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Power-Expected-Posterior Priors
for Generalized Linear Models

Dimitris Fouskakis∗, Ioannis Ntzoufras†, and Konstantinos Perrakis‡,†§

Abstract. The power-expected-posterior (PEP) prior provides an objective, au-
tomatic, consistent and parsimonious model selection procedure. At the same time
it resolves the conceptual and computational problems due to the use of imag-
inary data. Namely, (i) it dispenses with the need to select and average across
all possible minimal imaginary samples, and (ii) it diminishes the effect that the
imaginary data have upon the posterior distribution. These attributes allow for
large sample approximations, when needed, in order to reduce the computational
burden under more complex models. In this work we generalize the applicability
of the PEP methodology, focusing on the framework of generalized linear models
(GLMs), by introducing two new PEP definitions which are in effect applicable to
any general model setting. Hyper-prior extensions for the power parameter that
regulates the contribution of the imaginary data are introduced. We further study
the validity of the predictive matching and of the model selection consistency,
providing analytical proofs for the former and empirical evidence supporting the
latter. For estimation of posterior model and inclusion probabilities we introduce
a tuning-free Gibbs-based variable selection sampler. Several simulation scenarios
and one real life example are considered in order to evaluate the performance
of the proposed methods compared to other commonly used approaches based on
mixtures of g-priors. Results indicate that the GLM-PEP priors are more effective
in the identification of sparse and parsimonious model formulations.

Keywords: expected-posterior prior, g-prior, generalized linear models, hyper-g
priors, imaginary data, objective Bayesian model selection, power-prior.

1 Introduction

1.1 Motivation

In this article, the variable selection problem in generalized linear models (GLMs) is
analyzed from an objective and fully automatic Bayesian model choice perspective. The
desire for an automatic Bayesian procedure is motivated by the appealing property of
creating a method that can be easily implemented in complex models without the need
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of specification of tuning parameters. Regarding the justification for the necessity of an
objective model choice approach we can argue that in variable selection problems we
are rarely confident about any given set of regressors as explanatory variables, which
translates to little prior information about the regression coefficients. Therefore, we
would like to consider default prior distributions, which in many cases are improper,
thus leading to undetermined Bayes factors.

Intrinsic priors (Berger and Pericchi, 1996a,b) and expected-posterior (EP) priors
(Pérez and Berger, 2002) can be considered as fully automatic, objective Bayesian meth-
ods for model comparison in regression models. They are developed through the uti-
lization of the device of “training” or “imaginary” samples, respectively, of “minimal”
size and therefore the resulting priors have a further advantage of being compatible
across models; see Consonni and Veronese (2008). Intrinsic and EP priors have been
proposed in many articles for variable selection in Gaussian linear models (see for ex-
ample Casella and Moreno, 2006); however, to the best of our knowledge, there is only
one study that proposes this methodology for GLMs, which is restricted to the case
of the probit model (Leon-Novelo et al., 2012). We believe that this is due to the fact
that derivation of such priors can be a very challenging task, especially under complex
models, leading to computationally intensive solutions. Furthermore, by using minimal
training samples, large sample approximations can not be applied in many cases.

Our contribution with this article is two-fold. First, we develop an automatic, objec-
tive Bayesian variable selection procedure for GLMs based on the EP prior methodology.
In particular we consider the power-expected-posterior (PEP) prior of Fouskakis et al.
(2015), that diminishes the effect that the imaginary data have upon the posterior
distribution and therefore the need of using minimal training samples. Through this ap-
proach we can consider imaginary samples of sufficiently large size and therefore be able
to apply, when needed, large sample approximations. Secondly, we introduce a simple
tuning-free Gibbs-based variable selection sampler for estimating posterior model and
variable inclusion probabilities.

1.2 Bayesian variable selection for generalized linear models

Despite the importance and popularity of GLMs, Bayesian variable selection techniques
for non-Gaussian models are scarce in relation to the abundance of methods that are
available for the normal linear model. This is mainly due to the analytical intractability
which arises outside the context of the normal model. The relatively limited studies
that focus on non-Gaussian models, mainly aim to overcome analytical intractability
through the use of Laplace approximations and/or stochastic model search algorithms.

Chen and Ibrahim (2003) introduced a class of conjugate priors based on an ini-
tial prior prediction of the data (similar to the concept of imaginary data) associated
with a scalar precision parameter. This approach essentially leads to a GLM analogue
of the g prior (Zellner and Siow, 1980; Zellner, 1986) where the precision parameter
has the role of g. However, the prior of Chen and Ibrahim (2003) is not analytically
available for non-Gaussian GLMs and, therefore, Chen et al. (2008) proposed a Markov
chain Monte Carlo (MCMC) based solution for this class of models. Ntzoufras et al.
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(2003) used a unit-information g-prior (Kass and Wasserman, 1995) for variable selec-
tion and link determination in binomial models through reversible-jump MCMC sam-
pling. Sabanés Bové and Held (2011) consider the asymptotic distribution of the prior
of Chen and Ibrahim (2003), which results in the same g-prior form used in Ntzoufras
et al. (2003), and further consider mixtures of g-priors along the lines of Liang et al.
(2008). Computation of the marginal likelihood in Sabanés Bové and Held (2011) is
handled through an integrated Laplace approximation, based on Gauss-Hermite quadra-
ture, which allows variable selection through full enumeration for small/moderate model
spaces or through MCMC model composition (MC3) algorithms (Madigan and York,
1995) for spaces of large dimensionality. Other GLM variations of g-prior mixtures have
an empirical Bayes (EB) flavor, using the observed or expected information matrix
evaluated at the maximum-likelihood (ML) estimates as the prior variance-covariance
matrix (Hansen and Yu, 2003; Wang and George, 2007; Li and Clyde, 2016). A compu-
tational benefit of the EB approach is that the integrated Laplace approximation can
be expressed in closed form as a set of functions of the ML estimates. For large model
spaces, where full enumeration is infeasible, Li and Clyde (2016) recommend using the
Bayesian adaptive sampling algorithm. A relevant prior specification is the information-
matrix prior of Gupta and Ibrahim (2009) which combines ideas from the g-prior and
Jeffreys prior for GLMs (Ibrahim and Laud, 1991); however, in applications, Gupta and
Ibrahim (2009) do not directly consider the problem of stochastic search over the entire
model space. Finally, one application of Bayesian intrinsic variable selection for probit
models via MCMC is presented in Leon-Novelo et al. (2012).

In this work we present an automatic, objective Bayesian variable selection procedure
for GLMs based on the PEP methodology. The structure of the remainder of the paper is
as follows. In Section 2 we provide an overview of the PEP prior formulation and discuss
the applicability problems that arise in the case of non-Gaussian models. We proceed
with two alternative definitions, which generalize the applicability of the PEP prior for
GLMs. In Section 3 we introduce a Gibbs-based sampler suitable for variable selection
and for single-model posterior inference. Section 4 presents an hierarchical extension
of the methodology which involves assigning a hyper-prior to the power parameter
that controls the contribution of the imaginary data. In Section 5 we examine the
validity of certain desiderata proposed by Bayarri et al. (2012) and we proceed by
presenting a general framework in Section 6 for all PEP priors under consideration.
Illustrative examples and comparisons with other methods using both simulated and real
life example are presented in Section 7. We conclude with a summary and a discussion
of future research directions in Section 8.

