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Abstract

We identify multi-wavelength counterparts to 1147 submillimeter sources from the S2COSMOS SCUBA-2 survey
of the COSMOS field by employing a recently developed radio+machine-learning method trained on a large
sample of Atacama Large Millimeter/submillimeter Array (ALMA)–identified submillimeter galaxies (SMGs),
including 260 SMGs identified in the AS2COSMOS pilot survey. In total, we identify 1222 optical/near-infrared
(NIR)/radio counterparts to the 897 S2COSMOS submillimeter sources with S850>1.6 mJy, yielding an overall
identification rate of (78± 9)%. We find that (22± 5)% of S2COSMOS sources have multiple identified
counterparts. We estimate that roughly 27% of these multiple counterparts within the same SCUBA-2 error circles
very likely arise from physically associated galaxies rather than line-of-sight projections by chance. The
photometric redshift of our radio+machine-learning-identified SMGs ranges from z=0.2 to 5.7 and peaks at
z=2.3±0.1. The AGN fraction of our sample is (19± 4)%, which is consistent with that of ALMA SMGs in the
literature. Comparing with radio/NIR-detected field galaxy population in the COSMOS field, our radio+machine-
learning-identified counterparts of SMGs have the highest star formation rates and stellar masses. These
characteristics suggest that our identified counterparts of S2COSMOS sources are a representative sample of SMGs
at z3. We employ our machine-learning technique to the whole COSMOS field and identified 6877 potential
SMGs, most of which are expected to have submillimeter emission fainter than the confusion limit of our
S2COSMOS surveys ( m S 1.5850 m mJy). We study the clustering properties of SMGs based on this statistically
large sample, finding that they reside in high-mass dark matter halos ((1.2±0.3)×1013 h−1 M), which suggests
that SMGs may be the progenitors of massive ellipticals we see in the local universe.

Unified Astronomy Thesaurus concepts: Observational astronomy (1145); Starburst galaxies (1570); High-
redshift galaxies (734); Galaxy formation (595); Galaxy evolution (594); Submillimeter astronomy (1647);
Clustering (1908)
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1. Introduction

Understanding how galaxies form in the early universe and
their subsquence evolution through cosmic time is a funda-
mental goal of modern astrophysics. The discovery of a
population of dusty galaxies at high redshifts at far-infrared
(FIR) and millimeter/submillimeter wavelengths has a pro-
found impact on the study of galaxy formation and evolution
(e.g., Smail et al. 1997; Barger et al. 1998; Hughes et al. 1998;
Scott et al. 2002, 2012; Coppin et al. 2006; Weiß et al. 2009;
Yamamura et al. 2010; Clements et al. 2011; Ikarashi et al.
2011; Geach et al. 2017; Simpson et al. 2019; see Casey et al.
2014 for a review). The brighter examples of these FIR/
submillimeter sources have infrared luminosities of LIR�
1012 L, which is comparable to local ultra-luminous infrared
galaxies (ULIRGs). Although such infrared luminous galaxies
are rare in the local universe, their spatial density increases
rapidly with look-back time and appears to peak at z∼2–3
(e.g., Barger et al. 1999; Chapman et al. 2005; Smolčić et al.
2012; Yun et al. 2012; Simpson et al. 2014; Swinbank et al.
2014; Chen et al. 2016a; Dudzeviĉiūtė et al. 2019). Therefore,
these FIR/submillimeter luminous sources host the most
intense star formation in the early universe with star formation
rates (SFRs) of �102–103 M yr−1, which would enable them
to form the stellar mass of massive galaxies (M� 1011 M)
within ∼100Myr (e.g., Chapman et al. 2005; Bothwell et al.
2013; Casey et al. 2014). These characteristics make these
FIR/submillimeter bright sources a key element to constrain
models of galaxy formation and evolution.

Thanks to the strong negative k-correction in the submilli-
meter/millimeter observational wavebands, we can detect these
ultra-luminous infrared galaxies at high redshift (z∼1–6) with
a nearly constant sensitivity in terms of dust mass or far-
infrared luminosity (although the latter is sensitive to dust
temperature). The majority of bright submillimeter sources
have been detected in panoramic, ground-based single-dish
submillimeter surveys in the past two decades (e.g., Scott et al.
2002, 2012; Coppin et al. 2006; Weiß et al. 2009; Ikarashi
et al. 2011; Geach et al. 2017; Wang et al. 2017; Simpson et al.
2019). However, the typical angular resolution of these ground-
based single-dish submillimeter surveys is ∼10″–20″ at
450–1100 μm. This coarse resolution made it very difficult to
identify the multi-wavelength counterparts of these submillimeter
sources and thus is the major challenge for exploiting these
panoramic single-dish submillimeter surveys. The indirect tracers
of FIR/submillimeter emission, such as radio, 24 μm, or mid-
infrared (MIR) properties are traditionally used to identify
counterparts to single-dish submillimeter sources (e.g., Ivison
et al. 1998, 2007; Smail et al. 2002; Pope et al. 2006; Barger
et al. 2012; Michałowski et al. 2012; Cowie et al. 2017).
Unfortunately, the completeness of these identifications is
typically 50% because of the lack of negative k-correction
and the limited observational depth in radio and MIR bands (e.g.,
Hodge et al. 2013; Chen et al. 2016a, although see Lindner et al.
2011). The completeness is defined as the number of recovered
candidate submillimeter galaxies (SMGs) versus the total number
of SMGs in the submillimeter survey.

Recently, the field has advanced considerably as a result of
interferometric observations at submillimeter/millimeter wave-
lengths undertaken with the Submillimeter Array (SMA),
IRAM’s Plateau de Bure Interferometer (PdBI) and Northern
Extended Millimetre Array (NOEMA), and especially the
Atacama Large Millimeter/submillimeter Array (ALMA).

These facilities can reach arcsecond/subarcsecond positional
precision of SMGs, which significantly improved our under-
standing of these high-redshift, dusty starburst galaxies (e.g.,
Frayer et al. 1998; Gear et al. 2000; Tacconi et al. 2006; Genzel
et al. 2010; Smolčić et al. 2012; Hodge et al. 2013; Swinbank
et al. 2014, 2015; Thomson et al. 2014; Aravena et al. 2016;
Walter et al. 2016; Danielson et al. 2017; Dunlop et al. 2017;
Simpson et al. 2017; Wardlow et al. 2017; Cooke et al. 2018;
Gullberg et al. 2018; Stach et al. 2018, 2019). However, for the
large single-dish submillimeter surveys, e.g., the SCUBA-2
Cosmology Legacy Survey (S2CLS; Geach et al. 2017) and the
S2COSMOS survey (Simpson et al. 2019), the high-resolution
interferometric follow-up is still challenging to complete.
Previous work has tried to take advantages of both single-

dish (efficient large area surveys) and interferometric (high
angular resolution) submillimeter observations to provide a
large sample of SMGs with precisely identified multi-
wavelength counterparts, which is necessary for investigating
the statistical properties, such as spatial clustering, of SMGs
(e.g., Hickox et al. 2012; Chen et al. 2016a; Wilkinson et al.
2017). Galaxy clustering is a key measurement that constrains
theoretical models of galaxy formation and evolution, as it
provides information of the mass of the halos in which the
galaxies reside (e.g., Mo & White 1996, 2002; Cooray &
Sheth 2002).
Galaxies that follow similar evolutionary tracks are expected

to reside in halos with similar masses across cosmic time.
Because of their intensively star-forming, massive, and high-
redshift nature, SMGs have been suggested to be the
progenitors of compact quiescent galaxies at z∼1–2 and
subsequently local massive ellipticals (e.g., Hughes et al. 1998;
Eales et al. 1999; Swinbank et al. 2006; Targett et al. 2011;
Simpson et al. 2014; Toft et al. 2014; Wang et al. 2019). This
scenario can be tested by comparing the spatial clustering of
SMGs and other massive galaxy populations at low redshift or
in the local universe.
However, because of the coarse angular resolution of single-

dish submillimeter surveys and the small survey area of
interferometric observations, measurements of SMG clustering
have suffered from large uncertainties (e.g., Weiß et al. 2009;
Williams et al. 2011; Hickox et al. 2012; Wilkinson et al.
2017). In addition, the previous studies only include brighter
SMGs (S850 μm2–3 mJy), despite the fact that faint SMGs
are necessary for a more complete picture of SMG spatial
distribution in general. Indeed, it has been suggested that the
mass of fainter SMGs’ host halos may be comparable with the
hosts of the brighter SMGs and that the fainter SMGs may
contribute ∼80% of the S850 μm extragalactic background light
(e.g., Cowie et al. 2002; Chen et al. 2016b). However, it is
impossible to detect faint SMGs through blank-field single-dish
submillimeter surveys if the submillimeter emission falls below
the corresponding confusion limit (Jauncey 1968). Although
ALMA observations can detect the faintest SMGs with

m S 1850 m mJy, their survey area is very limited (Franco
et al. 2018; Umehata et al. 2018). By utilising ALMA survey,
Chen et al. (2016a, 2016b) developed an optical-infrared triple
color–color (OIRTC) technique to select faint SMGs in the
UKIDSS-UDS field and measure the clustering strength of
SMGs. The main limitation in Chen et al. (2016b) was the
small sample size of training SMGs and the moderate survey
area of the UDS field (∼1 degree2), which in combination
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caused large uncertainties in clustering measurements for both
SMGs and comparison samples, especially at high redshift.

