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LOCAL ALGORITHMS FOR INDEPENDENT SETS ARE
HALF-OPTIMAL

BY MUSTAZEE RAHMAN1 AND BÁLINT VIRÁG2

University of Toronto

We show that the largest density of factor of i.i.d. independent sets in the
d-regular tree is asymptotically at most (logd)/d as d → ∞. This matches
the lower bound given by previous constructions. It follows that the largest
independent sets given by local algorithms on random d-regular graphs have
the same asymptotic density. In contrast, the density of the largest indepen-
dent sets in these graphs is asymptotically 2(logd)/d. We prove analogous
results for Poisson–Galton–Watson trees, which yield bounds for local algo-
rithms on sparse Erdős–Rényi graphs.

1. Introduction. Local algorithms are randomized algorithms that run in par-
allel at each vertex of a graph by using only local information around each ver-
tex. They produce important structures in large graphs, such as independent sets,
matchings and colourings, with only constant running time (see [7–9, 11, 14, 16,
19, 20] and the references therein). In this paper, we investigate local algorithms
for high density independent sets in random d-regular graphs. We find an optimal
bound for the density of such independent sets as the degree becomes large. It turns
out that in this limit local algorithms can only yield independent sets with half the
maximum possible density. The motivation for our work comes from questions
that arose in the theory of graph limits (see [11, 16] and the references therein).
In particular, Hatami, Lovász, and Szegedy conjecture ([16] Conjecture 7.13) that
most optimization problems over typical, sparse graphs can be solved by local
algorithms.

We use the following notion of local algorithm introduced in [16]. The input to
the algorithm is a graph G. The algorithm decorates G by putting i.i.d. labels on
the vertices. The output is (f (i(v));v ∈ G) where f depends on the isomorphism
class i(v) of the labelled, rooted r-neighbourhood of v for some fixed r . The pro-
cess (f (i(v));v ∈ G) generated by the local algorithm will be called a factor of
i.i.d. process. See Section 2 for a more formal definition.

While the conjecture of Hatami, Lovász and Szegedy was verified for maxi-
mal matchings [5, 9, 20] and covariance structures [1], Gamarnik and Sudan [15]
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showed that it fails for maximal independent sets. An independent set in a graph is
a set of vertices that have no edges between them.

It is known from [2] that for each d the size density of the largest independent
sets in a random d-regular graph on n vertices converges almost surely as n → ∞.
Furthermore, Bollobás [3] and McKay [21] proved that with high probability the
size density of the largest independent sets in random d-regular graphs is at most
2(logd)/d for every d ≥ 3. Frieze and Łuczak [12, 13] provided lower bounds
of matching asymptotic order for large d . Recently, precise formulae were given
for large d by Ding, Sly and Sun [10]. On the other hand, several authors have
produced local algorithms on d-regular graphs of large girth that yield independent
sets of density (logd)/d for large d (see [14, 19, 23]). These algorithms use greedy
strategies to construct independent sets and can be easily adapted to random d-
regular graphs.

Thus, for large d , the density of the largest independent sets in random d-regular
graphs is of order 2(logd)/d while local algorithms have only produced indepen-
dent sets with density of order (logd)/d . The conjecture of Hatami, Lovász and
Szegedy would imply that local algorithms can in fact produce independent sets in
random d-regular graphs of density 2(logd)/d .

Gamarnik and Sudan [15] disprove this conjecture by showing that for large d

local algorithms cannot find independent sets in random d-regular graphs of den-
sity larger than (1 + 1√

2
)(logd)/d . Their crucial step is to prove that with high

probability any two high density independent sets in random d-regular graphs
have a substantially large or substantially small intersection. This observation was
guided by predictions from statistical physics regarding the solution-space ge-
ometry of constraint satisfaction problems [22]. In particular, the so called clus-
tering phenomenon is expected to hold for independent sets in sparse random
graphs. Rigorous results have been established in this regard by Coja-Oghlan and
Efthymiou [6] and in the aforementioned work of Ding, Sly and Sun [10]. It is
shown that for large enough d , some of the properties that determine clustering
emerge for independent sets in random d-regular graphs at size density (logd)/d .

In this paper, we analyze the intersection densities of many independent sets in
random regular graphs. We show that with high probability (i.e., with probability
tending to one as the size of the graphs tends to infinity) the intersection densities
must satisfy various inequalities. These structural results on the admissible inter-
section densities imply quantitative bounds on the density of independent sets that
can be generated from local algorithms. With the help of these inequalities we
prove that for any ε > 0, local algorithms cannot find independent sets in random
d-regular graphs of density larger than (1 + ε)(logd)/d if d is sufficiently large.
In practice, iterative search algorithms that use local moves at each step fail to
find independent sets with density exceeding the critical threshold of (logd)/d in
random d-regular graphs. Our result provides some evidence as to why this is the
case.
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We also consider local algorithms for independent sets in Poisson–Galton–
Watson trees. These yield local algorithms for independent sets in sparse Erdős–
Rényi graphs. We prove that the maximal density of local independent sets in a
Poisson–Galton–Watson tree of expected degree λ is of asymptotic order (logλ)/λ

as λ → ∞. The aforementioned results of Bollobás [3], Frieze and Łuczak [12, 13]
show that the largest independent sets in Erdős–Rényi graphs of average degree λ

have density of asymptotic order 2(logλ)/λ as λ → ∞.
The challenge in proving upper bounds to the density of local independent sets

in Poisson–Galton–Watson trees is showing that the randomness of the tree does
not provide local algorithms with extra power. Also, in order to show the existence
of local independent sets having density close to (logλ)/λ we employ a coupling
argument that produces independent sets in Poisson–Galton–Watson trees from
independent sets in regular trees.

1.1. Organization of the paper. In Section 2, we define the notion of a local
algorithm for independent sets in the d-regular tree and relate it to local algorithms
on finite d-regular graphs. Our main result about the density of local independent
sets in regular trees is stated in Theorem 2.1. In Section 2.1, we introduce the key
inequality, stated in Theorem 2.2, that is satisfied by the intersection densities of
any finite collection of local independent sets in the d-regular tree. Using this in-
equality, we prove Theorem 2.1 in Section 2.2. In Section 3, we prove Theorem 2.2
by employing combinatorial arguments involving random regular graphs. In Sec-
tion 4, we state and prove our main result, Theorem 4.1, on local independent sets
in Poisson–Galton–Watson trees.

2. Local algorithms for independent sets in regular graphs. We define the
notion of local algorithms for independent sets in regular trees. Let Td denote the
rooted d-regular tree, and for r ≥ 0 let Td,r denote the rooted r-neighbourhood
of Td . A labelling of Td is a vector x ∈ [0,1]Td , and a random labelling is
a labelling X where the co-ordinates X(v), v ∈ Td , are independent, uniformly
distributed random variables on [0,1]. A factor on Td is a measurable function
f : [0,1]Td → {0,1} (w.r.t. the Borel σ -algebra) such that f is invariant under all
root preserving automorphisms of Td . In other words, f is spherically symmetric
about the root. We say that f depends on the r-neighbourhood of the root if f is
defined on [0,1]Td,r .

Any factor f on Td defines a set-valued stochastic process I on Td as fol-
lows. Any graph automorphism φ of Td acts on labels x ∈ [0,1]Td by φ · x(v) =
x(φ−1(v)). Since the automorphism group of Td acts transitively on the vertices,
given any vertex v let φv be an automorphism that maps v to the root. For a random
labelling X of Td , define I (v) = f (φ ·X). Due to f being invariant under root pre-
serving automorphisms I is well defined. We call I a factor of i.i.d. process on Td .
Note that the distribution of I is invariant under the action of the automorphism
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group of Td (however, factor of i.i.d. processes are more restrictive than invariant
process).

A factor of i.i.d. independent set in Td is a factor of i.i.d. process I such that I

is an independent in Td with probability 1. Since the distribution of I (v) does not
depend on the vertex v, we define the density of I as

density(I ) = P
[
I (root) = 1

] = E
[
f (X)

]
.

It is easy to see that a factor that generates independent sets can be approximated
by similar factors that depend on finite size neighbourhoods of the root (see [16],
Section 12). In this manner, a factor of i.i.d. independent set of density ρ can
be approximated by finite neighbourhood factor of i.i.d. independent sets whose
densities converge to ρ. Hence, there is no harm in assuming that all our factors
for independent sets depend on finite size neighbourhoods of the root.

Example: A construction of Lauer and Wormald. In [19], the authors analyze
the following algorithm that generates factor of i.i.d. independent sets in Td . Fix
p ∈ (0,1) and an integer k ≥ 1. Let U0 = V (Td) and for 1 ≤ i ≤ k do the fol-
lowing. Let Si ⊂ Ui−1 be a random subset resulting from the output of a Bernoulli
percolation on Ui−1 at density p. Set Ui = Ui−1 \ (Si ∪N(Si)), where N(Si) is the
one-neighbourhood of the set Si in Td . Consider the subset I ′ = ⋃k

i=1 Si . I ′ may
not be an independent set only because some Si may contain both vertices along an
edge. If a vertex v ∈ I ′ has one of its neighbours also included in I ′ then exclude
v from I ′. This results in an independent set I ⊂ I ′.

The random set I is a factor of i.i.d. independent set since the decision rule to in-
clude a vertex is (deterministically) invariant of the vertex, and the rule depends on
the outcome of k independent Bernoulli percolations on Td . A little thought shows
that the factor for I depends only on the (k + 1)-neighbourhood of a vertex. Lauer
and Wormald show that taking k = c

p
and then letting p → 0, followed by c → ∞,

results in independent sets whose densities converge to β(d) := 1−(d−1)−2/(d−2)

2 .

A simple analysis shows that log(d−1)
d−2 − 2(

log(d−1)
d−2 )2 ≤ β(d) ≤ log(d−1)

d−2 .

From trees to finite graphs. Given a factor of i.i.d. independent set I in Td , we
can construct a (random) independent set in any d-regular graph G on n vertices
via the following procedure. Recall that I uses a factor f that computes I (v) by
looking only at the isomorphism class of the labelled r-neighbourhood of v in Td .
We begin with a random labelling X of the vertices of G. Given any vertex v ∈ G

if its (r + 1)-neighbourhood, Nr+1(G,v), is a tree then set IG(v) = f (X(u);u ∈
Nr(G,v)). This is allowed since Nr(G,v) = Td,r by assumption. Otherwise, set
IG(v) = 0.

We verify that IG is an independent set. For any edge (u, v) such that both
Nr+1(G,u) and Nr+1(G,v) are trees, the pair of values (IG(u), IG(v)) is the
same as the values (I (a), I (b)) for any edge (a, b) of Td with labels (Xi; i ∈
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Nr(G,u) ∪ Nr(G,v)) lifted to Nr(Td, a) ∪ Nr(Td, b) in the natural way. Thus,
(IG(u), IG(v)) �= (1,1) as required. On the other hand, if one of Nr+1(G,u) or
Nr+1(G,v) is not a tree then at least one of IG(u) or IG(v) is 0. Consequently, IG

is an independent set in G. Notice also that if B(G) is the number of vertices of G

whose (r + 1)-neighbourhood is not a tree then the expected size density of IG is
E[|IG|/n] = density(I )(1 − B(G)/n).

We are going to use this technique to project factor of i.i.d. independent sets
from Td to finite, d-regular graphs. The resulting processes on the finite graphs will
be referred to as independent sets from local algorithms. We are now prepared to
state our main result for independent sets in d-regular graphs. Define the quantity
αd as follows:

(2.1) αd

logd

d
= sup

{
density(I ) : I is a factor of i.i.d. independent set in Td

}
.