2 PEP priors for generalized linear models

2.1 Model setting

We consider n realizations of a response variable Y accompanied by a set of potential
predictors X1, X2, . . . , Xp which may characterize the response. To fix notation, let
γ ∈ {0, 1}p index all 2p subsets of predictors serving as a model indicator, where each
element γj , for j = 1, . . . , p, is an indicator of the inclusion of Xj in the structure
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of model Mγ . Moreover, let pγ =
∑p

j=1 γj denote the number of active covariates in
model Mγ . Within the GLM framework, the response Y follows a distribution which is
a member of the exponential family. The sampling distribution of the response vector
y = (y1, . . . , yn)

T under model Mγ is given by

fγ(y|βγ , φγ) = exp

(
n∑

i=1

yiϑγ(i) − b(ϑγ(i))

ai(φγ)
+

n∑
i=1

c(yi, φγ)

)
. (1)

The functions ai(·), b(·) and c(·) determine the particular distribution of the exponential
family. The parameter ϑγ(i) is the canonical parameter which regulates the location of
the distribution through the relationship ϑγ(i) = ϑ(ηγ(i)) ≡ g ◦ b′−1(ηγ(i)), where g(·)
is the link function connecting the mean of the response Yi with the linear predictor
ηγ(i) = Xγ(i)βγ and g ◦ b′−1(ηγ(i)) is the inverse function of g ◦ b′(ϑγ(i)) ≡ g(b′(ϑγ(i))).
Commonly, a canonical ϑ function is used, so that ϑγ(i) = ηγ(i). We assume that a
intercept term is included in all 2p models under consideration, so βγ is the dγ × 1
vector of regression coefficients, where dγ = pγ + 1, and Xγ(i) is the i–th row of the
n × dγ design matrix Xγ with a vector of 1’s in the first column and the γ–th subset
of the Xj ’s in the remaining pγ columns. The parameter φγ controls the dispersion
and the function ai(·) is typically of the form ai(φγ) = φγ/wi, where wi is a known
fixed weight that may either vary or remain constant per observation. In addition, the
nuisance parameter φγ is commonly considered as a common parameter across models,
therefore we assume throughout that φγ ≡ φ without loss of generality. Given the above
formulation, we have that E(Yi) = b′(ϑγ(i)) and Var(Yi) = b′′(ϑγ(i))ai(φ).

The GLM parameters θγ = (βγ , φ) are divided into the predictor effects βγ and
the parameter φ which affects dispersion. In the following we work along the lines of
Fouskakis and Ntzoufras (2016) considering the conditional PEP prior; i.e. we construct
the PEP prior of βγ conditional on φ.

2.2 An overview of the PEP prior

The PEP prior, initially formulated in Fouskakis et al. (2015) for the case of the normal
linear model, fuses ideas from the power prior (Ibrahim and Chen, 2000) and the EP
prior (Pérez and Berger, 2002). Let us first describe the EP prior approach. Consider
that we have imaginary data y∗ = (y∗1 , . . . , y

∗
n∗)T coming from the prior-predictive

distribution m∗(y∗) of a “suitable” reference model M∗. Then, given y∗, for any model
Mγ with sampling distribution fγ(y

∗|βγ , φ) as defined in (1) and a default baseline prior

of the form πN
γ (βγ , φ) = πN

γ (βγ |φ)πN
γ (φ), we have a corresponding baseline posterior

distribution given by

πN
γ (βγ , φ|y∗) =

fγ(y
∗|βγ , φ)π

N
γ (βγ |φ)πN

γ (φ)

mN
γ (y

∗)
, (2)

where mN
γ (y

∗) is the normalizing constant of the baseline posterior distribution under
modelMγ . The EP prior for the parameters of modelMγ is then defined as the posterior
distribution in (2), averaged over all possible imaginary samples, i.e.
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πEP
γ (βγ , φ) =

∫
πN
γ (βγ , φ|y∗)m∗(y∗)dy∗ . (3)

The reference model M∗ is commonly considered to be the simplest model, i.e. the (null)
intercept model in the regression framework. This selection makes the EP approach
essentially equivalent to the arithmetic intrinsic Bayes factor of Berger and Pericchi
(1996b).

A key issue in the implementation of the EP prior is the selection of the size n∗ of
the imaginary sample. In order to minimize the effect of the prior on posterior inference,
the reasonable solution is to choose the smallest possible n∗ for which the posterior (2)
is proper. This leads to the concept of the so-called minimal training sample. When
it comes to regression a problem arises with the design matrix as one has to choose
appropriate covariate values for each minimal training sample. This requires calculating
summaries of Bayes factors over all possible minimal training samples which further
complicates the problem. Therefore, under the EP prior, computation of the Bayes fac-
tors require calculations over all possible configurations of the design matrix for each
minimal training sample (Pérez, 1998) or, at least, calculations over an efficiently large
number of random sub-samples of all possible configurations (Fouskakis and Ntzoufras,
2013). An alternative and simpler computational solution has been proposed by Casella
and Moreno (2006) and Moreno and Girón (2008), however, this solution is only appli-
cable under the normal linear regression model. Additionally, under this approach, it is
not clear whether the resulting Bayes factors retain their intrinsic nature. Furthermore,
the effect of the EP prior can become influential when the sample size is not much larger
than the total number of predictors; see Fouskakis et al. (2015) for details. Finally, when
n∗ is small and (3) is hard to derive, large sample approximations cannot be applied.

The PEP prior resolves the problem of defining and averaging over minimal training
samples and at the same time scales down the effect of the imaginary data on the
posterior distribution. The core idea lies in substituting the likelihood function involved
in the calculation of (3) by a powered-version of it, i.e. raising it to the power of 1/δ,
similar to the power prior approach of Ibrahim and Chen (2000). Following Fouskakis
and Ntzoufras (2016), the conditional PEP (PCEP) prior in the GLM setup, under the
null-reference model M0, is defined as follows

πPEP
γ (βγ , φ|δ) = πPEP

γ (βγ |φ, δ)πN
γ (φ), (4)

where

πPEP
γ (βγ |φ, δ) =

∫
πN
γ (βγ |y∗, φ, δ)mN

0 (y
∗|φ, δ)dy∗, (5)

πN
γ (βγ |y∗, φ, δ) =

fγ(y
∗|βγ , φ, δ)π

N
γ (βγ |φ)

mN
γ (y

∗|φ, δ) , (6)

mN
γ (y

∗|φ, δ) =

∫
fγ(y

∗|βγ , φ, δ)π
N
γ (βγ |φ)dβγ , (7)

fγ(y
∗|βγ , φ, δ) =

fγ(y
∗|βγ , φ)

1/δ

kγ(βγ , φ, δ)
, (8)
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mN
0 (y

∗|φ, δ) =

∫
f0(y

∗|β0, φ, δ)π
N
0 (β0 |φ)dβ0, (9)

f0(y
∗|β0, φ, δ) =

f0(y
∗|β0, φ)

1/δ

k0(β0, φ, δ)
. (10)

For the original PEP prior of Fouskakis et al. (2015), we consider the choice
kγ(βγ , φ, δ) =

∫
fγ(y

∗|βγ , φ)
1/δdy∗ for all models γ ∈ M. Under this choice, the

PEP prior of the intercept β0 of the reference M0 reduces to the baseline prior; i.e.
πPEP
0 (β0|φ, δ) = πN

0 (β0|φ). The selection of kγ(βγ , φ, δ) and k0(β0, φ, δ) is further dis-
cussed in Section 2.3.

Here the power parameter δ controls the weight that the imaginary data contribute
to the “final” posterior distributions of βγ and φ. As noted in Fouskakis et al. (2015),
the choice of δ = n∗ leads to a minimally-informative prior with a unit-information
interpretation (Kass and Wasserman, 1995) where the contribution of the imaginary
data is down-weighted to account overall for one data point. Furthermore, by setting
n∗ = n we avoid the complicated problem of sampling over numerous imaginary design
sub-matrices, as in this case we have that X∗

γ ≡ Xγ . Under this framework, the unit-
information property in combination with the empirical evidence presented in Fouskakis
et al. (2015) suggest that the PEP prior is robust with respect to the specification of
n∗ and it also remains relatively non-informative even when the model dimensionality
is close to the sample size.

