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1 Introduction

While the discovery of the Higgs boson has been a triumph for the Standard Model (SM)
of particle physics [1-3], the consistency of its properties, as currently measured, with

those predicted by the SM (see the experimental analyses in [4-8] for example) has left

few hints of new physics. An important property of the Higgs boson is its decay rate into

b-quarks. Despite being the largest branching fraction of the Higgs, the process h — bb has



only recently been observed by the ATLAS and CMS collaborations [9, 10]. Considering
the relative infancy of the Higgs measurements so far in the LHC program, as well as the
prospect of future ete™ colliders for such studies [11, 12], the possibility of uncovering
new physics in the Higgs sector remains open. As such, the need for accurate theoretical
predictions in order to correctly identify and parametrize any new physics which could be
observed is paramount.

In the absence of the direct discovery of a new particle, one possible avenue along
which to search for new physics is through the use of the Standard Model Effective Field
Theory (SMEFT). In this approach the SM Lagrangian is supplemented with operators
of mass dimension greater than four, each with its own Wilson coefficient. Provided the
new physics is associated with a scale Axp which is much greater than the electroweak
symmetry breaking (EWSB) scale and decouples [13], then its effect on processes at low
energy is captured through non-zero values of these Wilson coefficients. This allows for
a model independent approach in attempts to identify new physics: one calculates cross
sections and decay rates within SMEFT and then fits the Wilson coefficients to data in
order to extract limits or signals of new physics.

The SMEFT operators which can be written down at a given mass dimension are
constructed out of SM fields and respect the usual SM gauge and Lorentz symmetries.
A minimal basis of operators (though not unique) can be constructed by using the SM
equations of motion [14] and techniques to quantify the minimal number of operators and
their field content which appear at each mass dimension have already been developed [15—
17]. At dimension-5 there exists only a single, lepton number violating operator, whose
Wilson coefficient is heavily suppressed. On the other hand, at dimension-6 there are
59 independent operators for one generation of fermions excluding baryon number vio-
lating operators [18, 19|, giving a wide space in which to explore possible consequences
for phenomenology.

Recently the inclusion of dimension-6 operators in NLO perturbative calculations has
emerged. Some general features of these calculations have been described in e.g. [20-23],
and the full 59 x 59 anomalous dimension matrix for the Wilson coefficients needed to
perform a leading-logarithmic calculation has been calculated in [24-26]. At the moment,
however, there is no automated tool to produce general NLO SMEFT predictions so these
calculations are performed on a process-by-process basis. Because of the increased com-
plexity of these calculations, results are available only for a handful of processes, and often
contain a limited number of operators or are restricted to a particular set of corrections.
There are many NLO SMEFT calculations which involve a subset of operators [27-34], or
are restricted to QCD corrections only [35-45]. A calculation of Higgs pair production at
NNLO in QCD involving dimension-6 operators which contain the Higgs field has also been
performed [46]. A small set of processes has been computed at NLO including all relevant
operators in both the tree and loop level diagrams. These include lepton decay [47, 48]
and Higgs decay into vector bosons [49-54].

In this paper we obtain the full set of NLO corrections from dimension-6 operators
to the decay rate h — bb within SMEFT, assuming a unit CKM matrix. This builds
upon our previous NLO SMEFT calculations of weak corrections in the large-m; limit or



those related to four-fermion operators [55], and QCD corrections [56]. On the practical
side, our calculation forms the basis for a precision analysis of Higgs decay into b-quarks
within SMEFT. However, even apart from that, calculating the full set of NLO correc-
tions reveals features of SMEFT beyond tree level which have not been fully addressed
in the literature. For instance, one encounters technical subtleties in the renormalization
procedure concerning electric charge renormalization and Higgs-Z and Higgs-neutral Gold-
stone mixing. Moreover, when combining electroweak and QCD corrections it is natural
to introduce hybrid renormalization schemes where some parameters are defined in the
MS scheme and some in the on-shell scheme. In that case one must pay careful attention
to tadpole contributions, not only including them in the renormalization procedure in or-
der to obtain gauge-independent results, but also finding a renormalization scheme where
enhanced electroweak corrections related to them are absent. In this work we address tad-
pole renormalization using the “FJ tadpole scheme” [57], which is especially convenient
when performing loop calculations with automated tools, and advocate the use of decou-
pling relations in building a renormalization scheme which allows us to combine QCD and
electroweak corrections in an optimal way.

The organization of this paper is as follows. After giving an outline of the NLO
calculation as a whole in section 2, we describe in detail the renormalization procedure
in section 3, including our treatment of tadpoles. We discuss sources of enhanced NLO
contributions to the decay rate in section 4, and explain how a hybrid renormalization
scheme based on decoupling relations for the MS definition of the b-quark mass and electric
charge is useful when combining QCD and electroweak corrections. In section 5 we present
numerical results and examine uncertainties related to scale choices, and then conclude in
section 6. We provide some details on the rotation of the SMEFT Lagrangian to the mass
basis relevant for our NLO calculation in appendix A, including a novel treatment of gauge
fixing in SMEFT, and give selected analytic results for the decay rate in appendix B. While
the full analytic results are too long to print, we give them in electronic form in the arXiv
submission of this article.

2 Outline of the calculation

The dimension-6 SMEFT Lagrangian may be written as
L=LW+20  £O=3"Ci(uQi(n), (2.1)

where £ denotes the SM Lagrangian, and £©) depends on the dimension-6 operators
Q;. We adopt the “Warsaw basis” [19] for these operators, which are listed in table 3,
and the naming convention of the Wilson coefficients C; follows that of the corresponding
operators. We define the Wilson coeflicients such that they inherently carry two inverse
powers of the new physics scale, Axp.

In this paper we study the decay rate for h — bb to NLO in SMEFT. We can write
the perturbative expansion of the decay rate up to NLO in the form

L(h—bb) =T =10 410 (2.2)



where the superscripts (0) and (1) refer to the LO and NLO contribution in perturbation
theory respectively. Each of these can be split up into SM (dimension-4) and dimension-6
contributions with the notation

r© — p&0 4 (6.0 ,
I‘(l) — 1—‘(471) + F(671) . (23)

The double superscripts (i, j) refer to the dimension-i contribution at j-th order in pertur-
bation theory. In this counting each term in T'64) contains exactly one Wilson coefficient
of a dimension-6 operator. In other words, we allow at most one insertion of a dimension-6
operator in a given Feynman diagram and keep the interference term of the dimension-6
amplitude with the SM, but drop the square of dimension-6 amplitude, which is formally
a dimension-8 effect at the level of the decay rate.

It is useful to divide the NLO correction from dimension-6 operators into three pieces
according to

I-\(G,l) — F(G’l) + l—xgﬁ,l) + F(G,l) (24)

g7 rem’ >

and analogously for the SM result T(*1) which was calculated in [58]. The definition of
the three pieces, and the extent to which the dimension-6 corrections have been calculated
in the literature, is as follows. First, Iy , contains all virtual and real emissions involving
gluons and photons. The QCD portion of this object was calculated in [56]. Second, T’
contains virtual weak corrections in the large-m; limit. These were calculated in the on-
shell renormalization scheme in [55], where they scale as am?/M{,. Finally, the object
['em contains the remaining virtual electroweak corrections. The only results available for
these remaining contributions are those from four-fermion operators obtained in [55].

The main goal of the present work is to obtain the full NLO correction in SMEFT. To
do this, we must calculate the UV-renormalized virtual corrections to the LO decay rate,
and add them together with real emission corrections containing a photon or gluon. We
then evaluate to NLO the formula

d¢2 2 d¢3 2
11:/2771H|/\/lbeb| +/2TnH‘Mhﬁbb(g,'y)’ : (2.5)

where d¢; is the i-body differential Lorentz invariant phase-space measure. The 2- and
3-body terms involving emissions of gluons or photons contribute to I'y .. These contain
IR divergences, which we regularize by performing the loop integrations and phase-space
integrals in d = 4 — 2¢ dimensions. Most of the corrections involving photons can be
extracted from the QCD calculation [56]. The exception is real and virtual diagrams
containing a hyZ vertex which has no analogue in QCD. Analytic results for I'y - are given
in appendix B.

The most challenging part of the calculation is to obtain the UV-renormalized 2-body
matrix element M) (h — bb), which is needed to determine I'yep,. We do this by evaluating
the expression

MW (h = bb) = MIbare 4 ST (2.6)



where the terms on the right-hand side are the bare one-loop and counterterm amplitudes,
respectively. The exact form of the counterterm and bare amplitude depends on the set
of independent parameters in terms of which the SMEFT Lagrangian in the mass basis is
expressed, and also the scheme in which these parameters are renormalized, as discussed
in more detail below. We choose the parameters to be

as,a, myg,mp, My, Mz, Vi;, C;, (2.7)

where a = e2/(47) and a5 = ¢g2/(47) are the electromagnetic fine-structure and strong
coupling constants respectively, and m are the fermion masses. We allow for non-vanishing
third-generation masses my, m¢, and m,, but set first- and second-generation fermion
masses to zero. We work with the numerical approximation of a diagonal CKM matrix
Vi; = diag(1,1,1), but do not necessarily impose Minimal Flavour Violation (MFV); further
details on this point can be found in appendix A.4.

To perform the NLO calculation, we follow the procedure set out in [55]. We first
express the SMEFT Langrangian in the mass basis, using the parameters in (2.7). There
are a number of differences in this procedure compared to the SM, the most significant of
which involve gauge fixing, which are described in appendix A. We then trade the bare
input parameters for renormalized ones in order to construct an explicit expression for the
counterterm amplitude in (2.6). Here again there are a number of subtleties compared
to the SM, especially in the structure of tadpole contributions. The full details of the
renormalization procedure are covered in section 3. Finally, we must identify and evaluate
the large number of one-loop Feynman diagrams which contribute to the bare matrix
elements and UV counterterms. We have automated the procedure by implementing the
SMEFT Lagrangian in the mass basis, including ghosts, into FeynRules [59], and then
using the resulting model file to generate the diagrams with FeynArts [60] and compute
them with FormCalc [61]. We have also made use of Package-X [62] when extracting
analytic expressions for loop integrals.