THEOREM 2.1. The following inequality holds for αd :

lim sup
d→∞

αd ≤ 1.

In other words, for any ε > 0 there exists a D such that if d > D then there are no
local algorithms that generate independent sets in Td having density larger than

(1 + ε)
logd

d
.

2.1. Key inequality for intersection densities of local independent sets. We
prove Theorem 2.1 by way of contradiction. Assuming otherwise, we pass to a
subsequence in d and assume that for some α > 1 we have αd > α for every
d along the subsequence. It follows that for each such d there exists a factor
of i.i.d. independent set in Td , say Id , such that the density of Id is α

logd
d

. Let
fd : [0,1]Td → {0,1} denote the factor associated to Id . Recall we may assume
that fd depends on a finite size neighbourhood of the root. So we assume that fd

depends on the rd -neighbourhood of Td .
Now we construct many copies of Id that are correlated with each other via a

parameter that we will control. Fix p ∈ [0,1] and let Sd = Sd(p) denote a random
subset of the vertices of Td generated by a Bernoulli percolation of density p.
Also, let Xi for i ≥ 0 denote independent random labellings of Td . We construct
independent sets Id,i for i ≥ 0 by letting Id,i be generated from the factor fd with
labels X0(v) for v ∈ V (Td) \ Sd and Xi(v) for v ∈ Sd .

As fd is defined on [0,1]Td,rd it follows that Id,i(root) depends only on the
labels X0(v) and Xi(v) for v ∈ V (Td,rd ) and the subset Sd,rd = Sd ∩ V (Td,rd ).
Also, the joint distribution of the sets Id,i is exchangeable over i and each Id,i

follows the distribution of Id . This implies that the intersection of any k of these
local independent sets have a common density, which we denote αk,d,p

logd
d

. Note
that α1,d = α. To reduce notational clutter, we will denote rd by r and Sd,rd by S

until the end of Section 2.
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We will achieve a contradiction by first showing that these intersection densities
are constrained to satisfy an inequality for each k. Second, we will violate these
inequalities by tuning the coupling parameter p (under the assumption that α > 1).
The next theorem introduces these key inequalities. Their proof, discussed in Sec-
tion 3, is based on a structure theorem about independent sets in random d-regular
graphs.

THEOREM 2.2. For each k ≥ 1, the quantities αi,d,p for 1 ≤ i ≤ k satisfy the
following:

(2.2) lim inf
d→∞ inf

p∈[0,1]

k∑
i=1

(−1)i−1
(
k

i

)
αi,d,p(2 − αi,d,p) ≥ 0.

Theorem 2.2 is proved by counting the expected number of k-tuples of inde-
pendent sets (Ii, . . . , Ik) in random d-regular graphs such that their intersection
densities are close to the quantities αi,d,p

logd
d

for 1 ≤ i ≤ k. We show that if (2.2)
fails then the probability of observing such k-tuples of independent sets in random
d-regular graphs is vanishingly small as the size of the graphs tend to infinity. On
the other hand, Lemma 3.4 implies that the existence of the local independent sets
(Id,1, . . . , Id,k) allows us to observe such k-tuples of independent sets in random
d-regular graphs with high probability and so (2.2) must hold.

Relation to the approach of Gamarnik and Sudan. In their paper [15],
Gamarnik and Sudan derive inequality (2.2) for k = 2. The k = 2 case gives

inf
p∈[0,1] 2α(2 − α) − α2,d,p(2 − α2,d,p) ≥ 0 for all large d.

To minimize this in p, we certainly want to set α2,d,p = 1 for every d . It turns
out that α2,d,p is continuous in p (see Lemma 2.3) with α2,d,0 = α and α2,d,1 =
α2(

logd
d

). So if α > 1 then for all large d we can find a value of p such that
α2,d,p = 1. This implies that the density α satisfies α(2−α) ≥ 1/2, or equivalently,
that α ≤ 1 + 1√

2
. This is the conclusion of Gamarnik and Sudan.

We may also analyze (2.2) for k = 3 to conclude that α ≤ 1 + 1√
3
. Indeed, we

have that 3α(2 − α) − 2α2,d,p(2 − α2,d,p) + α3,d,p(2 − α3,d,p) ≥ 0 for large d . If
α > 1, then for all large d we may choose a value of p such that α2,d,p = 1. Also,
observe that α3,d,p(2 − α3,d,p) ≤ 1. Thus, we conclude from (2.2) that 3α(2 −
α) − 2 + 1 = 3α(2 − α) − 1 ≥ 0. This implies that α ≤ 1 + 1√

3
.

We do not know how to solve the minimization problem in p exactly for k ≥ 4.
In order to analyze (2.2) for large values of k, we are going to make a choice of
p for each d (and fixed k) that allows us to bound the sum in (2.2) from above as
d → ∞. This upper bound is going to be a quantity that we can analyze in the large
k limit. From there, we will derive a contradiction to the assumption that α > 1.
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2.2. Proof of Theorem 2.1 from Theorem 2.2. Given the setup thus far we be-
gin by interpreting the αk,d,p in a probabilistic manner. We show that the values
αk,d,p

α1,d
can be realized as the moments of a random variable. This random variable is

defined on a new probability space, which is obtained from the original probability
space by essentially restricting to the support of the factor fd . Formally, the new
sample space is the set {fd(X0) ≡ 1} considered as a subset of the joint sample
space of X0,X1, . . . , and S. The new σ -algebra is the restriction of the σ -algebra
generated by S,X0,X1, . . . to {fd(X0) ≡ 1}. The new expectation operator E∗ is
defined by

E
∗[U ] = E[fd(X0)U ]

E[fd(X0)]
for any random variable U defined on {fd(X0) ≡ 1}.

If F is a σ -algebra such that fd(X0) is F -measurable, then for any random
variable U defined on the original probability space, we have

E
∗[U |F] = E[U |F].

This is to be interpreted by restricting F to {fd(X0) ≡ 1} on the left-hand side and
the random variable E[U |F] to {fd(X0) ≡ 1} on the right-hand side. To prove this,
suppose that Z is a F -measurable random variable. Then

E
∗[

ZE[U |F]] = E[fd(X0)ZE[U |F]]
E[fd(X0)]

= E[E[fd(X0)ZU |F]]
E[fd(X0)]

(
fd(X0) and Z are F-measurable

)

= E[fd(X0)ZU ]
E[fd(X0)]

= E
∗[ZU ].

Define a sequence of [0,1]-valued random variables Qd,p = Qd(S,X0), which
we denote the stability, on the restricted probability space as follows. Let

fd,i = fd

(
X0(v);v /∈ S,Xi(v);v ∈ S

) = Id,i(root).

Set

Qd,p = E
∗[fd,1|X0, S] = E[fd,1|X0, S].

Roughly speaking, the stability is the conditional probability, given the root is
included in the independent set, that it remains to be included after re-randomizing
the labels on S.

The key observation is that E∗[Qk−1
d,p ] = αk,d,p

α1,d
for k ≥ 1. Indeed, as Qd,p has

the same distribution as E[fd,i |X0, S] for every i we have that

E
∗[

Qk−1
d,p

] = E[fd,0(E[fd,1|X0, S])k−1]
E[fd,0] = E[fd,0

∏k−1
i=1 E[fd,i |X0, S]]
E[fd,0] .
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The random variables fd,i are independent of each other conditioned on
(X0, S). Hence,

k−1∏
i=1

E[fd,i |X0, S] = E

[
k−1∏
i=1

fd,i

∣∣X0, S

]
.

Furthermore, fd,0 is measurable w.r.t. (X0, S) and so we conclude that

E

[
fd,0

(
k−1∏
i=1

E[fd,i |X0, S]
)]

= E

[
fd,0

k−1∏
i=1

fd,i

]
= density

(
k⋂

i=1

Id,i

)
.

Consequently, E∗[Qk−1
d,p ] = density(

⋂k
i=1 Id,i )

density(Id,1)
= αk,d,p

α1,d
.

Henceforth, all expectations involving Qd,p will simply be denoted by E instead
of E∗. We will need the following lemma regarding the continuity of the stability
in terms of the coupling parameter p.

LEMMA 2.3. Let g : [0,1] → R be a continuous function. The moment
E[g(Qd,p)] is a continuous function of p. When p = 0, E[g(Qd,0)] = g(1), and

when p = 1, E[g(Qd,1)] = g(α
logd

d
).

PROOF. The parameter p enters into E[g(Qd,p)] only through the random
finite subset S ⊂ Td,r . For each W ⊂ Td,r , the probability P[S = W ] = p|W |(1 −
p)|Td,r\W |. This probability is a polynomial in p. By conditioning on the output of
S we note that E[g(Qd,p)] can be expressed as a convex combination of terms that
are free of p, namely E[g(Qd,p)|S = W ], with corresponding coefficient P[S =
W ]. Thus, E[g(Qd,p)] is also a polynomial in p.

When p = 0 the set S is empty and f1,d = fd,0. Therefore, conditioning on X0
and restricting to {fd,0 ≡ 1} forces Qd,p ≡ 1. When p = 1 the set S equals Td,r ,
and hence f1,d becomes independent of the random labelling X0, and hence of fd,0

as well. Consequently, the conditioning has no effect and Qd,p = E[fd ] = α
logd

d
.

This implies that E[g(Qd,0)] = g(1) and E[g(Qd,1)] = g(α
logd

d
). �

We now translate the inequality from (2.2) in terms of the stability. Our goal is
to rewrite (2.2) as an expectation of a function of the stability, which we can then
analyze for large values of d and k.

Note that αi,d,p = α1,dE[Qi−1
d,p ] = αE[Qi−1

d,p ]. To deal with the terms α2
i,d,p we

introduce an independent copy of Qd,p , which we denote Rd,p . Thus, α2
i,d,p =

α2
E[(Qd,pRd,p)i−1]. This implies that

αi,d,p(2 − αi,d,p) = 2αE
[
Qi−1

d,p

] − α2
E

[
(Qd,pRd,p)i−1]

.

Observe the following identity that results from the binomial theorem:

(2.3)
k∑

i=1

(−1)i−1
(
k

i

)
xi−1 = 1 − (1 − x)k

x
for 0 ≤ x ≤ 1.
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Let sk(x) = 1−(1−x)k

x
for x ∈ [0,1] and k ≥ 1. Note that sk(0) = limx→0 sk(x) =

k. We may now translate the inequality from (2.2) into

(2.4) lim inf
d→∞ inf

p∈[0,1] 2αE
[
sk(Qd,p)

] − α2
E

[
sk(Qd,pRd,p)

] ≥ 0.

We make a particular choice of p for every d in order to analyze (2.4) in the
large d limit. Fix a parameter u > 0 that we will tune later. In the statement of
Lemma 2.3, take g(x) = xu for 0 ≤ x ≤ 1. From the assumption that α > 1, we
employ Lemma 2.3 and deduce that for all sufficiently large d we can select a
p = p(d,u) such that

E
[
Qu

d,p(d,u)

] = 1/α.

We denote Qd,p(d,u) by Qd . At this point our reasoning behind this choice is
mysterious. The idea, of course, is that by choosing p this way we try to mini-
mize the left-hand side of (2.4) in a manner that we can analyze as k → ∞. The
argument that follows will show that our choice is judicious.