To exploit deep, wide-field single-dish submillimeter
surveys (Geach et al. 2017; Simpson et al. 2019) and obtain
a statistically larger and more robust sample of counterparts to
SMGs, more advanced techniques for counterpart identification
are required. By utilizing a large sample of ALMA-identified
SMGs from the ALMA follow-up of the S2CLS submillimeter
sources in the UDS field (AS2UDS; Stach et al. 2018, 2019) as
a training set, we developed a machine-learning method to
identify multi-wavelength counterparts of single-dish submilli-
meter sources in An et al. (2018) (hereafter An18), and it was
supplemented by the use of radio emission as an indirect tracer
of submillimeter emission (e.g., Ivison et al. 2002, 2007; Biggs
& Ivison 2008; Thomson et al. 2014). The robustness of our
method is confirmed by a series of self-tests and independent
tests as shown in An18.

In this work, we employ the same radio+machine-learning
method developed in An18 to our new SCUBA-2 submilli-
meter survey in the COSMOS field (S2COSMOS; Simpson
et al. 2019) to obtain a large sample of SMGs across a wide
field with reliably identified counterparts and investigate their
physical and evolutionary properties. The observations of our
test sample and training sets, including ALMA-identified
SMGs from the AS2COSMOS pilot survey (J. M. Simpson
et al., in preparation), as well as the ancillary data in the
COSMOS field, are introduced in Section 2. We present our
analyses of radio and machine-learning identification of multi-
wavelength counterparts to S2COSMOS sources in Section 3.
We give our results and discussions of the multi-wavelength
and clustering properties of SMGs in Section 4. The main
conclusions of this work are given in Section 5. Throughout
this paper, we adopt the AB magnitude system (Oke 1974) and
assume a flat ΛCDM cosmological model with parameters
fixed at the Planck 2015 best-fit values, namely, the Hubble
constant H0=67.27 km s−1 Mpc−1, matter density parameter
Ωm=0.32, and cosmological constant ΩΛ=0.68 (Planck
Collaboration et al. 2016).

2. Observations

2.1. S2COSMOS

The 850 μm SCUBA-2 COSMOS survey (S2COSMOS)
was carried out with the East Asian Observatory’s James Clerk
Maxwell Telescope (JCMT) between 2016 January and 2017
June. We provide a brief overview here, and the full details of
observations, data reduction, and catalog are described in
Simpson et al. (2019). For S2COSMOS, we adopted a similar
observing strategy to S2CLS (Geach et al. 2017) because the
partially completed S2CLS map of COSMOS is incorporated
into our S2COSMOS survey. Specifically, we first use four
PONG-2700 scans, which provide uniform coverage over a
circular region with a diameter of 45′ located equidistant from
the center of the field to map the full 2 degree2 COSMOS field.
To reduce the inhomogeneous sensitivity caused by the scan
overlap, we adopt a smaller scan pattern, PONG-1800, with
scan diameter of 30′ to obtain observations in the four corners
of the COSMOS field (see Figure 1 in Simpson et al. 2019).
The total exposure time is 223 hr with the PONG-2700 and
PONG-1800 scans in a ratio of five to one. In total, combining
with the SCUBA-2 archival imaging data at 850 μm, which are

mostly from S2CLS (Geach et al. 2017), we consider a 640 hr
wide-field 850 μm map of the COSMOS field.
As described in Simpson et al. (2019), the S2COSMOS data

were reduced by using the process described in Chapin et al.
(2013) with the Dynamical Iterative Map Maker (DIMM) within
the Sub-Millimeter Common User Facility (SMURF), which is
provided as part of the STARLINK software suite. We refer the
reader to Simpson et al. (2019) for the details of the data
reduction procedures.
The instrumental sensitivity varies across the final map. In the

center of the image, where the four PONG-2700 scan patterns
overlap, the lowest noise reaches s =m 0.5850 m mJy beam−1,
while in the outer regions the instrumental noise increases to
s m  5850 m mJy. Therefore, Simpson et al. (2019) defined a
1.6 degree2 region, matching the Hubble Space Telescope
Advanced Camera for Surveys footprint as the S2COSMOS
MAIN survey region with a median noise level of s =m850 m
1.2 mJy beam−1 and an additional surrounding 1 degree2

supplementary (SUPP) survey region with a median 1-σ
instrumental sensitivity of 1.7 mJy beam−1. Simpson et al.
(2019) present catalogs of the sources detection within these
MAIN and SUPP regions. The empirical point-spread function of
the S2COSMOS survey is obtained by stacking bright, isolated
sources and has an FWHM of 14 8. In total, 1020 and 127
submillimeter sources are detected at a significance level of >4σ
and >4.3σ in the MAIN and SUPP regions, respectively,
corresponding to a uniform false detection rate of 2% (Simpson
et al. 2019). In this work, we use the whole sample of 1147
sources in our analysis.

2.2. Training Set: ALMA Observations in the COSMOS Field

The use of a larger training sample ensures better
performance of machine-learning methods. Hence we prefer
to use the largest available sample of ALMA-identified SMGs
in the COSMOS field, supplemented by large ALMA samples
in other fields, e.g., AS2UDS (Stach et al. 2019), as a training
set for identifying multi-wavelength counterparts of our
S2COSMOS sources.

2.2.1. AS2COSMOS

We have completed an ALMA Cycle 4 pilot study of the
brightest 160 single-dish submillimeter sources from S2COS-
MOS (Project ID: 2016.1.00463.S). The ALMA follow-up
observations were taken in Band 7 (870 μm) in 2018 April and
May. The ALMA primary beam diameter at this frequency is
17 3, which encompasses the area of the SCUBA-2 beam. In
addition, there are 24 archival ALMA maps at Band 7
corresponding to our S2COSMOS sources. Therefore, our full
AS2COSMOS sample includes 184 ALMA maps with median
sensitivity s =m 0.2870 m mJy beam−1. The median synthesised
beams of the 184 ALMA maps is 0 8×0 79. Full details of
the observations are presented in J. M. Simpson et al. (in
preparation).
The ALMA data were reduced using the the Common

Astronomy Software Application (CASA, McMullin et al.
2007) v4.2.2-5.1.1. The data reduction procedures and source
detection method are similar to that of the ALMA-SCUBA-2
Ultra Deep Survey (AS2UDS; Stach et al. 2018, 2019). In the
184 ALMA maps, 260 ALMA SMGs were detected at a peak
signal-to-noise ratio (S/N) > 4.8 or a 1 2-diameter aperture
S/N > 4.9.
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2.2.2. A3COSMOS

We use additional ALMA archival data in the COSMOS
field to construct our training set. All the publicly available
ALMA archive data in the COSMOS field were processed,
imaged, and analyzed in the ongoing ALMA archive mining
project A3COSMOS (Liu et al. 2019).26 The latest version of
the A3COSMOS data set contains 1909 ALMA pointings,
leading to 1134 robust ALMA detections with S/N5.4,
corresponding to a spurious fraction of 8% and a completeness
>90% (Liu et al. 2019). To limit the complications that arise
from different observational frequencies, we only use those
continuum observations with frequencies close to the central
frequency of the SCUBA-2 filter transmission (800<λc<
1200 μm). We convert the flux density of all A3COSMOS
SMGs to mS870 m by adopting the ratios given in Fujimoto et al.
(2016) and limited our training set to >mS 1870 m mJy. We also
remove very shallow observations by limiting the rms noise of
the map to s m  0.25870 m mJy. In total, 984 A3COSMOS
SMGs meet these requirements and are used in constructing the
training set for identifying counterparts to S2COSMOS
submillimeter sources.

2.3. Additional Multi-wavelength Observations/Catalogs

The COSMOS field is one of the largest extragalactic fields
with a rich ancillary data set. Here we give a short summary of
the data that we use in our analysis.

2.3.1. VLA 3GHz Radio Maps

The radio data we use in this work are from the VLA-
COSMOS 3 GHz Large Project (Smolčić et al. 2017b), which
were taken with the Karl G. Jansky Very Large Array (VLA) at
3 GHz. The reduced continuum data and source catalog have
been released by Smolčić et al. (2017b). In summary, the
median rms of the final reduced data reaches 2.3 μJy
(equivalent to ;4 μJy rms at 1.4 GHz) over the 2 degree2

COSMOS field with an angular resolution of 0 75. Smolčić
et al. (2017b) detected 10,830 3 GHz radio sources at �5σ,
which are used to identify radio counterparts of the
S2COSMOS submillimeter sources in our work.

2.3.2. Optical/NIR/FIR Catalogs

The COSMOS2015 catalog (Laigle et al. 2016) from the
UltraVISTA-DR2 surveys are used to identify optical/NIR
counterparts for both ALMA SMGs and S2COSMOS sub-
millimeter sources and are then used to construct a training set
and a test sample for the machine-learning analyses. In An18,
we found that photometric redshift, absolute H-band magnitude
and NIR colors have the greatest diagnostic power to
differentiate SMGs from non-SMGs. Since the COSMOS field
has deep z++ data, which are also used to detect sources in the
region that lie outside of the coverage of the Ks band (Laigle
et al. 2016), we use the z++, J, Ks, and IRAC 3.6 μm and
4.5 μm band photometries from the COSMOS2015 catalog in
our machine-learning analyses.