The NLO correction T'!) obtained in this way is quite lengthy. In fact, we obtain
contributions from 45 different dimension-6 operators when full mass dependence of third-
generation fermions is kept. We give the result in symbolic form in the computer files
available with the electronic version of this submission. We have performed three main
checks on these results. The first is that the UV poles in the bare and counterterm matrix
elements cancel against each other, and the related fact that the decay rate is independent
of the renormalization scale p up to NLO. The second is that the IR poles appearing in
the 2- and 3-body contributions to I’gg cancel against each other. Finally, we have verified
the gauge independence of our results by performing all calculations in both unitary and
Feynman gauge.

3 The renormalization procedure

In this section we lay out the renormalization procedure used in our calculation. We draw
on the methods used in [55] to construct the one-loop counterterm in section 3.1, but
must deal with technical complications not present in the partial NLO calculation in the



on-shell scheme performed there. We point out subtleties with charge renormalization in
section 3.1.1 and with Higgs-Z mixing in section 3.1.2, before moving on to discuss tadpole
renormalization in section 3.2.
3.1 The one-loop counterterm
The form of the NLO counterterm follows directly from the LO decay amplitude. We write
the LO decay amplitude as

iMO (B — bb) = —ia(py) (M(O)P + M Pr) v(py) (3.1)
which we split up as

M(Lo) :M(L4,0) +Mf’0), (3.2)

where the superscripts (4,0) and (6,0) refer to the dimension-4 and dimension-6 contri-
butions respectively. In order to express results in terms of our choice of input parame-
ters (2.7), it is convenient to introduce

. 2Mw Sy 2 _ Mj, 2 22

UT:?, Cw:@, S :1—Cw. (33)
These hatted quantities are defined in terms of masses and couplings as in the SM. After
rotation to the mass basis following the steps in appendix A one finds

4,0 myp
MO - ol (3.4)
C e é or Cj
MgS,O) = mva |:CHD - 7ZD (1 - f;) + AiwCHWB — L bl : (3'5)
52 Sw mp 2

Our notation is such that Cpp is the coefficient which contributes to the A f f coupling after
rotating to the mass basis. Its precise definition in terms of the coefficients multiplying the
weak-basis operators in table 3 can be found in appendix A.4.

The LO decay amplitude (as well as the NLO counterterm derived from it) depends
on the choice of input parameters. Using those given in (2.7) requires that we eliminate
vr according to the relation [55]

L1l ¢ (3.6)
— = v .
vp B Ts. gw 4sw ’

as has already been done in (3.5). In contrast, in the Gp-scheme, which was used when

calculating the partial NLO results of [55], one employs

11 1 ) 4 o) < >
=Gr——7=|C) +C +— C +C ) 3.7
Vag o ﬂ( 1 ot ) 55\l e 7

We have found the choice (3.6) to be particularly convenient for the full NLO calculation,
since it involves only parameters which appear in the Lagrangian, and no tree-level depen-
dence on four-fermion operators contributing to muon decay is introduced. Of course, it is



a simple matter to convert the results obtained here to other renormalization schemes, pro-
vided all finite shifts between input parameters are known completely to NLO in SMEFT —
for instance, calculations needed to trade vy for G as in (3.7) have been obtained in [49].

The NLO counterterm is obtained by interpreting the external fields and parameters
in (3.4) and (3.5) as bare ones, which are then replaced by renormalized ones before ex-
panding the resulting expression to NLO in the couplings. The bare and renormalized
fields are related through wavefunction renormalization factors according to

- 1
h(O) = Zhh’ = <1 + 2(5Zh> h,
1
0\ = \/ZLb, = (1 + 25ZZ,L> by,
1
b = \/ZFbp = <1 + 2525) br, (3.8)

where the second equality on each line is valid to NLO. For the masses, electric charge,
and Wilson coefficients we write

MO =M 16M,  e®=ctde, CO=c; o0, (3.9)

where M is a generic mass. The bare quantities in (3.8) and (3.9) are labeled with a
superscript (0) while the renormalized ones are not, and the counterterm for an arbitrary
quantity X is denoted by 6dX. These NLO counterterms are calculated in perturbation
theory and receive both dimension-4 and dimension-6 contributions, which we denote by
6X® and 6X©) respectively.

Inserting these expressions into (3.4) and (3.5) and keeping only the linear terms in
0X gives an expression for the NLO counterterm for the decay amplitude. Writing this as

iMOT(h = bb) = —iti(py) (SM,Pp, + SM3 Pr) v(pg) . (3.10)

the dimension-4 counterterm is

5 (4) 5A(4) 1 1 1 «
M = 2 (ZZ PR LA S L R RS

while the dimension-6 counterterm is

oM =

v

6) <~ (6)
my [(Omy " 00p 1o ) 1o @)L 1. 6)R
( e o +252h +26Zb +25Zb
om® sl 1 1 1 i}
+ MO (m” + S 520 4 oz 4 sz 0

my O
a9 ~(4) (4) . Ao\ (4)
_ 97 (00p Oy ; Cu Cw
ﬂCbH < or e ) + mypdr [CHWB + 5%, CHD:| o (§w>
) 5Cup (. A\ e o 00T



where we have defined
(5’@T (5MW (5§w de

— = - —. 3.13
O My * Sw e ( )
From the definitions of ¢, and §,, in (3.3) one finds that
0w _ & (0Mw Mg\ e\ 1 (a8 (3.14)
50 8\ My My )’ Sw  Cwde \ Sw ) ’

The NLO counterterms are computed by specifying a renormalization scheme and evaluat-
ing one-loop Feynman diagrams as appropriate in that scheme. For the Wilson coefficients,
we use the MS scheme, where the counterterms involve only UV poles in the dimensional
regulator € = (4 — d)/2.! In that case, we can read off the NLO counterterms from the
anomalous dimension calculation performed in [24-26]. The counterterms take the form

1 .
T 1
501 26 C’L (lu’> I (3 5)
where we have introduced
. d
Ci(p) = H@Ci(ﬂ) = %0y, (3.16)
J

with «;; the anomalous dimension matrix. In general 7;; is not diagonal, so any Wilson
coefficient counterterm is a linear combination of many other Wilson coefficients in the
chosen basis.

The wavefunction, mass, and electric charge counterterms are determined by calculat-
ing a set of one-loop integrals in the mass basis. The construction of these counterterms
in SMEFT closely follows the procedure used in the Standard Model, as outlined, for in-
stance, in [63]. Most of the details needed for h — bb decay in the on-shell scheme were
given in [55]. However, while wavefunction renormalization factors are always evaluated
on-shell, in the present work we aim to be flexible in the treatment of mass and electric
charge renormalization, allowing for hybrid schemes which define some of these parameters
in the on-shell scheme, and some in the MS scheme. In that case we must pay careful
attention to tadpole contributions, as explained in section 3.2. There are also some sub-
tleties in electric charge renormalization and Higgs-Z mixing once dimension-6 effects are
included, which we cover in sections 3.1.1 and 3.1.2 below.

When necessary, we distinguish parameters in the on-shell scheme from those in the
MS scheme through the notation

XO.S. — X(O) + (5XO'S',
X(n) =X 46X (), (3.17)

where O.S. indicates the on-shell scheme and we have made the p dependence in the
MS parameter X (u) explicit. The counterterms in the two schemes have the same UV

n fact, counterterms in the MS scheme are proportional to % — e + In(47), but since the finite terms

cancel from renormalized amplitudes along with the UV poles we omit them for simplicity.



divergences, but differ in the finite parts: the UV-finite part is set to zero in the MS scheme
and determined through on-shell renormalization conditions in the on-shell scheme. We
can therefore facilitate conversion between the MS and on-shell schemes by writing

(3.18)

5Xdiv. 5XO.S.,ﬁn.
X X ) ’

X=x0 <1+ +cx

where the notation splits the counterterm into UV-divergent (X4V) and UV-finite (6 X ™)
pieces. Results in the on-shell scheme are picked out by setting cx = 1, while cx = 0 picks
out the MS scheme. This notation allows us to suppress the extra labels in (3.17) and refer
instead to a generic quantity X, with the understanding that the renormalization scheme
can be specified by adjusting the value of cx and the numerical value of X appropriately.
We use this notation in section 4 and appendix B.

3.1.1 Electric charge renormalization

The one-loop counterterm (3.12) involves both SM and dimension-6 contributions from
electric charge renormalization. The SM calculation simplifies due to electroweak Ward
identities, which relate the ff+ vertex function to two-point functions through gauge in-
variance. Adapting the notation of [63] to our conventions, these allow one to write

Se® B 182?114(4)%2) (v](fl) _ a;‘l)) E?Z(zl) (0)
e 2 Ok? k2=0 Qy MZ

(3.19)

where as usual the superscript (4) refers to dimension-4 contributions. The object E?A
(24%) is the transverse component of the vy (7Z) two-point function. The vZ two-point
function is needed for charge renormalization in the SM because the photon can mix into
a Z-boson through loop corrections before coupling to the fermion, and it is for the same
reason that the axial-vector (ay) and vector (vs) couplings of the Z-boson to fermions enter
the expression. In the SM vj(fl) — a§c4) = —Qf3w/Cw, which makes explicit the important
feature that de is independent of the fermion f.

To renormalize the h — bb decay amplitude we also need the dimension-6 counterterm
6e®. We have determined this expression by renormalizing the ff~ vertices directly,
without using the SM Ward identities. We find by explicit calculation that

s5e® 10544 (12)
e 2 ok?

1 (50 AZ(6) i AZ(4)
w2 \a” - by : 2
k?:oJrM% (éw r (0 4@w§wCHD 7 (0) (3.20)

Although the counterterm can be obtained from two-point functions alone, one can verify
that the term multiplying E?Z differs from the form (vy —ay)/Qy through terms involving

}6) = —a;ﬁ) = CHf@%/éléwéw for these operators,

the class-7 operators Q. In fact, since v
a naive generalization of the SM result (3.19) would lead to the contradictory result that
electric charge renormalization depends on the fermion charge ;. An important check on

this expression is that the UV poles in the NLO decay amplitude cancel once it is used.



(b) ()

Figure 1. Diagrams contributing to the partial width of A — bb from Higgs mixing to (a) Z-boson
and (b,c¢) neutral Goldstone boson.