Recall that probability distributions on [0,1] are compact with respect to con-
vergence in distribution. Therefore, from the sequence (Qd,Rd) we can choose a
subsequence (Qdi

,Rdi
) that converges in distribution to limiting random variables

(Q,R). The random variables Q and R are independent and identically distributed
with values in [0,1].

Observe that sk(x) = 1 + (1 − x) + · · · + (1 − x)k−1. Thus, sk(x) is a contin-
uous, decreasing function on [0,1] with maximum value sk(0) = k and minimum
value sk(1) = 1. Distributional convergence of (Qdi

,Rdi
) to (Q,R) implies that

E[sk(Qdi
)] → E[sk(Q)] and E[sk(Qdi

Rdi
)] → E[sk(QR)].

By passing to the subsequence di and taking limits in i the inequality (2.4)
becomes

(2.5) 2E
[
sk(Q)

] ≥ αE
[
sk(QR)

]
.

This holds for every k ≥ 1. Taking the limit as k → ∞ of (2.5) results in the in-
equality 2E[1/Q] ≥ αE[1/Q]2. If E[1/Q] is finite then we have α ≤ 2E[1/Q]−1.
We are thus left with the seemingly contradictory task of showing that E[1/Q] is
finite but large. Unfortunately, distributional convergence of Qdi

to Q is not suf-
ficient to get a lower bound on E[1/Q]. Furthermore, it is not a priori clear that
this expectation is finite, or even that P[Q = 0] = 0. To work around these diffi-
culties, we have to control the distribution of the Qd well enough to be able to
conclude that P[Q = 0] is small while E[1/Q] is large. We derive a contradiction
to the hypothesis α > 1 from analyzing (2.5) based upon 3 cases: P[Q = 0] > 0,
or P[Q = 0] = 0 but E[1/Q] = ∞, or E[1/Q] < ∞.

In order to bound E[1/Q] and P[Q = 0] we recall that we had set p such that
E[Qu

d ] = 1/α for all large d . Since x → xu is continuous and bounded on [0,1]
we conclude that E[Qu] = limi E[Qu

di
] = 1/α. Now, an upper bound on E[Qu]

implies a lower bound on E[1/Q] due to E[1/Q] ≥ E[Qu]−1/u, which follows
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from Jensen’s inequality. Also, a lower bound on E[Qu] gives a upper bound on
P[Q = 0] because 1Q=0 ≤ 1 − Qu. We now analyze (2.5) over all k based upon
the 3 cases mentioned in the previous paragraph.

Case 1: P[Q = 0] = q > 0. In this case, most of the contribution to E[sk(Q)]
results from {Q = 0}. More precisely, sk(x)

k
= 1x=0 + sk(x)

k
1x>0, and sk(x)

k
1x>0 → 0

as k → ∞. Also, sk(x)
k

∈ [0,1] for all k and x ∈ [0,1]. Therefore, from the bounded
converge theorem we deduce that E[sk(Q)/k] → P[Q = 0] as k → ∞, and sim-
ilarly, E[sk(QR)/k] → P[QR = 0]. The latter probability is 2q − q2 due to Q

and R being independent and identically distributed. Upon dividing the inequality
in (2.5) through by k and taking a limit, we conclude that

2q − α
(
2q − q2) ≥ 0, or equivalently that α ≤ 2

2 − q
.

For x ∈ [0,1], we have that 1x=0 ≤ 1 − xu. It follows from this that q ≤ 1 −
E[Qu] = 1 − 1/α. Thus,

α ≤ 2

2 − q
≤ 2

1 + α−1 .

Simplifying the latter inequality gives α ≤ 1; a contradiction.

Case 2: P[Q = 0] = 0 but E[ 1
Q

] = ∞. In this case, most of the contribution to

E[sk(Q)] occurs when Q is small. Note that sk(x) ↗ 1/x as k → ∞. Hence, the
monotone convergence theorem implies that E[sk(Q)] → ∞ as k → ∞.

Fix 0 < ε < 1, and write sk(x) = sk,≤ε(x) + sk,>ε(x) where sk,≤ε(x) =
sk(x)1x≤ε . Note that sk,>ε(x) ≤ ε−1 for all k. We have that

(2.6) E
[
sk(Q)

] = E
[
sk,≤ε(Q)

] +E
[
sk,>ε(Q)

] ≤ E
[
sk,≤ε(Q)

] + ε−1.

Thus, E[sk,≤ε(Q)] → ∞ with k because E[sk(Q)] → ∞.
We also observe from the positivity of sk that

E
[
sk(QR)

] ≥ E
[
sk(QR);Q ≤ ε,R > ε

] +E
[
sk(QR);Q > ε,R ≤ ε

]
.

The latter two terms are equal by symmetry. Therefore, E[sk(QR)] is at least
2E[sk(QR);Q ≤ ε,R > ε]. Now the fact that sk(x) is decreasing in x and R ≤ 1
implies that sk(QR) ≥ sk(Q). Together with the independence of Q and R, we
deduce that

E
[
sk(QR);Q ≤ ε,R > ε

] ≥ E
[
sk(Q);Q ≤ ε,R > ε

]
= E

[
sk,≤ε(Q)

]
P[R > ε].

Consequently,

(2.7) E
[
sk(QR)

] ≥ 2E
[
sk,≤ε(Q)

]
P[Q > ε].
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The inequality in (2.5) is α
2 ≤ E[sk(Q)]

E[sk(QR)] . The bounds from (2.6) and (2.7) imply
that

α

2
≤ E[sk,≤ε(Q)] + ε−1

2E[sk,≤ε(Q)]P[Q > ε] .

Since E[sk,≤ε(Q)] → ∞ with k, we can take a limit in k to conclude that

α ≤ 1

P[Q > ε] .

As ε → 0 the probability P[Q > ε] → P[Q > 0] = 1, by assumption. Thus, α ≤ 1;
a contradiction.

Case 3: E[1/Q] is finite. In the final case, we again use the fact that sk(x) in-
creases to 1/x for 0 ≤ x ≤ 1. Hence, sk(Q) ↗ 1/Q almost surely and sk(QR) ↗
1/(QR) almost surely. Taking a limit of the inequality in (2.5) and using the mono-
tone convergence theorem, it follows that

2E
[

1

Q

]
− αE

[
1

QR

]
≥ 0.

Since E[ 1
QR

] = E[ 1
Q

]2 the above inequality reduces to

α ≤ 2E
[

1

Q

]−1
≤ 2E

[
Qu]1/u

.

In the last step, we have used the power-mean/Jensen’s inequality. Since E[Qu] =
1/α, we see that

α ≤ 2
u

u+1 .

Due to the contradiction resulting from the previous two cases, we deduce that for
all u > 0 we have α ≤ 2

u
u+1 . By letting u → 0, we conclude that α ≤ 1. This is the

final contradiction.

3. Inequalities for intersection densities: Proof of Theorem 2.2. We will
prove Theorem 2.2 by reducing it to a problem about densities of independent sets
in large, finite, d-regular graphs. First, we begin with some terminology. Let Gn,d

denote a random d-regular graph on n vertices sampled according to the configu-
ration model (see [4] Chapter 2.4): each of the n distinct vertices emit d distinct
half-edges, and we pair up these nd half-edges uniformly at random. These nd/2
pairs of half-edges can be glued into full edges to yield a labelled, random, d-
regular graph. Note that the resulting graph can have loops and multiple edges.
There are (nd − 1)!! = (nd − 1)(nd − 3) · · ·3 · 1 possible pairings, or outcomes,
of the model. Let Gn,d denote the set of all these outcomes. So Gn,d is picked
uniformly at random from Gn,d .
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3.1. Projecting independent sets from Td to Gn,d . Recall that given the fac-
tor of i.i.d. independent set Id on Td we can project it to a (random) independent
set IG on any given G ∈ Gn,d . If B(G) is the number of vertices of G whose
(r + 1)-neighbourhood is not a tree then E[|IG|/n] = density(Id)(1 − B(G)

n
).

We can model the independent sets Id,i from Section 2.1 in the random graph
G = Gn,d . To do so, we first choose a random subset SG ⊂ V (G) = [n] via a
Bernoulli percolation with density p. Then we fix independent random labellings
Xi of G for i ≥ 0. We define IG,i to be the projection of Id with input X0(v)

for v /∈ SG and Xi(v) for v ∈ SG . As the IG,i are exchangeable, for any finite
subset T ⊂ {1,2, . . .} we have E[|⋂i∈T IG,i |/n] = α|T |,d,p

logd
d

(1 − E[B(G)]
n

). It
is well known that E[B(G)] is bounded in n for every d [18], Chapter 9.2. So
E[|⋂i∈T IG,i |/n] → α|T |,d,p

logd
d

as n → ∞ for every T ⊂ [k].

3.2. The expected number of independent sets satisfying a given density pro-
file. From the construction above, we see that the factor of i.i.d. independent set
Id on Td can be used to produce k-tuples of independent sets (IG,1, . . . , IG,k) in
G = Gn,d such that the intersection densities of these k independent sets are close
to those of Id,1, . . . , Id,k , defined in Section 2.1. We will compute the expected
number of k-tuples of independent sets in G with some given intersection den-
sities. This will allow us to bound, from above, the probability of observing a
k-tuple of independent sets in G whose intersection densities are close to that of
Id,1, . . . , Id,k . We will show that the expected number of k-tuples of independent
sets in G with some prescribed intersection densities is an exponential term of the
form enR (Theorem 3.1). The dominating contribution to the rate R is from the
binomial sum of the left-hand side of inequality (2.2) for the prescribed intersec-
tion densities (Lemma 3.2 and Lemma 3.3). This will allow us to conclude that the
only k-tuples of independent sets in G that exists (with nonvanishing probability
as n → ∞) are those for which the corresponding rate R is nonnegative. Then in
the final step we will show via concentration inequalities that there exists k-tuples
of independent sets in G whose intersection densities are close to those given by
Id,1, . . . , Id,k (Lemma 3.4). This is the strategy behind the proof of Theorem 2.2.
Before proceeding, we introduce some terminology.

For a k-tuple of independent sets (IG,1, . . . , IG,k) in G ∈ Gn,d , the density
profile associated to this k-tuple is the vector ρ = (ρ(T );T ⊂ [k]) defined by
ρ(T ) = |⋂i∈T IG,i |/n [set ρ(∅) = 1]. Associated to this k-tuple is also an or-
dered partition 	 of V (G) into 2k cells defined as follows:

	 = {
	(T ) : T ⊂ [k]} with 	(T ) =

(⋂
i∈T

IG,i

)
∩

(⋂
i /∈T

(
V (G) \ IG,i

))
.

In other words, 	(T ) consists of vertices that belong to all the sets IG,i for i ∈ T

and none of the other sets. The partition 	 defines a probability measure π =
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(π(T );T ⊂ [k]) on 2[k] by π(T ) = |	(T )|/n. This correspondence between k-
tuples (IG,1, . . . , IG,k) and ordered partitions 	 is bijective, and by the inclusion–
exclusion principle we have that

π(T ) = ∑
T ′:T ⊂T ′

(−1)|T ′\T |ρ
(
T ′),(3.1)

ρ(T ) = ∑
T ′:T ⊂T ′

π
(
T ′).(3.2)

Finally, corresponding to G and 	 is a 2k × 2k matrix M that we denote the
edge profile of 	. For T ,T ′ ⊂ [k], define

M
(
T ,T ′) = |{(u, v) ∈ E(G) : u ∈ 	(T ), v ∈ 	(T ′)}|

nd
.