The 3σ depth of z++ is 25.9 mag in a 3″ diameter aperture.
The UltraVISTA-DR2 has J- and Ks-band observations reach-
ing a 3σ depth of J=24.7 mag and Ks=24.0 mag in a region
of 1.7 degree2 and a J=24.9 mag and Ks=24.7 mag in the

four ultra-deep stripes, which cover an area of 0.62 degree2.
The IRAC 3.6 and 4.5 μm observations have 3σ depth of
25.5 mag within a 3″ diameter aperture. Laigle et al. (2016)
used the total flux, which is estimated from the corrected 3″
aperture flux, to fit the SEDs from near-ultraviolet to NIR for
their NIR-detected sources. They produced the probability
distribution function (PDF) of photometric redshift for each
galaxy by matching the observed SED to a set of galaxy
templates at a redshift grid with a step of 0.01 and range of
0<z<6 through minimizing the χ2. The median of this
distribution was determined as the photometric redshift of
galaxy in the COSMOS2015 catalog. The absolute H-band
magnitudes given in the catalog was estimated from the best-
fitting SEDs. We refer the reader to Laigle et al. (2016) for the
details.
The other photometric catalog used in this work is a “super-

deblended” FIR-to (sub)millimeter photometric catalog from
Jin et al. (2018). Using the position of Ks-band or radio (in the
case of Ks-band non-detection) sources, Jin et al. (2018) adopt a
“super-deblended” method developed by Liu et al. (2018) to
“deblend” the FIR-to (sub)millimeter photometry of sources
from the Spitzer (Le Floc’h et al. 2009), Herschel (Oliver et al.
2010; Lutz et al. 2011; Béthermin et al. 2012), SCUBA-2
(Cowie et al. 2017; Geach et al. 2017), AzTEC (Aretxaga et al.
2011), MAMBO (Bertoldi et al. 2007), and VLA (1.4 GHz and
3 GHz) surveys (Schinnerer et al. 2010; Smolčić et al. 2017b)
in the COSMOS field. Jin et al. (2018) estimated the SFR of
NIR or radio-selected galaxies by integrating 8–1000 μm
infrared luminosities derived from the FIR+millimeter SED
fitting. In our work, we use these estimates of SFR to
investigate the star formation efficiency of our identified
counterparts of SMGs in the COSMOS field.

3. Analysis

In a similar manner to An18, in order to maximize the
completeness, we combine the radio and machine-learning
methods to identify the multi-wavelength counterparts of
single-dish submillimeter sources.

3.1. Radio Identification

Radio synchrotron emission has been proven to be a useful
tracer of obscured star formation, since it is powered by
supernova remnants of massive stars. Therefore, radio
identification is a traditional method to search for counterparts
of submillimeter sources (e.g., Ivison et al. 2002). Instead of
considering all radio sources within the SCUBA-2 error circles
as potential counterparts, we use the corrected-Poissonian
probability, p-value (Downes et al. 1986; Dunlop et al. 1989) to
calculate the probabilistic association of radio sources to single-
dish submillimeter sources. In An18, we confirmed that
the adoption of p�0.065 increases the precision of radio
identification from 64% to 70%. In this work, we adopt this
limit in the radio identification.
The VLA 3 GHz radio observations cover all of the

S2COSMOS sources, except for the two northernmost ones.
In this work, we define the error circle of a SCUBA-2 source as
r=8 7, which is the FWHM of the primary beam of ALMA
Band 7, as the precision and recall of radio and machine-
learning method are all estimated based on the ALMA SMGs
in AS2UDS. Therefore, the performance of the radio and
machine-learning identification can only be tested within the26 https://sites.google.com/view/a3cosmos
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ALMA primary beam. Precision is defined as the ratio between
the number of correctly identified SMGs and the total number
of predicted SMGs using the radio or machine-learning
classification. Recall is the number of corrected classification
versus the total number of ALMA SMGs. In Figure 1, we show
that there are 959�5σ VLA 3 GHz radio sources within 790
SCUBA-2 error circles. Among them, 932 have p�0.065 and
thus are identified as the likely counterparts of S2COSMOS
sources. According to the results for AS2UDS in An18, the
precision of radio identification is around 70%. The radio
imaging in the COSMOS field is ∼2×deeper than that in the
UDS field; therefore, the completeness of radio identification in
this work should be higher than that of AS2UDS (39%).
However, as shown in Figure 1, there are 355 S2COSMOS
sources without radio identifications. This may be caused by
the fact that the radio observation do not benefit from a
negative k-correction, which means even deep radio observa-
tion will miss higher-redshift SMGs. Therefore, other methods
of identifying counterparts of S2COSMOS sources are
necessary to improve the completeness.

3.2. Machine-learning Classification

We apply the machine-learning classification in An18 to this
work to identify the optical/NIR counterparts of S2COSMOS

sources. In An18, we use two machine-learning algorithms,
Support Vector Machine (SVM; Vapnik 1995) and XGBoost
(Chen & Guestrin 2016), to classify SMGs from field galaxies.
The performance of these two algorithms is similar as shown
in An18. Liu et al. (2019) tested a number of machine-learning
algorithms and found most of them, including the deep
learning, have very similar performance in differentiating
SMGs from field galaxies. We should point out that the
performances shown in Liu et al. (2019) is slighter better than
that in An18 and this work mainly because they used a smaller
search radius (r=7″), which affects the final completeness of
identification, as there are ALMA SMGs with offset >7″ from
SCUBA-2 sources as shown in Figure 1. Therefore, in this
work, we prefer to retain the two machine-learning algorithms
we validated in An18 to identify multi-wavelength counterparts
to SCUBA-2 sources in the COSMOS field.

3.2.1. Training Set

The effectiveness of machine-learning algorithms depends
sensitively on the completeness and precision of the training
set. On the one hand, a larger sample size provides better
performance of the machine-learning classification. On the
other hand, as we demonstrated in An18, differences of
photometric systems between the training set and test samples
will affect the performance of the machine-learning algorithms.
Therefore, in this section, we compare the performance of both
SVM and XGBoost classifiers by using training sets based on
three different ALMA surveys. We described two of them,
AS2COSMOS pilot and A3COSMOS, in Section 2.2. The
other ALMA survey we use is the 870 μm ALMA survey of
716 SCUBA-2 sources in the UDS field (AS2UDS; Stach et al.
2019), which was used to build the training set in An18.
We show the flux density distributions of ALMA SMGs in

these three ALMA surveys in Figure 2. The flux densities of
A3COSMOS SMGs are converted to S870 μm by adopting the
ratios estimated by Fujimoto et al. (2016).
Following An18, a non-SMG is defined as any optical/NIR

source that lies within the ALMA primary beams but does not
have a secure detection from ALMA (e.g., does not have �4.8σ
detection in the AS2COSMOS pilot). In An18, we identified
that the photometric redshift (zphot), absolute H-band magnitude
(MH) and NIR colors are the most efficient properties for
differentiating SMGs from field galaxies. The COSMOS field
has deep IRAC 3.6 and 4.5 μm data along with the z++-band
data, which is used to detect sources outside the regions of
UltraVISTA-DR2 by Laigle et al. (2016). Hence the NIR colors
we choose in this work are (z−[3.6]) and ([3.6]–[4.5]). While
the SVM classifier requires detection in all the selected
properties, the XGBoost classification can be performed with
missing features. Therefore, when constructing the training sets
for XGBoost, we do not require secure detection in z++-band.
In addition, we include (J−Ks) and (Ks−[3.6]) colors if the
source has secure detections in the corresponding band(s).
We list the number of SMGs and non-SMGs with the secure

measurements of selected features in each training set in
Table 1. Without the limitation of detection in z++-band, the
sample sizes of XGBoost increase ∼10%–15% compared to
that of SVM. We also combine the training sets based on
AS2UDS, AS2COSMOS, and A3COSMOS surveys to enlarge
the training set. The duplicates between AS2COSMOS pilot
and A3COSMOS have been removed in the combined training

Figure 1. Top: the radio flux densities for all radio sources within the error
circles (r=8 7) of the SCUBA-2-detected submillimeter sources as a
function of the offset of these radio sources from the SCUBA-2 single-dish
source. For the 1147 S2COSMOS submillimeter sources, 1145 of them are
covered by the VLA 3 GHz radio map. In addition, 959 radio sources lie within
790 SCUBA-2 error circles. We also mark the radio counterparts of ALMA
SMGs from our pilot AS2COSMOS survey and from the ALMA archive
(A3COSMOS). We use p�0.065 as a cut of “robust” radio identification
according to our previous work (An et al. 2018). From the test of AS2UDS
ALMA SMGs in the UDS field, we expect that the precision of radio
identification is ∼70%. Among the 959 radio sources, 27 have p>0.065 and
are removed from our identification catalog. Therefore, 932 counterparts of
SCUBA-2 sources in the COSMOS field are identified by the radio data alone.
There are also 355 SCUBA-2 sources that do not have radio counterparts
within 8 7. Bottom: the cumulative number of radio sources and ALMA
SMGs as a function of their offset from the SCUBA-2 sources. We also plot the
results of AS2UDS SMGs for comparison. In both fields, the number of ALMA
SMGs converges at Δθ>3″ while the number of radio sources increases
gradually, suggesting that these include some associated companions to the
submillimeter sources.
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set to guarantee a uniform weight for all sources when training
the machine-learning classifiers.