3.1.2 Higgs-Z mixing

In general, the SMEFT Wilson coefficients contain imaginary parts even after writing the
Lagrangian in the mass basis. While these drop out of the NLO the decay rate, they
appear in the NLO decay amplitude and introduce complications into the renormalization
procedure which are irrelevant in the SM. One of these is mixing of the SM Higgs field
h with the longitudinal component of the Z-boson and the neutral Goldstone boson ¢°
(in R¢ gauge) at the one-loop level. Since h and ¢ are the real and imaginary parts
of the neutral component of the Higgs doublet H after electroweak symmetry breaking
respectively (see e.g. (A.3)), this mixing must involve a complex coupling. However, in
the SM neutral-current couplings are real after transformation to the mass basis, so there
is no such mixing at NLO. In SMEFT, however, diagrams of the type shown in figure 1
contribute to the h — bb decay amplitude, where f is any massive fermion. The sum of
diagrams yields a gauge-invariant result proportional to
V2

M5 = E Im [NompCppg — NemyCypr + m:Crpp + ..., (3.21)
where the ... refer to contributions from second- and third-generation fermions, which take
on the same structure. The loop integrals multiplying 75 contain UV divergences which are
exactly canceled by the piece in the Wilson coefficient counterterm (3.15) involving C’bH,
which was calculated with the SMEFT Langrangian in the unbroken phase of the theory
(i.e. when the vacuum expectation value of the Higgs field vanishes) in [25].

While in the unbroken phase it is unambiguous that the 75 term arises from mixing
of real and imaginary parts of the complex Higgs doublet, in the broken phase the exact
origin (but not the result itself) depends on the gauge: in unitary gauge it is due entirely
to Higgs mixing with the longitudinal component of the Z-boson, while in R¢ gauge it is

due to the sum of graphs containing Z and neutral Goldstone bosons.?

3.2 Tadpoles

In the on-shell renormalization scheme tadpole contributions cancel between different terms
in the renormalized amplitude. For this reason, no tadpoles were included in the partial
NLO calculation in the on-shell scheme in [55]. However, if some parameters are renor-
malized in the on-shell scheme and some in the MS scheme, then tadpole cancellations

2B.P. is grateful for a discussion with Aneesh Manohar which clarified this point.
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Figure 2. NLO tadpole diagrams which appear in our calculation. In addition to contributions to
two-point functions of (a) the b-quark, (b) vector bosons, where I.J = vy,vZ, WW, ZZ and (c) the
Higgs, the contributions to the h — bb matrix element shown in (d) appear through the dimension-6
operator Qppr. In each case the diagram factorizes into the product of the tadpole function in (e)
with a Higgs propagator and a Higgs coupling to the tree-level diagram.

only happen at the level of UV-divergent parts of the amplitudes. Tadpoles remain in the
finite parts, and must be taken into account to arrive at a gauge-invariant result. In fact,
only upon the inclusion of tadpoles are the one-loop matrix elements (including wavefunc-
tion renormalization factors) and also mass and parameter counterterms individually gauge
invariant [64].

There are various schemes for the treatment of tadpoles available in the literature. We
have chosen to perform our calculations using the so-called “FJ tadpole scheme” [57], an
excellent discussion of which is given in [65].% As explained in that paper, a property of the
FJ tadpole scheme is that it is equivalent to a scheme where tadpoles are not renormalized.
In other words, tadpole renormalization can be taken into account simply by including
tadpole topologies into any n-point amplitude entering a given calculation. This scheme
applies not only to the Standard Model, but rather to generic theories, therefore it extends
to SMEFT with no essential complications. We find this scheme to be particularly conve-
nient, since it means that instead of adding explicit tadpole counterterms to the already
lengthy expression (3.12), we need only include tadpole topologies into our diagrammatic
calculations, which in any case have been automated.

In h — bb decay within the SM, tadpole contributions appear in the two-point functions
used for mass and parameter renormalization through the diagrams shown in figure 2(a)—
(c). In h — bb decay within SMEFT, tadpoles appear not only in the two-point functions,
but also in the bare decay amplitude through the diagram shown in figure 2(d). We can
write any of these diagrams as the product of the one-point tadpole function 7' shown in
figure 2(e) with a tree level graph, provided we include the appropriate Higgs coupling and

3 As described in [65], this scheme is closely related to the 3; scheme of [64].
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propagator. We write the result for the tadpole function
T=T% 470 (3.22)

where (4) and (6) represent the SM and dimension-6 contributions respectively. In unitary
gauge one has

1 2¢
e {6 (1 - 3> (207, Ao(Miy) + M7 Ao(M3)] + 3miy Ao(mi)
-8) chm}Ao(m;)} , (3.23)
f

while in Feynman gauge

T = T® +

Feyn. — 327I‘ o [2A0(MW) +A0(MZ)] ) (324)

where f refers to quarks (q) or charged leptons (I) with N¢ =3, N! =1, and

Ag(M?) = M? <1 +1In <A’222) + 1) . (3.25)

For the dimension-6 contribution in unitary gauge we find

2

0 myy
T = 312”;22{ ( 6CH D% + ACH 1in—2L = > Ao(m%) + (24 — 16€)Cryy M2, Ao (M2))
T

+ (3 —2¢) [Cup + 4Crwe + Cupdlsy + ewsuwCrwn)| Mz Ao(M3)

+ Z Ng?ﬂf}Tmf(CfH + C;H)Ao(m?)}
f

~

2 Cyw
|:CH kin + UT

(CHWB 43 )] T, (3.26)

w

and in Feynman gauge

2 A~
6 mer T 2
Ti,, =T - 55 (@QCH,kinAO(M%/) + Co Ao Mg))
[CH kin T UT§ (C'HWB 15, )] (TF(;l;n, — T&f‘l)) , (3.27)

where Cp kin is defined in (A.4).

An interesting feature of SMEFT is that, in contrast to the SM, tadpole diagrams
contribute to electric charge renormalization through the vy two-point function. These
contributions are proportional to the hyy coupling in SMEFT, which is induced by class-4
operators and involves the combination of Wilson coefficients

Chyy = Crple + Cawssy — Cwpéw - (3.28)

- 12 —



Direct calculation in unitary gauge of the piece of the electric charge counterterm as de-
scribed in section 3.1.1 yields the result
§ecl4:(6) 1
e 1672 [

un. °’

JR 0
Chyy Ao(M3p) + 4603w Crw i (4Mj, — 340(MF))] — 2chwm—€T(4)
H
(3.29)

where the extra superscript “cl.4” indicates restriction to class-4 operators in table 3. The

)

term proportional to the SM tadpole function T, 54 arises through diagrams of the type
shown in figure 2(b) with IJ = vv. In Feynman gauge the division into tadpole and the

remaining contributions reads instead

5e®)
e - 1672

(e (Ao(miy) + 240(Miy) + Ao(M7))

+ 46050 Crwp (AMF — 3A(ME)) | — QChWTZ—TTM)

2 ~Feyn.> (330)
H

but the end result is the same due to (3.24).

This example illustrates the general feature that parameter counterterms are gauge
invariant only after including tadpoles. The same is true of the sum of bare matrix el-
ements and wavefunction renormalization factors, which is also a gauge-invariant object.
The mechanism through which tadpoles ensure this gauge invariance is rather non-trivial.
For instance, in contrast to the SM, tadpoles contribute directly to bare matrix elements
through diagrams of the type shown in figure 2(d). They also contribute to wavefunction
renormalization of the b-quark field. Evaluating the tadpole contribution to the b-quark
self-energy shown in figure 2(a) and using it to extract the wavefunction renormalization
factor using the convention of [55], one finds
- 572
“?“T Tm(Chp )T (3.31)
mymy

L _
0Zptad. = —

where T is the tadpole function in the chosen gauge. While this purely imaginary contri-
bution drops out of the NLO decay rate, it is needed to ensure gauge invariance of the sum
of the NLO matrix element and the wavefunction renormalization factors, and also plays
a role in the cancellation of tadpoles in the on-shell scheme.

These examples illustrate that while the treatment of tadpoles in SMEFT is conceptu-
ally the same as in the SM, the exact structure of tadpoles in the diagrammatic calculations
is more involved. We have calculated all tadpole contributions to the bare matrix elements
and counterterms appearing in the h — bb decay amplitude at NLO in unitary gauge and
in Feynman gauge, and confirmed that the gauge dependence in the tadpole functions
cancels against that in other diagrams, such that the counterterms for mass and electric
charge renormalization, as well as the sum of the bare matrix element and the wavefunction
renormalization factors, are separately gauge invariant.

We have also confirmed that tadpoles completely cancel when all parameters are renor-
malized in the on-shell scheme. However, QCD corrections to the b-quark mass and electric
charge are sensitive to energy scales much smaller than the Higgs mass if the on-shell scheme
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is used, so one would prefer to renormalize such parameters in the MS scheme. In that case
tadpole cancellation can no longer occur, and tadpoles enter the finite parts of the renor-
malized decay rate, carrying along with them corrections scaling as m¢ /(92m?%), which can
lead to sizeable weak corrections. It is thus a non-trivial problem to find a renormalization
scheme which is well suited for combining electroweak and QCD corrections in SMEFT.
We deal with this issue in the next section.

4 Enhanced NLO corrections and decoupling relations

The size of perturbative corrections to the decay rate depends on the renormalization
scheme, and it is an important question whether it is possible to find a scheme which reduces
the size of higher-order corrections. In section 4.1 we identify sources of enhanced NLO
corrections to the decay rate, and in section 4.2 we emphasise the importance of decoupling
particles with masses at the electroweak scale from the MS definitions of the b-quark mass
and electric charge when combining QCD and electroweak corrections in SMEFT.

4.1 Structure of the NLO decay rate

The full NLO result for the decay rate, including mass dependence of third generation
fermions, is quite lengthy. However, it is possible to identify two sources of parametrically-
enhanced corrections and their dependence on the renormalization scheme. The first is
logarithms of the small ratio my/my, which appear in the QCD-QED type corrections
contained in the piece Iy, defined in (2.4). The result for these corrections in the my — 0
limit is given in appendix B.2, using the notation in (3.18) in order to keep the dependence
on the renormalization scheme for the b-quark mass explicit. Setting 4 = my and keeping
only the logarithmic corrections in the result, one has

) L m2\ 2 ,
I‘(Zig) ~ o (Qb) ?T (CrasCha + Qpachy,)

My
2 2 A2
3(C C
+ ¢y In <m§> 5 (F% i Qba) [1 + 202 (CHD — =ED (1 - c}”)
my ) 2 T 4 s2

Cuw it Cyr
e M ) R
S TWE T, 2\/§>] 4.1)

where ¢, = 1 (¢, = 0) yields the result in the on-shell scheme (MS scheme) for my,. It is
simple to show that the decay rate in SMEFT depends only on the real parts of the Wilson
coefficients, to the order which we are working. We have therefore used the notation that
Re(C;) = C; in writing (4.1), and do this whenever we write an expression for the decay
rate in what follows. Evaluating (4.1) numerically using the inputs in table 1 below yields

i)
F(4,0)

~ 7 (2.4CHe + 0.02¢h4)

C 2\ e
— 0.5¢m, [1 + 202 (CHD - %D <1 - Cw) + z Crwp — vabHﬂ . (42)
S
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We see that the QCD corrections are dominated by the double logarithmic term on the
first line of (4.1). This term is of IR origin and cannot be removed through a choice of
renormalization scheme.* It would need to be treated with QCD resummation techniques
which we do not explore here. The single logarithmic term in the second and third line
of (4.1) arises from the finite part of the counterterm for b-quark mass renormalization in
the on-shell scheme. Although not as large as the double logarithmic term, it is still a —50%
correction to the LO result, which can be removed from the explicit NLO correction and
resummed by using the MS scheme for the b-quark mass. We conclude that the QCD-QED
corrections to the decay rate are best behaved in the MS scheme for the b-quark mass,
which is indeed standard in SM computations.