Another advantage of setting n∗ = n, which becomes more obvious in the GLM
framework, is that one can now utilize large-sample approximations when needed for
large n. For instance, consider the baseline posterior in (6), which can be expressed
as

πN
γ (βγ |y∗, φ, δ) ∝ exp

(
n∗∑
i=1

y∗i ϑγ(i) − b(ϑγ(i))

δai(φ)

)
πN
γ (βγ |φ). (11)

This unnormalized distribution is recognized as the power prior for GLMs (Chen et al.,
2000). Assuming a flat baseline prior for βγ , i.e. π

N
γ (βγ |φ) ∝ 1, then, based on standard

Bayesian asymptotic theory (Bernardo and Smith, 2000), for n∗ → ∞ the distribution in

(11) converges to π̂N
γ (βγ |y∗, φ, δ) ≈ Ndγ (β̂

∗
γ , δJ

∗
γ(β̂

∗
γ)

−1), where β̂∗
γ is the ML estimate

of βγ for data y∗ and design matrix X∗
γ , and J∗

γ(β̂
∗
γ) is the observed information ma-

trix evaluated at β̂∗
γ . Specifically, J

∗
γ(β̂

∗
γ) = (X∗T

γ W∗
γX

∗
γ)

−1, with W∗
γ = diag(w∗

γ(i)),

w∗
γ(i) = (

∂μγ(i)

∂ηγ(i)
)2[ai(φ)b

′′(ϑγ(i))]
−1 and μγ(i) = b′(ϑγ(i)). It is straightforward to see

that the asymptotic distribution has a g-prior form according to the definitions for
GLMs presented in Ntzoufras et al. (2003) and Sabanés Bové and Held (2011). The
familiar zero-mean representation arises when the covariates are centered around their
corresponding arithmetic mean and the imaginary response data are all the same, i.e.
y∗ = g−1(0)1n∗ , where 1n∗ is a vector of ones of size n∗ since in this case we have that

β̂∗
γ = 0dγ ; for details see Ntzoufras et al. (2003).
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2.3 PEP prior extensions for GLMs via unnormalized power
likelihoods

The sampling distribution of the imaginary data involved in the PEP prior via (6), (7)
and (9) is a power version of the likelihood function. In the normal linear regression
case Fouskakis et al. (2015) and Fouskakis and Ntzoufras (2016) naturally considered
kγ(βγ , φ, δ) =

∫
fγ(y

∗|θγ , φ)
1/δdy∗, i.e. the density normalized power likelihood

fγ(y
∗|θγ , φ, δ) =

fγ(y
∗|θγ , φ)

1/δ∫
fγ(y∗|θγ , φ)1/δdy∗ , (12)

which is also a normal distribution with variance inflated by a factor of δ. Similar
results can be derived for specific distributions of the exponential family such as the
Bernoulli, the exponential and the beta, where the normalized power likelihood is of
the same distributional form. This property simplifies calculations when using the PEP
methodology, especially for Gaussian models where the resulting posterior distribution
and marginal likelihood are available in closed form. An application of the PEP prior
using the normalized power likelihood for MCMC-based variable selection in binary
logistic regression can be found in Perrakis et al. (2015).

However, this property does not hold for all members of the exponential family.
For instance, for the binomial and Poisson regression models, the normalized power
likelihoods are composed by products of discrete distributions that have no standard
form. Although it is feasible to perform likelihood evaluations for each observation,
the additional computational burden renders the implementation of the PEP prior
methodology time-consuming and inefficient. One possible computational solution to
the problem would be to utilize an exchange-rate algorithm for doubly-intractable dis-
tributions (Murray et al., 2006). However, this approach would further increase MCMC
computational costs.

Here we pursue a more generic approach for the implementation of PEP methodology
in GLMs by redefining the prior itself. Namely, we consider two adaptations of the PEP
prior which, in principle, can be applied to any statistical model and, consequently, are
applicable to all members of the exponential family. For the remainder of this paper,
without loss of generality we restrict the scale parameter φ to be known, which is the
case for the binomial, Poisson and normal with known error variance regression models.
Moreover, in order to alleviate notation we remove φ from all conditional expressions
in the following of the paper.

The core idea is to use the unnormalized power likelihood (8) and (10), i.e. set
kγ(βγ , δ) = k0(β0, δ) = 1, and normalize the baseline posterior density (11) resulting in

πN
γ (βγ |y∗, δ) =

fγ(y
∗|βγ)

1/δπN
γ (βγ)∫

fγ(y∗|βγ)
1/δπN

γ (βγ)dβγ

(13)

and accordingly for the reference model M0. This is also the approach of Friel and
Pettitt (2008, Eq. 4) in the definition of the power posteriors. Given this first step, we
proceed by proposing two versions of the PEP prior which differentiate with respect to
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the definition of the prior predictive distribution used to average the baseline posterior
in (13) across imaginary data sets. This prior predictive distribution can be alternatively
viewed as a hyper-prior assigned to y∗ (Fouskakis and Ntzoufras, 2016). More specifically
we define the two PEP variants as follows.

Definition 1. The concentrated-reference PEP prior of model parameters βγ is
defined as the power posterior of βγ in (13) “averaged” over all imaginary data coming
from the prior predictive distribution of the reference model M0 based on the actual
likelihood, that is

πCR−PEP
γ (βγ |δ) = E

mN
0

y∗

[
πN
γ (βγ |y∗, δ)

]
= πN

γ (βγ)

∫
mN

0 (y
∗)

mN
γ (y

∗|δ)fγ(y
∗|βγ)

1/δdy∗ (14)

with mN
0 (y

∗) =

∫
f0(y

∗|β0)π
N
0 (β0)dβ0 (15)

and mN
γ (y

∗|δ) =

∫
fγ(y

∗|βγ)
1/δπN

γ (βγ)dβγ .

In order for the above prior to exist we need to consider for each model Mγ similar
assumptions as in Pérez and Berger (2002), i.e.

0 < mN
γ (y

∗|δ) < ∞, 0 <

∫
mN

0 (y
∗)

mN
γ (y

∗|δ)fγ(y
∗|βγ)

1/δdy∗ < ∞. (16)

In (14), mN
0 will not necessarily be proper, but still, by slightly abusing notation we

define the concentrated-reference PEP prior as the expectation of πN
γ (βγ |y∗, δ) with

respect to mN
0 . Furthermore, impropriety of the baseline priors in (14) causes no in-

determinacy of the resulting Bayes factors, since πCR−PEP
γ (βγ |δ) depends only on the

normalizing constant of the baseline prior of the parameter of the null model. Finally,
the concentrated-reference PEP prior for the parameter of the null model is no longer
equal to the baseline prior πN

0 (β0), since

πCR−PEP
0 (β0|δ) = πN

0 (β0)

∫
mN

0 (y
∗)

mN
0 (y

∗|δ)f0(y
∗|β0)

1/δdy∗. (17)

Definition 2. The diffuse-reference PEP prior of model parameters βγ is defined
as the power posterior of βγ in (13) “averaged” over all imaginary data coming from
the “normalized” prior predictive distribution of the reference model M0 based on the
unnormalized power likelihood, that is

πDR−PEP
γ (βγ |δ) = E

mZ
0

y∗|δ

[
πN
γ (βγ |y∗, δ)

]
=πN

γ (βγ)

∫
mZ

0 (y
∗|δ)

mN
γ (y

∗|δ)fγ(y
∗|βγ)

1/δdy∗ (18)

with mZ
0 (y

∗|δ) = mN
0 (y

∗|δ)∫
mN

0 (y
∗|δ)dy∗ =

∫
f0(y

∗|β0)
1/δπN

0 (β0)dβ0∫ ∫
f0(y∗|β0)1/δπN

0 (β0)dβ0dy∗

and mN
γ (y

∗|δ) =

∫
fγ(y

∗|βγ)
1/δπN

γ (βγ)dβγ .
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The conditions for the existence of the diffuse-reference PEP prior, for each model
Mγ , are similar to (16), i.e.

0 < mN
γ (y

∗|δ) < ∞, 0 <

∫
mN

0 (y
∗|δ)

mN
γ (y

∗|δ)fγ(y
∗|βγ)

1/δdy∗ < ∞. (19)

Again the definition of the diffuse-reference PEP prior as an expectation of πN
γ (βγ |y∗, δ)

with respect to mZ
0 is slightly abusive under improper baseline prior setups. The normal-

ization of mN
0 (y

∗|δ) is adopted in order to retain the “expected-posterior” interpretation
under proper baseline prior setups. The induced normalizing constant

C0 =

∫
mN

0 (y
∗|δ)dy∗ =

∫ {∫
f0(y

∗|β0)
1/δdy∗

}
πN
0 (β0)dβ0

exists under any proper baseline prior setup and has no effect on the posterior variable
selection measures since it is common in all models under consideration. Additionally,
impropriety of the baseline priors causes no indeterminacy of the resulting Bayes factors,
since πDR−PEP

γ (βγ |δ) depends only on C0 which is common across all models. Note that
the corresponding normalization is not needed for the concentrated-reference PEP since
it will be equal to the normalizing constant of the prior and therefore equal to one for
proper prior distributions. Finally, the diffuse-reference PEP prior for the parameter of
the null model is no longer equal to the baseline prior, since

πDR−PEP
0 (β0|δ) = πN

0 (β0)

∫
f0(y

∗|β0)
1/δdy∗

C0
=

∫
f0(y

∗|β0)
1/δπN

0 (β0)dy
∗∫ ∫

f0(y∗|β0)1/δπN
0 (β0)dβ0dy∗ .

