some examples below as an illustration. In all examples, we work under the

assumptions of Definition 1 for the orders of magnitude of (t, h).

Models that do not allow for bubble episodes In all examples below, for all γ > 1,

limT→∞ P(gtT ,hT > γ| It) = 0. Throughout, xt denotes a mean-zero covariance stationary process

and ηt an i.i.d.process with zero mean and constant variance such thatT−1/2
∑brT c

j=1 ηj ⇒ σW (r), with

W (r) a Wiener process. All the local time and duration mappings, τ(T,t) and χ(T,h), are assumed

to diverge to +∞ as T → ∞ with χ(T,h)/τ(T,t) → 0. For notational simplicity we let τ, χ denote

τ(T,t), χ(T,h) wherever possible and all limits are taken as T →∞.

1. Deterministic trend: yt = βt + xt, where βt is a deterministic process such that as t → ∞,

βt ∼ cβtν with cβ 6= 0. Then for all local time and duration mappings gτ,χ ∼p (1+χ/τ)ν
P→ 1.

2. (Near-)Stochastic trend: yt = ρtyt−1+ηt with ρt−1 = Op(T
−1) satisfies for (τ(T,t)/T, τ(T,t̄)/T )→

(t, t̄), yτ̄/yτ ⇒ 1 + (Wc(t̄) − Wc(t))/Wc(t) where τ̄ = τ(T,t̄) and Wc denotes a Ornstein-

Uhlenbeck process with parameter c = limT→∞ T (ρT − 1). Letting τ̄ = τ + χ, then gτ,χ =

1 +Op(
√

χ
τ ) and gτ,χ

P→ 1.

3. Froot-Obsfeld (1991) intrinsic bubble: yt = cη(
∑t

j=1 ηj)
λ with parameters cη, λ > 0 satisfies,

for (τ(T,t)/T, τ(T,t̄)/T )→ (t, t̄), yτ̄/yτ = (1 + (W (t̄)−W (t))/W (t))λ. Letting τ̄ = τ + χ, then

g
1/λ
τ,χ = 1 + Op(

√
χ
τ ) hence gτ,χ

P→ 1 unless we assume that λ itself is a function of T and

that λ
√
χ/τ 6→ 0, which requires λ→∞ as T →∞.

11In a subsequent paper, Lieberman and Phillips (2017), they extend their model to the multivariate case.
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Models that allow for temporary bubble episodes

1. (Temporary-) Explosive process: yt = ρtyt−1 + xt where, for s ∈ [τ, τ + χ], ρs > 1 + ε, ε > 0,

satisfies for all γ > 1, limT→∞ P(gτ,χ > γ| Iτ ) = 1.

2. Phillips-Wu-Yu (2011) temporary near explosive bubble: yt = ρtyt−1+xt where, for s ∈ [τ, τ+

χ], ρs = eφ/T
α
, φ > 0 and α ∈ (0, 1), satisfies, for χ ∈ (0, (T +H)T−α], limT→∞ P(gτ,χ = eφχ

∣∣ Iτ ) =

1

3. Blanchard-Watson (1983) bubble: yt = ρtyt−1 + ηt with ρt = ρπt, ρ > 1 and πt
iid∼ Bernoulli(π)

satisfies limT→∞ P(gτ,χ = φ| Iτ ) = 1, where φ = limT→∞ (ρπ)χ. Bubbles arise if φ > 1, i.e.

if χ−1(ρπ − 1) admits a strictly positive limit.

Although several models above allow for bubble episodes, an important remark is that, in all of

the processes considered above, the limiting unconditional distributions of yτ+χ/yτ is degenerate

under the assumption of a short-lived bubble episode χ/τ → 0 as T → ∞. This is not the case

under the NERC model and hence this allows to perform conditional probabilistic statements.

A.3 Asymptotic distribution of the estimator

Let ρ̂ be the OLS estimator in the regression of yt on yt−1 and let E (ρt) = ρ. The model (1) can

be written as yt = ρyt−1 + (ρt − ρ) yt−1 + ηt. Hence, the OLS estimator satisfies

ρ̂− ρ =
Syyρ
Syy

+
Syη
Syy

, (11)

where Syyρ =
∑T

t=1 y
2
t−1 (ρt − ρ) , Syη =

∑T
t=1 yt−1ηt and Syy =

∑T
t=1 y

2
t−1. Note that the asymp-

totic distribution of the OLS is driven by the sum with higher magnitude between Syyρ and Syη.

For this analysis, we introduce the following random variables:

VT =
∫ T 1−α

0 F 2
r dWr, ZT =

∫ T 1−α

0 F 2
r dr,

XT =
∫ T 1−α

0 F−1
r dBr, YT =

∫ T 1−α

0 FrdBr,

where Fr = exp (φr + λWr) is a Geometric Brownian Motion. We show in Appendix B.3 that
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VT , XT , YT and ZT , when centered and scaled by their standard deviations, converge weakly, as

T →∞, to random variables Vθ, Xθ, Yθ, and Zθ, whose distribution beyond the first two moments

depend on θ ≡ (φ, λ)′.12 The variables Xθ and Yθ are mixed Gaussian,13 Vθ and Zθ are uncorrelated

random variables with zero expectation and unit variance.14 We can now provide our result on the

weak convergence of the sample moments:

Lemma 1 Let the process yt be defined for t ≥ 0 by (1) under Assumptions A and B. Then as

T →∞, we have:

(i) If c < 0,

T−(1+α)Syy
p→

σ2
η

−2c
, T−

1+α
2 Syη

L→ N

(
0,

σ2
η

−2c

)
, T−

1+α
2 Syyρ

L→ N

(
0,

12λ2σ2
η

c2

)
.