The parameters of both SVM and XGBoost classifiers are
optimized by five-fold cross-validation (Kohavi 1995), which
means we first divide the training set into five subsets and train
the machine-learning classifier on four folds and validate on the
remaining one. We repeat the five-fold cross-validation 100
times to estimate the scatter in evaluation metrics. The
evaluation metrics we use in this work are Recall, Precision,
False-Positive Rate (FPR) ,and the F1 score. We have defined
Precision and Recall in Section 3.1. FPR is defined as the
number of sources that are incorrectly classified as SMGs over
the total number of non-SMGs in the data set. We also use
the F1 score, which is defined as 2×(Precision×Recall)/
(Precision+Recall), as one of the metric to evaluate the
performance of machine-learning classifier trained by different
training sets. We show the Recall and Precision of five-fold
cross-validation with the optimized SVM classifiers trained on
different training sets in the left panel of Figure 3 and list the
values of all evaluation metrics in Table 1.

The SVM classifier trained by the sample based on AS2UDS
has the lowest F1 score, 76%. Possible reasons for this are that
the training set based on AS2UDS comprises the K-band-
selected sources, and that the 3.6 and 4.5 μm observations in the
UDS field are shallower than those in the COSMOS field.
Therefore, the selected input features based on the multi-
wavelength photometry in the COSMOS field are not the best
properties for the photometric systems in the UDS field to train
the machine-learning classifier. For instance, the F1 score of five-
fold cross-validation of the AS2UDS training set with the
different input features in An18 is ∼80%. The SVM classifier
trained by the A3COSMOS training sets has a performance with
F1=81% as shown in Table 1. The performance of SVM is
slightly increased to F1=82% if we combine the training sets

of AS2COSMOS pilot and A3COSMOS (A3+AS2COSMOS).
Although the SVM classifier trained by AS2COSMOS pilot
shows the best performance with F1=83%, the scatter is larger
because of the small sample size. In addition, the AS2COSMOS
pilot corresponds to the brighter single-dish submillimeter
sources (S850μm>6mJy). Therefore, we also evaluate the
SVM classifiers that are trained on different training sets by
using the other training set as the test sample and show the
results in the left panel of Figure 3. We find that if we test the
machine-learning method on the test sample that corresponds to
the brighter single-dish submillimeter sources, i.e., AS2COS-
MOS pilot and the brighter AS2UDS, the results will be
overestimated. As shown in Figure 3, if we use the training set
that is constructed by the brighter SCUBA-2 sources, then we
will fail to recover ∼5% SMGs with moderate/fainter
submillimeter emission. We also notice that if we use the
training set from UDS field to recover SMGs in the COSMOS
field and vice versa, the differences between observation depth,
source selection, and the estimates of the photometric redshift
will cause a ∼4%–6% decrease in the success of machine-
learning classification. Overall, the SVM classifier trained on
A3+AS2COSMOS has better performance in all cases as shown
in Figure 3.
We do the same evaluation for the XGBoost classifier. We

show the Receiver Operating Characteristic (ROC) curves from
the optimized XGBoost classifier trained on different training
sets in the right panel of Figure 3. The ROC curves are
constructed by comparing the Recall against the FPR, as the
probability threshold is varied (Fawcett 2004). We then use the
area under the curve (AUC) of an ROC curve (Fawcett 2004)
and the evaluation metrics shown in Table 1 to evaluate the
performance of XGBoost classifiers. The classifier trained on
the A3+AS2COSMOS training set has a better performance
with the maximal AUC (Figure 3) and F1=81%. Therefore,
we choose the training set based on the A3+AS2COSMOS
surveys to train the machine-learning classifier in this work.
For the two machine-learning algorithms, SVM has a

slightly better performance compared to XGBoost as shown in
Table 1. However, the SVM cannot deal with missing features
unless they are artificially filled by imputated data. In this work,
the primary missing features are NIR colors of sources.
Unfortunately, the causes of the lack of measurement of NIR
colors are various. They could be due to dust reddening,
geometry, star formation history, redshift, and so on. For
classifying SMGs and non-SMGs, the statistical imputation
techniques do not improve the performance of machine-
learning classifiers and even make the results worse in some
cases, as demonstrated in Liu et al. (2019). In contrast, the
XGBoost classifier can perform classification with missing
features by classifying the instance into the optimal default
direction that is learned from the data (Chen & Guestrin 2016).
If we adopt the XGBoost classifier, the sample size of both the
training set and the test sample increase without the limitation
of requiring secure detection in the z++-band, as shown in
Table 1. And these two classifiers have a very similar precision
while the recall of SVM is ∼2%–4% higher than that of
XGBoost. However, the sample size of XGBoost is ∼10%
larger than that of SVM. Therefore, the final completeness of
the machine-learning method is still higher if we adopt the
XGBoost classifier. We therefore prefer to use the XGBoost
classifier in this work to increase the sample size of both the
training set and the test sample and hence the completeness of

Figure 2. Flux density distributions of S2COSMOS submillimeter sources and
ALMA SMGs in the training set used in this work. We also mark the flux
densities that correspond to the 50% completeness of S2COSMOS sources
(Simpson et al. 2019). The flux density of all ALMA archive SMGs
(A3COSMOS) are converted to S870μm if necessary using the flux ratios given
in Fujimoto et al. (2016). We also present the flux distribution of ALMA SMGs
in the UDS field (AS2UDS) for comparison. The flux density of our training
sets covers that of single-dish S2COSMOS submillimeter sources.
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the identified counterparts of the S2COSMOS submillimeter
sources.

3.2.2. Machine-learning Results

Having selected a training set and machine-learning algorithm,
we then use the optimized XGBoost classifier to identify optical/
NIR counterparts to S2COSMOS submillimeter sources. For the
1147 S2COSMOS sources, 1066 of them are within optical/NIR
coverages. Within their error circles, there are 5655 NIR-selected
sources that have secure detection in IRAC 3.6 and 4.5 μm
band and also have estimated photometric redshift and absolute
H-band magnitude in the COSMOS2015 catalog. These are used
to construct the test sample for classifying counterparts to

S2COSMOS sources. We show the results of classification in
Figure 4. The XGBoost classifier identifies 658 counterparts of
S2COSMOS sources from the 5655 NIR-selected sources.
Among them, 368 also have radio-identified counterparts.
According to the self-test of the AS2UDS data set in An18, the
Precision of radio and machine-learning classification could
reach 90%. Combining with radio identification, in total, we
identify 815 optical/NIR/radio counterparts to S2COSMOS
submillimeter sources from the 5655 NIR-selected sources. The
expected Recall of the radio combined with the machine-learning
method in this work is �85%, according to the self-test in
An18 and the relatively deeper radio observation in the
COSMOS field.

Table 1
Machine-learning Performance Based on Different Training Sets

Training Set/SVM SMGa non-SMGa Recall (%) Precision (%) FPR (%) F1 Score (%)

AS2UDS 255 1224 76±6 76±7 5.2±1.6 76±6
AS2COSMOS pilot 100 850 81±7 86±7 1.4±0.9 83±7
A3COSMOS 357 4186 81±4 81±5 1.6±0.5 81±5
AS2COSMOS+UDS 355 2074 77±5 80±5 3.4±1.0 78±5
A3+AS2COSMOSb 394 4509 83±4 82±4 2.0±0.6 82±4

Training set/XGB

AS2UDS 364 1279 74±5 81±4 5.2±1.4 77±5
AS2COSMOS pilot 126 928 78±9 82±8 2.2±1.0 80±8
A3COSMOS 445 4528 80±5 81±4 2.4±0.6 81±5
AS2COSMOS+UDS 458 1999 74±4 79±4 4.4±1.1 77±4
A3+AS2COSMOSb 490 4904 79±4 82±4 2.4±0.5 81±4

Notes.
a The number of SMG and non-SMGs in the training set.
b Duplicates in these two training sets have been removed.

Figure 3. Left: comparison of the SVM classification performances based on different training sets. We use different colors to show the results based on different
training sets and different symbols represent the results of different tests. For each training set, we use five-fold cross-validation to optimize the parameters of the SVM
classifier and show the optimized results as squares in the plot, where the errors are standard deviation of precision and recovery rate based on 100 bootstrap-
simulations. Then we test the performance of the SVM classifier based on a different training set by using the other training sets as the test sample. Through these
comparisons, we find the SVM based on the combined A3COSMOS and AS2COSMOS pilot training sets has the best performance in differentiating SMGs from field
galaxies. Right: comparison of the Receiver Operating Characteristic (ROC) curves for optimized XGBoost classifier trained on different training sets. The XGBoost
classifier is optimized through the five-fold cross-validation. We repeat the five-fold cross-validation 100 times, calculate the median true and false-positive rates and
use them to represent the curve. As shown in the plot, the ROC curve based on merged A3COSMOS and AS2COSMOS pilot training set has the maximal area-under-
the-curve (AUC). Therefore, this merged sample is adopted as the training set in this work. The background gray dotted lines represent the individual ROC curves of
five-fold cross-validation based on this merged training set.
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In Section 3.1, we identified 932 radio counterparts to
S2COSMOS sources by using the p-value to calculate the
probabilistic association of radio sources to S2COSMOS
sources. Of these 368 are also identified by machine learning,
while radio identification alone finds 564 counterparts to
S2COSMOS sources. Therefore, in total, our radio+machine-
learning method identifies 1222 optical/NIR/radio counter-
parts of single-dish-detected submillimeter sources in the
COSMOS field, which are listed in Table 2.