Definition 1 can be considered as a special case of Definition 2 since mN
0 (y

∗) is
given by mN

0 (y
∗|δ) with δ = 1. Because the likelihood in (15) is not scaled down, it

provides more information from the imaginary data resulting in a more concentrated
(in relation to the alternative approach) predictive distribution. For this reason, this
version is named concentrated-reference PEP (CR-PEP). The CR-PEP prior (14) is
also given by

πCR−PEP
γ (βγ |δ) = πN

γ (βγ)

∫ ∫
fγ(y

∗|βγ)
1/δf0(y

∗|β0)

mN
γ (y

∗|δ) πN
0 (β0)dy

∗dβ0. (20)

In Definition 2 the likelihood involved in mN
0 (y

∗|δ) in (18) is raised to the power of 1/δ
and, therefore, the information incorporated in the prior predictive distribution becomes
equal to n∗/δ points leading to a distribution which becomes increasingly diffuse as δ
grows. Thus, this prior is coined as the diffuse-reference PEP (DR-PEP). Specifically,
we have that

πDR−PEP
γ (βγ |δ) = C−1

0 πN
γ (βγ)

∫ ∫
fγ(y

∗|βγ)
1/δf0(y

∗|β0)
1/δ

mN
γ (y

∗|δ) πN
0 (β0)dy

∗dβ0. (21)

In the normal regression case, the DR-PEP prior proposed here coincides with the
conditional prior formulation of Fouskakis and Ntzoufras (2016), namely the PCEP
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prior. Assuming a Zellner’s g-prior as baseline prior for βγ with dispersion parameter
g = g0 and a reference baseline prior for the variance parameter π(σ2) ∝ σ−2, then the
DR-PEP is given by

πDR−PEP
γ

(
βγ |σ2 δ,X�

)
= Ndγ

(
0, Vβγ

σ2
)
, (22)

where w = g0/(g0 + δ), Vβγ
= δ

(
XT

γ

[
w−1In − (δΛ0 + wHγ)

−1
]
Xγ

)−1
and Λ0 =

δ−1
(
In − w

n1n1
T
n

)
, Hγ = Xγ(X

T
γXγ)

−1XT
γ . The CR-PEP prior has the same form

as the DR-PEP in (22), differing only with respect to the variance-covariance matrix
as in this case we have that Λ0 = In − g0

g0+1n
−11n1

T
n . Both approaches lead to a

consistent variable selection procedure for normal regression models; details are provided
in Fouskakis et al. (2016).

Example. Let y = (y1, . . . , yn)
T be a random sample from the exponential distribution

with mean λ and variance λ2. Consider the hypothesis H0 : λ = λ0 versus H1 : λ 	= λ0.
The baseline (reference) prior under H1 is πN

1 (λ) ∝ λ−1. Let y∗ = (y∗1 , . . . , yn∗)T be a
training (imaginary) sample of size n∗: 1 ≤ n∗ ≤ n. Under the null hypothesis as refer-

ence model M0, the marginal likelihood under the baseline prior is mN
0 (y

∗|δ) ∝ λ
−(n/δ)
0

exp(−(λ0δ)
−1

∑n
i=1 y

∗
i ). For the CR-PEP we consider mN

0 (y
∗|δ = 1), while for the DR-

PEP we consider the density normalized version of mN
0 (y

∗|δ), denoted by mZ
0 (y

∗|δ);
see Definition 2. The baseline posterior distribution of λ, under the baseline prior of
H1, for the CR/DR-PEP methods is λ|y∗ ∼ Inv-Gamma(nδ−1, δ−1

∑n
i=1 y

∗
i ), while for

the original PEP (with the density normalized power likelihood) we have that λ|y∗ ∼
Inv-Gamma(n, δ−1

∑n
i=1 y

∗
i ). The resulting PEP, CR-PEP and DR-PEP prior distribu-

tions are λ/λ0 ∼ B′(n∗, n∗), λ/(δλ0) ∼ B′(n∗, n∗δ−1) and λ/λ0 ∼ B′(n∗, n∗δ−1), respec-
tively. Here B′(a, b) denotes the beta prime distribution with p.d.f. f(x) = xa−1(1 +
x)−a−b/B(a, b), where a > 0 and b > 0. Under this scenario the EP prior coincides
with the original PEP prior. Table 1 presents the prior mean and variance, under the
alternative hypothesis, for the different PEP formulations. For fixed values of δ, the
variance of λ under the PEP and DR-PEP priors shrinks to zero as n∗ grows. There-
fore, for large n∗, the prior distributions degenerate to a point mass distribution on
λ0 with probability equal to one. Note that the mean and the variance of λ under the
CR/DR-PEP priors are not defined for the default choice of δ = n∗. For finite prior
variances, the DR-PEP prior is more dispersed than the CR-PEP prior for any δ > 1
since Var(λ |DR-PEP) = δ2 Var(λ |CR-PEP). Finally, when δ = an∗ < n∗/2, the prior
variance of the CR-PEP converges to a(1 − 2a)−1(1 − a)−2 for large n∗, while the
corresponding variance of the DR-PEP grows with the same rate as n∗2.

2.4 Further prior specifications

To complete the model formulation we need to specify a baseline prior for βγ and also a
prior distribution for γ. In our setting we do not need to specify a prior for φ, which is
considered known. For settings with random φ, common across all models, we propose
working along the lines of Fouskakis and Ntzoufras (2016) using a flat prior on φ.

Standard options for the baseline prior of βγ are either the flat prior πN
γ (βγ) ∝ 1

or Jeffreys prior for GLMs (Ibrahim and Laud, 1991) which is of the form πN
γ (βγ) ∝
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Prior Mean (n∗ > δ) Variance (n∗ > 2δ)

EP & PEP prior n∗

n∗−1λ0
n∗(2n∗−1)

(n∗−1)2(n∗−2)λ
2
0

CR-PEP prior n∗

n∗−δλ0
1
n∗

1+δ−δ/n∗

(1−δ/n∗)2(1−2δ/n∗)λ
2
0

DR-PEP prior δn∗

(n∗−δ)λ0
1
n∗

1+δ−δ/n∗

(1−δ/n∗)2(1−2δ/n∗)δ
2λ2

0

Table 1: Prior mean and variance, under the alternative hypothesis, for the exponential
case for different PEP variations.

|XT
γWγ(βγ)Xγ |1/2. For non-Gaussian GLMs, Jeffreys prior will depend on βγ through

the matrix Wγ(·); see Section 2.2 for details. Note that Jeffreys prior for the parameter
of the null model simplifies to πN

0 (β0) ∝ tr(W0(β0))
1/2. Concerning γ the usual option is

a product Bernoulli distribution where the prior inclusion probability of each predictor
is equal to 0.5. This leads to a discrete uniform prior on model space, i.e. π(γ) =
2−p. An alternative choice better suited for moderate to large p, accounting for an
appropriate multiplicity adjustment (Scott and Berger, 2010), is to use a hierarchical
prior where the inclusion probability of each predictor is uniformly distributed so that

π(γ) = (p+ 1)−1
(

p
pγ

)−1
.

3 Posterior inference

3.1 Posterior distribution under the PEP prior

In normal linear regression models, the conditional PEP prior is a conjugate normal-
inverse gamma distribution which leads to fast and efficients computations (Fouskakis
and Ntzoufras, 2016). For non-Gaussian GLMs, the resulting PEP has no convenient
conjugate formulation and therefore the integrals involved in the derivation of the corre-
sponding posteriors are intractable. However, one can work with the hierarchical formu-
lation, i.e. without marginalizing over the imaginary data, and use an MCMC algorithm
in order to sample from the joint posterior distribution of βγ and y∗.