(ii) If c ≥ 0 then there exist
(
µyx, φyxT

)
, functions of (φ, λ) and x ∈ {yρ, η}, such that φyxT → 0,

φyyρT /φyηT = o (1) and

T−αφyyρT Syy ⇒
σ2
η

λµyyρ
√
c+ 2λ2

X2
θZθ, φyηT Syη ⇒

σ2
η

µyη
XθYθ, φyyρT Syyρ ⇒

σ2
η

µyyρ
X2
θVθ.

Lemma 1 implies the following: when c < 0 then both Syyρ and Syη impact the asymptotic

distributions; but when c ≥ 0 and λ 6= 0, Syyρ dominates. This setting differs markedly from that

of Aue where the variance of ρt is of lower magnitude so Syη is the dominant term in the expansion

(11). It also differs from the fixed-asymptotics framework of Hwang and Basawa (2005) where the

ratio Syyρ/Syy diverges: making the the OLS estimator inconsistent.

12The random variables are defined as follows: Xθ in expression (18), Zθ in (19), Yθ in (29) and Vθ in (32).
13More specifically

Xθ|W(·) ∼ N

(
0, lim
T→∞

√
2 (λ2 − φ)

e2(λ
2−φ)T1−α − 1

∫ T1−α

0

F−2
r dr

)

Yθ|W(·) ∼ N

(
0, lim
T→∞

√
2c

e2cT1−α − 1

∫ T1−α

0

F 2
r dr

)
where both limiting conditional variances present unit unconditional expectations.

14Matsumoto and Yor (2005), Theorem 7.4, show how the distribution of Zθ can be expressed (for some values of
the parameters) in terms of transforms of Brownian motions involving a Gamma variable.
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This is not the case here as Proposition 3 shows. When c < 0, the asymptotic distribution of

the OLS estimator ρ̂ − ρ is comparable to the results of PM and Aue, for whom T
1+α
2 (ρ̂− ρ)

L→

N (0,−2φ): the presence of the stochastic root does not affect the asymptotic normality of ρ̂ nor

the rate of convergence; the only difference is that the asymptotic variance is increased by λ2 here.

Proposition 3 presents several key differences with the existing literature on near unit roots and

random coefficients when c ≥ 0 and the results are new. Here the OLS estimator converges more

slowly than under the constant parameter AR(1) : it does not achieve the Op
(
T−1

)
of unit root

processes or the exponential rate of PM for whom (2φ)−1 TαeφT
1−α

(ρ̂− ρ) tends to a standard

Cauchy variable. Convergence can be arbitrarily slow here if α is close to zero: the limit α → 0

corresponds to the fixed-asymptotics of Hwang and Basawa (2005) where the estimator is shown to

be inconsistent. Also, the limiting distribution is expressed, as in PM or Aue, as the ratio of two

uncorrelated random variables. Yet, Vθ and Zθ are not normal. This implies that Vθ/Zθ does not

define a Cauchy variable contrary to the limiting distribution in PM.

Proposition 3 shows that ρ̂ allows to estimate φ+λ2/2 consistently when c < 0 since the higher

order term in expression (3) is o
(
T

1+α
2

)
, but this is not the case for c ≥ 0 as the convergence of ρ̂

is then too slow.

Proposition 3 also shows that under the NERC model, the unit root problem does not exist

when c ≥ 0 since the asymptotic distribution does not exhibit the usual knife-edge issue as c tends

to zero from above (see Berkes et al., 2009, for a discussion).

A.3.1 Power

We derive in here the power of our proposed test statistic δθ0,T =
[
T

1+α
2 1{c<0} + Tα1{c≥0}

]
(ρ̂− ρ)

for the null H0 : θ = θ0 with θ = (φ, λ) . Then under H1 : θ = θ1 6= θ0 and, as T →∞,

δθ0,T =
H1


Op

(
T

1−α
2

)
, if c0 < 0;

φ1 − φ0 +
(
λ2

1 − λ2
0

)
/2 + op (1) , if c0 ≥ 0 and c1 < 0;

φ1 − φ0 +
(
λ2

1 − λ2
0

)
/2 + λ1

√
c1 + 2λ2

1

V

Z
+ op (1) , if c0 ≥ 0 and c1 ≥ 0.

(12)

where c1 = φ1 + λ2
1.
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Expression (12) shows that the test based on the OLS estimator is asymptotically powerful

under the null (φ0, λ0) such that c0 < 0. Yet the test statistic does not diverge asymptotically (so

the test has non-unit asymptotic power) when c0 ≥ 0. This holds irrespective of the alternative

hypothesis within the class considered. It is also interesting to notice that the corollary sheds

light on the reason why the simulations of Evans (1991) and Charemza and Deadman (1995) find

that the Dickey-Fuller test has non-trivial yet low power in the presence of periodically collapsing

bubbles.