The tuple (u, v) refers to a directed edge; so (u, v) �= (v, u) unless u = v. The
number of directed edges of G is 2|E(G)| = nd . Notice that M(T,T ′) is the prob-
ability that a uniformly chosen directed edge of G starts in 	(T ) and ends in
	(T ′). Clearly, M is a symmetric matrix with nonnegative entries that sum to 1.
Also, the marginal of M along either the rows or columns is π . A crucial observa-
tion is that if T ∩ T ′ �= ∅ then M(T,T ′) = 0. Indeed, in this case both 	(T ) and
	(T ′) lie in the common independent set IG,i for any i ∈ T ∩ T ′, and thus, there
cannot be any edges joining 	(T ) to 	(T ′).

Conversely, suppose we begin with an ordered partition 	 as above that in-
duces an edge profile M on G. If the edge profile satisfies the constraints
M(T,T ′) = 0 whenever T ∩ T ′ �= ∅ then the k-tuple of subsets (IG,1, . . . , IG,k)

of V (G) corresponding to 	 will be independents sets in G. Indeed, for any i,
the number of edges of G that have both endpoints in IG,i is (nd)/2 times∑

(T ,T ′):i∈T ∩T ′ M(T,T ′), and all terms in the sum are zero. In this case, the den-
sity profile ρ of (IG,1, . . . , IG,k) is given by (3.2) with π being the marginal of M

along its rows.
With this terminology and bijection in mind, let Z(ρ) = Z(G, ρ) denote the

number of k-tuples of independent sets in G with density profile ρ. Let Z(ρ,M)

denote the number of ordered partitions of G into 2k cells such that the partitions
induce the edge profile M , and M is compatible with ρ in the following sense. The
marginal, π , of M along its rows is given by ρ via (3.1), and M(T,T ′) = 0 when-
ever T ∩ T ′ �= ∅. It is clear from the discussion above that Z(ρ) = ∑

M Z(ρ,M),
where the sum is over all M that is compatible with ρ.

THEOREM 3.1. Given the setup as above, define the entropies

H(M) = ∑
(T ,T ′)

−M
(
T ,T ′) log

(
M

(
T ,T ′))

and

H(π) = ∑
T

−π(T ) log
(
π(T )

)
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with the convention 0 log 0 = 0. The expectation of Z(ρ,M) satisfies

(3.3) E
[
Z(ρ,M)

] ≤ Ok

(√
nd2k )

exp
{
n

[
d

2
H(M) − (d − 1)H(π)

]}
.

PROOF. To compute the expectation, we sum the probabilities of outcomes
where each outcome uniquely specifies a pairing of half-edges in the configuration
model that gives rise to a partition 	 with edge profile M . To specify such an
outcome, do the following:

1. Partition the vertex set [n] into 2k distinguishable cells 	(T ),T ⊂ [k] with
|	(T )| = nπ(T ).

2. Given the partition 	 from (1), and each subset T ⊂ [k], partition the ndπ(T )

half-edges attached to the vertices of 	(T ) into 2k distinguishable cells
	(T,T ′), T ′ ⊂ [k], such that |	(T,T ′)| = ndM(T ,T ′).

3. For each pair {T ,T ′} with T �= T ′ pair up the half-edges from 	(T,T ′) with
those from 	(T ′, T ) in a specific way. Then for each T pair the half-edges
from 	(T,T ) with themselves in a specific way.

Each outcome has probability 1/(nd − 1)!! from definition of the configuration
model. We compute the number of outcomes in the following. But first, we should
mention some conventions that we use in the following calculations. For an even
integer m ≥ 2 we denote (m− 1)!! = (m− 1)(m− 3) · · ·1, and if m = 0 then (m−
1)!! = 1. Also, note that in any valid edge profile M the quantities ndM(T ,T ′)
have to be nonnegative integers. Furthermore, ndM(T ,T ) has to be even for every
T because for any G ∈ Gn,d the number of half edges from 	(T ) to itself is twice
the number of edges present in the subgraph of G induced by 	(T ). We may
assume that M has all these properties. We now compute the number of outcomes.

• The number of partitions of [n] that satisfies the properties in (1) above is the
multinomial coefficient (

n

nπ(T );T ⊂ [k]
)

.

• Given a partition 	 satisfying (1) from above, the number of partitions of the
half-edges that satisfy the properties in (2) is

∏
T ⊂[k]

(
ndπ(T )

ndM
(
T ,T ′);T ′ ⊂ [k]

)
.

• Given the two partitions arising from (1) and (2), the number of pairings that
satisfy (3) is[ ∏

(T ,T ′):T �=T ′

(
ndM

(
T ,T ′))!]1/2 ∏

T ⊂[k]

(
ndM(T ,T ) − 1

)!!.
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The total number of outcomes is the product of the three terms above. From the
linearity of expectation, we conclude that E[Z(ρ,M)] equals

(
n

nπ(T );T ⊂ [k]
)

× ∏
T ⊂[k]

(
ndπ(T )

ndM
(
T ,T ′);T ′ ⊂ [k]

)

×
[ ∏
(T ,T ′):T �=T ′

(
ndM

(
T ,T ′))!]1/2

× ∏
T ⊂[k]

(
ndM(T ,T ) − 1

)!! × 1

(nd − 1)!! .

Now we do the asymptotics in n by using Stirling’s approximation of m!. We
have that

√
2πm(m/e)m ≤ m! ≤ (1 + 1

12m
)
√

2πm(m/e)m. Also, for an even in-
teger m, (m − 1)!! = m!

2m/2(m/2)! . In the following, we need to consider only those

values of π(T ) and M(T,T ′) that are strictly positive. We begin by simplifying
the term

∏
T ⊂[k]

(
ndπ(T )

ndM
(
T ,T ′);T ′ ⊂ [k]

)
×

[ ∏
(T ,T ′):T �=T ′

(
ndM

(
T ,T ′))!]1/2

× ∏
T ⊂[k]

(
ndM(T ,T ) − 1

)!!

= ∏
T

(
ndπ(T )

)! × [ ∏
(T ,T ′):T �=T ′

(
ndM

(
T ,T ′))!]−1/2

× 2−nd/2
∑

T M(T ,T )

[∏
T

(
nd

2
M(T,T )

)
!
]−1

.

Incorporating the remaining two terms, we see that the expectation is

(
n

nπ(T );T ⊂ [k]
)

×
(

nd

ndπ(T );T ⊂ [k]
)−1

× (nd/2)!

× 2( nd
2 (1−∑

T M(T ,T )))

×
[ ∏
(T ,T ′):T �=T ′

(
ndM

(
T ,T ′))!]−1/2

×
[∏

T

(
nd

2
M(T,T )

)
!
]−1

.

Using Stirling’s approximation, we can verify that (with universal constants)

(
n

nπ(T );T ⊂ [k]
)(

nd

ndπ(T );T ⊂ [k]
)−1

= O
(
d

(2k−1)
2

)
exp

{−n(d − 1)H(π)
}
.
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Similarly,

∏
T

(
nd

2
M(T,T )

)
! = O

(
(ndπ)2k−1 ∏

T

M(T ,T )
1
2

)∏
T

(
ndM(T ,T )

2e

) nd
2 M(T,T )

;

∏
(T ,T ′):
T �=T ′

(
ndM

(
T ,T ′))! = O

(
(2πnd)(

2k

2 )
∏

T �=T ′
M

(
T ,T ′) 1

2

)

×
(

nd

e

)[nd
∑

(T ,T ′):T �=T ′ M(T,T ′)]

× ∏
(T ,T ′):
T �=T ′

M
(
T ,T ′)ndM(T ,T ′)

.

Now, (nd/2)! = O(nd)(nd
2e

)nd/2. From this and the previous two equations, we
can check that all terms involving powers of (nd)/e and powers of 2 algebraically
cancel out from the expression for E[Z(ρ,M)]. Therefore, after algebraic simpli-
fications we conclude that

E
[
Z(ρ,M)

] = Ok

((
n

d

) 1−2k

2
(nd)−

1
2(

2k

2 )
∏
T

M(T ,T )−1/2
∏

(T ,T ′):
T �=T ′

M
(
T ,T ′)−1/4

)

× exp
{−n(d − 1)H(π)

} × ∏
T

M(T ,T )−
nd
2 M(T,T )

× ∏
(T ,T ′):
T �=T ′

M
(
T ,T ′)− nd

2 M(T,T ′)

= Ok

(
n

1
2 d2k )

exp
{
n

[
d

2
H(M) − (d − 1)H(π)

]}
.

The Ok term results because ndM(T ,T ′) ≥ 1 for every M(T,T ′) > 0, from which
it is easy to deduce that n and d appear with exponents at most 1/2 and 2k , respec-
tively. �

The number of summands in
∑

M Z(ρ,M) over edge profiles M compatible
with ρ is bounded by a polynomial in n. Indeed, M has 4k non-negative entries of
the form m(T ,T ′)/nd with the integers m(T ,T ′) satisfying

∑
(T ,T ′) m(T ,T ′) =

nd . There are at most (nd)4k
such solutions. This allows us to conclude that

E[Z(ρ)] is dominated by the largest exponential term, or in other words, the term
with the largest value of (d/2)H(M) − (d − 1)H(π) optimized over M that are
compatible with ρ. We bound this optimum in the following.
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Let M = [M(T,T ′)]{T ,T ′⊂[k]} be an edge profile matrix with the property that
M is symmetric, the support of M is contained in the set {(T , T ′) : T ∩ T ′ = ∅}
and that the marginal of M along its row is a fixed probability distribution π =
(π(T );T ⊂ [k]). Define the weights

w(T ) = ∑
T ′:T ′∩T =∅

π
(
T ′).

Note that w(∅) = 1, and

(3.4)
∑

T :T ∩T ′=∅

π(T )

w(T ′)
= 1.

LEMMA 3.2. With a matrix M and vectors π,w as above we have

H(M) ≤ 2H(π) + ∑
S⊂[k]

π(T ) log
(
w(T )

)
.

PROOF. Set h(x) = −x log(x) for 0 ≤ x ≤ 1 (0 log 0 = 0). Note that h(x) is a
smooth and strictly concave function on its domain. We have that

H(M) = ∑
T ′

∑
T :T ∩T ′=∅

π(T )
h(M(T ,T ′))

π(T )

= ∑
T ′

∑
T :T ∩T ′=∅

π(T )h

(
M(T,T ′)

π(T )

)
+ H(π).

For the second equality, we used that h(xy) = xh(y) + yh(x).
By Jensen’s inequality applied to h(x) and the identity (3.4), we deduce that

∑
T :T ∩T ′=∅

π(T )

w(T ′)
h

(
M(T,T ′)

π(T )

)
≤ h

( ∑
T :T ∩T ′=∅

M(T,T ′)
w(T ′)

)
= h

(
π(T ′)
w(T ′)

)
.

From this, we conclude that

H(M) ≤ ∑
T ′

w
(
T ′)h(

π(T ′)
w(T ′)

)
+ H(π) = 2H(π) + ∑

T ′
π

(
T ′) log

(
w

(
T ′)).