The second source of potentially large corrections to the decay rate are weak corrections
enhanced by powers of m? /9%, which appear in the object I'; defined in (2.4). We give
explicit results for the SM and dimension-6 corrections to I'; in appendix B.3, as above
using the notation in (3.18) in order to study the dependence on the renormalization
scheme. The results show that in the MS scheme for the b-quark mass and electric charge
the dominant contributions are due to tadpoles and scale as m}/(9%m?%). The appearance
of such corrections in NLO SMEFT calculations which make use of the MS scheme has
been emphasized in h — v decay in [52], and in the partial NLO calculation of Z — bb
in [30]. In the on-shell scheme tadpoles are absent and the leading corrections scale as
m? /@% We translate this into numerical results using the SM as an example. Keeping
only the leading terms in the large-m; limit, one finds in the MS scheme

f§4’1) N m?
[(4,0) 212 92m?2,

~ —15%, (4.3)

while in the on-shell scheme

L . T-1022\ _
@0 16202, _6+N6ﬁ ~ 3%, (4.4)

where we have set © = my; as appropriate in the large-m; limit and again used the inputs
in table 1. The correction in the MS scheme for the b-quark mass is a —15% correction to
the LO result and thus anomalously large for a weak correction, while that in the on-shell
scheme takes on a much smaller value, in line with naive expectations. The numerical
results for the dimension-6 contributions differ from operator to operator, but it is still the
case that the corrections tend to be larger in the MS scheme than the on-shell one due to
tadpole corrections scaling as m¢/(92m?2;).

The upshot of this discussion is that while the QED and QCD corrections are best
behaved in the MS scheme for my, the electroweak corrections are better behaved in the on-
shell scheme for my and e, where tadpole contributions from heavy particles such as the top

4This contribution arises from the interference of the SM amplitude with dimension-6 amplitudes in-
volving Hgg and H~~y vertices. These vertices do not contain a b-quark Yukawa coupling, so the fact
that the contribution to the decay rate scales as mj is due to a chirality flip in the b-quark propagator,
which vanishes in the massless limit. The appearance of this double logarithmic contribution is thus not in
contradiction with the fact that the leading term in the limit m; — 0 should be IR finite.
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quark cancel. At least in the SM, an apparent compromise would be to use the MS scheme
for all parameters appearing in the tree-level result, be it quark masses, the electric charge,
My or Myz. This is however an imperfect solution, for although in that case no explicit
tadpoles appear in the NLO corrections, they reappear in the RG equations. Moreover, in
SMEFT it is not possible to remove all explicit tadpole contributions in this manner, since
in contrast to the Standard Model they can also appear in the matrix elements for h — bb,
through contributions such as that shown in figure 2(d).

The resolution to this dilemma is to renormalize the b-quark mass and electric charge
such that the QCD-QED corrections are treated in the MS scheme, while weak corrections
involving the top quark and heavy electroweak bosons are treated in the on-shell scheme.
In that way contributions from potentially large tadpole corrections cancel, but logarithms
of my/mpy can still be resummed in the MS scheme. At the technical level, the simplest
way to implement such a scheme is to make use of so-called “decoupling relations”.

4.2 Decoupling relations

Decoupling relations connect MS-renormalized parameters in SMEFT with those defined
in a low-energy theory where the top quark and electroweak bosons are integrated out. A
detailed discussion of this in the SM for the b-quark mass defined in the MS scheme can
be found in [66]. We shall consider only the dimension-4 piece of this low-energy theory,
which we refer to hereafter simply as QED xQCD. This amounts to neglecting terms which
scale as e.g. m7 /M, which are numerically negligible compared to the dimension-4 terms.
We can then write the decoupling relations as

mb(,uz) = Cb(.u7 mg, My, MW) MZ)ml(f) (/‘L) )

&) = Celp, my, mpr, My, Mz)e® (n) (4.5)
where the parameters on the left-hand side are defined in SMEFT, and those on right-

hand side, with the superscript ¢, are defined in QEDxQCD. These parameters obey the
RG equations

(£)

) iy 0 )
dln ’
5(0)
ddln(:j) = (1) €O () (4.6)

In what follows we will make use of the LO anomalous dimensions ~y;, which read

W) =~ [as(w)Cr + a0 (03]
a®
e = S [N,Q7 + N (N, =~ D@3+ Ny )] @)

where Ny = 3 is the number of fermion generations, @, = 2/3 for up-type quarks, and
a®(p) = [ (w)]?/(4r). The parameter mff) () is closely related to that used in B
physics, where one typically includes only five-flavour QCD contributions to the running of
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(e)( (¢ )) ~ 4.2GeV. On the other hand, the parameter @®) (1) is related to the effective
on- Shell coupling a(Myz) according to

a(Mz) . 100«

oMy o (48)

where a(Mz) ~ 1/129 compared the on-shell value o =~ 1/137 (see e.g. [67]).
The ; in eq. (4.5) are decoupling constants. They are determined by using the relation
between the MS and on-shell parameters in the two theories. These take the form

my = 2 (s g me, mar, My, M)y () = 247 (o) 0 (1),
-1
e = 2 (o s, Mu, M)e(p) = [20 )| @ (), (4.9)
where we have used that the on-shell parameters e and m; are defined through non-
perturbative renormalization conditions and do not depend on the Lagrangian. The z;
factors are finite and determine the perturbative shifts between the on-shell and MS pa-
rameters. They fix the decoupling constants through the relations

Zl(lu’v mp, m¢, MH, MW7 MZ)

, (4.10)

mp—0

Ci(lu7mt7mHa MW7 MZ) =

‘
Zi( ) (/‘Lv mb)
where i = e, b.
We write the perturbative expansion of the decoupling constants in SMEFT as

61)

G=1+¢" 4+ ¢ (4.11)

where the superscripts (4, 1) and (6, 1) follow the notation of (2.3). At NLO the decoupling
constants are proportional to the finite parts of heavy-particle contributions to the NLO
renormalization constants. The expression for (. is compact. The SM expression is

2 2
@y _ o L Ty (AN Negoy (H 412
Ge w[m sz ) T e )] 2

and the SMEFT result reads
2
C(G b [\[UTthcQt <éw Re(CtB) + §w Re(CtW)> In <1u2)
e e

my
Cw ; /1'2 §ecl-4(6)
+ 9= 5, M In < ) |t

, (4.13)

fin., mp—0

where Q¢ = 2/3 is the charge of the top quark and the term on the second line of (4.13) is
the UV-finite part of the class-4 electric charge counterterm (3.30) with m; — 0.

The full results for (; are somewhat lengthy and are relegated to appendix B.4. They
are also available (along with those for () in computer files accompanying the arXiv version
of this paper. They simplify considerably in the large-m; limit, where they read

G = bt gt =an?, (4.14)

where 6b; is the UV-finite part of dmy in this limit and is given in (B.17).
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The h — bb decay rate written in terms of the QCD xQED parameters m,(f) and e,
which we denote by I'y, is simple to obtain from the decay rate in terms of the parameters
my, and € in the full SMEFT, which we denote by I'. The LO results are the same up to a
renaming of the parameters, and the NLO results are given by

F§471) :T(A"l) n 2f(4,0) <<l§4,1) T Ce(4’1)> ’

f§6,1) :f(G’l) 4 2f(ZL,O) (Clgﬁ,l) + 46(671)> + 2f(G,O)Cé471)

O3 _
+V2Cy (7(42 ) (CéM) + C§4’1)) ; (4.15)
my,

where we have suppressed dependence on the MS renormalization scale y and introduced
2Myy 8y
eOp)

Eq. (4.15) is obtained by inserting (4.5) into T and expanding to NLO. The same result
can be obtained by replacing dmy/my — dmy/my + ¢ and similarly for de/e in the NLO

7 ()

(4.16)

counterterms (3.11) and (3.12), and for this reason evaluating the decay rate using (4.15)
is equivalent to using a new renormalization scheme. After splitting up the decay rate in
this scheme as

) =T 4T+ T (4.17)

evgv’y rem >’

it is possible to list a simple and illustrative result for the QCD xQED and large-m; limit
of the weak corrections. In terms of the quantities defined in appendix B, we have

Trgn=Tgy, Tyt = [0S (4.18)

The interpretation is that the QCDxQED corrections are calculated in the MS scheme,
while contributions from top-quark loops are calculated in the on-shell scheme, where
tadpoles cancel. This pattern holds for heavy gauge-boson contributions to the decay
rate. In fact, after decoupling, heavy-particle contributions are effectively calculated in the
on-shell scheme, so that the only non-vanishing tadpole contributions are suppressed by
powers of light fermion masses and are negligible numerically.

5 Numerical results

In this section we present results for the h — bb decay rate at NLO in SMEFT. We first give
numerical results with the default choice p = my in section 5.1, and then perform a study
of perturbative uncertainties due to scale variations in section 5.2. Throughout the analysis
we use the renormalization scheme defined in (4.15). Since the decoupling relations used in
that scheme are valid in the limit where all fermion masses except the top-quark mass my
vanish, we shall use this approximation in presenting the numerical results. The dominant
corrections to this limit scale as mg /MEV and typically change the NLO corrections at the
1% level and are thus irrelevant for our discussion. The input parameters needed in the
analysis are listed in table 1.
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my | 125 GeV | m?) (mpg) | 3.0 GeV
my | 173 GeV | @9 (my) | /4r/128
My | 80.4 GeV | 59 (my) | 240 GeV
Mz | 91.2 GeV | as(mpg) 0.1

Table 1. Input parameters employed throughout the calculation, where we have also listed the
derived quantity 6(5)(mH) = 2MW§w/E(Z) (mg) for convenience.