Proof of Expression (12) We write

ρ̂− EH0 [ρt] = (ρ̂− EH1 [ρt]) + (EH1 [ρt]− EH0 [ρt]) .

and consider the two elements of the sum in turn. The null and alternative hypotheses are local to

each other:

EH1 [ρt]− EH0 [ρt] =
φ1 − φ0 + 1

2

(
λ2

1 − λ2
0

)
Tα

+ o
(
T−α

)
,

hence T
1+α
2 (EH1 [ρt]− EH0 [ρt]) diverges but Tα (EH1 [ρt]− EH0 [ρt]) = φ1 − φ0 +

(
λ2

1 − λ2
0

)
/2 +

O (T−α) does not. Also, under the alternative, T
1+α
2 (ρ̂− EH1 [ρt]) diverges only if φ1 + λ2

1 ≥ 0 but

Tα (ρ̂− EH1 [ρt]) does not diverge. Finally, if both T
1+α
2 (ρ̂− EH1 [ρt]) and T

1+α
2 (EH1 [ρt]− EH0 [ρt])

diverge, their sum is Op

(
T

1−α
2

)
so they do not cancel each other. To conclude, τ0,T diverges under

H1 only if φ0 + λ2
0 < 0, irrespective of (φ1, λ1).

B Proofs

We collect here the proofs to the propositions.
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B.1 Proof of Proposition 1

Let yt be defined for t ≥ 0 by expression (1) under Assumptions A and B. Then y0 plays no role

asymptotically, and set it to zero in the following:

yt =
t−1∑
i=0

i−1∏
j=0

ρt−j

 ηt−i =
t∑
i=1

 t∏
j=i+1

ρj

 ηi

=
t∑
i=1

exp

{
(t− i)T−α/2φ+ λ(Ut − Ui)

Tα/2

}
ηi,

where we set
∏−1
j=0 ρj ≡ 1 and Ut denotes the partial sum Ut ≡

∑t
k=1 uk. We evaluate the increment

yt − y0 using the blocking method of Phillips and Magdalinos (2004). Letting, for t = 1 to T ,

t = bjTαc + k for j = 0, · · · ,
⌊
T 1−α⌋ − 1, and k = 1, · · · , bTαc, and letting k = bpTαc for some

p ∈ [0, 1], we can write

T−α/2ybjTαc+bpTαc

= ση

bjTαc+bpTαc∑
i=1

exp

{
bjTαc+ bpTαc − i

Tα
φ+ λ

UbjTαc+bpTαc − Ui
Tα/2

}
ηi√
σ2
ηT

α

= ση

∫ j+p

0
exp

{
bjTαc+ bpTαc − bsTαc

Tα
φ+ λ

UbjTαc+bpTαc − UbsTαc
Tα/2

}
dBTα(s),

using Proposition A1 in Phillips and Magdalinos (2004) in the last equality, where

BTα(s) ≡ 1

σηTα/2

bsTαc∑
i=1

ηi. (13)

When applying the Functional Central Limit Theorem (FCLT) to the process WTα defined by

WTα(s) ≡ T−α/2UbsTαc (0 ≤ s ≤ T 1−α), we obtain that WTα converges in distribution, as T →∞,

to a standard Brownian motion (BM) on R+ that we denote by W .

The FCLT also implies that the process BTα defined in (13) converges in distribution, as T →∞,

to a BM on R+, say B, which, by assumption on the sequences (ui) and (ηj), is independent of W .
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Then we can deduce, using e.g. Theorem 8.3.1 in Liptser and Shiryaev (1989), that

∫ j+p

0
exp

{
φ
bjTαc+ bpTαc − bsTαc

Tα
+ λ

UbjTαc+bpTαc − UbsTαc
Tα/2

}
dBTα(s)

converges, as T →∞, to

∫ r

0
exp {φ(r − s) + λ (Wr −Ws)} dBs, with r = j + p,

where W, B are the standard Brownian motions defined previously. Corollary 1 follows since the

proof above also holds when α = 1. �

B.2 Proof of Proposition 2

Consider the projection

yt+k = exp

{
kφ+ λTα/2

∑k
j=1 ut+j

Tα

}
yt +

k∑
i=1

exp


(k − i)φ+ λTα/2

k∑
j=i+1

ut+j

Tα

 ηt+i.