For ease of exposition, for the remainder of this section we use the indicator ψ to
distinguish between the CR-PEP prior (ψ = 1) and the DR-PEP prior (ψ = δ) and
simply use PEP to denote the joint posterior. Specifically, from (13), (14) and (18) we
have the following hierarchical form

πPEP
γ (βγ ,y

∗|y, δ) ∝ fγ(y|βγ)
fγ(y

∗|βγ)
1/δπN

γ (βγ)

mN
γ (y

∗|δ) mN
0 (y

∗|ψ). (23)

A computational problem arises in (23) related with the evaluation of the prior predictive
distributions mN

γ (y
∗|δ) and mN

0 (y
∗|ψ) which are not available in closed form. A solution

can be obtained by using the Laplace approximation for both quantities. An empirical
evaluation of the accuracy of the log-marginal likelihood is provided at the Appendix C,
available at the supplementary material of this manuscript (Fouskakis et al., 2017).
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Alternatively, a more accurate solution can be obtained by augmenting the param-
eter space further and include β0 of M0 in the joint posterior, thus avoiding to use an
approximation of mN

0 (y
∗|ψ). Based on (20) and (21) the posterior in (23) is expanded as

πPEP
γ (βγ , β0,y

∗|y, δ) ∝ fγ(y|βγ)
fγ(y

∗|βγ)
1/δπN

γ (βγ)

mN
γ (y

∗|δ) f0(y
∗|β0)

1/ψπN
0 (β0), (24)

which leaves us with the need of using only one Laplace approximation for mN
γ (y

∗|δ).
Sampling from (24) for a model Mγ is feasible using Metropolis-Hastings (M-H) within
Gibbs sampling. Note that under flat baseline priors the posterior in (24) and the corre-
sponding MCMC scheme are simplified. For variable selection, which is the topic of the
next section, we further assign a prior on γ, based on the options discussed in Section 2.4.

3.2 Gibbs variable selection under the PEP prior

The Gibbs variable selection (GVS; Dellaportas et al., 2002) method utilizes the vector
of binary indicators γ ∈ {0, 1}p which partitions the regression vector β into (βγ ,β\γ),
corresponding to those components of β that are included and excluded from the model,
i.e. βj ∈ βγ if γj = 1 and βj ∈ β\γ if γj = 0, for j = 1, . . . , p. As the intercept term
is always included, βγ and β\γ are of dimensionality dγ = pγ + 1 and d\γ = p − pγ ,
respectively. The joint prior of β and γ is specified as

π(β,γ) = πN
γ (β)π(γ) = πN

γ (βγ)π
N
γ (β\γ)π(γ), (25)

where πN
γ (β\γ) is just a pseudo-prior used to retain the dimensionality balance across

different models. Suitable choices for the priors of βγ and γ have been discussed in Sec-

tion 2.4, thus, we only need to specify the pseudo-prior and propose using πN
γ (β\γ) =

Nd\γ (β
∗
\γ , Id\γσ

∗2
\γ), where β∗

\γ and σ∗
\γ are the respective ML estimates and corre-

sponding standard errors of β\γ from the full model using the actual data y and Id\γ

is the d\γ × d\γ identity matrix. The full augmented posterior is

π(βγ ,β\γ , β0,y
∗,γ|y, δ) ∝ fγ(y|βγ)

fγ(y
∗|βγ)

1/δf0(y
∗|β0)

1/ψ

mN
γ (y∗|δ) πN

γ (βγ)π
N
γ (β\γ)π(γ)π

N
0 (β0).

(26)

The proposed PEP-GVS sampling scheme is as follows. For starting values

γ(0),β(0) = (β(0)
γ ,β

(0)
\γ ), β

(0)
0 , y∗(0) and iterations t = 1, 2, . . . , N :

Step 1: Set current values β = β(t−1), β0 = β
(t−1)
0 γ = γ(t−1) and y∗ = y∗(t−1).

Step 2: For j = 1, 2, . . . , p, sample γj ∼ π(γj |β,γ\j ,y
∗,y, δ) for γj ∈ {0, 1}.

Step 3: Update β = (βγ ,β\γ) based on the current configuration of γ.
Step 4: Sample βγ ∼ π(βγ |γ,y∗,y, δ) in a M-H step.
Step 5: Sample β\γ from the pseudo-prior.

Step 6: Sample β0 ∼ π(β0|y∗, ψ) ∝ f0(y
∗|β0)

1/ψπN
0 (β0) in a M-H step.

Step 7: Sample y∗ ∼ π(y∗|βγ , β0,γ, δ, ψ) ∝
fγ(y

∗|βγ)
1/δf0(y

∗|β0)
1/ψ

mN
γ (y∗|δ) in a M-H step.

Step 8: Update β(t) = β, β
(t)
0 = β0 γ(t) = γ and y∗(t) = y∗.
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Implementation details and an analytic description of the algorithm are provided as
supplementary material (Appendix B).

4 Hyper-δ extensions

The PEP prior for the normal regression model can be interpreted as a mixture of
g-priors where the power parameter δ is equivalent to g and the mixing density is
the prior predictive of the reference model (Fouskakis et al., 2015). Thus, under the
PEP approach we assign a hyper-prior on the imaginary data y∗, rather than to the
variance multiplier, i.e. the power parameter δ. As discussed in Section 2.2, the same
representation holds asymptotically in the GLM setting given a flat baseline prior. A
natural extension of the PEP methodology arises by introducing an extra hierarchical
level to the model formulation via the assignment of a hyper-prior on δ. Moving from a
fixed (but reasonable) choice of δ to a stochastic version of this parameter is desirable as
it simplifies prior specifications by letting the data to “speak” for δ leading, eventually,
to a fully objective procedure.

The hyper-δ CR/DR-PEP priors can be approximately expressed as

πCR/DR−PEP
γ (βγ) ≈

∫ ∫
fNdγ

(
βγ ; β̂

∗
γ , δJ

∗
γ

(
β̂∗
γ

)−1
)
mZ

0 (y
∗|ψ)π(δ)dy∗dδ (27)

under a baseline prior πN
γ (βγ) ∝ 1, where mZ

0 (y
∗|ψ) is equal to mN

0 (y
∗) for ψ = 1 (CR-

PEP) and equal to mZ
0 (y

∗|δ) for ψ = δ (DR-PEP), β̂∗
γ is the ML estimate given the

imaginary data, J∗
γ(β̂

∗
γ) is the observed information matrix evaluated at β̂∗

γ and fNdγ
(·)

denotes the dγ–dimensional multivariate normal distribution. Sensible options for π(δ)
are the hyper-g analogues proposed in Liang et al. (2008). Specifically, we consider
the hyper-δ prior π(δ) = α−2

2 (1 + δ)−α/2, for α > 2, δ > 0, which corresponds to a

Beta(1, α
2 −1) distribution for the shrinkage factor δ

1+δ . Thinking in terms of shrinkage,
Liang et al. (2008) propose setting α = 3 in order to place most of the probability mass
near 1 or α = 4 which leads to a uniform prior. An alternative option is the hyper-δ/n
prior given by π(δ) = α−2

2n (1 + δ
n )

−α/2, for α > 2, δ > 0. In principle, any other prior
from the related literature can be incorporated in the PEP design; for instance, the
inverse-gamma hyper-prior of Zellner and Siow (1980) or the recent g-prior mixtures
proposed by Maruyama and George (2011) and Bayarri et al. (2012). Of course, when
working outside the context of the normal linear model, the integration in (27) with
respect to δ will not be tractable. Therefore, in order to incorporate the stochastic
nature of δ we need to introduce one additional MCMC sampling step. In this case the
augmented posterior is given by

π(βγ ,β\γ , β0,y
∗,γ, δ|y) ∝ π(βγ ,β\γ , β0,y

∗,γ|y, δ)π(δ), (28)

where the first quantity in the right-hand side of (28) is given in (26). Details are
provided in Appendix B of the supplementary material.
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5 Desiderata for PEP priors in GLMs

5.1 Model selection consistency

With respect to model selection consistency (Bayarri et al., 2012), analytical proofs
for the normal linear model are provided in Fouskakis et al. (2016). Here, we present
empirical evidence suggesting that this criterion is also valid for non-Gaussian GLMs
under the PEP priors. For further details and results, we defer to Section 7.2 where we
illustrate, for several simulated scenarios with binomial and Poisson response models,
that the posterior probability of the true model approaches one as the sample size
increases.

5.2 Information consistency

The definition of information consistency is unclear under GLMs with known dispersion
parameters. According to Li and Clyde (2016), for models with discrete responses and
known variance (such as the Poisson and binomial models), information inconsistency,
as defined by Bayarri et al. (2012), is not an issue since the likelihood is bounded even
for saturated models.