5.1 Results at u = mpg

To quote results for the dimension-6 contributions, we make the dependence on Axp explicit
by defining dimensionless Wilson coefficients according to

Ci(p) = ApCilp) - (5.1)

Contributions to the decay rate from dimension-6 operators are then suppressed by an
explicit power of (9 ()?/ A%p, which for the input parameters in table 1 leads to a roughly
5% suppression factor for Axp = 1 TeV and C; ~ 1.

We shall present numerical results normalized to the LO SM decay rate. We thus define

—(4,0 —(6,0
A0 = L) + T ()
T (ma)
—(41) —(6,1)
ANLO () = ALO() 1 Ly (p) + T (1) _ (5.2)

fgw) (mp)

Using = my and supressing the arguments on 79 (my) and C;(my), we find

A0y =11 T g 746 G — 1412 ¢ ~
H)— + A2 3.714CygwB + 2.00CHo 1~417(£)CbH+1-24CHD . (5.3)
NP my

In quoting this result, we have kept a factor of ©v/my ~ 80 multiplying the Cypy contribution
symbolic. We do this to highlight the fact that the Cg contribution to the decay rate scales
as my, rather than m? as in the SM, which can be seen explicitly in (B.2). The same is
true of six additional coefficients which enter the decay rate at NLO: C’bg, Cow, Cs B, C Hitbs
C’égb and C‘éf;b. It is worth mentioning that if MFV is imposed then all of these coefficients
scale as y, ~ myp/U, so that their contributions to the decay rate scale as mz. However, our
results are not limited to MFV, so keeping factors of v/m; symbolic when multiplying the
coeflicients mentioned above is simply a matter of convenience. For the same reason, when
quoting results from operators such as Qg or QQpg where gauge bosons couple through
field strengths rather than covariant derivatives, we keep enhancement factors of 1/e or

1/gs compared to the SM contributions symbolic. With these conventions, the NLO result
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SM  Crws Chn Cow  Cup
NLO QCD-QED | 182% 17.9% 182% 18.2%  18.2%
NLO large-m; -3.1% —-4.6% 32%  35% —9.0%
NLO remainder | —2.2% —-1.9% -12% 0.6% —2.0%
NLO correction 129% 11.3%  20.2% 22.3% 7.1%

Table 2. Size of NLO corrections to different terms in LO decay rate, split into QCD-QED, large
my, and remaining components. See text for further explanation.

can be written as

50

=(0))2 3 ) N N
ANFO () =1.13 + (© 5 ) {4.16CHWB +2.40CHo — 1 73L(€)CbH +1.33Cxp
NP m,
+2.75CHa — 0.12C%) 1 [ —7.9C +58C’(1)+31@(€)C() 3.1C
. HG . Hq JUHE OV Hgq . 7(@) qtqb tH
b
2.7C 240 —1.9 o Cym —1.3C®) _ 30“” 1. oc( )} x 1072
+ HW + H— m ow — Lol O X
C - - - 5(0) -
+< 9|:Z£+C§I;+C() CHB+CHu+CHc:|_ v ()CbG 7Cw
11 gsTy,
=(0)
0 x(®) g0 BTG 1 NG (O ~ ~

b

N O e .
+ Cris + Crg — ”(z)cmb} -3 [C}}”} +C% 4 cﬁ”}} + 20Hb> x 1073
mb 22 11
50
—4x10°"Y ; )CbB} (5.4)

<O

By far the largest NLO correction is from Cyq, which is a QCD effect enhanced by a
double logarithm in my/mp as described in section 4.1. Order 10% corrections (in units of
92 /A\3p) arise from C’g;, C’( ) and Cpy;. In total there are 16 operators which contribute
at greater than a percent level to the decay rate, 12 of which first appear at NLO.
Generally speaking, an operator gives a significant contribution only if it involves QCD
or large-m; corrections. To illustrate the relative importance of these two effects, we show
in table 2 the division of the NLO corrections to operators appearing at tree level into QCD-
QED corrections, large-m; corrections, and remaining corrections (denoted by fgyg;y, f&t,
and I'y rem)- For the dimension-6 operators, the numbers are defined as the contribution of
the Wilson coefficient C; to I‘( ) divided by its contribution to féo). The results show that
while the QCD corrections are dominant, the electroweak corrections are non-negligible
and depend strongly on the Wilson coefficient. For instance, the electroweak corrections
from Cgp are —11%, while those from Cpp are +3%. Therefore, approximating the NLO
corrections in SMEFT by multiplying the tree level result with a universal K-factor derived

from the SM QCD corrections would be a poor estimate to the full calculation performed
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here. We also note that the large-m; corrections indeed make up the bulk of the electroweak
corrections, although deviations from that approximation are between 10 — 40%. We have
observed that this pattern holds for the other coefficients appearing in the NLO result.

5.2 Scale uncertainties

So far we have given results only at p = mpg. In this section we address two obvious
questions concerning scale uncertainties: first, can the size of NLO corrections be reliably
estimated through scale variations of the LO result, and second, what is the residual
uncertainty beyond NLO?

We shall study these questions as typical in a perturbative analysis, namely by varying
unphysical renormalization scales up and down by factors of two and taking the change
in the decay rate as a measure of the uncertainty due to uncalculated, higher-order cor-
rections. A difference in SMEFT compared to the SM is that while all parameters in the
SM Lagrangian have been determined to good accuracy numerically, the exact values of
the Wilson coefficients in SMEFT are largely unknown. Therefore, when performing scale
variations, we give results symbolically in terms of the Wilson coefficients at a fixed refer-
ence scale. In our case, the natural choice of this reference scale is ;1 = myy, therefore our
task is to express the Wilson coefficients C;(u) in terms of the C;(myg). This is achieved
by solving the RG equations for the Wilson coefficients.

For variations of p by factors of two, u ~ my parametrically, so we can use the fixed-
order expansion of the RG equations rather than the exact, exponentiated solution. In
fact, the same holds for the SM masses and couplings renormalized in the MS scheme.
Given that the anomalous dimensions of the Wilson coefficients are known only to one-
loop, we use this same level of accuracy for the SM parameters throughout this section.
The solutions of the RG equations to NLO in fixed order read

Ci(uc) = Cy(my) + In <:ﬂ5{> Ci(m)

) =) |14 () (22

a9 (ug) =a (mp) [1 + 279e(mp) In <:,Z>} ;

mp

i) = astima) | 1= 2 (i) (22 (5.5)

where

Yg(UR) = aSiZR) (1310A — §)m> . (5.6)

The number of light quarks is n; = 5 and C'4 = 3. Results for v, and -, were given in (4.7),
and C; was defined in (3.16).

We have written (5.5) in a fashion which emphasizes that it is possible to use different
renormalization scales puc and ppr for the Wilson coefficients and the SM parameters,
respectively. Until this point we have set uc = pur = @, but in our scale uncertainty
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analysis it will be useful to consider independent variations of these scales. These scales
appear not only implicitly in the Wilson coefficients, b-quark mass, and the strong and
electromagnetic coupling constants, but also in explicit logarithms in the NLO decay rate.
The explicit logarithmic dependence on the two scales in the NLO dimension-6 results can
be reconstructed from the result at ugr = po = p by using the RG equations along with the
requirement that the decay rate is independent of the renormalization scales up to terms
of order NNLO and higher. The results can be written as

—=(6,0 —(6,0
T (g, ne) =T (ne)

)

p(rc)—=p(1r)

T (s o) = {Féﬁ () +2 [hl < s ) —In (7%};)] (’Yb(MC)Fé(iO) (ne)

my

N Cor () (D)3 (ue)
V2w (ue)

Fé Vue) [ (pc) + %(/ﬁc)]) }

p(rc)—=p(kr)
(5.7)

where p(u) € {@®(p), ml(f) (1), as(un)} are the MS-renormalized parameters appearing in
the calculation. By definition f;’i) (o p) = f&ﬁ’i) ().

With these pieces at hand, we obtain scale uncertainties using the following procedure.
For the SM results, we vary the scale up up and down around its default value mpg. For
the dimension-6 results, we can vary both pr and pc using (5.7). The default setting is
pr = pe = mypy. We then assign an uncertainty to each scale individually by varying it
up and down by a factor of two while leaving the other scale fixed, and add the resulting
uncertainties from the independent pupr and pc variations in quadrature to obtain a total
uncertainty. The numerical values of the scale-dependent parameters at the different scales
are determined in terms of their values at my using (5.5). This results in

(v19)?
ARp
50

-0

AY (my,mpy) =(1+£0.08) + {(3.74 +0.36)Crws + (2.00 +0.21)Cyo

—(1.41+£0.07)—— CbH+(1 24 £+ 0. 14)CHD

+0.35C G £ 0.19CY, + 0.18CH; +0.11C5)

7® (1) C
+ 0.08m( 7 Cotay £ 0.03 —0 +0 03(Crw + Cerr) + . (5.8)
b

where the ellipses indicate dimension-6 terms which contribute less than 3% in units of
02 /Ap. At NLO, we find

( (K))2

2
ANP

ANEO (g mp) = 1137000 + { (4.1670%) Cuwp + (2.407505) Cua

o0

m”

+ (~1734088) TGy + (133708) Conp + (275°04) G
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+ (~0.12408) €)1 (~0.0804%) Cur + (0.06%932) €

IO C -

v

+ (0.08265%) —5Conan + (0:005880) =< + (~0.082853) Con
mb s

+ (0.0355:01) Crw + (—0.0155:05) Cow + ... } : (5.9)

where now the ellipses indicate terms with uncertainties smaller than 3%, other than those
which appear already in eq. (5.8).

We see that the NLO calculation generally leads to a considerable reduction in the scale
uncertainties compared to LO. For the operators already appearing at tree level, the NLO
corrections are on the upper limits of what one would estimate through scale variations of
the LO result. For operators which first appear at NLO, varying the scale in the LO results
generally estimates the size of the NLO contribution quite well. A major exception is the
C ' coefficient. In that case the size of the NLO correction is dramatically underestimated
by scale variations in the LO result, and in fact the NLO result has a larger perturbative
uncertainty associated with it than the leading one. This is not surprising, given that
the large correction from Cp¢ is completely unrelated to RG running, as explained in
section 4.1. A consequence of this is that a new coefficient Cye, which arises predominantly
through the running of C¢, is a significant source of uncertainty in the NLO calculation.