Let (r, s) ∈
(
0, T 1−α) , with s > 0, then

y[Tα(r+s)]

y[Tαr]
= exp

 [Tαs]φ+ λTα/2
∑[Tα(r+s)]

j=[Tαr]+1 uj

Tα


+

1

y[Tαr]

[Tα(r+s)]∑
i=[Tαr]+1

exp


([Tα (r + s)]− [Tαr]− i)φ+ λTα/2

[Tα(r+s)]∑
j=i+1

uj

Tα

 ηi.
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Proposition 1 implies that, as T →∞, exp

{
[Tαs]φ+λTα/2

∑[Tα(r+s)]
j=[Tαr]+1

uj

Tα

}
⇒ exp {sφ+ λ (Wr+s −Wr)} ,

and

T−α/2
[Tα(r+s)]∑
i=[Tαr]+1

exp


([Tα (r + s)]− [Tαr]− i)φ+ λTα/2

[Tα(r+s)]∑
j=i+1

uj

Tα

 ηi

⇒ Kφ,λ (r + s)− eφs+λ(Wr+s−Wr)Kφ,λ (r) =

∫ r+s

r
eφ(r+s−u)+λ(Wr+s−Wu)dBu,

We see that Kφ,λ (r + s) − eφs+λ(Wr+s−Wr)Kφ,λ (r) can be written using integrals with respect to

dWu and dBu for u ≥ r, and hence is independent of Kφ,λ (r) . Conditionally on Wu, r ≤ u ≤ r+ s,

it is normal with zero expectation. It follows that we can define15 a Cauchy variable C such that

y[Tα(r+s)]

y[Tαr]
⇒ eφs+λ(Wr+s−Wr) +Dθ (r, s)C, (14)

where θ = (φ, λ)′ and, using the notation of Section A.3,

Dθ (r, s) =

(∫ r+s
r e2φ(r+s−u)+2λ(Wr+s−Wu)du∫ r

0 e
2φ(r−u)+2λ(Wr−Wu)du

)1/2

=
Fr+s
Fr

√√√√∫ r+sr F−2
u du∫ r

0 F
−2
u du

;

C =

(∫ r+s
r e2φ(r+s−u)+2λ(Wr+s−Wu)du

)−1/2 ∫ r+s
r eφ(r+s−u)+λ(Wr+s−Wu)dBu(∫ r

0 e
2φ(r−u)+2λ(Wr−Wu)du

)−1/2 ∫ r
0 e

φ(r−u)+λ(Wr−Wu)dBu
.

Dθ (r, s) is independent of B, hence the second result in the proposition, conditionally on It.

B.3 Proof of Proposition 3

We define ρ = E (ρt) . The OLS estimator given by ρ̂ =

∑T
t=1 yt−1yt∑T
t=1 y

2
t−1

satisfies

ρ̂− ρ =

∑
t y

2
t−1 (ρt − ρ)∑
t y

2
t−1

+

∑
t yt−1ηt∑
t y

2
t−1

. (15)

15Since C is Cauchy for all realizations of W.
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Hence the asymptotic distribution of the estimator is driven by the term with higher magnitude

between
∑
t

y2
t−1 (ρt − ρ) and

∑
t

yt−1ηt. So we need to study the three sums appearing in the

expression of the OLS estimator. Recall that c = φ+ λ2. We will consider two cases depending on

the sign of c, first c < 0 and then c ≥ 0.

B.3.1 Case c < 0

Recall that Proposition 1 gives T−α/2ybrTαc ⇒ Kφ,λ (r) ∼ N

(
0,
e2cr − 1

2c
σ2
η

)
as T → ∞. Letting,

for c < 0, K∗φ,λ(r) = ecrK∗φ,λ (0)+Kφ,λ (r) such that K∗φ,λ(r) ∼ N
(

0,−σ2
η

2c

)
and is stationary. Hence

the proof in PM, Section 3, applies here also. We can deduce from expression (5), via the Law of

Large Numbers (LLN), that T−(1+α)
∑T

t=1 y
2
t ⇒ E[K∗φ,λ(r)2] =

−σ2
η

2c and that T−
1+α
2
∑T

t=1 yt−1ηt ⇒

N
(

0,−σ4
η

2c

)
.

The result concerning
∑T

t=1 y
2
t−1 (ρt − ρ) follows similarly. Indeed, V

[
Tα/2 (ρt − ρ)

]
→ λ2 as

T → ∞, so we define the martingale difference sequence ξt ≡ T−
1+α
2 y2

t−1 (ρt − ρ) which admits a

conditional variance satisfying
∑T

t=1 Et−1

(
ξ2
t

)
= λ2

T 1+α

∑T
t=1 y

4
t−1 ⇒

3λ2σ4
η

4c2
, using the consistency of

the empirical estimator of the kurtosis. Then a martingale analogue of the Lindberg condition (see

e.g. Pollard, 1984) ensures that, as T →∞,

T−
1+α
2

T∑
t=1

y2
t−1 (ρt − ρ)

L→ N

(
0,

3λ2σ4
η

4c2

)
.

Combining these results as in (15) gives Theorem 3(i) .

B.3.2 Case c ≥ 0

The proof follows the main schemata given in PM, and retain their notation, namely

κT = Tα
⌊
T 1−α⌋ and qT = T 1−α −

⌊
T 1−α⌋ . (16)

We need to derive the asymptotic behaviors of the sample variance and covariances of yt. Through-

out, D (0, 1) denotes a generic distribution with zero expectation and unit variance.
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B Sample variance of yt We first consider the sample variance of yt and prove the following

lemma.