�

Using Lemma 3.2 and Theorem 3.1, we conclude that for any density profile ρ

(3.5) E
[
Z(ρ)

] ≤ poly(n, d) × exp
{
n

[
H(π) − d

2
Ĥ (π)

]}
,

where Ĥ (π) = ∑
T π(T ) log(w(T )), and poly(n, d) is a polynomial in n and d of

degree at most 4k .
For the purposes of our analysis, we will be interested in density profiles ρ such

that ρ(T ) ∈ [ρ|T | − ε,ρ|T |] with ρi = αi,d,p
logd

d
. To this end, let us fix 1 = ρ0 ≥
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ρ1 ≥ · · · ≥ ρk with ρi = αi,d,p
logd

d
. Define the density profile ρ by ρ(T ) = ρ|T |

for T ⊂ [k]. Let π denote the probability distribution associated to ρ as given
by (3.1). For T �= ∅, define the quantities β(T ) by π(T ) = β(T )

logd
d

. Note that

π(∅) = 1 − [∑T �=∅ β(T )] logd
d

. By setting α(T ) = α|T |,d,p and using the relation
between ρ and π from (3.1) and (3.2), we conclude the following relation between
α and β:

α(T ) = ∑
T ′:T ⊂T ′

β(T ),(3.6)

β(T ) = ∑
T ′:T ⊂T ′

(−1)|T ′\T |α
(
T ′).(3.7)

Note that α1,d,p = α ≤ 2. Indeed, recall the result of Bollobás [3] mentioned in
the Introduction: if An,d is the event that all independent sets in Gn,d have size at
most 2 logd

d
n then P[An,d ] → 1 as n → ∞ for every d ≥ 3. Recall from Section 3.1

that α
logd

d
= limn→∞E[|IGn,d ,1|/n]. However, E[|IGn,d ,1|] = E[|IGn,d ,1|;An,d ] +

E[|IGn,d ,1|;Ac
n,c] ≤ 2 logd

d
n + nP[Ac

n,d ]. Dividing through by n and then taking
limits in n, we deduce that α ≤ 2.

From the fact that α ≤ 2, we see that 0 ≤ αk,d,p ≤ · · · ≤ α1,d,p ≤ 2. From (3.7),
it follows that β(T ) ≤ 2k+1 for all T ⊂ [k]. In particular, this estimate is uniform
in d and p.

LEMMA 3.3. With π , α and β as above, we have that

H(π) − d

2
Ĥ (π) ≤

[
k∑

i=1

(−1)i−1
(
k

i

)
αi,d,p(2 − αi,d,p)

]
log2 d

2d
+ Ok

(
logd

d

)
,

where the big O term depends only on k.

PROOF. We need the asymptotic behaviour of H(π) − d
2 Ĥ (π) where the en-

tries of π are on the scale of (logd)/d . By definition,

w(T ) = 1 − logd

d

∑
T ′:T ′∩T �=∅

β
(
T ′).

From Taylor expansion, we observe that − log(1 − x) ≥ x. Hence, for T �= ∅ we
have

−π(T ) log
(
w(T )

) ≥ β(T )

(
logd

d

)2 ∑
T ′:T ′∩T �=∅

β
(
T ′).

Since w(∅) = 1, we have

Ĥ (π) = ∑
T �=∅

−π(T ) log
(
w(T )

) ≥
(

logd

d

)2 ∑
(T ,T ′):T ∩T ′ �=∅

β(T )β
(
T ′).
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To analyze H(π), we consider the terms h(π(∅)) and h(π(T )) with T �= ∅

separately. We note from Taylor expansion that h(1 − x) ≤ x for 0 ≤ x ≤ 1. Thus,

h
(
π(∅)

) = h

(
1 − logd

d

∑
T �=∅

β(T )

)
≤ logd

d

∑
T �=∅

β(T ).

Since β(T ) ≤ 2k+1 for T �= ∅, we see that h(π(∅)) = Ok(
logd

d
).

On the other hand, for T �=∅ the quantity h(π(T )) equals

h

(
β(T )

logd

d

)
= β(T )h

(
logd

d

)
+ h

(
β(T )

) logd

d

≤ β(T )
log2 d

d
+ logd

ed
.

The inequality follows because h(
logd

d
) ≤ log2 d

d
and h(x) ≤ e−1 for all x ≥ 0.

Therefore, H(π) ≤ log2 d
d

∑
T �=∅ β(T ) + Ok(

logd
d

).
From the above, we conclude that

H(π) − d

2
Ĥ (π) ≤ log2 d

d

[ ∑
T �=∅

β(T ) − 1

2

∑
(T ,T ′):

T ∩T ′ �=∅

β(T )β
(
T ′)] + Ok

(
logd

d

)
.

Finally, it follows by inclusion–exclusion that

∑
T �=∅

β(T ) − 1

2

∑
(T ,T ′):

T ∩T ′ �=∅

β(T )β
(
T ′) = 1

2

k∑
i=1

(−1)i−1
(
k

i

)
αi,d,p(2 − αi,d,p).

The details are as follows. From the relations between α and β in (3.7) and
(3.6), it follows immediately that

k∑
i=1

(−1)i−1
(
k

i

)
αi,d,p = ∑

T �=∅

β(T )

because both terms equal (|⋃k
i=1 IG,i |/n) · d

logd
.

These relations also imply α(T )2 = ∑
(T1,T2):T ⊂T1∩T2

β(T1)β(T2). Hence,

k∑
i=1

(−1)i−1
(
k

i

)
α2

i,d,p = ∑
T �=∅

(−1)|T |−1α(T )2

= ∑
T �=∅

(−1)|T |−1
∑

(T1,T2):
T ⊂T1∩T2

β(T1)β(T2)
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= ∑
(T1,T2):

T1∩T2 �=∅

β(T1)β(T2)
∑
T :

T ⊂T1∩T2,T �=∅

(−1)|T |−1

= ∑
(T1,T2):

T1∩T2 �=∅

β(T1)β(T2)

|T1∩T2|∑
i=1

(−1)i−1
(|T1 ∩ T2|

i

)
.

Now recall the binomial identity
∑t

i=1(−1)i−1(t
i

) = 1 − (1 − 1)t = 1 for any
integer t ≥ 1. This identity implies that

k∑
i=1

(−1)i−1
(
k

i

)
α2

i,d,p = ∑
(T ,T ′):T ∩T ′ �=∅

β(T )β
(
T ′).

With this the proof of the final claim is complete. �

Let Ed,p(ε) = E(α, ε, n, d,p) be the event that Gn,d contains some k-tuple of
independent sets (I1, . . . , Ik) whose density profile ρ satisfies the property that for
every T ⊂ [k],
(3.8) ρ(T ) ∈

[
α|T |,d,p

logd

d
− ε,α|T |,d,p

logd

d
+ ε

]
.

We can bound P[Ed,p(ε)] from above via (3.5) and Lemma 3.3. Define the den-
sity profile ρα by ρα(T ) = α|T |,d,p

logd
d

. Let πρα be the corresponding probability
vector obtained from (3.1). For any admissible density profile ρ for the occurrence
of the event Ed,p(ε), the corresponding πρ satisfies |πρ(T ) − πρα | = Ok(ε). We
employ Lemma 3.3 for πρ . We get that

H(πρ) − d

2
Ĥ (πρ) = H(πρα) − d

2
Ĥ (πρα ) + errd,k(ε).

The error term errd,k is such that errd,k(ε) → 0 as ε → 0, and this holds uni-
formly in p ∈ [0,1]. This follows from the fact that π is obtained from ρ by
a smooth transformation [see (3.1)], and that H and Ĥ are smooth functions.
The reason errd,k(ε) tends to 0 uniformly in p is because it depends on the
αi,d,p smoothly and only through their absolute values. However, the αi,d,p are
all bounded as 0 ≤ αk,d,p ≤ · · · ≤ α1,d,p = α ≤ 2. A careful analysis will actually

show that errd,k(ε) = Ok(
log2 d

d
ε).

From Lemma 3.3 applied to ρα it follows that for any admissible ρ for the
occurrence of the event Ed,p(ε),

H(πρ) − d

2
Ĥ (πρ) ≤ log2 d

d

k∑
i=1

(−1)i−1
(
k

i

)
αi,d,p(2 − αi,d,p)

(3.9)

+ Ok

(
logd

d

)
+ errd,k(ε).



LOCAL ALGORITHMS AND INDEPENDENT SETS 1563

Now note that the number of density profiles ρ that is admissible for the event
Ed,p(ε) is at most O(n2k

) where the big O constant is uniformly bounded in n

because quantities of the form αi,d,p
logd

d
are all of constant order in n. Taking

an union bound over all such admissible ρ, using the first moment method and
employing the bounds in (3.5) and (3.9), we conclude that P[Ed,p(ε)] is bounded
above by a polynomial term poly(n, d) times the exponential term

exp

{
n

[
log2 d

d

k∑
i=1

(−1)i−1
(
k

i

)
αi,d,p(2 − αi,d,p)

(3.10)

+ Ok

(
logd

d

)
+ errd,k(ε)

]}
.

3.3. Concentration of the density profile of (IG,1, . . . , IG,k) about its mean.
Having derived an upper bound to P[Ed,p(ε)], we need a lower bound on this
probability that violates the upper bound and provides a contradiction. We now
show that P[Ed,p(ε)] → 1 as n → ∞ via concentration inequalities.

Recall the terminology of Section 3. The factor of i.i.d. independent set Id

is used to construct independent sets IG,1, . . . , IG,k of G ∈ Gn,d using ran-
dom labellings X0, . . . ,Xk of G and a random subset S ⊂ V (G) resulting from
Bernoulli percolation on G. Set Y(v) = (X0(v), . . . ,Xk(v),1v∈S) for v ∈ V (G).
Then Y = (Y (v);v ∈ V (G)) is an i.i.d. process on G and IG,1, . . . , IG,k is a
function of Y . Also, for any T ⊂ [k] the expected density E[|⋂i∈T IG,i |/n] ∈
[αi,d,p

logd
d

(1 − B(G)
n

), αi,d,p
logd

d
], where B(G) is the number of vertices in G

whose (r + 1)-neighbourhood is not a tree.

LEMMA 3.4. For any G ∈ Gn,d , the independent sets IG,1, . . . , IG,k satisfy
the following with Cr,d = O(r2d2r ):

(3.11) P

[
max
T ⊂[k]

∣∣∣∣ |
⋂

i∈T IG,i | −E[|⋂i∈T IG,i |]
n

∣∣∣∣ > ε

]
≤ 2k+1e

− ε2n
Cr,d .

PROOF. For each T ⊂ [k], the set
⋂

i∈T IG,i is a function of y = (y(v);v ∈
V (G)), where each y(v) ∈ [0,1]k+1 × {0,1} [the set of values of the random vari-
able Y(v)]. Modifying some entry y(v) to y′(v) can switch the state of inclusion
of a vertex u within

⋂
i∈T IG,i only if u is in NG(r, v), where r is the radius of the

factor associated to Id . Therefore, such a modification to y can cause the size of⋂
i∈T IG,i to change by at most |NG(r, v)| = O(rdr) since G is d-regular. Since

the random input Y is an i.i.d. process it follows from the Hoeffding–Azuma in-
equality [4], Theorem 1.20, that

P

[∣∣∣∣
∣∣∣∣⋂
i∈T

IG,i

∣∣∣∣ −E

[∣∣∣∣⋂
i∈T

IG,i

∣∣∣∣
]∣∣∣∣ > x

]
≤ 2e

x2
2nCr,d .



1564 M. RAHMAN AND B. VIRÁG

The lemma follows by taking an union bound over T ⊂ [k] and replacing x by nε.
�

Recall that for the random graph Gn,d we have

α|T |,d,p

logd

d

(
1 − E[B(Gn,d)]

n

)
≤ E

[ |⋂i∈T IGn,d ,i |
n

]
≤ α|T |,d,p

logd

d
.