Needless to say, the uncertainties assigned to the decay rate through the above proce-
dure are just estimates, and other methods for varying the scales are possible. The simplest
one is to set up = pco = p and obtain uncertainties by varying the single scale p up and
down by a factor of two. Analytic results for the uncertainties in the LO result, which we
denote by 5??’0), obtained in this way are quite simple: dropping terms of order NNLO
and higher, one has

ST = 22T (4 +7e) |

B _ Cyrr (N2 5O _ 1

5P§6’0) — 921n(2) %Pgﬁ,o)ijlf\(@)mrgzx,o) (%Jr%)JriFg&o) e (5.10)
mb C;—C;

where all scale-dependent quantities are to be evaluated at u = mypy. Compared to the
results (5.8) using the quadrature method, only contributions from the dimension-6 coef-
ficients appearing in the LO matrix elements are changed. Numerically evaluating (5.10)
leads to the following result for those coefficients in units of v2/A%p:

50

(3.74 4 0.20)Crrw g + (2.00 £ 0.06)Crn — (1.41 + 0.08)1—(@01,}1 +(1.24 £ 0.02)Cpp .
my,

(5.11)

The result for Cpy is almost identical to that obtained with the quadrature method, but
the uncertainties assigned to the other coefficients are significantly smaller. Especially
those for Cro (3%) and Cyp (2%) are artificially small uncertainties to assign to an LO
calculation, and for this reason we have chosen the quadrature method by default.

~93 -



Even more conservative methods could be used, for instance a scan over uc and ug
which takes into account simultaneous but uncorrelated variations to include choices such
as ur = mg /2, o = 2my where neither scale is at its default value, but we do not explore
such options here. Our main message is that it is important to assign uncertainties to the
LO result, and these uncertainties are significantly reduced through the NLO calculation.

6 Conclusions

We have calculated the full set of NLO corrections to h — bb decay in SMEFT, obtaining
contributions from the 45 dimension-6 Wilson coefficients which enter the decay rate at
this order. These results form the basis for any future precision analysis of this decay
in effective field theory. While the renormalization of the electroweak sector of SMEFT
is conceptually similar to the SM, in section 3 we highlighted some technical differences
regarding charge renormalization and also Higgs mixing with the Z and neutral Goldstone
bosons. Moreover, the structure of tadpole cancellation in the h — bb decay amplitude in
the on-shell renormalization scheme is rather intricate in SMEFT, since contrary to the
SM, tadpole contributions to the matrix elements, b-quark wavefunction renormalization
and electric charge renormalization must be taken into account.

Our calculation includes both electroweak and QCD corrections, which has led us
to explore hybrid renormalization schemes where heavy particle masses are renormalized
on-shell while the b-quark mass and electric charge are renormalized in the MS scheme.
In such schemes tadpoles do not cancel from the decay amplitude, need to be included
in order to obtain gauge invariant decay results, and can lead to enhanced electroweak
corrections. In section 4 we showed how these enhanced electroweak corrections can be
removed from the decay rate by decoupling contributions from electroweak-scale masses
from the running of MS renormalized parameters, which are then defined in a low-energy
version of QEDxQCD. We obtained the decoupling constants for the electric charge and
b-quark mass to NLO in SMEFT, and used them to calculate the decay rates in a hybrid
renormalization scheme which simultaneously avoids enhanced tadpoles corrections from
the electroweak sector and resums UV logarithms in my/mpyg in the QCD one.

In section 5 we gave numerical results in the aforementioned renormalization scheme
with the scale choice © = my for all MS-renormalized parameters, namely the Wilson
coefficients as well as the b-quark mass and electric charge. We also studied the perturbative
uncertainties in the LO and NLO results as estimated through scale variations. We found
that while in general the NLO corrections stabilize the scale dependence of the decay
rate, genuine NLO effects inaccessible to an RG analysis based on scale variations can be
significant. That said, we advocated introducing two renormalization scales, one for the
Wilson coefficients and one for the MS renormalized b-quark mass and electric charge, and
varying them independently in order to generate more reliable uncertainty estimates than
those obtained from varying a common scale y .

The analytic results for the NLO decay rate in SMEFT are rather lengthy and in-
cluded in computer files with the arXiv submission of this article, both with the full my
dependence, which will be useful for future validations of our results, and in the m; — 0
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limit, which is sufficient for phenomenology. We believe that the renormalization procedure
and uncertainty analysis performed here can serve as a template for future NLO SMEFT
calculations which aim to include electroweak and QCD corrections in a single framework.
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A SMEFT in the mass basis

In the following sections we give some details on writing the SMEFT Lagrangian in the
mass basis after EWSB. The discussion closely follows that in [26], and our main goal is
to keep track of dimension-6 effects related to expressing the Lagrangian in terms of the
physical observables in (2.7).

A.1 The Higgs doublet, vacuum expectation value and mass

The class-2 operator C'y alters the SM expression for the vacuum expectation value of the
Higgs field. Defining the Higgs potential in the SM as

VSM(H) = NHTH —v?/2)?, (A1)

one finds that the vacuum expectation value is shifted by dimension-6 corrections from the
SM value v according to

2 ~2
(HYH) = ~02 =2 (1 + 3CH“T> . (A.2)

1
2 2 4

Class 3 introduces operators that contribute to the kinetic terms of fields found in the
Higgs doublet, these being the Higgs field and the neutral and charged Goldstone bosons.
Appropriate field redefinitions must be made to restore the canonical normalization of the

kinetic terms. As a result the Higgs doublet is written in Feynman gauge as

1 —V2i¢t (x)

H(z) = — o2 : (A.3)
V2 \ [1+ Crgan ] (@) + i |1 = 5 Crap| 0°(@) + 7
where we have defined .
CH,kin = <CHD — 4CHD> f}% (A4)

Notice that in the equations above we have replaced vy with o7 defined in (3.3) when
it multiplies a dimension-6 coefficient, since the difference is a dimension-8 effect. On
the other hand, when vy appears in a dimension-4 term, it must be replaced by (3.6).
Finally, the quantity A in the Higgs potential can be eliminated in terms of the input
parameters (2.7) according to

2 ~ A ~4
m o5 C c 30

A= 11—2Ckxin + 207 | Cuws + —Cup | + —5-Ch| - (A.5)
207, Sw 45, my
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A.2 Gauge fields

In the following section we review the rotation to the mass basis of the gauge fields in
SMEFT, closely following the procedure in [26]. We denote the covariant derivative in the
electroweak sector of the SM by

Dy = 0, —i(g7) A%, (A.6)

where Af, = (Wﬁ, Wi, Wj’ ,By), and the generators are denoted (g7)* =
(927!, 9272, 9272, 1Y), where 71 = ¢! /2 with o/ the Pauli matrices and Y the hypercharge.
When including dimension-6 operators we must first redefine the gauge fields as

By = (1+07Cup) By, W) = (1+03Cuaw) W/, (A7)
to ensure correct gauge field normalization. Additionally, we modify the couplings as
g1 =(1+97Cup)g1,  ga= (1+7Cuw)gs, (A-8)

such that the combinations g1 B, = 1B, and gngf = Qng{ remain unchanged. It can
be shown that g; and go can be written in terms of the physical input parameters listed
in (2.7) as

e @2 e R éw éw
g1 = — <1 — TCHD) , g2 = = <1 + U%? [CHWB + CHD]) . (A.9)

Cw 4 Sw w 48,

The class-4 operator Q) gwp introduces a kinetic mixing term between the ij and B,
gauge fields not seen in the SM, which is of the form ~ —%U%WIEBM. This term can be
removed by a linear shift in these fields, which proceeds as

Al = M@PAY, (A.10)

where A% = (WL W2, W3, B,,), Ale = (W}, W2, W/, Bl,) and

1oy2 022 1 —3v3Chwp
M:( ) X), m:<1 2T , (A.11)
022 m —303Cuwp 1

such that the new ‘primed’ gauge fields have diagonal kinetic terms. These are rotated to
the mass basis according to

At = R®AD (A.12)

where flﬁ comprises the physical gauge fields as flu = (W,f, W, s 24, Au), and R is given by

1

vz V0

M (N
R=1|+v2 2 , (A.13)

0 0 ¢ S

0 O Sw Cw
. 0%, 807 2 o
Cw=Cuw|1+—-Cyp+ —CywnB | , $w=1—cw. (A.14)

4 2¢Cy

— 96 —



With this notation, the relation between the weak-basis fields Aj, and the mass basis fields
A is
a __ ab pbec fc
A, = MTR*A]. (A.15)

In terms of the input parameters in (2.7), the explicit definitions of the photon and Z-boson
fields in terms of the weak-basis fields is

A2 A

~ 2
A 1A ~ w N e
<W3> _ Cw+ §Cwd? (CHD +42TUCHWB) Sw— 45

é2 02

5 52
A~ ~ CywU
B, —Sw + 13, Cup Cy t+ w4TCHD ‘AM

(A.16)

(CHD +4%CHWB) (Zu> ‘

Furthermore, the dimension-6 SMEFT covariant derivative in the mass basis is given by

D, =0, it |14 @oy, + & Wt +w, )
=0y — 14— T T
] e 262 — 1)02 G2 .
—Z[A . <1+WCHD+ v TCHWB> (73_33;@)
CwSw 45z Sw
w2 5 .
+e| 5 Cup +97Cuwp | Q| 2, — ieQA,, (A.17)
w

where Q = 72 +Y and 7F = (71 £i72)/V/2.