Lemma 2 Define

φT 1−α =


(
exp

[
2cT 1−α]− 1

)
/ (2c) , if c 6= 0;

T 1−α, if c = 0;

ψT 1−α =


1
2 exp

[
2(c+ λ2)T 1−α] /√(c+ 2λ2) (c+ λ2), if c 6= 0;

1
2
√

2
exp

[
2λ2T 1−α] /λ2, if c = 0;

and

ϕT 1−α =


[
2
(
φ− λ2

)]−1
, if λ2 − φ < 0;

√
T 1−α, if λ2 − φ = 0;

exp
[
(λ2 − φ)T 1−α] /√2 (λ2 − φ), if λ2 − φ > 0.

Then, as T →∞,

σ−2
η T−2αψ−1

T 1−αϕ
−2
T 1−α

T∑
t=1

y2
t ⇒ X2

θZθ, (17)

where the random variables Xθ and Zθ are defined, respectively, by

σ−1
η

ϕ−1
bT 1−αc

Tα/2

bκT c∑
t=1

exp

(
− φ

Tα
t− λ

Tα/2
Ut

)
ηt ⇒ Xθ ∼ D (0, 1) , (18)

with Ut =
∑t

k=1 uk, and

ψ−1
bT 1−αc

(∫ bT 1−αc

0
e2(φs+λWs)ds− φbT 1−αc

)
⇒ Zθ ∼ D (0, 1) . (19)

Proof of Lemma 2. We write

T−2α
T∑
t=1

y2
t = T−2αS1T + T−2αS2T +Op

(
T−α

)
, (20)

with S1T ≡
∑bT 1−αc−1

j=0

∑bTαc
k=1 y2

bTαjc+k, and S2T ≡
∑T

t=bκT c y
2
t . Note that the index of the last

summation term in the definition of S1T , given by bκT − Tαc + bTαc, is bounded by bκT c − 1 ≤

bκT − Tαc+ bTαc ≤ bκT c.

In the following, we study the asymptotic behavior of these two sums S1T and S2T , proving that,
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as T →∞,

σ−2
η T−2αψ−1

bT 1−αcϕ
−2
bT 1−αcS1T ⇒ X2

θZθ, (21)

where the random variables Xθ and Zθ are defined in Lemma 2, and

T−2αS2T =

(
ση

∫ T 1−α

0
e−φs−λWsdBs

)2 ∫ T 1−α

0
e2(φs+λWs)ds

− 1

T 2α

( ∫ T 1−α

0 e−φs−λWsdBs∫ bT 1−αc
0 e−φs−λWsdBs

)2

S1T + op (1) . (22)

Combining (20), (22) and the asymptotic equivalence ψ−1
T 1−αψbT 1−αc = 1 shows T−2α

∑T
t=1 y

2
t =

T−2αS1T + op (1) . Together with (21), this allows to conclude to Lemma 2.

We now turn to the study of S1T and S2T , proving expressions (21) and (22) respectively.

Proof of Expression (21). Notice that

yk =

k−1∑
i=0

exp

 φ

Tα
i+

λ

Tα/2

t∑
j=k−i+1

uj

 ηk−i

= exp

(
φ

Tα
k +

λ

Tα/2
Uk

) k∑
i=1

exp

(
− φ

Tα
i− λ

Tα/2
Ui

)
ηi,

so

t∑
k=1

y2
k =

t∑
k=1

exp

(
2φ

Tα
k +

2λ

Tα/2
Uk

)[ k∑
i=1

exp

(
− φ

Tα
i− λ

Tα/2
Ui

)
ηi

]2

=
t∑

k=1

exp

(
2φ

Tα
k +

2λ

Tα/2
Uk

)

×

[
t∑
i=1

exp

(
− φ

Tα
i− λ

Tα/2
Ui

)
ηi −

t∑
i=k+1

exp

(
− φ

Tα
i− λ

Tα/2
Ui

)
ηi

]2

=

(
t∑

k=1

exp

(
2φ

Tα
k +

2λ

Tα/2
Uk

))[ t∑
i=1

exp

(
− φ

Tα
i− λ

Tα/2
Ui

)
ηi

]2

+Rt
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where

Rt =
t∑

k=1

exp

(
2φ

Tα
k +

2λ

Tα/2
Uk

)[ k∑
i=1

exp

(
− φ

Tα
i− λ

Tα/2
Ui

)
ηi

]2

−

(
t∑

k=1

exp

(
2φ

Tα
k +

2λ

Tα/2
Uk

))[ t∑
i=1

exp

(
− φ

Tα
i− λ

Tα/2
Ui

)
ηi

]2

.

Therefore we obtain

S1T =

bκT c∑
k=1

exp

(
2φ

Tα
k +

2λ

Tα/2
Uk

)bκT c∑
i=1

exp

(
− φ

Tα
i− λ

Tα/2
Ui

)
ηi

2

+RbκT c. (23)

where RbκT c can be shown to be negligible in this expression (see the Supplementary Appendix,

where we provide the proof).