3.2.3. Identification Rate

The completeness of the radio+machine-learning method is
expected to be 64% based on the test of AS2UDS in An18.
This fraction should be higher for brighter submillimeter
sources because of the increased identification rate as shown in
Figure 5. The identification rate is defined as the number of
single-dish submillimeter sources having at least one identified
counterpart versus the total number of single-dish submilli-
meter sources in the survey. For the 1145 S2COSMOS sources
with radio or NIR coverage, our method identified multi-
wavelength counterparts for 897 of them. Therefore, the
average identification rate is 78%. From Figure 5, we can see
that the identification rate increases with the flux density of
S2COSMOS sources. We also show the identification rate of
AS2COSMOS pilot SMGs as a function of S870 μm in Figure 5.
The identification rate of ALMA SMGs also increases with
submillimeter flux density. The identification rate of AS2UDS
SMGs in An18 is shown for comparison. On average, the
identification rate of S2COSMOS sources is higher than that of
AS2UDS SMGs, which is most likely caused by the false-
positive identifications of the radio+machine-learning method.
The expected identification rate of SMGs within the SCUBA-2
error circles in the COSMOS field is slighter higher than that in
the UDS field because of the slightly deeper radio data.

4. Results and Discussion

Having identified the multi-wavelength counterparts of
S2COSMOS sources, we now analyze the physical properties
of these single-dish-detected submillimeter sources.

4.1. Redshift Distribution

For the 1222 radio+machine-learning-identified counter-
parts, 819 have estimated photometric redshifts from the
COSMOS2015 catalog with zmedian=2.3±0.1. We show the
redshift distribution of our identified optical/NIR/radio
counterparts of S2COSMOS sources in Figure 6.
By comparing the redshift distribution of machine-learning-

or radio-identified counterparts with that of ALMA SMGs
in the UDS (AS2UDS) and the ECDFS (ALESS) fields, we
find that machine learning fails to recover some low-redshift
counterparts while radio identification includes some low-
redshift contamination. For the machine-learning classifica-
tion, photometric redshift is one of the input features in the
analyses. Therefore, the trained classifier tends to recover
SMGs at high redshift. Radio observations do not benefit from
a negative k-correction, hence they will miss SMGs at high
redshift and preferentially include some contaminations at low
redshift. Nevertheless, the overall redshift distribution of
radio+machine-learning-identified counterparts of S2COS-
MOS sources is broadly consistent with that of ALMA SMGs
(Simpson et al. 2014; Dudzeviĉiūtė et al. 2019) as shown in
Figure 6.

4.2. Multiplicity

Recent studies using interferometric observations in submilli-
meter/millimeter suggest 20% of single-dish-detected sub-
millimeter sources actually correspond to blends of multiple
SMGs (e.g., Wang et al. 2011; Karim et al. 2013; Simpson et al.
2015a, 2015b; Stach et al. 2018). In this work, multiplicity is
defined as single-dish-detected submillimeter sources having

Figure 4. Results of applying the XGBoost classifier to identify counterparts to SCUBA-2-detected submillimeter sources in NIR observations of the COSMOS field.
The gray circles are 5655 NIR-selected galaxies, which are located within 1066 SCUBA-2 error circles and have secure detection in 3.6 and 4.5 μm band and
sufficient photometry for estimating the redshift and absolute H-band magnitude. The blue points represent the 658 counterparts of SCUBA-2 submillimeter sources
classified by machine learning. The red squares show the 128 ALMA SMGs from our pilot ALMA follow-up observations of brighter (S850μm>6 mJy) S2COSMOS
submillimeter sources. XGBoost recalls 88% ALMA SMGs that corresponded to brighter single-dish submillimeter sources. There are also 223 ALMA SMGs from
the ALMA archive located within the SCUBA-2 error circles that meet the requirement of the machine-learning classification. XGBoost recovers 90% of these ALMA
SMGs. However, we note that all of these ALMA SMGs (AS2COSMOS pilot and A3COSMOS) are part of the training set. Therefore, the Recall is higher than that of
the five-fold cross-validation of the training set, which is ∼80%. We also mark the 525 NIR-selected galaxies with >5σ 3 GHz radio detection and p�0.065, i.e.,
radio-identified counterparts to SCUBA-2 sources. There are 368 NIR galaxies classified as the SMGs by both radio and machine learning. Combining with the radio
identification, in total, we identify 815 counterparts of SMGs from 5655 NIR-selected galaxies in the COSMOS field. According to the “self-test” of the AS2UDS
sample and the deeper radio observation in COSMOS, we expect that our radio+machine-learning method recovers �85% ALMA SMGs from these 5655 NIR
galaxies.
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more than one identified counterpart from our radio+machine-
learning method. We show the multiple fraction as a function of
the flux density of single-dish-detected submillimeter sources in
Figure 7. The average fraction of S2COSMOS sources with
multiple identified counterparts is (26± 5)%. This fraction is
fairly constant, and only slightly increases for brighter single-
dish submillimeter sources as shown in Figure 7.

Stach et al. (2018) in their ALMA AS2UDS survey studied
the multiplicity of S2CLS-UDS single-dish submillimeter
sources and found a multiplicity of (28± 2)% for submilli-
meter sources with S850 μm�5 mJy and of (44+16

−14 )% at
S850 μm�9 mJy. We plot the multiplicity based on AS2UDS
in Figure 7 for comparison. The multiple fraction of
S2COSMOS sources increases with the flux density of the
SCUBA-2 source and is higher than that of AS2UDS at the

faint end, which most likely is a result of incompleteness in
identifying faint companions in those ALMA maps. In An18,
we stacked the submillimeter emission in ALMA maps at the
position of the machine-learning-classified but individually
ALMA-undetected NIR-selected galaxies and found that the
machine learning can recover the faint submillimeter emissions
even if they are below the detection threshold of ALMA
observations (S870 μm∼1–2 mJy). This is further confirmed by
deeper ALMA observations in Cycle 5 for the 10 brightest
SCUBA-2 sources in AS2UDS, which did not have any secure
ALMA detections in Cycles 3 and 4 (Stach et al. 2019). These
deeper observations recovered counterparts for 9 of the 10
target fields. This may explain the decline in multiplicity at
the faint end in AS2UDS shown in Figure 7. However, the

Table 2
Radio+Machine-learning-identified Counterparts to S2COSMOS Sources

IDS2 R.A.S2 Decl.S2 R.A.NIR Decl.NIR Flagxgb
a R.A.radio Decl.radio Flagradio

b zphot

S2COS850.0001 150.033530 2.436552 ... ... ... 150.033508 2.436735 1 ...
S2COS850.0002 150.064676 2.263777 150.065170 2.263673 1 150.065063 2.263606 1 3.31
S2COS850.0003 150.238150 2.337106 150.238708 2.336827 1 150.238647 2.336836 1 2.29
S2COS850.0003 150.238150 2.337106 150.239273 2.336381 1 ... ... ... 2.36
S2COS850.0006 149.989043 2.458214 149.988724 2.458332 0 149.988693 2.458483 1 3.30
... ... ... ... ... ... ... ... ... ...

Notes.
a Flagxgb=1: XGBoost classified SMGs; 0: classified non-SMGs; ...: not qualified for machine-learning classification.
b Flagradio=1: radio-identified SMGs; ...: do not have radio detection.

(This table is available in its entirety in machine-readable form.)

Figure 5. Identification rate as a function of submillimeter flux density. Top:
the flux density distributions of all SCUBA-2 sources, SCUBA-2 sources
having at least one identified counterpart, and AS2COSMOS pilot SMGs
having identified radio or NIR counterparts. Bottom: the fraction of SCUBA-2
sources with at least one identified counterpart and the fraction of ALMA
SMGs with an identified counterpart as a function of S850 μm. It can be seen
that the identification rate increases for both brighter single-dish-detected
submillimeter sources and ALMA-detected SMGs. We also show the
completeness of the radio+machine-learning method of AS2UDS sample as
a function of S850 μm for comparison. We expect a slightly higher completeness
of S2COMSOS SMGs because of deeper radio data compared to that in the
UDS field.

Figure 6. Redshift distributions of radio+machine-learning-identified counter-
parts to SCUBA-2 detected submillimeter sources in the COSMOS field. We
plot the distribution of all 819/1122 XGBoost or radio identifications with
photometric redshift (zphot). We also separately present the redshift distribution
of radio+machine-learning-identified counterparts to submillimeter sources.
The distribution of galaxies that are identified as counterparts of SMGs by both
radio and machine learning is shown as the orange area. For comparison, we
also show the redshift distribution of ALMA SMGs in the UDS field
(AS2UDS; Dudzeviĉiūtė et al. 2019) and the ECDFS field (ALESS; Simpson
et al. 2014). The distributions of these two ALMA samples are scaled to
compare with our results. In general, our radio+machine-learning-identified
counterparts of SMGs have a similar redshift distribution to ALMA-
detected SMGs.
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false-positive detection of the radio+machine-learning method
may also cause a modest increase of multiplicity of
S2COSMOS sources, although this is not expected to depend
on S850 μm.
As described in Section 4.1, 819/1222 radio+machine-

learning-identified counterparts have estimated photometric
redshift from the COSMOS2015 catalog (Laigle et al. 2016).
Among their corresponding single-dish SCUBA-2 sources, our
study of multiplicity shows that 133 (15%) of them have two,
35 (4%) have three and one has four radio+machine-learning-
identified counterparts. For the SCUBA-2 sources that have
multiple SMGs, Simpson et al. (2015a) and Stach et al. (2018)
suggested that ∼30% of them arise from physically associated
galaxies based on their photometric redshift (Δzphot), while
Wardlow et al. (2018), using an ALMA CO survey of six
single-dish submillimeter sources, found that (36± 18)% of
multiple SMG components in blended single-dish submilli-
meter sources are closely physically associated.
In this work, we show the normalized distribution of Δzphot

for the 244 pairs that are identified as counterparts to the same
S2COSMOS sources in Figure 8. We find that 65 of 244 pairs
(27%) have Δzphot<0.25. The choice of Δzphot<0.25 is to
compare with the results of ALMA SMGs in Stach et al.
(2018). We also note that the choice of Δzphot<0.25
corresponds to ∼2.5σ of the uncertainty of the photometric
redshift of radio+machine-learning-identified counterparts of
SMGs as shown in Section 4.1. To test the significance of this
result, we randomly select 244 pairs from the 1222 identified
counterparts of S2COSMOS sources. We repeat this random
selection 100 times and show the median value of the
distribution of Δz for these random pairs in Figure 8 for
comparison. On average, 15% of the random pairs have
Δzphot<0.25, which is half of that for identified counterpart
pairs. This suggests that a moderate fraction (∼27%) of
multiple counterparts to the same SCUBA-2 sources arise
from physically associated galaxies, rather than line-of-sight