5.3 Predictive matching

Under reasonable baseline assumptions, the CR/DR-PEP priors are satisfying the cri-
teria of null and dimension predictive matching as defined in Bayarri et al. (2012). In
order to illustrate this, we express the baseline prior of βγ as a product of functions

ψ(ηγ) and Ψγ(β\0,γ), where ηγ = (ηγ(i), ηγ(2), . . . , ηγ(n))
T is the linear predictor and

β\0,γ is the vector of all elements of βγ excluding the intercept β0,γ of model Mγ . Also
we reintroduce φ covering the general case in which the nuisance parameter is under
estimation. The statements are as follows.

Proposition 1. Under a baseline prior πN
γ (βγ |φ) = ψ(ηγ)Ψγ(β\0,γ) with δ = n∗ = n,

the fixed δ PEP priors satisfy the null predictive matching criterion for samples of size
one.

Proof of Proposition 1 is provided in Appendix A.1.

Proposition 2. The hyper-δ and the hyper-δ/n DR-PEP priors with n∗ = n and base-
line prior as in Proposition 1 satisfy the null predictive matching criterion for samples
of size one.

Proof of Proposition 2 is provided in Appendix A.2.

Proposition 3. The hyper-δ and the hyper-δ/n CR-PEP priors with n∗ = n and base-
line prior as in Proposition 1 satisfy the null predictive matching criterion for samples
of size one.

Proof of Proposition 3 is provided in Appendix A.3.
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Proposition 4. Under a baseline prior πN
γ (βγ |φ) = ψ(ηγ) with n∗ = n, the DR-PEP

priors (fixed δ = n, hyper-δ and hyper-δ/n) satisfy the dimension predictive matching
criterion for samples of size pγ + 1.

Proof of Proposition 4 is provided in Appendix A.4.

Proposition 5. The CR-PEP priors (fixed δ = n, hyper-δ and hyper-δ/n) with n∗ = n
and baseline prior as in Proposition 4 satisfy the dimension predictive matching criterion
for samples of size pγ + 1.

Proof of Proposition 5 can be obtained by using similar arguments as in the proof
of Proposition 4.

The baseline prior distributions discussed in Section 2.4 satisfy the requirements
in Propositions 1 and 4; under a flat prior Ψ(β\0,γ) = 1 and ψ(ηγ) ∝ 1, while un-

der Jeffreys prior Ψ(β\0,γ) = 1 and ψ(ηγ) ∝ |XT
γWγ(ηγ)Xγ |1/2, where Wγ(ηγ) =

diag(wγ(i)), wγ(i) = (
∂μ(ηγ,(i))

∂ηγ,(i)
)2[ai(φ)b

′′(ϑ(ηγ,(i)))]
−1 and μ(ηγ,(i)) = b′(ϑ(ηγ,(i))).

6 A general framework

In this section we present a synopsis for the various priors under consideration. This
requires introducing a set of separate power parameters δ0 and δ1, which respectively
relate to the marginal likelihood and the posterior distribution components. Under this
setting we have the following general prior formulation πG(θγ ,ω, δ0, δ1) =
πG(θγ |ω, δ0, δ1)π(ω)π(δ0)π(δ1), where G ∈ P with P being the set of PEP prior con-
figurations considered in this paper, also including the EP prior. Here, θγ corresponds
to the model specific parameters, while ω is a common nuisance parameter across all
models. When ω does not exist or is known, π(ω) should be omitted. Similarly, when
δ0 and/or δ1 are fixed, π(δ0) and/or π(δ1) are omitted.

All priors in the set P are derived as follows:

πG(θγ |ω, δ0, δ1) =
πN
γ (θγ |ω)

kγ(θγ ,ω, δ1)C0

∫
mN

0 (y
∗|ω, δ0)

mN
γ (y

∗|ω, δ1)
fγ(y

∗|θγ ,ω)1/δ1dy∗, (29)

where we have thatmN
γ (y

∗|ω, δ1) =
∫
kγ(θγ ,ω, δ1)

−1
fγ(y

∗|θγ ,ω)1/δ1πN
γ (θγ |ω)dθγ and

mN
0 (y

∗|ω, δ0) =
∫
k0(θ0,ω, δ0)

−1
f0(y

∗|θ0,ω)1/δ0πN
0 (θ0|ω)dθ0. Each prior in the set P

can be obtained from (29); details are provided in Table 2. In Table 3 we summarize
issues and proposed solutions for all priors under consideration.

7 Illustrative examples

7.1 Methods

In this section we first present a simulation study for logistic and Poisson regression
taking into account independent and correlated predictors. We proceed with a simulation
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Prior (G) θγ ω δ0 δ1 Hyper-prior π(δ) k0(θ0,ω, δ0) kγ(θγ ,ω, δ1) C0
EP βγ , φγ ∅ 1 1 1 1 1

PEP βγ , φγ ∅ n∗ n∗ κ0 κ1 1

PCEP βγ φ n∗ n∗ κ0 κ1 1

CR-PEP βγ φ 1 n∗ 1 1 1

DR-PEP βγ φ n∗ n∗ 1 1 c0

CR-PEP hyper-δ βγ φ 1 δ a−2
2

(1 + δ)−a/2 1 1 1

DR-PEP hyper-δ βγ φ δ δ a−2
2

(1 + δ)−a/2 1 1 c0

CR-PEP hyper-δ/n βγ φ 1 δ a−2
2n

(1 + δ
n
)−a/2 1 1 1

DR-PEP hyper-δ/n βγ φ δ δ a−2
2n

(1 + δ
n
)−a/2 1 1 c0

κ0 =
∫
f0(y

∗|θ0,ω)1/δ0dy∗; κ1 =
∫
fγ(y

∗|θγ ,ω)1/δ1dy∗; c0 =
∫ ∫

f0(y
∗|θ0,ω)1/δ0πN

0 (θ0|ω)dθ0dy
∗.

Table 2: Schematic presentation of all priors in P .

Prior Issues Solutions

EP

– Selection of imaginary sample size
n∗

– Sub-sampling of X∗
γ

– Informative when using minimal
training sample and p is close to n

– Issues are solved using PEP with
δ = n∗ = n and X∗

γ = Xγ

PEP

– Cumbersome normalized power
likelihood in GLMs
– Monte Carlo is needed for the
computation of the marginal
likelihood even in the normal linear
model

– Use of unnormalized power
likelihoods that lead to the
CR/DR-PEP priors
– Use PCEP that leads to a conjugate
setup in the normal linear model

PCEP – Not information consistent
– Use PEP which is information
consistent

CR-PEP
– No clear definition of mN

0 under the
unnormalized power likelihood
– Selection of δ

– Use the original likelihood in mN
0

– Set δ = n∗ to have unit information
interpretation or consider random δ

DR-PEP

– No clear definition of mN
0 under the

unnormalized power likelihood

– Selection of δ

– Use the density normalized mZ
0

under the unnormalized power
likelihood
– Set δ = n∗ to have unit information
interpretation or consider random δ

CR/DR-PEP
hyper-δ

– Demanding computation
– Prior of δ is not centered to
unit-information

– Use fixed-δ CR/DR-PEP versions

– Use the hyper-δ/n prior

CR/DR-PEP
hyper-δ/n

– Demanding computation – Use fixed-δ CR/DR-PEP versions

Table 3: Issues and solutions of all priors in P .

study for logistic models where the number of predictors is larger and the correlation

structure is more complicated. The section concludes with a real data example for binary

responses. In all illustrations we consider the CR/DR-PEP priors (introduced in Section

2.3) and their hyper-δ and hyper-δ/n extensions (discussed in Section 4) with parameter

α = 3. In all configurations n∗ = n and X∗
γ = Xγ , where the columns of the design
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matrix are centered around their sample means. For fixed δ, we consider the default
unit-information approach, i.e. δ = n∗. Jeffreys prior is used as baseline for βγ ; see
Section 2.4. We compare the PEP variants with standard g-prior methods, using the
GLM version of Sabanés Bové and Held (2011) for the parameter vector and a flat prior
for the intercept. In particular, we consider the unit-information g-prior (g = n) and
three mixtures of g-priors; the hyper-g and hyper-g/n priors with α = 3 (Liang et al.,
2008), and the beta hyper-prior proposed by Maruyama and George (2011). Henceforth,
the latter will be referred to as MG hyper-g. These approaches are also implemented
via GVS.