As we mentioned in Section 3.1, E[B(Gn,d)] = Od,r(1) in n.
We may find an nd such that αk,d,p

logd
d

E[B(Gn,d)] ≤ (ε/2)n for n ≥ nd . This
ensures that

α|T |,d,p

logd

d

(
1 − E[B(Gn,d)]

n

)
≥ α|T |,d,p

logd

d
− ε

2
for all T ⊂ [k].

If ||⋂i∈T IGn,d ,i | − E[|⋂i∈T IGn,d ,i |]| ≤ (ε/2)n, then the independent sets IGn,d ,i

satisfy, for any T ⊂ [k],

α|T |,d,p

logd

d
− ε ≤ |⋂i∈T IGn,d ,i |

n
≤ α|T |,d,p

logd

d
+ ε.

Therefore, the event Ed,p occurs for n ≥ nd [see the definition of Ed,p in (3.8)].
From Lemma 3.4, we conclude that for n ≥ nd ,

(3.12) P
[
Ed,p(ε)

] ≥ 1 − 2k+1e
− ε2

Cr,d
n −→ 1 as n → ∞.

3.3.1. Conclusion of the proof of Theorem 2.2. Suppose for some δ > 0 we
have that

lim inf
d→∞ inf

p∈[0,1]

k∑
i=1

(−1)i−1
(
k

i

)
αi,d,p(2 − αi,d,p) = −δ.

For each d , we pick a p′ = p′(d) such that

inf
p∈[0,1]

k∑
i=1

(−1)i−1
(
k

i

)
αi,d,p(2 − αi,d,p)

≥
k∑

i=1

(−1)i−1
(
k

i

)
αi,d,p′(2 − αi,d,p′) − δ

2
.

We deduce that,

(3.13) lim inf
d→∞

k∑
i=1

(−1)i−1
(
k

i

)
αi,d,p′(2 − αi,d,p′) ≤ −δ

2
.

Recall the upper bound for P[Ed,p(ε)] in (3.10), which we now consider for
p = p′(d). The error term errd,k(ε) → 0 as ε → 0, uniformly in p. So for each
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d pick an εd such that errd,k(εd) ≤ (δ/4)
log2 d

d
. The inequalities (3.10) and (3.13)

imply that there exists a subsequence di → ∞ such that

P
[
Edi,p

′(di )(εd)
] ≤ poly(n, di)e

n[− δ log2 di
4di

+Ok(
logdi

di
)] −→ 0 as n → ∞

for all sufficiently large values of di . However, we have already concluded from
(3.12) that P[Edi,p

′(di )(εd)] → 1 as n → ∞ for all such di . This provides a contra-
diction and completes the proof.

4. Local algorithms for independent sets in Erdős–Rényi graphs. Local
algorithms on sparse Erdős–Rényi graphs are projections of factor of i.i.d. pro-
cesses on Poisson–Galton–Watson (PGW) trees. We will define the appropriate
notion of factor of i.i.d. independent sets in PGW trees and prove the same asymp-
totic upper and lower bounds as for regular trees. Recall that a PGW tree with av-
erage degree λ, which we denote PGWλ, is a random tree resulting from a Galton–
Watson branching process with a Poisson(λ) offspring distribution. Before we can
define the notion of factor of i.i.d. independent sets in PGW trees, we will need
some notation.

Let �r denote the collection of all triples (H,v, x) where (1) (H,v) is a
finite, connected, rooted graph with root v, (2) for all vertices u ∈ V (H) we
have dist(u, v) ≤ r where dist denotes the graph distance, and (3) x ∈ [0,1]V (H)

is a labelling of H . �r has a natural σ -algebra, r , generated by sets of the
form (H,v) × B , where (H,v) satisfies properties (1) and (2) above and B is a
Borel measurable subset of [0,1]V (H). We consider two rooted graphs to be iso-
morphic if there exists a graph isomorphism between them that maps one root
to the other. Given an isomorphism φ : (H,v) → (H ′, v′), any labelling x of
(H,v) induces a labelling φ · x of (H ′, v′) by defining φ · x(i) = x(φ−1(i)),
and vice versa. A function f : �r → {0,1} is a factor if it is r measurable and
f (H,v, x) = f (φ(H),φ(v),φ · x) for all isomorphisms φ of H , and all H .

For 0 ≤ r < ∞, let f : �r → {0,1} be a factor. Consider a PGWλ tree with a
random labelling X. Let Nr(PGWλ, v) denote the r-neighbourhood of a vertex v

in PGWλ and let X(PGWλ, v, r) be the restriction of X to Nr(PGWλ, v). Define
a subset I of the vertices of PGWλ by setting

I (v) = f
(
Nr(PGWλ, v), v,X(PGWλ, v, r)

)
.

We say that I is a factor of i.i.d. independent set in PGWλ if I is an independent
set in this tree with probability 1 [w.r.t. the random labelled tree (PGWλ,X)].

The distribution of the random variable I (v) does not depend on the choice of
the vertex v. This is because in a PGW tree the distribution of the neighbourhoods
Nr(PGWλ, v) does not depend on the choice of v. So let PGW(λ, r) denote the
tree following the common distribution of these r-neighbourhoods, rooted at a
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vertex ◦, and let X be a random labelling. The density of the subset I is defined to
be the expectation

density(I ) = E
[
f

(
PGW(λ, r),◦,X)]

.

Define α(λ) so that

α(λ)
logλ

λ
= sup

0≤r<∞
{
density(I ) : I is an independent set in PGWλ

with factor f : �r → {0,1}}.
THEOREM 4.1. The limit limλ→∞ α(λ) = 1.

In Section 4.1, we prove that lim supλ→∞ α(λ) ≤ 1, and in Section 4.2 that
lim infλ→∞ α(λ) ≥ 1. The proof of the upper bound will employ the strategy used
for regular trees in Section 2. We will highlight the key differences but be brief
with parts of the argument that are analogous to the case for regular trees.

4.1. Upper bound on density of factor of i.i.d. independent sets in PGW trees.
Recall the Erdős–Rényi graph ER(n,p) is a random graph on the vertex set
[n] where every pair of vertices {u, v} is independently included with probabil-
ity p. Our interest lies with the random graphs ER(n,λ/n) where λ > 0 is fixed.
Throughout this section, let Gn denote a random graph that is distributed accord-
ing to the ER(n,λ/n) model. It is well known (see [4] Chapter 4) that the se-
quence of random graphs Gn converges in the local weak limit to the tree PGWλ.
This means that for every fixed r ≥ 0, if ◦n ∈ [n] is chosen uniformly at random
then for any finite rooted graph (H,◦) the probability P[Nr(Gn,◦n) ∼= (H,◦)] →
P[PGW(λ, r) ∼= (H,◦)] as n → ∞.

Consequently, using the same technique that was used for regular trees, a fac-
tor of i.i.d. independent set I of PGWλ with factor f : �r → {0,1} yields a fac-
tor of i.i.d. independent set In of Gn in the following sense. These exists a fac-
tor fn : �r+1 → {0,1} such that if X is a random labelling of Gn then In(v) =
fn(Nr+1(Gn, v), v,X(Gn, v, r + 1)). Furthermore, E[|In|/n] → density(I ) as
n → ∞.

To prove that lim supα(λ) ≤ 1, we assume to the contrary. Then we can find
α > 1 and a subsequence of λ → ∞ such that for each λ there exists a factor of
i.i.d. independent set In,λ of Gn with factor fn,λ : �rλ → {0,1}, and E|In,λ|/n ≥
α

logλ
λ

for all sufficiently large n. We can assume w.l.o.g. that these statements hold

for all λ and n. By setting E|In,λ|/n = α1,n,λ
logλ

λ
we have that α1,n,λ ≥ α > 1.

4.1.1. A coupling of local algorithms on Erdős-Rényi graphs. For 0 ≤ p ≤ 1,
let S = Sn,p be a random subset of V (Gn) chosen by doing a Bernoulli percolation
with density p. Let G′

n = G′
n(Gn,S) be the random graph that is obtained from Gn
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by independently resampling the edge connections between each pair of vertices
{u, v} ⊂ S with inclusion probability λ/n. In other words, G′

n retains all edges
of Gn that do not connect S to itself, and all possible edge connections between
vertices within S are resampled according to the Erdős–Rényi model. Note that G′

n

is also distributed according to ER(n,λ/n); if p = 0 then G′
n = Gn, and if p = 1

then G′
n is independent of Gn.

Now fix Gn and S as above and let X be a random labelling of Gn. Let
X1,X2, . . . be new, independent random labellings and define labellings Y k , cor-
related with X, by Y k(v) = Y k(v) if v ∈ S, and Y k(v) = X(v) otherwise. Generate
G1,G2, . . . from Gn and S by using the recipe for G′

n, but rewire the edges for
each Gi independently. In other words, the induced subgraphs G1[S],G2[S], . . .
are independent. Now consider independent sets I 1, I 2, . . . by letting I k be gener-
ated by the factor fn,λ with input graph Gk and labelling Y k . Thus, I k is a factor
of i.i.d. independent set of Gk . Since all these graphs have a common vertex set,
namely [n], we can consider intersections of the I k . Note that for any finite subset
T the expected intersection density E[|⋂t∈T I t |/n] depends only of |T | due to
exchangeability of the I k . Define the parameters αk,n,λ by

(4.1) αk,n,λ

logλ

λ
= E

[ |⋂k
t=1 I t |
n

]
.

THEOREM 4.2. The following inequality holds for each k ≥ 1:

(4.2) lim inf
λ→∞ lim inf

n→∞ inf
p∈[0,1]

k∑
i=1

(−1)i−1
(
k

i

)
αi,n,λ,p(2 − αi,n,λ,p) ≥ 0.

Now we establish the upper bound by using Theorem 4.2. We define stability
variables Qn,λ,p in a manner analogous to what we did for regular graphs. First,
let ◦ ∈ [n] be a uniform random vertex. We restrict our probability space to the
support of fn,λ(Nrλ(Gn,◦),◦,X(Gn,◦, rλ)), considered as a subset of the original
probability space determined by ◦, the random labellings X,X1, . . . , the random
subset S and the independent trials that determine the graphs Gn,G

1,G2, . . . . Let
E

∗ be the expectation operator E restricted to the new space:

E
∗[U ] = E[Ufn,λ(Nrλ(Gn,◦),◦,X(Gn,◦, rλ))]

E[fn,λ(Nrλ(Gn,◦),◦,X(Gn,◦, rλ))] .

Notice that we define the new probability space on finite graphs instead of on
the infinite limiting graph as we had done for regular graphs. This coupling takes
into account the randomness in the local structure of the underlying Erdős–Rényi
graphs, which is not an issue for regular graphs.

Define the stability Qn,λ,p = Qn,λ(Gn,◦, S,X) on the new probability space
by

Qn,λ,p = E
∗[

fn,λ

(
Nrλ

(
G1,◦)

,◦, Y 1(
G1,◦, rλ)|Gn,◦, S,X

)]
.
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Calculating as before, for every k ≥ 1 the moment E∗[Qk−1
n,λ ] = αk,n,λ,p

α1,n,λ
.