Figure 7. Top: the flux density distribution of all SCUBA-2 sources that have
radio or machine-learning-identified counterparts in the COSMOS field and the
distribution of SCUBA-2 sources with multiple identified counterparts.
Bottom: the fraction of SCUBA-2 sources with multiple identified counterparts
as a function of S850μm. On average, the multiple fraction is (26 ± 5)% and this
fraction increases for brighter single-dish-detected sources. We also show the
multiple fraction of the AS2UDS sample for comparison. The higher multiple
fraction at the faint end of this work might be caused by the false-positive
detections of our radio+machine-learning method. However, our stacking
analyses shown in An et al. (2018) confirm that the machine-learning method
can identify the faint/diffuse submillimeter emissions even below the ALMA
detection limit. The accuracy of the multiplicity of S2COSMOS sources is
affected by both incompleteness and false-identifications of the radio
+machine-learning method.

Figure 8. Normalized distribution of Δz for the pairs of radio+machine-
learning-identified counterparts within the same SCUBA-2 error circle,
compared to the pairs randomly selected from the distribution of all isolated
counterparts with photometric redshift. The distribution is normalized by
assuming that each SCUBA-2 source only has a single counterpart. The strong
peak at Δz<0.25 for the identified counterpart pairs compared with a random
sample indicates that a moderate fraction of multiple counterparts in the same
SCUBA-2 error circles arises from physically associated galaxies, rather than
chance line-of-sight projections.

Figure 9. Specific star formation rate (sSFR) vs. stellar mass for “super-
deblended” Ks or radio-detected galaxies in the COSMOS field. The SFRs are
computed from the integrated 8–1000 μm infrared luminosities derived from
FIR+millimeter SED fitting (Jin et al. 2018). Stellar masses are from Laigle
et al. (2016) and Muzzin et al. (2013) with a Chabrier IMF (Chabrier 2003).
We mark our radio+machine-learning-identified counterparts of SMGs with
gray squares. The identified counterparts are the most strongly star-forming and
most massive galaxies, compared with the remaining Ks or radio-detected field
galaxies.
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projections by chance, although our result is affected by the
incompleteness and false-positive identification of the radio
+machine-learning method.

4.3. AGN Fraction

Both theoretical simulations and observational studies
suggest a link between the growth of galaxies and their
supermassive black holes (SMBHs, MBH=106–109 M, e.g.,
Hopkins et al. 2008; Ishibashi & Fabian 2016). Under this
paradigm, starburst-dominated galaxies and the active galactic
nuclei (AGNs) dominated QSOs are essentially the same
systems observed at different evolutionary stages (e.g., Sanders
et al. 1988; Perna et al. 2018). Therefore, surveying the AGN
activity in the SMG population provides insights into not only
SMBH growth, but also potentially the evolutionary cycle of
massive galaxies.

We start by looking at the AGN population in radio-
identified SMGs. We take advantage of the fact that Smolčić
et al. (2017a) has identified AGNs from the VLA-COSMOS
3 GHz radio data using the X-ray, MIR color–color, and multi-
wavelength SEDs selection methods. For the 932 radio-
identified counterparts of S2COSMOS sources, 80 have
X-ray detections in the Chandra COSMOS-Legacy Survey
(Civano et al. 2016; Marchesi et al. 2016). Among these, 74 are
classified as X-ray AGNs according to their X-ray luminosity
( >L 100.5 8 Kev

42
[ – ] erg s−1, although we note that this is

conservative for strongly star-forming galaxies; Smolčić et al.
2017a). Since the X-ray selection of AGNs is progressively
missing faint AGNs at high redshift because of the limitation of
survey depth, Smolčić et al. (2017a) also adopt the MIR color–
color selection method of Donley et al. (2012) and the SED
selection to complement the X-ray selection criterion. Of the
radio counterparts of S2COSMOS sources with zphot3.0,
125 meet the MIR AGN criterion, although 41 of them are also
X-ray AGNs. Smolčić et al. (2017a) also classified radio
sources that show AGN signatures in their optical to millimeter
SED as SED-selected AGNs. Among these, 163 are counter-
parts of S2COSMOS sources. In total, 225/932 (24± 4)%

radio-identified counterparts of S2COSMOS sources are
classified as AGNs in Smolčić et al. (2017a).
For the remaining 290 optical/NIR counterparts of S2COS-

MOS sources, which lack radio counterparts and are classified
by machine learning, none of these have X-ray detections in
XMM-COSMOS (Cappelluti et al. 2007; Hasinger et al. 2007;
Brusa et al. 2010) or Chandra surveys (Civano et al. 2016;
Marchesi et al. 2016). Therefore, the fraction of X-ray-detected
AGNs in our radio+machine-learning-identified counterparts
of S2COSMOS sources is (6± 2)%. We also adopt the MIR
color–color selection criteria in Donley et al. (2012) for the
170/290 optical/NIR counterparts of SCUBA-2 sources,
which have zphot�3.0 and >3σ detections in all four IRAC
bands (see Stach et al. 2019). Three of these meet the selection
criteria of AGNs from Donley et al. (2012). Therefore,
combining the MIR color–color and SED selection, the AGN
fraction in our radio+machine-learning-identified counterparts
of S2COSMOS sources is (19± 4)%, which is consistent with
the AGN fraction in ALMA SMGs of the ALESS (Wang et al.
2013) and the AS2UDS samples (28%, Stach et al. 2019) but
lower than a sample of 1.1 mm selected ALMA SMGs in the
GOODS-South field (Franco et al. 2018).

4.4. Star Formation Rate and Stellar Mass

SMGs are believed to be massive starburst galaxies with
total infrared luminosity of LIR1012 L. In this section, we
investigate the star formation rate and stellar mass of our
identified counterparts of SCUBA-2 sources in the COS-
MOS field.
We first match our sample to the FIR-to-(sub)millimeter

photometric catalog from Jin et al. (2018), which is described in
Section 2.3.2. This catalog is created by using the position of
Ks-band or radio-detected sources and a “super-deblended”
method developed by Liu et al. (2018) to estimate the FIR-to-
(sub)millimeter photometries. The SFR of these “super-
deblended” sources is estimated by integrating the 8–1000μm
infrared luminosity from the best-fit FIR+mm SED (Jin et al.
2018). We show the specific SFR, which is defined as the ratio
of SFR and stellar mass, as a function of stellar mass for the

Figure 10. Redshift distribution (left) and 3.6 μm magnitude (right) distribution of NIR-selected galaxies within SCUBA-2 error circles (blue shade area), compared to
those galaxies within sky (gray area). The galaxies in the right panel also have secure detection at 4.5 μm band and have estimated photometric redshift and absolute
H-band magnitude from COSMOS2015 catalog, i.e., are qualified for our machine-learning method. We can see an excess in number density within SCUBA-2 error
circles, especially at higher redshift and the brighter end of 3.6 μm magnitude.
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10,886 “super-deblended” sources with S/NFIR+mm>5 in
Figure 9. Among these, 614 are our radio+machine-learning-
identified counterparts of S2COSMOS sources. The stellar mass
estimates are from the catalogs of Laigle et al. (2016) and
Muzzin et al. (2013) with a Chabrier IMF (Chabrier 2003). The
photometric redshift of sources is shown by the color scale in
Figure 9.

As shown in Figure 9, our identified counterparts of single-
dish submillimeter sources tend to be at higher redshift, while
having higher star formation activity and higher stellar mass,
compared with the NIR or radio-selected galaxies with fainter
submillimeter emission. These differences support the relia-
bility of our classification. We thus conclude that statistical
analyses of SMGs can be undertaken based on this large
sample of identified counterparts of submillimeter sources from
the panoramic single-dish survey.