7.2 Simulation study 1

In this first example we consider logistic and Poisson simulations, presented in Hansen
and Yu (2003) and Chen et al. (2008), respectively. Both cases have been also considered
by Li and Clyde (2016). The number of predictors is p = 5 in the logistic model and
p = 3 in the Poisson model, where each predictor is drawn from a standard normal
distribution with pairwise correlations given by corr(Xi, Xj) = r|i−j|, 1 ≤ i < j ≤ p.
We consider: (i) independent (r = 0) and (ii) correlated (r = 0.75) predictors. Four
sparsity scenarios are assumed. For the logistic case we use the same sample size as
in Hansen and Yu (2003), namely n = 100, but with lower effects resulting in smaller
values of odds ratios. Specifically, (β0, β1, β2, β3, β4, β5)

T is set to (0.1, 0, 0, 0, 0, 0)T in the
null scenario, (0.1, 0.7, 0, 0, 0, 0)T in the sparse scenario, (0.1, 1.6, 0.8,−1.5, 0, 0)T in the
medium scenario and (0.1, 1.75, 1.5,−1.1,−1.4, 0.5)T in the full scenario. The resulting
odds ratios are approximately 2, 2.5 and 3.5 for the sparse, medium and full models,
respectively. For the Poisson simulation we consider n = 100 and the same regression
coefficients as in Chen et al. (2008); i.e. (β0, β1, β2, β3)

T equal to (−0.3, 0, 0, 0)T in the
null scenario, (−0.3, 0.3, 0, 0)T in the sparse scenario, (−0.3, 0.3, 0.2, 0)T in the medium
scenario and (−0.3, 0.3, 0.2,−0.15)T in the full scenario. Each simulation is repeated
100 times. Since p is small, we use a uniform prior on model space (Section 2.4).

Evaluation of model selection consistency of PEP methods

First we examine the behaviour of PEP methods for increasing sample size. Under
the assumption of model selection consistency, we expect the posterior probability of
the true model to approach the value of one as sample size increases. Indeed, all PEP
methods under the sparse, medium and full scenarios confirm the consistency criterion
as it is evident in Figures 1 and 2.

Comparison between different methods

Results based on the frequency of identifying the true data-generating model through
the maximum a-posteriori (MAP) model for the logistic regression simulation are sum-
marized in Table 4.

Comparison between PEP approaches versus the rest of the methods indicates the
following:
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Figure 1: Posterior probabilities of the true model vs. sample size for the sparse, medium
and dense logistic regression scenarios.

Scenario r
Prior distributions

g-prior
hyper hyper MG hyper CR CR PEP CR PEP DR DR PEP DR PEP
g-prior g/n-prior g-prior PEP hyper-δ hyper-δ/n PEP hyper-δ hyper-δ/n

null
0.00 77 35 63 75 79 46 80 79 73 82
0.75 91 52 81 88 94 60 82 93 91 92

sparse
0.00 67 57 63 67 72 58 68 72 72 72
0.75 74 60 67 72 72 60 76 74 73 73

medium
0.00 83 82 84 84 83 84 81 83 84 84
0.75 33 38 34 30 26 37 32 27 29 27

full
0.00 41 41 42 43 28 38 29 26 32 31
0.75 14 15 17 14 8 12 10 8 10 8

Table 4: Number of times (over 100 replications) that the MAP model coincides with
the true model in the logistic regressions of Simulation Study 1 (row-wise largest value
in bold).

i) Overall the PEP procedures perform satisfactorily as in 5 out of the 8 simulated
scenarios the “best” method for identifying the true model involves one of the
PEP priors.

ii) The PEP procedures outperform all competing methods under the null and sparse
scenarios.

iii) In the medium scenario, the PEP priors perform equally well to the rest of the
methods in the case of independent predictors and slightly worse in the case of
correlated predictors.
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Figure 2: Posterior probabilities of the true model vs. sample size for the sparse, medium
and dense Poisson regression scenarios.

iv) In the full model scenario, the g-prior based methods perform better than the PEP
based approaches. This is no surprise since PEP priors support more parsimonious
solutions.

The comparison between the CR-PEP and DR-PEP priors reveals no obvious dif-
ferences between the two approaches for fixed δ = n. Concerning the fixed δ approach
versus the hyper-δ and δ/n extensions, we see that, under the DR-PEP approach, all
results are more or less the same. However, this is not the case for the CR-PEP ap-
proach, where the hyper-δ version supports more complex models than the fixed-δ based
method, while the results based on the hyper-δ/n prior are somewhere in the middle. In-
terestingly, a similar pattern is observed among the g-prior and the hyper-g, hyper-g/n
priors. Boxplots of posterior inclusion probabilities (PIPs) are available in Appendix D.1
of the supplementary material.

Results from the Poisson simulations are presented in Table 5. Overall, conclusions
are similar to the logistic case:

i) The PEP priors perform overall satisfactory; 6 out of the 8 best MAP success
patterns are spotted by one of the PEP based methods.

ii) The PEP priors perform well under sparsity, i.e. under the null and sparse models.
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Scenario r
Prior distributions

g-prior
hyper hyper MG hyper CR CR PEP CR PEP DR DR PEP DR PEP
g-prior g/n-prior g-prior PEP hyper-δ hyper-δ/n PEP hyper-δ hyper-δ/n

null
0.00 86 68 80 87 88 71 83 90 91 94
0.75 91 68 90 94 95 75 91 95 97 95

sparse
0.00 75 74 74 75 76 68 80 73 68 69
0.75 40 43 41 38 35 44 40 32 30 28

medium
0.00 29 43 37 36 27 44 30 28 25 20
0.75 0 5 0 0 0 4 0 0 0 0

full
0.00 6 23 13 9 5 18 11 5 4 3
0.75 0 0 1 0 0 3 0 0 0 0

Table 5: Number of times (over 100 replications) that the MAP model coincides with
the true model in the Poisson regressions of Simulation Study 1 (row-wise largest value
in bold).

iii) In the medium scenarios, the hyper-g and hyper-δ CR-PEP priors yield the best
results; however, under correlated predictors the true model is rarely traced.

iv) In the full model with independent covariates, the rates are low; hyper-g has the
highest rate but with the hyper-δ CR-PEP being close. In the correlated case all
methods fail.

With respect to the various PEP prior distributions, the comparison in the Poisson
case leads to the same findings as previously. Again, the most interesting finding is
that inference under the DR-PEP prior is not affected by the choice of fixed versus
random δ. On the contrary, this is not the case for the CR-PEP prior, where the hyper-δ
extension systematically supports more complex models. Boxplots of PIPs are provided
as supplementary material in Appendix D.2.

Finally, the accuracy of the log-marginal likelihood is assessed empirically and in-
dicative results and comparisons are provided in Appendix C of the supplementary
material of this manuscript.

7.3 Simulation study 2

Here we consider logistic simulations with p = 10 predictors and n = 200. The first five
covariates are generated from a standard normal, while the remaining five are generated
as Xij ∼ N(0.3Xi1 + 0.5Xi2 + 0.7Xi3 + 0.9Xi4 + 1.1Xi5, 1), for i = 1, . . . , n and j =
6, . . . , 10. Three models are assumed: (β0, β1, β2, β3, β4, β5, β6, β7, β8, β9, β10)

T is equal
to (0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T in a null design, to (0.1, 0, 0,−0.9, 0, 0, 0, 1.2, 0, 0, 0.4)T

in a sparse design and to (0.1, 0.6, 0,−0.9, 0, 1, 0.9, 1.2,−1.2,−0.5, 0)T in a dense design.
The odds ratios for the sparse and dense simulation models are approximately 2 and
3, respectively. Each simulation is repeated 100 times. We use the beta-binomial prior
on model space; see Section 2.4. Figures 3, 4 and 5 present boxplots of PIPs under the
null, sparse and dense scenarios, respectively.

Under the null scenario (Figure 3), all methods, except the hyper-g prior, exhibit
strong shrinkage towards zero on the PIPs. The hyper-g prior leads to larger estimates
that have higher variability. The hyper-δ CR-PEP prior also induces more variability.

Under the sparse scenario (Figure 4) there are no striking differences among methods.
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Figure 3: Posterior inclusion probabilities for Simulation Study 2 under the various
priors from 100 repetitions of the null logistic simulation scenario.

Figure 4: Posterior inclusion probabilities for Simulation Study 2 under the various
priors from 100 repetitions of the sparse logistic simulation scenario where the true
model is X3 +X7 +X10.

All priors provide very strong support for the inclusion of X7 and sufficient support for

the inclusion of X3. Moreover, all methods yield very wide PIP intervals for predictor

X10.