We now show that expectations involving Qn,λ,p are continuous with respect
to p, and that Qn,λ,p has the right values at the endpoints p = 0 and p = 1. Ob-
serve that Qn,λ,p ∈ [0,1]. If g is a bounded measurable function on [0,1] then
E

∗[g(Qn,λ,p)] is Lipschitz in p.
Indeed, let p1 ≤ p2. We couple the labelled graphs (G1(Sp1),◦, Y 1

p1
) and

(G1(Sp2),◦, Y 1
p2

) given (Gn,◦,X) through the percolation subsets. Let Z be a
random labelling of [n], and let τ{u,v} for {u, v} ⊂ [n] be independent Bernoulli
trials of expectation λ/n. Set Sp1 = {v : Z(v) ≤ p1} and Sp2 = {v : Z(v) ≤ p2}.
The resampled edges of G1(Sp1) [resp. G1(Sp2)] are determined according to the
τ{u,v} for u, v ∈ Sp1 (resp., for u, v ∈ Sp2 ). Similarly, the labelling Y 1

p1
(resp., Y 1

p2
)

agrees with X1 on Sp1 (resp., Sp2 ) and agrees with X otherwise. With this cou-
pling, we have that (ignoring some formalities with the notation)

E
∗[

g(Qn,λ,p1)
] −E

∗[
g(Qn,λ,p2)

]
= E

∗[
g
(
E

∗[
f

(
G1(Sp1),◦, Y 1

p1

)|Gn,◦,X,Sp1

])
− g

(
E

∗[
f

(
G1(Sp2),◦, Y 1

p2

)|Gn,◦,X,Sp2

])]
.

Observe that if Z(v) /∈ (p1,p2) for every v ∈ [n] then Sp1 = Sp2 , and hence,
(G1(Sp1), Y

1
p1

) = (G1(Sp2), Y
1
p2

). On this event, the conditional expectations
E

∗[f (G1(Sp1),◦, Y 1
p1

)|Gn,◦,X,Sp1] = E
∗[f (G1(Sp2),◦, Y 1

p2
)|Gn,◦,X,Sp2].

So the difference of the two expectations above is zero on this event. By an union
bound, the probability that Z(v) ∈ (p1,p2) for some vertex v is at most n|p1 −p2|.
Therefore, the triangle inequality implies that∣∣E∗[

g(Qn,λ,p1)
] −E

∗[
g(Qn,λ,p2)

]∣∣ ≤ (
2‖g‖∞n

)|p1 − p2|.
The endpoint values of Qn,λ,p are the same as before. When p = 0, the re-

sampled graph G1 equals Gn, and the labelling Y 1 = X due to S being empty.
Consequently, Qn,λ,0 ≡ 1 on the restricted probability space. On the other hand, if
p = 1 then (G1, Y 1) is independent of (Gn,X) and the conditioning has no effect
due to S being the entire vertex set. Note that the common root ◦ does not affect the
calculation because the distribution of Nr(ER(n,λ/n), v) does not depend on v.
We thus have Qn,λ,1 ≡ α1,n,λ

logλ
λ

.
With these observations, we can now proceed with the proof exactly the same

way as before. We skip the remainder of the argument for brevity and prove The-
orem 4.2 in the following.

4.1.2. Proof of Theorem 4.2. We will show that the existence of the factor of
i.i.d. independent sets I i on the graph Gi implies that with high probability each
graph Gi contains a subset Si such that Si is an independent set in Gi , and the em-
pirical intersection densities of the S1, . . . , Sk are close to the quantities αk,n,λ

logλ
λ

.
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Then we will bound the probability of observing such a k-tuple of independent
sets, and prove that this probability is vanishingly small unless Theorem 4.2 holds.

Consider subsets Si ⊂ V (Gi). The density profile of (S1, . . . , Sk) is the vec-

tor ρ = (ρ(T );T ⊂ [k]) where ρ = (ρ(T );T ⊂ [k]) defined as ρ(T ) = |⋂i∈T Si |
n

.
Consider the independent sets I i of Gi defined in Section 4.1.1. They satisfy
E[|⋂i

j=1 I j |/n] = αi,n,λ,p
logλ

λ
for every 1 ≤ i ≤ k.

Fix 0 < ε < 1. Let A(ε,p) be the following event. For each 1 ≤ i ≤ k, Gi

contains an independent set Si such that the density profile of (S1, . . . , Sk) satisfies
the following for all T ⊂ [k]:

ρ(T ) ∈
[
(1 − ε)α|T |,n,λ,p

logλ

λ
, (1 + ε)α|T |,n,λ,p

logλ

λ

]
.

We show that P[A(ε,p)] → 1 as n → ∞. This follows if we show that

P

[
max
T ⊂[k]

∣∣∣∣ |
⋂

i∈T I i |
n

−E

[ |⋂i∈T I i |
n

]∣∣∣∣ > ε

]
→ 0.

Indeed, given a realization of the graphs G1, . . . ,Gk and random labellings

Y 1, . . . , Y k , we take Si = I i on Gi . If | |
⋂

i∈T I i |
n

− E[ |⋂i∈T I i |
n

]| ≤ ε for every
T ⊂ [k] then the conditions for A(ε,p) to occur are satisfied.

LEMMA 4.3. With G1, . . . ,Gk as defined and corresponding independent sets
I 1, . . . , I k as defined via the factor fn,λ, one has that for all ε > 0, as n → ∞,

P

[
max
T ⊂[k]

∣∣∣∣ |
⋂

i∈T I i |
n

−E

[ |⋂i∈T I i |
n

]∣∣∣∣ > ε

]
→ 0.

PROOF. We show that E[||⋂i∈T I i |−E[|⋂i∈T I i |]|2] = o(n2) where the little
o term may depend on λ, rλ, and k. The lemma then follows from Chebyshev’s
inequality and an union bound over T ⊂ [k]. We write∣∣∣∣⋂

i∈T

I i

∣∣∣∣ −E

[∣∣∣∣⋂
i∈T

I i

∣∣∣∣
]

=
n∑

v=1

1
{
v ∈ ⋂

i∈T

I i

}
− P

[
v ∈ ⋂

i∈T

I i

]
.

Observe that |1{v ∈ ⋂
i∈T I i}−P[v ∈ ⋂

i∈T I i]| ≤ 1. For two vertices u and v, if
the graph distance distGi (u, v) > 2rλ then the events {u ∈ I i} and {v ∈ I i} are in-
dependent with respect to the random labelling of Gi because the factor fn,λ makes
decisions based on the labels along the rλ-neighbourhood of a vertex. Therefore,
{u ∈ ⋂

i∈T I i} is independent of {v ∈ ⋂
i∈T I i} if distGi (u, v) ≥ 2rλ for every i.

Consequently,

E

[(
1
{
u ∈ ⋂

i∈T

I i

}
− P

[
u ∈ ⋂

i∈T

I i

])
·
(

1
{
v ∈ ⋂

i∈T

I i

}
− P

[
v ∈ ⋂

i∈T

I i

])]

≤ P
[
distGi (u, v) ≤ 2rλ for some i

]
.
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These observations imply that

E

[∣∣∣∣
∣∣∣∣⋂
i∈T

I i

∣∣∣∣ −E

[∣∣∣∣⋂
i∈T

I i

∣∣∣∣
]∣∣∣∣2

]

≤ n +E
[
#
{
(u, v) : distGi (u, v) ≤ 2rλ for some i

}]
.

Using the fact that the random graphs ER(n,λ/n) converge locally to PGWλ,
it is a standard exercise to show that the expected number of pairs (u, v) in
ER(n,λ/n) that satisfy dist(u, v) > R is o(n2) (the little o term depends on
λ and R). From this observation and a union bound over i, we deduce that
E[#{(u, v) : distGi (u, v) ≤ 2rλ for some i}] = o(n2). This proves the estimate for
the squared expectation and completes the proof. �

In order to bound P[A(ε,p)] from above, we need a procedure to sample the
graphs G1, . . . ,Gk .

Sampling the graphs (G1, . . . ,Gk). Let τi,u,v for 1 ≤ i ≤ k and {u, v} ⊂ [n] be
the indicator of the event that the edge {u, v} belongs to Gi . Then the random
vectors (τi,u,v;1 ≤ i ≤ k) are independent of each other as {u, v} varies. Let S ⊂
[n] be a random subset chosen by a Bernoulli percolation with density p. If both
u, v ∈ S, then (τi,u,v;1 ≤ i ≤ k) are independent Bernoulli trials of expectation
λ/n for each i. Otherwise, (τi,u,v;1 ≤ i ≤ k) satisfies τ1,u,v = · · · = τk,u,v . In the
latter case, all k of these indicators take the value 1 with probability λ/n or they
are all zero with the complementary probability.

The sampling procedure above will allow us to compute expectations involving
independent sets in the Gi . Let I i ⊂ [n] be an independent set of Gi . Defining
ρ(T ) = |⋂t∈T I t |/n for T ⊂ [k], the density profile associated to these k indepen-
dent sets is ρ = (ρ(T );T ⊂ [k]). The density profile ρ determines a probability
distribution π = (π(T );T ⊂ [k]) by equation (3.1). Let Z(ρ) be the number of
k-tuple of subsets (I 1, . . . , I k) of [n] such that they have density profile ρ and I i

is an independent set of Gi .

LEMMA 4.4. The expectation of Z(ρ) satisfies

E
[
Z(ρ)

] ≤
(

n

π(T )n;T ⊂ [k]
)(

1 − λ

n

)κ

,

where κ = ∑
T �=∅

(π(T )n
2

) + 1
2

∑
(T ,T ′):T �=T ′,T ∩T ′ �=∅

π(T )π(T ′)n2.

PROOF. Consider a k-tuple (I 1, . . . , I k), each I i ⊂ [n], with the property that
its density profile is ρ. Given v ∈ [n], let Tv = {i ∈ [k] : v ∈ I i}. Let E{u,v} be
the event that the edge {u, v} is absent is all Gi for which i ∈ Tu ∩ Tv , that is,
E{u,v} = {τi,u,v = 0 for all i ∈ Tu ∩ Tv}. The subsets I 1, . . . , I k have the property
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that I i is an independent set of Gi if and only if the events E{u,v} occur for all
pairs {u, v}.

From the sampling procedure for the graphs G1, . . . ,Gk , we note that the events
E{u,v} are independent. Conditioning on the random subset S and using the sam-
pling procedure, we conclude that

E
[
Z(ρ)|S] = ∑

(I 1,...,I k)

with density profile ρ

∏
{u,v}⊂S

(
1 − λ

n

)|Tu∩Tv | ∏
{u,v}�⊂S

(
1 − λ

n

)1{Tu∩Tv �=∅}
.

Observe that (1 − λ
n
)|Tu∩Tv | ≤ (1 − λ

n
)1{Tu∩Tv �=∅} . Therefore, no matter the out-

come of S we have that

E
[
Z(ρ)|S] ≤ ∑

(I 1,...,I k)

with density profile ρ

∏
{u,v}

(
1 − λ

n

)1{Tu∩Tv �=∅}
.

This implies the same inequality for the expectation E[Z(ρ)]. We show that∑
{u,v} 1{Tu∩Tv �=∅} = κ . Recall the probability distribution (π(T );T ⊂ [k]) derived

from ρ from equation (3.1). Consider the ordered partition 	 associated to any
(I 1, . . . , I k) with profile ρ. The partition 	 has 2k ordered cells (	(T );T ⊂ [k])
defined by

	(T ) =
(⋂

t∈T

I t

)
∩

(⋂
t /∈T

[n] \ I t

)
.