4.5. Excess of Number Density within SCUBA-2 Error Circles

To study the environment properties of single-dish-detected
submillimeter sources, we first compare the number density of
NIR-selected galaxies within the SCUBA-2 beam with that in
the random areas. These are 1066/1147 SCUBA-2 sources
lying within the NIR coverage in the COSMOS field. We then
randomly offset the 1066 SCUBA-2 position in R.A. or decl.
by 9″, which is slighter larger than the SCUBA-2 beam, and
use the average number of NIR-selected galaxies within these
regions as the number density of NIR galaxies in the random
areas. We show the distribution of redshift and 3.6 μm
magnitude of NIR galaxies within the SCUBA-2 error circle
and within these random areas in Figure 10. The number
density of NIR galaxies within the SCUBA-2 beam exhibits an
excess at high redshift and bright 3.6 μm magnitudes. The NIR
galaxies shown in the right panel of Figure 10 are qualified for
our machine-learning classification, i.e., they have secure
detection at 3.6 and 4.5 μm band while having estimated
photometric redshift and absolute H-band magnitude. The total
number of excess NIR galaxies within the SCUBA-2 error
circles is 950. In Section 3, we identified 815 counterparts of
SMGs from 5655 NIR-detected galaxies within these 1066
SCUBA-2 error circles. According to An18, the recall of the
radio+machine-learning method is ∼85% for the AS2UDS
SMGs that qualified for machine-learning analyses. Therefore,
the excess of NIR galaxies within SCUBA-2 regions can
be roughly explained by the contribution from SMGs if
we consider the incompleteness of radio+machine-learning
identification.

4.6. Properties of “Blank”-SCUBA-2 Sources

From the 1145 SCUBA-2 sources within the VLA 3GHz
radio survey region or NIR coverage, we find no radio or optical/
NIR counterparts for 248 SCUBA-2 sources (22%± 5%). We
call these “blank”-SCUBA-2 sources. We find only seven radio
sources within the error circles of these 248 “blank”-SCUBA-2
sources and all of them have p-value >0.065, thus are only
classified as “possible” counterparts. There are 1960 NIR
galaxies within these 248 “blank”-SCUBA-2 error circles, and
778/1960 (40%) of them meet the requirement for the machine-
learning analyses, but are classified as non-SMGs. Comparing to
machine-learning-identified counterparts of SMGs (Figure 4),
these 778 NIR galaxies within the “blank”-SCUBA-2 regions are
either fainter in absolute H-band or at lower redshift or have a

blue NIR color and therefore are classified as “non-SMGs” by the
XGBoost classifier.
We also study the environment properties of these “blank”-

SCUBA-2 sources by using the method described in
Section 4.5. There is also an excess of 43 in the number of
NIR galaxies that have estimated photometric redshift within
the “blank”-SCUBA-2 sources compared with that in random
areas as shown in Figure 11. Therefore, for “blank”-SCUBA-2
sources, the number density of this excess is 0.17 beam−1,
which is weaker than that of all 1066 SCUBA-2 sources with
an average density of 0.66 beam−1 as shown in the left panel of
Figure 10.
We stack the Herschel/SPIRE maps at the positions of

“blank”-SCUBA-2 sources and detect significant emission with
the averaged peak flux densities of 8.3±0.4, 10.5±0.6, and
9.5±0.7 mJy at 250 μm, 350 μm, and 500 μm, respectively.
This suggests that the main explanation for “blank”-SCUBA-2
sources is the incompleteness of radio+machine-learning
method. The major causes of the incompleteness is that some
SMGs lack radio or NIR counterparts or do not have secure
measurements of all the input features required for the
machine-learning analyses.

4.7. SMG Clustering

Spatial clustering is a powerful way to study galaxy
evolution and the evolutionary connections between different
galaxy populations, since it provides a direct method to
constrain the mass of a halo in which galaxies reside (e.g.,
Cooray & Sheth 2002).
For the bright SMGs selected at 850 μm, the measurements

of clustering have suffered from small number statistics
because of their low spatial density and small survey area.
Previous works resorted to a cross-correlation technique by
using other galaxy populations with higher source surface
densities (Hickox et al. 2012; Wilkinson et al. 2017). Chen
et al. (2016b) studied the clustering of SMGs by using a sample
of ∼3000 OIRTC-identified counterparts of SMGs in the UDS
field, which includes faint SMGs below the single-dish
confusion limit. However, the clustering measurements in

Figure 11. Redshift distribution of NIR-selected galaxies within 248 “blank”-
SCUBA-2 error circles, compared with those galaxies within random areas. We
can also see an excess of number density within “blank”-SCUBA-2 error
circles, but with a weaker significance compared with that in Figure 10.
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Chen et al. (2016b) were limited by the moderate survey area of
the UDS field. We similarly apply our machine-learning
classification to the NIR-selected galaxies in the whole
COSMOS field to identify faint SMGs, whose submillimeter
emission is fainter than the confusion limit of S2COSMOS
surveys. Although recent interferometric instruments can detect
faint SMGs (S850 μm1.0 mJy, e.g., Franco et al. 2018;
Umehata et al. 2018), it is observationally prohibitive to map
the full 2 degree2 COSMOS field with ALMA. By applying our
machine-learning method to the whole COSMOS field, we
obtain a sample of faint SMG candidates for future interfero-
metric follow-up observations. In total, 356,673 NIR-selected
galaxies meet the requirement of the machine-learning
classification, i.e., having secure detection at 3.6 and 4.5 μm
and having estimated photometric redshift and absolute H-band
magnitude in the COSMOS2015 catalog (Laigle et al. 2016).
Among them, 6877 (2%) are classified as the likely counter-
parts of SMGs.

With this statistically large sample, we investigate the
clustering properties of SMGs. We first divide our sample into
three redshift bins (Figure 12) to study the evolution of SMGs
and compare to clustering results in the literature (Hickox et al.
2012; Chen et al. 2016b; Wilkinson et al. 2017). We then
calculate the two-point autocorrelation function (ACF) w(θ) for
each subsample by using the Landy & Szalay (1993) estimator:

q =
- +

w
DD 2DR RR

RR
, 1( ) ( ) ( )

where DD, DR, and RR are the number of data-data, data-
random, and random–random galaxy pairs in each θ bin
respectively. The bright stars and bad pixels in the source-
detection images of Laigle et al. (2016) have been masked out
before the clustering analysis. We then generate a random
sample within this masked region and with a sample size of
∼1000 times larger than that of the machine-learning-identified
counterparts in each redshift bin.

A power-law model w(θ)=A θ−0.8 is assumed for the ACF of
galaxies, which is suggested both observationally and

theoretically, at the physical scale of ∼0.1–10 h−1Mpc (Postman
et al. 1998; Zehavi et al. 2002; Springel et al. 2005). However,
because our sample is in a field comparable in size to the
expected clustering length, the observed ACF needs to be
corrected for the integral constraint (IC; Groth et al. 1977):

q q= --w A IC. 20.8( ) ( )

The integral constraint can be numerically estimated (e.g.,
Infante 1994; Roche & Eales 1999; Adelberger et al. 2005)
using the random–random pairs with the following form:

ò q» w dFIC , 3r( ) ( )

where Fr(θ) is the cumulative distribution function of pair
angular-separation (θ) estimated from RR counts.
The systematic uncertainties of ACF due to field-to-field

variation is estimated by using the Jackknife resampling
method (e.g., Norberg et al. 2009; Coupon et al. 2012; Chen
et al. 2016a). In practice, we first divide our sample into
Nsub=32 subsamples and remove one subsample at a time for
each Jackknife realization. We then estimate the w(θ)jk based
on each Jackknife sample and repeat this process Nsub times.
The covariance matrix is derived through the variance of these
w(θ)jk. We then fit the observed ACF (Equation (2)) by
performing a multivariate Gaussian fit on the scales of 8″–500″
(∼0.1–7 h−1 Mpc at z=2) where the aforementioned covar-
iance-matrix estimation is used to characterize the correlated
uncertainties of the ACF estimator values in each angular-
separation bin. The total uncertainties include Poisson noises of
number counts and resampling variances, which are propagated
into the uncertainty of the normalizing factor A of the ACF
model in Equation (2). We show the best-fit results in
Figure 12.
To investigate the relation of SMGs to other galaxy

populations, we build two comparison samples of star-forming
galaxies and passive galaxies using the COSMOS2015 catalog.
The star-forming and quiescent galaxies are classified using the
location of galaxies in the (NUV− r) versus (r− J) color–color
plane (Laigle et al. 2016). Since the clustering properties of

Figure 12. Two-point autocorrelation function of machine-learning-identified counterparts at z=1–2, 2–3, and 3–5 in the full COSMOS field, compared with
(NUV −r)/(r − J) color–color selected quiescent and star-forming galaxies from the COSMOS2015 catalog (Laigle et al. 2016). The stellar masses of galaxies in all
three samples are limited with log M M 10.510 *( ) . The dashed lines represent the best-fit power-law models, q q= -w A 0.8( ) . The dotted curves represent the
autocorrelation function of the total matter. As shown in Appendix, the redshift distributions of machine-learning-identified SMGs, passive galaxies and SFGs are
slightly different in each redshift bin. We therefore evaluate the autocorrelation functions of the total matter for the three different samples separately and show them in
different colors. In the lowest redshift bin, the passive galaxies show a relatively stronger clustering, compared with machine-learning-identified counterparts
of SMGs.
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galaxies depend on their star formation rate, stellar mass, and
redshift (e.g., Wake et al. 2011; Mostek et al. 2013; Coupon
et al. 2015; Wilkinson et al. 2017; Cochrane et al. 2018; Lin
et al. 2019), we match the two comparison samples to our
machine-learning-classified SMGs in redshift and stellar mass.
About 85% of machine-learning-classified SMGs have stellar
mass log10(M*/M)�10.5. Therefore, we limit all three
samples with log10(M*/M)�10.5 in our clustering analyses.