Finally, in the dense scenario (Figure 5) the fixed-δ PEP priors generally outperform

other methods as they yield lower PIPs for the unimportant effects of X2, X4, X10. The

g-prior and the hyper DR-PEP extensions yield similar PIPs and generally perform well;

however, these priors introduce some uncertainty concerning the inclusion of covariate

X4. The rest of the methods systematically support more complex models.
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Figure 5: Posterior inclusion probabilities for Simulation Study 2 under the various
priors from 100 repetitions of the dense logistic simulation scenario where the true
model is X1 +X3 +X5 +X6 +X7 +X8 +X9.

7.4 A real data example

Lastly, we consider the Pima Indians diabetes data set which has been analyzed in
several studies (e.g. Holmes and Held, 2006; Sabanés Bové and Held, 2011). The data
consist of n = 532 complete records on diabetes presence and p = 7 potential covariates;
namely, number of pregnancies (X1), plasma glucose concentration (X2), diastolic blood
pressure (X3), triceps skin fold thickness (X4), body mass index (X5), diabetes pedigree
function (X6) and age (X7). For each method we use 41000 iterations of the GVS
algorithm, discarding the first 1000 as burn-in. The beta-binomial prior is used on
model space (Section 2.4).

Table 6 shows the PIPs under the various methods. For comparison reasons we
also include results from the Zellner and Siow (1980) inverse gamma (ZS-IG) prior, the
hyper-g/n with α = 4, and a non-informative inverse gamma (NI-IG) hyper-g prior with
shape and scale equal to 10−3. The PIPs we obtain via GVS are in agreement with the
results presented in Sabanés Bové and Held (2011). For covariates X1, X2, X5 and X6,
which seem to be highly influential, the results in Table 6 show no significant differences
among methods. On the contrary, the PIPs of the “uncertain” covariates X3, X4 and X7

vary substantially; specifically, the inclusion probabilities from the fixed-δ CR/DR-PEP
priors, the hyper-δ/n DR-PEP prior and the g-prior are considerably lower than the
inclusion probabilities resulting from the rest of the methods. In terms of the shrinkage
factors g/(g + 1) and δ/(δ + 1), results show that the shrinkage effect is stronger when
g or δ is fixed, which leads to a drastic reduction in the effects (and the PIPs) of low-
influential covariates. On the other hand, the priors with random g or δ clearly result
in higher PIPs. Among this category of priors, the hyper-δ/n DR-PEP is evidently the
most parsimonious, as it yields PIPs which are actually quite close to those obtained
from fixed δ PEP priors. Further results with comments can be found in Appendix E
of the supplementary material.
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Method
Predictor

X1 X2 X3 X4 X5 X6 X7

ZS-IG hyper-g 0.961 1.000 0.252 0.250 0.998 0.994 0.530
NI-IG hyper-g 0.967 1.000 0.349 0.341 0.998 0.996 0.622
g-prior (g = n) 0.952 1.000 0.136 0.139 0.998 0.992 0.382
hyper-g (α = 3) 0.970 1.000 0.397 0.379 0.998 0.996 0.669
hyper-g/n (α = 3) 0.966 1.000 0.304 0.300 0.998 0.995 0.579
hyper-g/n (α = 4) 0.965 1.000 0.307 0.299 0.997 0.995 0.582
MG hyper-g 0.958 1.000 0.262 0.259 0.998 0.994 0.548
CR-PEP 0.948 1.000 0.100 0.104 0.998 0.987 0.339
CR-PEP hyper-δ 0.964 1.000 0.296 0.291 0.998 0.995 0.602
CR-PEP hyper-δ/n 0.956 1.000 0.223 0.225 0.998 0.992 0.520
DR-PEP 0.948 1.000 0.102 0.104 0.997 0.988 0.324
DR-PEP hyper-δ 0.954 1.000 0.174 0.173 0.997 0.991 0.442
DR-PEP hyper-δ/n 0.951 1.000 0.125 0.120 0.998 0.987 0.346

Table 6: Posterior inclusion probabilities for the seven covariates of the Pima Indians
diabetes data set.

False False False False
Neg. Pos. Neg. Pos.

Method MAP (%) (%) MPM (%) (%)
g-prior (g = n) MA 10.8 16.5 MA 10.8 16.5
hyper-g (α = 3) MA +X3 +X4 +X7 11.4 16.9 MA +X7 11.1 16.8
hyper-g/n (α = 3) MA 11.0 16.6 MA +X7 11.0 16.6
MG hyper-g MA 10.9 16.6 MA +X7 10.9 16.6
CR-PEP MA 10.9 16.9 MA 10.9 16.9
CR-PEP hyper-δ MA 10.9 17.0 MA +X7 11.3 16.4
CR-PEP hyper-δ/n MA 10.8 17.0 MA +X7 11.0 16.6
DR-PEP MA 10.9 16.8 MA 10.9 16.8
DR-PEP hyper-δ MA 10.9 16.9 MA 10.9 16.9
DR-PEP hyper-δ/n MA 10.9 16.8 MA 10.9 16.8
MA : X1 +X2 +X5 +X6

Table 7: Percentages of false negative and false positive detections for the Pima Indians
diabetes data set under the MAP model and median probability model (MPM) for the
various priors.

We conclude by examining the out-of-sample predictive accuracy under each prior.
Table 7 summarizes the false positive and false negative prediction rates under the MAP
and median probability models using a random split of the data into a half. Overall,
we cannot find a dominant method in terms of predictive accuracy; we note however,
that the most complex MAP model arises from the hyper-g prior which also results
in the highest false negative prediction rates. In contrast, the unit-information g-prior,
the CR-PEP prior with fixed δ, and the DR-PEP priors lead to the most parsimonious
median probability model, which is comparable in terms of predictive performance with
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the model that further includes X7, indicated as the median probability model by the

rest of the methods.

8 Discussion

In this article we extended the PEP formulation to two new prior designs which signif-

icantly enhance the applicability of the proposed methodology. We focused on variable

selection for GLMs, however, the CR/DR-PEP priors proposed here may in principle be

used for any general model setting. The new approaches retain the desired features of the

original PEP prior formulation by: i) resolving the problem of selecting and averaging

across minimal imaginary samples, thus, also allowing for large-sample approximations,

and ii) being minimally informative by scaling down the effect of the imaginary data on

the posterior distribution. We further introduced hyper-prior distributions, analogues

to the priors proposed in Liang et al. (2008), for the power parameter δ that controls

the contribution of the imaginary data.

With respect to the criteria in Bayarri et al. (2012), we provided proofs for the

null and dimensional predictive matching criteria for all priors under consideration.

Regarding model selection consistency, proofs for the normal linear model are provided

in Fouskakis et al. (2016). In this paper we illustrated empirically that this criterion

appears to hold also for binomial and Poisson GLMs.

The empirical results suggest that the proposed PEP priors outperform mixtures

of g-priors in terms of introducing larger shrinkage to the inclusion probabilities of

non-influential or partially influential predictors, thus, leading to more parsimonious

solutions with comparable predictive accuracy. When comparing PEP priors with fixed

δ = n and random δ the results indicate that the former approach induces more stringent

control in the inclusion of predictors. Therefore, fixed PEP priors support simpler models

which is a desirable feature when the number of covariates is large. Concerning the choice

between the CR and the DR prior setups, we conclude in favour to the use of the latter

since it is rather robust with respect to the fixed vs. random specification of δ.

Future research aims to extend the PEP methodology to high-dimensional problems,

including the small n–large p case, by incorporating shrinkage priors (e.g. ridge and

LASSO procedures) into the PEP design. Another promising alternative is to embody

the expectation-maximization variable selection approach of Ročková and George (2014)

within the PEP prior.

Supplementary Material

Electronic Appendix of the “Power-Expected-Posterior Priors for Generalized Linear

Models” (DOI: 10.1214/17-BA1066SUPP; .pdf).

https://doi.org/10.1214/17-BA1066SUPP
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Pérez, J. M. and Berger, J. O. (2002). “Expected-posterior prior distributions for
model selection.” Biometrika, 89: 491–511. MR1929158. doi: https://doi.org/

10.1093/biomet/89.3.491. 722, 724, 728

Perrakis, K., Fouskakis, D., and Ntzoufras, I. (2015). “Bayesian Variable Selection for
Generalized Linear Models Using the Power-Conditional-Expected-Posterior Prior.”
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