In expression (23) we see that S1T can be expressed as a product. The second element on the

right-hand side admits the limit:

σ−1
η ϕ−1

bT 1−αcT
−α/2

bκT c∑
i=1

exp

(
− φ

Tα
i− λ

Tα/2
Ui

)
ηi ⇒ Xθ. (24)

Indeed, we can write 1
Tα/2

∑bκT c
i=1 exp

(
− φ
Tα i−

λ
Tα/2

Ui

)
ηi = ση

∫ bT 1−αc
0 e−φs−λWTα (s)dBTα (s) +

op (1) , where BTα and WTα are defined in Section B.1. When λ2 < φ, it converges weakly to

ση
∫∞

0 e−φs−λWsdB(s).

When λ2 ≥ φ, the stochastic integral is not defined, but since
∫ bT 1−αc

0 e−(φs+λWs)dBs is mixed-

normally distributed, it will be enough to scale it by its standard deviation, using

V

[∫ bT 1−αc

0
e−(φs+λWs)dBs

]
=


e
2(λ2−φ)bT1−αc−1

2(λ2−φ)
, if λ2 > φ;⌊

T 1−α⌋ , if λ2 = φ;

1−e−2(φ−λ2)bT1−αc
2(φ−λ2)

, if λ2 < φ.

(25)

Hence, whether λ2 < φ or λ2 ≥ φ, the limit Xθ has zero expectation and unit variance, which we

write Xθ ∼ D (0, 1) .
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Now, regarding the first element on the right-hand side of expression (23), we have

ψ−1
bT 1−αcT

−α
bκT c∑
k=1

exp

(
2φ

Tα
k +

2λ

Tα/2
Uk

)
= ψ−1

bT 1−αc

(∫ bT 1−αc

0
e2φs+2λWsds− φbT 1−αc

)
+ op (1) ,

with ψ−1
bT 1−αcφbT 1−αc tending to 0 as T →∞. Note that the expectation of

∫ bT 1−αc
0 e2(φs+λWs)ds is

given by

φbT 1−αc≡ E

[∫ bT 1−αc

0
e2φs+2λWsds

]
=

∫ bT 1−αc

0
e2csds =


e2cbT

1−αc−1
2c , if c 6= 0;

bT 1−αc, if c = 0;
(26)

and that the rate ψbT 1−αc comes from the second moment of

∫ bT 1−αc

0
e2(φs+λWs)ds. Indeed, straight-

forward computations lead, for c ≥ 0, to

E

(∫ bT 1−αc

0
e2(φs+λWs)ds

)2
 = E

[(∫ bT 1−αc

0

∫ bT 1−αc

0
e2φ(s+r)+2λ(Ws+Wr)dsdr

)]

=

∫ bT 1−αc

0

∫ bT 1−αc

0
e2φ(s+r)+2λ2(s+2 min(r,s)+r)dsdr

=

∫ bT 1−αc

0
e2cr

∫ r

0
e2(c+2λ2)sdsdr +

∫ bT 1−αc

0
e2(c+2λ2)r

∫ bT 1−αc

r
e2cs+2(c+2λ2)rdsdr

=


e
4(c+λ2)bT1−αc
4(c+2λ2)(c+λ2)

− e2cT
1−α

2c(c+2λ2)
+ 1

4c(c+λ2)
= e

4(c+λ2)bT1−αc
4(c+2λ2)(c+λ2)

+O
(
e2cT 1−α

)
, if c 6= 0;

e4λ
2bT1−αc

8λ4
+O

(
T 1−α) , if c = 0.

Now, Theorem 7.4 of Matsumoto and Yor (2005) implies that

(∫ bT 1−αc
0 e2(φs+λWs)ds

)2

divided

by its expectation converges weakly to a random variable as T → ∞. The continuous mapping

theorem implies that the square root thereof also admits a weak limit. Hence there exists Zθ with

unit variance and zero expectation such that ψ−1
bT 1−αc

(∫ bT 1−αc
0 e2(φs+λWs)ds− φbT 1−αc

)
⇒ Zθ ∼

D (0, 1) . From this last result, together with (24) and (23), we deduce (21).

Proof of Expression (22). We have 1
T 2αS2T = 1

T 2α

∑T−[κT ]
j=0 y2

j+[κT ] =
∫ qT

0

(
1

Tα/2
y[κT ]+[Tαp]

)2
dp+

Op
(
T−2α

)
, where κT and qT are defined in (16). For all j = 0, ...,

⌊
T 1−α⌋ − 1, as T → ∞,
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T−α/2y[Taj]+[Tαp] ⇒ σηe
φ(j+p)+λWj+p

∫ j+p
0 e−φs−λWsdBs. Then it comes

1

T 2α
S2T =

∫ qT

0
e

2φ(bT 1−αc+p)+2λWbT1−αc+p

(
ση

∫ bT 1−αc+p

0
e−φs−λWsdBs

)2

dp+ op (1)

=

(
ση

∫ bT 1−αc+qT

0
e−φs−λWsdBs

)2 ∫ qT

0
e

2
(
φ(bT 1−αc+s)+λWbT1−αc+s

)
ds+ op (1)

=

(
ση

∫ bT 1−αc+qT

0
e−φs−λWsdBs

)2

×

(∫ bT 1−αc+qT

0
e2(φs+λWs)ds−

∫ bT 1−αc

0
e2(φs+λWs)ds

)
+ op (1) ,

hence S2T satisfies (22).