A.3 Gauge fixing in R gauges

Gauge fixing in SMEFT has been discussed in [68-70]. In this section we explain our
own implementation, which we have used when verifying the gauge independence of the
decay rate and counterterms with explicit one-loop computations. Throughout this section
we follow closely the notation used for gauge fixing in the SM as presented in [71]. We
parametrise the Higgs doublet in terms of real scalar fields as

_ 1 [—i(¢1 —igo)
B \/§< G4+ i3 ) ’ (A.18)

and use the real representation of the generators, T% = —i7?, where the 7% were defined
below (A.6). We expand each ¢; about its vacuum expectation value, denoted (¢;) = ¢, as

®i = ¢o, + Xi » (A.19)

where ;x4 are the Goldstone bosons, x4 is related to the physical Higgs boson, h, and
¢o0, = Ojavr/ V2 = (0,)Tvr/v2. In R¢ gauges one aims to remove the Goldstone-gauge
boson mixing terms, which in the SM take the form

L2 (0"x:) A} (9T )50, » (A.20)

where (gT)* = (goT", g2T?, g2T3,1T*). The i = 4 component in (A.20) gives no contri-
bution to the Lagrangian.
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We now include dimension-6 effects in SMEFT. We begin by defining the canonically-
normalized fields of the Higgs doublet in (A.3) in terms of those in (A.19) via the
transformation

10 0 0
01 0 0
X X = A.21
Xi = RiXg 001-12Cyp 0 ’ (A.21)
00 0 1 + CHxin
such that the x/} are related to the fields in (A.3) by
1 1
/ + - / + - ! 0 /
= + , = — - , =q, =h. A.22
X1 \/§(¢ 7). Xz \/i(¢ $7), X3=¢ X4 ( )

Moreover, we replace the gauge fields and couplings as in (A.7), (A.8) and (A.10) such that
all the Goldstone-gauge mixing terms of the SMEFT Lagrangian may be written

1
L5 (Xud"xp) AL @1 )5500, + 507 Crp(9"X3) Af (GT")3560,
= (0"x;) A (GF)5 (A.23)

where the second term on the first line of (A.23) is the contribution arising from the
explicit presence of the CypQmp term in the dimension-6 SMEFT Lagrangian. Here we
have introduced the object (g7")*, which is defined similarly to (¢7')* in (A.20), but with
all instances of the gauge couplings replaced as g; — ¢;, and further defined ‘primed’
generators

(gT")* = M*(gT)"
_ _ _ 1_ _ 1
= <92T17 92T2, 92T3 - iglv%CHWBT47 91T4 - 2QZU%CHWBT3) ) (A.24)

where M is given in (A.11), and also the object

’U2

(GF)G = Xi;(GT") 500, + 5i37TCHD(§T')§k¢0k
= (XY@ ko, (A.25)

where in the final line we have used that X has only diagonal elements, X3 = Xg2 =
(X =XV =1, 1+ %C’HD)ng = (X~1)33 and that the X44 component gives
no contribution. In order to calculate the matrix (gF)% we use, for example, that (g7")!¢g
equals g,vr/2 times a unit vector in the ¢! direction. One finds

g, 0 0 0

079 0 0
@Fe="21 """ _ & _ a2
2 00 92(1+ TCHD) "‘ngCHWB 0

2 Y
00 —gl(l + TTCHD) — QQTTCHWB 0

(A.26)
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We follow the Faddeev-Popov gauge-fixing procedure such that the SMEFT gauge-
fixed generating functional Z takes the form

Z=C / DA'DyY exp [z / d*z (5 (A" x'] - ;(GP)] det (%) , (A.27)

where G® is the gauge-fixing function and the object (o//g)? is defined below. We choose
the gauge-fixing function in (A.27) as

_ b
Ve

which defines the R¢ gauges in SMEFT.?> We see that the form of the gauge-fixing function
in (A.28) resembles that of the R¢ gauges in the SM with the gauge fields replaced by their
primed counterparts and F' replaced with F. The Goldstone-gauge boson mixing terms
in (A.23) are then removed by the —3(G)? term in (A.27).

Interactions of SM particles with ghost fields arise through the functional determi-

G (0" A7 — €(GF)5xG) (A.28)

nant in (A.27), for which we must determine the variation of G® under arbitrary gauge
transformations. The gauge transformation of the scalar fields may be written

where the second relation defines the object («/g)®* and the third relation defines the object

(a'/g)* as
G - (5"

We may use (A.21) and (A.29) to find the gauge transformation of x/:

Oé/

5, = (X0 == (2) 0T lon, + Xiand)

o\ _
= (%) @+ (A31)
where we have defined the object (¢7)f; = (X (@14, Xy; . Explicitly (9T)§; acts on
X; as (for brevity and as no other terms enter our calculation, we give only the Higgs
contributions to this term)

G2(1 + Crxin.) 0 0 0
h 0 G2(1 + C kin.) 0 0
(?T)%X; o5 " _ 9 _ 82
2 0 0 9o(1 +07Cpo) + 915 Cawp 0
~2
0 0 ~91(1+ 93Cpo) — Go+Crwp 0
(A.32)

5Note that in principle we can have a different ¢ for each of the physical gauge fields.
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We may similarly write the transformation of the unprimed gauge fields as
a)’ a\’ o\’
§AY =0, <g> — f*a A = 0, (g) — G f <g> A (A.33)

The object ¢ = €€ if q,b,c € 1,2,3 and vanishes otherwise, which we have used to
replace o’ — g,(a/g)? in the above equation. The form of 6A}} in terms of the object
(a//g)® is then found using (A.10), (A.30) and (A.33)

«

—1\a \* — —1\ab rbec cc’ o ¢
SA[ = (M™1)™5AD = 0, (g> — Go (M) frM (g> A (A-34)

We can now calculate the functional derivatives needed to evaluate (A.27) using the results
in (A.31) and (A.34). First, one has

JA L

(note that the gauge fields here are the unprimed gauge fields), where the explicit result is

=0, w3 -W2  503CawsW}
oo | W s, whoSddowewt|
“w =92 2 . 1 1 . ( . )
WM W# 5728“ 0
1 1. 1
§U%CHWBW5 _jv%CHWBW/} 0 5—267”

From (A.35) and (A.31), the variation of the gauge-fixing function, G* in (A.28) is

G 1
5o/ /g)"  VE

Following the usual procedure the ghost Lagrangian is

(M5! +€@P)t (@F)s+ @T k) - (A.37)

Laow = [~ (M) = @)% (@F)s + GTING ) | (A.38)

The ghost fields in (A.38) are given by ¢* = (cy1, ey, cyys, ¢p), and similarly for the fields
in ¢®. The form of the ghost mass matrix in (A.38) is

(Mipost)™ = E(GF)$(GF)], (A.39)
which is diagonalized by the matrix R in (A.13) such that
(M ghost) ™ = (B~ “(mignog) ' R™ = diag(My, My, Mz, 0). (A.40)

The ghosts in the mass basis, denoted u® and u®, are thus related to those in the weak
basis by

& =R%L, @ =u"(R Y, (A.41)
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where u® = (up+,uy-,uz,ua), and similarly for u®. With the gauge fields A, written
in terms of the mass basis as described in (A.15), the ghost Lagrangian in the mass basis
is therefore

Lypost = [ = (R MIRD) =6 (0 g™ + (R GGG R | o
(A.42)

Although our derivation is rather different, we find that the Feynman rules produced by
the Lagrangian in (A.42) exactly match those found in [68].

A.4 Yukawa sector

The fermion masses in SMEFT involve the Wilson coefficients of class-5 operators as well
as the SM Yukawa matrices. The relevant part of the Lagrangian (following the convention
used in [24-26]) is given by

LD - [[YU]TITQIZITjﬂT’l Iraj + [Yd]nrzHUEm Iroj t D/G]TN‘ZHUEM lrpj +hec.

+ [C’;;H (HYHYH Y0, qyy5 + Chyy (HTHYHY A, gpy5 + Cyp (HTH)HVE,, 1,5 + h-C-] :
T2r1 T2T1 T2r1

(A.43)

where the subscripts j and r; are SU(2) and generation indices respectively. In what
follows we perform rotation to the mass basis using the down-type quarks as an example
and suppress the explicit addition of the hermitian conjugate (+h.c.). After spontaneous
symmetry breaking in unitary gauge and keeping only dimension-6 terms one finds

T U% *
Lmass = _Ean [Yd]rlrz - 70%1;’1

1

V2

where Ly, is defined as the term proportional to the hap1p operator. Additionally we have

>dL7»2 = _8Rr1 []\461]74”,2 dLT‘Q R (A.44)

_ 3, .
ﬁyUk - hdRTl < [Yd]TlT’Q [1 + CH,kin] - 7U%CdH )dLT2 ) (A45)

2 T2T1

included the subscripts L and R on the quark fields to denote their handedness. As usual,
we perform rotations on the quark fields to go to the mass basis

dRTl — [UdR]Tlr‘g dRT‘Q ) dLrl — [UdL]Tlrg dL'r'2 5 (A46)

such that
{U;RMdUdL} = [md]r1r2 ) (A47)

172

where [mg] = diag(mg, ms, my). After the field rotation, the hin) term becomes

1

- V2 m
ﬁh dpy, ( [1+ Chxin) p (mal,,,, — v32C > dir, | (A.48)

r1r2

‘Cyuk = -

where

il = Ul Clula,| (A.49)

riro r1iT2
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Thus, in the mass basis the Wilson coefficients contributing to ki) couplings are a linear
combination of those in the weak eigenstate basis. Similar results can be derived for any
Wilson coefficient C"* multiplying a mass-basis operator containing fermions.

Note that in contrast to the SM, SMEFT contains flavour-violating Higgs couplings
even in the mass basis. However, in our calculation we approximate the CKM matrix by
the unit matrix, in which case these flavour-violating couplings do not contribute to the
NLO h — bb decay rate at dimension-6.° This allows us to introduce a compact notation
for the Wilson coefficients such as (A.49) which multiply the mass-basis operators entering
our calculation. First, for operators involving right-handed fields we can always indicate
the generation by the explicit flavour. Examples of this are

CbH = Cg}q, CH,u = Cge 5 CtW = CQTW N (A.50)
33 22 33

and similarly for any fermion f. Some Wilson coefficients for operators containing left-
handed fields use the subscripts g, and £, so it is not possible to indicate the doublet
generation r through the flavours it contains. However, the third generation plays a promi-
nent role in our calculation, so our convention is to suppress any dependence on r = 3
but display explicitly the flavour indices only on operators involving first- and second-
generation fermions, which appear through electroweak boson self-energies and tadpoles.
Examples of operators in this notation are

1 m(1l 1 m(1l
cét;b = cqugg : o},; = CH; ) (A.51)
3333 22 22

where the first coefficient multiplies a mass-basis operator with field content #tbb and the
second coefficient multiplies a mass-basis operators with fermion content ¢¢ and ss.

An important feature of SMEFT in the mass basis is that couplings between left and
right-handed fields are not always associated with powers of the fermion mass, as in the SM.
For instance, the Cpp operator contains a hbb coupling which is not proportional to the
b-quark Yukawa, which is y, & v/2my, /07 in the mass basis. For this reason h — bb offers an
important probe on the flavour structure of SMEFT. However, in this work we are interested
in the structure of NLO contributions in SMEFT rather than questions of flavour, so in our
numerical analysis it is convenient to display results in such a way that all contributions
to the decay rate multiply a symbolic factor of mg /92 as in the SM. We emphasize that
this is not a restriction of our calculation but rather a matter of convenience. However,
if the Wilson coefficients are generated by a new physics scenario which respects Minimal
Flavour Violation (MFV) [72] it is something which occurs naturally. See refs [26, 73] for
further discussion on this in the context of SMEFT.