The inclusion–exclusion principle implies that |	(T )| = π(T )n. For a fixed k-
tuple (I 1, . . . , I k), the sum

∑
{u,v} 1{Tu∩Tv �=∅} can be represented by accounting

for the contribution of each pair of subsets {T ,T ′} to it.∑
{u,v}

1{Tu∩Tv �=∅} = ∑
{T ,T ′}:T ∩T ′ �=∅

#
{{u, v} : Tu = T ,Tv = T ′}.

Observe that 	(Tu) is the cell of 	 that contains u, that is, Tu = T if and
only if u ∈ 	(T ). Therefore, #{{u, v} : Tu = T ,Tv = T ′} equals #{{u, v} : u ∈
	(T ), v =∈ 	(T ′)}, and the latter is

∣∣	(T )
∣∣∣∣	(

T ′)∣∣ − (∣∣	(T ) ∩ 	
(
T ′)∣∣

2

)
− ∣∣	(T ) ∩ 	

(
T ′)∣∣.

Since |	(T )| = π(T )n and 	(T ) ∩ 	(T ′) =∅ for T �= T ′, it readily follows that∑
{u,v} 1{Tu∩Tv �=∅} equals κ . [The factor of 1/2 appears in κ because we sum over

all ordered pairs (T , T ′).] Thus,

E
[
Z(ρ)

] ≤ #
{(

I 1, . . . , I k) with density profile ρ
} ×

(
1 − λ

n

)κ

.



1572 M. RAHMAN AND B. VIRÁG

The bijection between k-tuples (I 1, . . . , I k) and ordered partitions implies that
the number of k-tuples with density profile ρ is equal to the number of ordered
partitions (	(T );T ⊂ [k]) of [n] such that |	(T )| = π(T )n. The latter number is
the multinomial coefficient

( n
π(T )n;T ⊂[k]

)
. �

To analyze the asymptotic behaviour of E[Z(ρ)], write π(T ) = β(T )
logλ

λ
for

T �= ∅. Then,

∑
T �=∅

(
π(T )n

2

)
+ 1

2

∑
(T ,T ′)

T �=T ′,T ∩T ′ �=∅

π(T )π
(
T ′)n2

= n2

2

∑
(T ,T ′)

T ∩T ′ �=∅

π(T )π
(
T ′) − n

2

∑
T �=∅

π(T ).

In terms of β , the latter is n2 log2 λ

2λ2

∑
(T ,T ′)T ∩T ′ �=∅

β(T )β(T ′)− n
2 (1−π(∅)). Also,

considering only the nonzero π(T ) and using Sterling’s approximation, we have( n
π(T )n;T �=∅

) = Ok(
√

n) exp{nH(π)}, where H is the previously introduced en-

tropy function. Using the fact that 1 − λ
n

≤ e− λ
n , and 1 − π(∅) ≤ 1, we conclude

that

E
[
Z(ρ)

] = Ok

(√
neλ/2)

exp
{
n

[
H(π) − log2 λ

2λ

∑
(T ,T ′)

T ∩T ′ �=∅

β(T )β
(
T ′)]}

.

Lemma 3.3 shows that H(π) = log2 λ
λ

∑
T �=∅ β(T ) + Ok(

logλ
λ

), where the big O
constant depends on k. Consequently,

H(π) − log2 λ

2λ

∑
(T ,T ′):

T ∩T ′ �=∅

β(T )β
(
T ′)

(4.3)

= log2 λ

λ

( ∑
T �=∅

β(T ) − 1

2

∑
(T ,T ′):

T ∩T ′ �=∅

β(T )β
(
T ′)) + Ok

(
logλ

λ

)
.

Lemma 3.3 also shows that if ρ(S) = α|S| logλ
λ

for S �=∅ [ρ(∅) = 1], then

(4.4)
∑
T �=∅

β(T ) − 1

2

∑
(T ,T ′)

T ∩T ′ �=∅

β(T )β
(
T ′) = 1

2

k∑
i=1

(−1)i−1
(
k

i

)
(2 − αi)αi.
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Recall the event A(ε,p): the graph Gi contains an independent set Si such that
the density profile of (S1, . . . , Sk) satisfies

ρ(T ) ∈
[
(1 − ε)α|T |,n,λ,p

logλ

λ
, (1 + ε)α|T |,n,λ,p

logλ

λ

]
for all T ⊂ [k].

We employ a first moment bound along with Lemma 4.4 to bound P[A(ε,p)];
simplifying via (4.3) and (4.4) we get

P
[
A(ε,p)

] ≤ exp
{
n

[
log2 λ

λ

(∑
i

(−1)i−1
(
k

i

)(
αi,n,λ,p − 1

2
α2

i,n,λ,p

)

+ err(ε)
)

+ Ok

(
logλ

λ

)]}
,

where err(ε) → 0 as ε → 0 uniformly in n,λ and p.
The proof of Theorem 4.2 is now completed in the same manner as for regular

graphs, which is the argument from Section 3.3.1.

4.2. A lower bound from regular trees. We will show that factor of i.i.d. in-
dependent sets in regular trees can be used to construct such independent sets in
PGW trees as well. Let I be a factor of i.i.d. independent set in the regular tree Td

such that the factor is a function of the labels in a finite size neighbourhood of the
root. Let E(λ,d) denote the event that the root of PGWλ and all of its neighbours
have degree at most d .

THEOREM 4.5. Given I as above there exists a factor of i.i.d. independent set
J of PGWλ whose density satisfies the bound:

density(I )P
[
E(λ,d)

] ≤ density(J ) ≤ density(I ).

PROOF. We construct J in three stages.

The edge removal stage. We remove edges from PGWλ via a factor of i.i.d. pro-
cess such that all vertices will have degree at most d after the removal procedure.
Begin with a random labelling X of PGWλ. For each vertex v, consider all the
neighbours u of v such that the variables Xu are the degree(v) − d highest in
value [provided, of course, that degree(v) > d]. Mark the degree(v) − d edges
connecting v to these neighbours.
Following the marking procedure remove all the edges that have been marked.
After the removal of edges, all vertices have degree at most d . The remaining
graph is a disjoint collection of trees with a countable number of components.
Denote it G.

The filling out stage. If a vertex v in G has degree degreeG(v) < d , then attach to
it d − degreeG(v) copies of a (d − 1)-ary tree via d − 1 separate edges connect-
ing v to these trees. Following this procedure, the graph G becomes a disjoint
collection of d-regular trees. Randomly label G by a new set of labels Y that
are independent of X.
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The inclusion stage. Since G is a disjoint collection of d-regular trees, we can
use the factor associated to I with input Y to construct an independent set I ′ of
G with the same density as I . Although I ′ is an independent set in G, it may not
be an independent set in the original tree PGWλ due to the removal of edges. To
construct the independent set J , we include in J all vertices v ∈ I ′ such that no
edges incident to v were removed during the edge removal stage.

By design, the random subset J is a factor of i.i.d. process on PGWλ. J is also
an independent set because if (u, v) is an edge of PGWλ with both u, v ∈ I ′, then
the edge connecting u and v must have been removed during the edge removal
stage (due to I ′ being an independent set in G). Thus, neither u nor v belong to J .

To bound the density of J , we note that J ⊂ I ′. Also, for any v ∈ I ′, if v and all
of its neighbours in PGWλ has degree at most d then none of the edges incident
to v are removed during the edge removal stage. Consequently, v will be included
in J . These two observations readily imply that

density(I )P
[
E(λ,d)

] ≤ density(J ) ≤ density(I ). �

LEMMA 4.6. If λ = d − du for any 1/2 < u < 1, then the probability
P[E(λ,d)] → 1 as d → ∞.

PROOF. This is a calculation involving Poisson tail probabilities. Recall that
the moment generating function of a Poisson(μ) random variable is eμ(et−1).
Let X denote the degree of the root in a PGW tree of expected degree λ. Let
Z1, . . . ,ZX denote the number of offsprings of the neighbours of the root. Recall
that X has distribution Poisson(λ), and that conditioned on X the random variables
Z1, . . . ,ZX are i.i.d. with distribution Poisson(λ).

Let p(λ, d) = P[Poisson(λ) > d]. Then

P
[
E(λ,d)

] = E

[
1X≤d

X∏
i=1

1Zi≤d−1

]

= E

[
1X≤dE

[
X∏

i=1

1Zi≤d−1|X
]]

= E
[
1X≤d

(
1 − p(λ, d − 1)

)X]
= E

[(
1 − p(λ, d − 1)

)X] −E
[
1X>d

(
1 − p(λ, d − 1)

)X]
≥ e−λp(λ,d−1) − p(λ, d − 1).

We can bound the tail probability p(λ, d − 1) by using the exponential moment
method. For simplicity, we replace d − 1 by d , which makes no difference to the
analysis for large d . A simple and well-known computation gives

p(λ, d) ≤ ed−λ

(
λ

d

)d

if λ < d.
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Setting λ = d − du for 1/2 < u < 1, we see from the bound above that p(d −
du, d) ≤ edu

(1 − du−1)d = edu+d log(1−du−1). Since log(1 − x) = −∑
k≥1

xk

k
≤

−x − x2/2 for 0 ≤ x < 1, by setting x = du−1 < 1 we conclude that

p
(
d − du, d

) ≤ edu−d(du−1+ d2u−2
2 ) = e− d2u−1

2 .

Due to u > 1/2, the latter quantity tends to 0 exponentially fast as d → ∞. As a
result, both (d − du)p(d − du, d) and p(d − du, d) tend to 0 with d . This implies
the lemma. �

Given λ, set d = �λ+λ3/4�. From the definition of α(λ),αd , and the conclusion
of Theorem 4.5 we have that

α(λ)
logλ

λ
≥ αd · logd

d
· P[

E(λ,d)
]
.

Recall the construction of Lauer and Wormald mentioned in Section 2 which
shows that lim infd→∞ αd ≥ 1. By our choice to d as a function of λ we have
(

logd
d

)/(
logλ

λ
) → 1 as λ → ∞. By Lemma 4.6, we have that the probability

P[E(λ,d)] → 1 as λ → ∞. As a result, we conclude from the inequality above
that

lim inf
λ→∞ α(λ) ≥ 1.

This lower bound completes the proof of Theorem 4.1.

5. Concluding remarks. Our results are concerned with density of factor of
i.i.d. independent sets in sparse graphs where the sparsity parameter (degree) tends
to infinity. However, it is still a very interesting problem to compute the maximum
density for various classes of factor of i.i.d. processes on d-regular graphs for fixed
values of d . There have been some recent progress is this regard for independent
sets in 3-regular graphs. In [8], the authors use Gaussian processes to construct fac-
tor of i.i.d. independent sets in T3 of density at least 0.436, and in [17] the authors
improve the bound to at least 0.437 via another local algorithm. It is known due
to McKay [21] that the maximum density of independent sets in random 3-regular
graphs is at most 0.456, which provides an upper bound for factor of i.i.d. inde-
pendent sets in T3.

Another question is whether there is a gap between the density of the maximum
cut in random d-regular graphs and the maximal density of cuts derived from lo-
cal algorithms. The density of the maximum cut of Gn,d , denoted γ (Gn,d), is the
largest values of |∂ES|/nd , where ∂ES is the set of all edges (u, v) ∈ E(Gn,d)

with u ∈ S and v /∈ S. The expectation E[γ (Gn,d)] → γ (d) as n → ∞ for every d

[2]. A local cut of Td is a factor of i.i.d. process σ ∈ {−1,+1}Td ; its density is
P[σ(◦) �= σ(◦′)], where (◦,◦′) is a fixed edge of Td . Is it true that γ (d) equals the
supremum over the density of local cuts of Td?
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