B Sample covariances of yt We now prove that the covariance terms satisfy the following:

Lemma 3 We have, as T →∞,

σ−2
η T−αϕ−1

T 1−αφ
−1
T 1−α

T∑
t=1

yt−1ηt ⇒ XθYθ (27)

and

σ−2
η λ−1ϕ−2

T 1−ακ−1
T 1−αT

−α
T∑
t=1

y2
t−1 (ρt − ρ)⇒ X2

θVθ, (28)

where Xθ ∼ D(0, 1), Yθ ∼ D (0, 1), Vθ ∼ D(0, 1),

and with κT 1−α =
1

2
exp

[
2(c+ λ2)T 1−α] /√c+ λ2 and (ϕT 1−α , φT 1−α) given in Lemma 2.

Proof of Lemma 3. We start with the proof of Expression (27).

Note that

V

(∫ T 1−α

0
eφs+λWsdBs

)
= E

(∫ T 1−α

0
eφs+λWsdBs

)2
 = E

[∫ T 1−α

0
e2φs+2λWsds

]
= φT 1−α ,

using in this last equality the computation of φT 1−α made in expression (26). So we have

φ−1
T 1−α

∫ T 1−α

0
eφs+λWsdBs ⇒ Yθ ∼ D (0, 1) . (29)
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Hence we can write

ϕ−1
T 1−αφ

−1
T 1−α

Tα

T∑
t=1

yt−1ηt =

(
σηϕ

−1
T 1−α

∫ T 1−α

0
e−(φs+λWs)dBs

)(
σηφ

−1
T 1−α

∫ T 1−α

0
eφr+λWrdBr

)
+ IT ,

where IT can be shown to be negligible, referring to PM. Then (27) follows.

We now prove Expression (28). When λ 6= 0, the summation
∑T

t=1 y
2
t−1 (ρt − ρ) can be ex-

pressed as

T−1∑
t=0

y2
t (ρt+1 − ρ) =

T−1∑
t=1

exp

(
2φ

Tα
t+

2λ

Tα/2
Ut

)[ t∑
i=1

exp

(
− φ

Tα
i− λ

Tα/2
Ui

)
ηi

]2

∆Uρt+1

=

[
T∑
i=1

exp

(
− φ

Tα
i− λ

Tα/2
Ui

)
ηi

]2 T−1∑
k=1

exp

(
2φ

Tα
k +

2λ

Tα/2
Uk

)
∆Uρk+1 + T−α/2R∗t ,

(30)

where ∆Uρk+1 ≡ Uρk+1 − U
ρ
k with Uρt =

∑t
j=1 (ρj − ρ), and where T−α/2R∗t is asymptotically neg-

ligible with respect to the other terms of (30) (see the technical results in the Supplementary

Appendix).

To study the other terms of (30) we notice that E
(∫ T 1−α

0 e4(φr+λWr)dr
)

= e
4(c+λ2)T1−α

4(c+λ2)
−

1
4(c+λ2)

= κ2
T 1−α +O(1). Again, we use a Lindberg Condition, this time regarding

ζk+1 ≡ κ−1
T 1−α exp

(
2φ

Tα
k +

2λ

Tα/2
Uk

)
∆Uρk+1 (31)

which admits conditional variance such that

T−1∑
k=1

Ek
[
ζ2
k+1

]
= κ−2

T 1−α

T−1∑
k=1

exp

(
4φ

Tα
k +

4λ

Tα/2
Uk

)
λ2

= κ−2
T 1−αλ

2

∫ T 1−α

0
e4(φr+λWr)dr + op (1) = Op (1) .

We introduce the i.i.d. process u∗t with bounded moments, and which does not correlate with ut,
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such that

∆Uρk = ρt − ρ = exp

{
φ

Tα

}(
exp

{
λut

Tα/2

}
− E

[
exp

{
λut

Tα/2

}])
= e

φ
Tα

(
λ

Tα/2
ut +

u∗t
Tα

)
.

Therefore we can write

T−1∑
k=1

exp
(

2φ
Tαk + 2λ

Tα/2
Uk

)
κT 1−α

∆Uρk+1 = λ

T−1∑
k=1

exp
(

2φ
Tαk + 2λ

Tα/2
Uk

)
κT 1−α

× ∆Uk+1

Tα/2

+ T−α/2
T−1∑
k=1

exp
(

2φ
Tαk + 2λ

Tα/2
Uk

)
κT 1−α

×
∆U∗k+1

Tα/2
.

where U∗k ≡
∑k

t=1 u
∗
t . The Lindberg condition (31) also holds when ∆Uρk+1 is replaced with ∆Uk+1

or ∆U∗k+1, hence

T−1∑
k=1

exp
(

2φ
Tαk + 2λ

Tα/2
Uk

)
κT 1−α

∆Uk+1

Tα/2
= κ−1

T 1−α

∫ T 1−α

0
e2(φr+λWr)dWr + op (1)

and, introducing W ∗r , r ∈ [0, 1], such that T−1/2
∑brT c

t=1 u∗t ⇒W ∗r as T →∞,

T−1∑
k=1

exp
(

2φ
Tαk + 2λ

Tα/2
Uk

)
κT 1−α

∆U∗k+1

Tα/2
= κ−1

T 1−α

∫ T 1−α

0
e2(φr+λWr)dW ∗r + op (1) .