5Beyond this approximation, h — bb decay receives dimension-6 contributions from flavour-violating
Higgs couplings such as hct (as well as from dimension-6 flavour non-diagonal charged couplings) through
one-loop diagrams involving W bosons (and charged Goldstone bosons in Feynman gauge). However, such
contributions are suppressed by at least by a factor of Vg, ~ 0.04 (and in some cases by additional CKM
factors as well as chiral factors of m./m:) compared to the flavour diagonal effects we have included and
are thus expected to be phenomenologically negligible. While calculating the full set of CKM-suppressed
corrections is beyond the scope of this work, we have checked by explicit calculation that the hct couplings
contribute to the decay rate at less than the per mille level in the units of (7(“)?/A%p used in (5.4).
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Figure 3. Virtual (a, b) and real (c) corrections to the h — bb decay rate due to the hyZ vertex
generated by the operators Qgp, Qrw and Qgwps.

B Analytic results

In this section we give analytic results for the LO decay rate and the NLO QCD-QED
corrections I'y , in the small-m; limit used in our numerical analysis, as well as the large-
m; corrections I'y. We give results which can be easily converted between the on-shell
and MS schemes for X € {my, e} using the notation in (3.18). We will also need to split
the finite part of the counterterms in the on-shell scheme into QCD-QED, large-m;, and
remaining pieces. To do so we define

5m(i)O.S.,ﬁn. ' ) '
=)+ b + 6b)
b
(1)0.S.,fin , , ,
e - = 6¢l)) + s + 6elD), (B.1)

where the superscript ¢ = 4, 6 labels the NLO contribution from dimension-i operators. We
use this notation throughout the section.

B.1 LO decay rate

The LO contributions to the decay rate as defined in (2.2) are given by

ro) _ Nemamg (B.2)
8%@% ’
Cup ez ¢ o Cop | .
P60 _ op(0) {c _ Gup <1_ G log o DGl gy
HO 1 52 5, CHWB ~ Vol (B.3)
B.2 QCD-QED corrections
The NLO result for the QCD-QED corrections in the SM can be written as
4,1) _ 1(4,1) 4,0) 57.(4
DD =T, + 260, T4 600 | (B.4)
while that in SMEFT takes the form
9 . (6,0
6,1) _ w(6,1) 1054y [ Com07 0p T
L0 =T + 26, 05000 ( 75 ma r<470>> : (B.5)
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where

2 2
s - (Cemr i [y 3y, (2] 88

™

and we have used that 5b§% = 0 in the small-m; limit.

The fgﬁ are the QCD-QED corrections to the decay rates in the MS scheme for my.
The QCD corrections were obtained in [56]. Most of the QED corrections can be derived
from those results by making appropriate replacements. The exception is the contribution
proportional to the hyZ vertex in SMEFT, which arises from the real and virtual emission
diagrams in figure 3 and has no analogue in QCD. We have obtained the contributions
from these diagrams to the decay rate by evaluating and adding together the virtual and
real corrections as in (2.5). This new result together with the other QCD-QED corrections
in the small-my limit can be written as

2 2
f(4:1) — 140 (CW> [17 + g]n (,u)] ,

9,y 2
T 4 myy

w41
_ r 2 2 Q
TOD —p6o g7 | %F(4’0){ T <CFOéstG’ + =2 a (Chplw — C’bW§w)>

9,7 o " V20rmy \ gs =0)
2 2 2 mg 1
+ (C’FasC’HG + Qpa Chw) [19 —7m“ +1In <2> 4+ 61n <2>}
my my
MG p® mp
+ Chyz QR Fryz <m12q’ miﬁ{’ mi% ) (B.7)

where cp, was defined in (3.28), and
¢hyz = 2(Cug — Cuw)éwdw + Cawp(és, — 83) (B.8)

is the combination of Wilson coefficients entering the hvyZ vertex in SMEFT. The con-
tribution proportional to this vertex multiplies v, = —(% +2Qp52)/(2é458y), which is the
vector coupling of the Z-boson to b-quarks in the SM, as well as a new function Fj,z. For
arbitrary values of its arguments it is given by

3 39 4 4
iz (2%, b) = 7 B(8z = 5) = B° <4 + 2) — gtz 4 gtz

s, 2 (26— B%)22
+6,8<5 —§Z+T

) In(b) + 2(8% — 2)ZIn(x,)? — 48,22 In(vs,)
+ In(z) (—; (154 78% + 82(42 — 7) + B%(2 + 82)) + 2(z — B*)ZIn(x>)

+ 4(52 —2)ZIn(1 — zx,) + 2(62 — z)zln(xﬂz)>

z 2 zZ)— z
+1n(xz)</3ﬁz (8 (221)1; ) =2) o 52)zln(x5z)>
3132 22 n(z
+4B22In(z) + CHC +22bb2) In(2) —68°In (%)
+4(B2 - 2)z (Lig (;) + Liy (:sz)) : (B.9)
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where

4b 1-8
=v1—-4 =4/1- = =__=
IB b7 Bz Z’ x 1+/B7
1_/82' B_ﬂz —
z = 9 z = 5 :1_ . BlO
Y T BB, ‘ ‘ (B.10)

In our numerical analysis, we use the mp — 0 limit of the above result. The function is
finite in this limit and simplifies to

4
Fpyz (2,0%,0) = =12+ 4z — §7r + (3+ 22 +22°In(2)) In(2) + 42°Lis(2) — 6 In(4?) .
(B.11)

B.3 Large-m; corrections

The large-m, limit of the virtual corrections to the decay rate in SMEFT has been calculated
n [55]. However, those results were limited to the on-shell scheme, and used (3.7) rather
than (3.6) to eliminate vp, as appropriate in the Gp scheme. In this section we remove the
restriction to the on-shell scheme, which requires the inclusion of tadpoles, and also give
results where My, instead of Gy is used as an input parameter.

We write the SM result as

F§471) _ [FtO.S.](‘lal) . 2Emb5b§4)F(4’0) , (B.12)

and that in SMEFT as

(6,1) _ p0.s.7(6,1) 4,0
I = [rps]™ —or )<Cmb /2 my | TG0

9 . 6,0)
o6 + ooyY <CbHUT o L >

+ 0656§6)> ,

(B.13)

F?'S'

where we have cx = 1 — cx with X € {my, e}. The quantity is the decay rate renor-

malized in the on-shell scheme for m; and e. The SM and dimension-6 contributions are

7 —10¢2 m?
ros. (4,1):P(4,0) 64+ N w t B.14
o] e 352, 167202, (B14)
0.8.1(41)
[FO.S.] (6,1) :F(G,O) [Ft ] _ 11'1(6:0) In LZ
t [(4,0) 2 ¢ m?
2+ 4¢2 3¢2 1+ 2¢
reo M f Nt Oy (552 4 N
+ Ten2 | “HE 332 HD §%U+ <6l
Cw 5 — 8¢2 Coy 07 [ 17 1—2¢
Cuwp=2(-12+ N, w — =5 +3N.—*%
ey (2wt ) GRE (25 vty
1—2“2
+2C§§;< 14+ N € )} (B.15)
’LU
The p-dependence is governed by
. . dC;
FE&O) — 1(6,0) = i ’ (B.16)
dln'u m¢—r00
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where the results for Cf can be found in [55]. It is convenient to split the terms from mass
and electric charge renormalization into tadpole and the remaining contributions as

m2
5bt == W <5bt + 7(5()75 tad> 5 (B].?)
T
m? [ mg )
5615 = m (5€t + @56t,tad . (B18)

The quantities b, and dé; have been calculated in [55], and are given by

3 2
—=In|— B.19
(7)) (19

) _ O
0b, = 1
b(6) ) { §4 <CHD A2 —l-QCHWBA +20§{)>

2
(Cth + (14 2N0) + CrClyn, ) [1 +1n <7’;2>] } , (B.20)
sel =56l = 0. (B.21)

The tadpole contributions are new, and read

4 u?
50, = AN [1 +In <2>} , (B.22)
my
6 Cup o O Cyppr |
o} t)ad = 25b§ ha [CHD i (1 - 3w> + 3 CHWB - mz\f] 7 (B.23)
sel) =0, (B.24)
2
(YEGt)ad = 8N, [Cupés, + Cuwssy — CuwBCwde] 17 {1 +1In <7l;2>} ) (B.25)
t

B.4 Decoupling constants

We present here the decoupling constants for the b-quark mass as described in section 4.2.
Expressions for the tadpole contributions can be found in egs. (3.24) and (3.27). Although
the results here make use of the expressions for the tadpoles in Feynman gauge, the re-
sults for the decoupling constants are gauge independent; switching gauges simply moves
contributions between the tadpoles and other parts of the expression.

First, the SM result is

1 6m?
4,1) 2 ~2 ~4 2 t
Cy(nb 7576%%% {MZ (11 + 2¢;, — 400w) + 9m; <mf — M%/ - 11>
54mi (mi — 2M3,) | ( ,ﬂ) N 18M3, (2mf — TmI M3, + 2My,) . < 12 )
- PRl ) © 2
(mf — M) (m} — M)* My

2
my

(B.26)

“Imp—0

2
2 2 2 M 1 (4)
+ 6 (4My (1 — 2¢;,) + TM3) log <M%> } — ml%I@TTFeyn
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We write the dimension-6 result as

1 1
6,1 76 (6,0)177(4) (6,1)
T(nb ) m2 @ Feyn. my—0 mme Re[ML } Feyn mp—0 Cmb,no—tad. : (B27)
The non-tadpole contribution in Feynman gauge, § N 31 otad s 1S given by

C(6 1) C(ﬁ 1) +C log M2 + C log W
mp,no-tad — Smy, NL mp, LH mH mp, LW M2

p (6,1) s
+¢ bLZIOg<J\4%>+C bLtlog<7n?>’ (B.28)
where (the Wilson coefficients C; below are understood to be Re(C;))
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Table 3. The 59 independent baryon number conserving dimension-6 operators built from Standard
Model fields, in the notation of [24]. The subscripts p,r,s,t are flavour indices, and o! are Pauli

matrices.
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