It follows that
∑T−1

k=1

exp
(

2φ
Tα

k+ 2λ

Tα/2
Uk

)
κT1−α

∆Uρk+1

λ = κ−1
T 1−α

∫ T 1−α

0 e2(φr+λWr)dWr + op (1) from which we

deduce that

T−αϕ−2
T 1−ακ−1

T 1−α

T∑
t=1

y2
t−1 (ρt − ρ) =

(
ϕ−1
T 1−αση

∫ T 1−α

0
e−(φs+λWs)dBs

)2

κ−1
T 1−α

∫ T 1−α

0
e2(φr+λWr)dWr+op (1)

and, defining Vθ such that

κ−1
T 1−α

∫ T 1−α

0
e2(φr+λWr)dWr ⇒ Vθ ∼ D (0, 1) , (32)

we obtain (28).
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Proof of Lemma 1 and Conclusion. We summarize in the table below the results obtained

above for the process yt, t ≥ 0, defined as in (1) and under Assumptions A and B. We consider the

three cases c < 0, c = 0 and c > 0, and introduce the notation:

Syy =
T∑
t=1

y2
t , Syη =

T∑
t=1

yt−1ηt, and Syyρ =
T∑
t=1

y2
t−1 (ρt − ρ) .

As T →∞ and for x ∈ {yy, yη, yyρ},

σ−2
η µx φxT Sx ⇒ Dx,

where (µx, φxT , Dx) are defined as follows (assuming (φ, λ) 6= (0, 0)).

µyy µyη µyyρ

c < 0 −2c
√
−2c −2c/

(√
3λ
)

c = 0 8
√

2 λ4 2λ 8λ2

c > 0, λ2 < φ 8(c− 2λ2)2
√

(c+ 2λ2) (c+ λ2) 4c
(
c− 2λ2

)
8(c− 2λ2)2

√
c+ λ2/λ

c > 0, λ2 = φ 2
√

(c+ 2λ2) (c+ λ2) 2c 2
√
c+ λ2/λ

c > 0, λ2 > φ 4(2λ2 − c)
√

(c+ 2λ2) (c+ λ2) 2c
√

2 (2λ2 − c) 4
(
2λ2 − c

)√
c+ λ2/λ

with

φyyT φyηT φyyρT

c < 0 T−(1+α) T−
1+α
2 T−

1+α
2

c = 0 T−2αe−6λ2T 1−α
T−1e−2λ2T 1−α

T−αe−6λ2T 1−α

c > 0, λ2 < φ T−2αe−2(c+λ2)T 1−α
T−αe−2cT 1−α

T−αe−2(c+λ2)T 1−α

c > 0, λ2 = φ T−(1+α)e−2(c+λ2)T 1−α
T−

1+α
2 e−2cT 1−α

T−1e−2(c+λ2)T 1−α

c > 0, λ2 > φ T−2αe−6λ2T 1−α
T−αe−(c+2λ2)T 1−α

T−αe−6λ2T 1−α
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and

Dyy Dyη Dyyu

c < 0 1 N (0, 1) N (0, 1)

c ≥ 0 X2
θZθ XθYθ X2

θVθ

where Xθ ∼ D (0, 1), Yθ ∼ D (0, 1), Vθ ∼ D (0, 1) and Zθ ∼ D (0, 1) such that Xθ ⊥ Vθ, and Zθ ⊥ Vθ.

The tables above directly provide Lemma 1.

Now, Proposition 3 can then be directly deduced from the results of this table. Indeed, in the

case c < 0, we can write, after noticing that T−
1+α
2
∑T

t=1 y
2
t−1 (ρt − ρ) is asymptotically uncorrelated

with T−
1+α
2
∑T

t=1 yt−1ηt, that

T
1+α
2 (ρ̂− ρ) =

T−
1+α
2
∑

t y
2
t−1 (ρt − ρ)

T−1−α∑
t y

2
t−1

+
T−

1+α
2
∑

t yt−1ηt
T−1−α∑

t y
2
t−1

=
µyy

µyyρ
σ−2
η

σ−2
η

µyyρT−
1+α
2
∑

t y
2
t−1 (ρt − ρ)

µyyT−1−α∑
t y

2
t−1

+
µyy

µyη
σ−2
η

σ−2
η

µyηT−
1+α
2
∑

t yt−1ηt
µyyT−1−α∑

t y
2
t−1

L→ N
(
0,−2φ+ λ2

)
.

Assume now that c ≥ 0. We can write

Tα/2
φyyρT

φyyT
(ρ̂− ρ)⇒ µyy

µyyρ
Dyyρ

Dyy
,

where the various ratios are calculated using the previous table and provide the same results for

all cases when c ≥ 0, namely

φyyρT /φyyT = Tα and µyyρ/µyy =
1

λ2
√
φ+ 3λ2

,

hence the result.
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