For the selection of quiescent galaxies, the UVJ/UrJ color–
color selection technique has proved to be more reliable at
z<2 (Williams et al. 2009; Ilbert et al. 2013). In addition, the
sample size of quiescent galaxies decreases steeply beyond
z>2. Therefore, in our analyses, we only include quiescent
galaxies at 1<z<2. We find that 6.4% of these red UrJ
sources comprise machine-learning-identified counterparts of
submillimeter sources, which are very likely obscured dusty
galaxies. However, the precision of our machine-learning
classification being (83± 5)%, we cannot rule out that these
sources might be real red passive galaxies. Hence we first keep
these overlapped IDs and estimate the ACF for passive galaxies
as shown in Figure 12. Then we remove machine-learning IDs
from the quiescent sample and estimate their ACF again. We
also estimate the effect on ACF of machine-learning-classified
counterparts of SMGs by removing the IDs that are classified as
quiescent galaxies. We consider the variances of w(θ) between
these tests as the uncertainties when we calculate the amplitude
of w(θ) for the corresponding sample.

To measure how well galaxies trace the underlying dark
matter distribution, we compute the galaxy bias, which is
quantified by the relationship

q
q

=b
w

w
, 4gal

2

M

( )
( )

( )

where w(θ)M is the two-point ACF of the total matter, including
contributions from both cold dark matter (CDM) and baryons
(Desjacques et al. 2018).

The w(θ)M is evaluated based on the small-angle approx-
imation to the projection of isotropic density-fluctuation power
spectrum P(k, z) onto a transverse, two-dimensional surface
(see Kaiser 1992; Baugh & Efstathiou 1993; Dodelson 2003;
LoVerde & Afshordi 2008). Formally, the two-point correla-
tion function is a Hankel transform of the power spectrum,
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where H(z) is the Hubble parameter, V(z) is the selection
function in redshift z such that ò =

¥
V z dz 1

0
( ) , c =z( )

ò ¢ ¢c H z dz
z

0
( )/ is the radial comoving distance, and J0 denotes

the zeroth-order Bessel function of the first kind. We assume a
flat ΛCDM cosmological model with parameters fixed at the
Planck 2015 best-fit values (Planck Collaboration et al. 2016).
The power spectrum P(k, z) in this fiducial cosmology is
computed using the software CAMB (Lewis et al. 2000, 2019),
with the nonlinear evolution of CDM clustering described by
the halo model (see Smith et al. 2003) as re-calibrated with
cosmological N-body simulations by Takahashi et al. (2012). In
each redshift bin, the selection function V(z) is computed from
the sources’ photometric redshifts (zphot), the redshift uncertain-
ties, and their SMG-classification probabilities (the last one only

for the machine-learning IDs). The technical details about
computing the selection function V(z) are presented in the
Appendix.
We show our measured galaxies bias for machine-learning-

classified counterparts of SMGs and two comparison samples
at three redshift bins and compare them with the model
predictions (Sheth et al. 2001; Mo & White 2002) in Figure 13
and Table 3. We also compare our clustering measurements of
these three galaxies populations with the results in the literature
(Hickox et al. 2012; Hartley et al. 2013; Chen et al. 2016b;
Wilkinson et al. 2017; Amvrosiadis et al. 2018; Lin et al.
2019). Our results are consistent with the main results in the

Figure 13. Galaxies bias as a function of redshift for machine-learning-
classified counterparts of SMGs and comparison samples of passive and star-
forming galaxies from COSMOS2015 catalog (Laigle et al. 2016). We also
present the estimated bias of SMGs in the literature for comparison. The solid
lines show the modeled bias as a function of redshift for various halo masses
(labeled by the halo mass at z = 0 in solar mass, Mo & White 2002). Our
measurements show that the typical host halo mass of SMGs with log

M M 10.510 *( ) is  ´ -h M1.2 0.3 1013 1( )  at z>1.

Table 3
Results of Clustering Measurements

Samplea zmedian Ns
b bgal Mhalo

(1013 h−1 M)

z=1–2
XGB IDs -

+1.5 0.2
0.3 2226 -

+3.0 0.2
0.2 1.2±0.3

Passive galaxies -
+1.4 0.2

0.3 3478 -
+3.2 0.1

0.1 1.7±0.2

SFGs -
+1.5 0.2

0.3 5337 -
+2.9 0.1

0.1 1.0±0.1

=z 2 3–
XGB IDs -

+2.4 0.2
0.3 2111 -

+5.0 0.3
0.2 1.2±0.3

SFGs -
+2.4 0.2

0.3 1885 -
+4.6 0.3

0.3 1.0±0.3

z=3–5
XGB IDs -

+3.5 0.3
0.6 1072 -

+8.4 0.7
0.7 1.3±0.4

SFGs -
+3.5 0.3

0.6 656 -
+8.1 1.0

0.9 1.2±0.5

Notes.
a The stellar mass limit of all subsamples is log M M 10.5.10 *( )
b The number of sources used in the clustering analyses.
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literature, which suggest that the SMGs resided in high-mass
((1.2±0.3)×1013 h−1 M) halos. At z∼1–2, the passive
galaxies show a slightly stronger clustering compared to
machine-learning-classified counterparts of SMGs. Star-form-
ing galaxies are less clustered compared with the other two
populations. This is consistent with the evolutionary scenario
that SMGs may be the progenitors of the most massive
quiescent galaxies at low redshift.

5. Conclusion

By utilizing the high angular resolution ALMA data and rich
ancillary data available in the COSMOS field, we employ our
previously developed radio+machine-learning method to
identify multi-wavelength counterparts of S2COSMOS sin-
gle-dish-detected submillimeter sources. We then provide a
large sample of SMGs with robustly identified radio/optical/
NIR counterparts and study the physical and statistical
properties of SMGs. Our main conclusions are as follows.

1. Using the deep VLA 3 GHz radio data in the COSMOS
field, we identify 932 radio counterparts to the S2COS-
MOS submillimeter sources by adopting a p-value cut of
p�0.065. The expected precision of radio identification
is 70% from the self-test of AS2UDS in An18.

2. We use three ALMA data sets in both COSMOS and
UDS fields to build training sets for machine-learning
algorithms and compare the performance of machine-
learning classifiers trained on these different training sets.
The sample constructed from the combined AS2COS-
MOS and A3COSMOS data sets is chosen as the training
set for this work because the machine-learning classifiers
trained on this sample can best classify SMGs and non-
SMGs in the COSMOS field. There are 5655 NIR
galaxies located within SCUBA-2 error circles that meet
the requirements of machine-learning classification.
Among them, 658 are classified as optical/NIR counter-
parts of S2COSMOS submillimeter sources by the
machine-learning classifier. Combining with the radio
identification, we identify 1222 radio/optical/NIR
counterparts to 897 of the 1145 single-dish-detected
submillimeter sources in the COSMOS field. The
identification rate is (78± 9)% and it increases for bright
SCUBA-2 sources.

3. For the 897 S2COSMOS sources that have at least
one radio- or machine-learning-identified counterpart,
(26± 5)% of them have multiple counterparts. The
multiple fraction increases with the flux densities of
single-dish submillimeter sources. We estimate that
∼27% of the multiple counterparts within the same
SCUBA-2 error circles arise from physically associated
galaxies by comparing the difference of their photometric
redshift.

4. We study the physical properties of the 1222 radio
+machine-learning-identified counterparts to the S2COS-
MOS submillimeter sources. The redshift distribution of
these counterparts peaks at z=2.3±0.1 and has a
redshift range of z=0.2–5.7, which is consistent with
that of ALMA SMGs from AS2UDS and ALESS
surveys. The AGN fraction of our radio+machine-
learning-identified counterparts to S2COSMOS sources
is (19± 4)%, which is similar to the AGN fraction in the
ALESS and AS2UDS samples. Compared with NIR or

radio-selected galaxies in the COSMOS field, our radio
+machine-learning-identified counterparts of S2COS-
MOS sources have higher star formation rates and higher
stellar masses. These results mean that our radio
+machine-learning-identified counterparts constitute a
comprehensive and representative sample of SMGs
indicated by their physical properties.

5. We investigate the environment properties of bright
SCUBA-2 sources and find a significant excess of NIR
galaxies at higher redshifts and brighter NIR magnitudes
within SCUBA-2 error circles compared to those within
the random fields. We find that the excess of NIR
galaxies can be roughly explained by the contribution
from SMGs within these regions.

6. Among the 1145 S2COSMOS submillimeter sources that
lie within the coverage of radio or NIR observations in
the COMSOS field, 248 of them do not have any radio-
or machine-learning-identified counterparts. We study the
properties of these 248 “blank”-SCUBA-2 sources and
confirm that the main cause of the lack of an identified
counterpart is the incompleteness of our radio+machine-
learning method.

7. We employ our machine-learning technique to the whole
COSMOS field and identify 6877 optical/NIR counter-
parts of faint SMGs, whose submillimeter emission lies
below the confusion limit of our S2COSMOS submilli-
meter surveys (S850 μm1.5 mJy). By using this statis-
tically large sample of SMGs with precisely identified
multi-wavelength counterparts, we investigate the clus-
tering properties of this galaxies population. The cluster-
ing measurements show that SMGs reside in CDM halos
with mass of ∼(1.2±0.3)×1013 h−1 M, which is
relatively unchanged across cosmic time. We compare
the clustering strength and galaxies bias of SMGs to those
of SFGs and passive galaxies at the similar redshift
ranges and with the same stellar mass limit of log10(M*/
M)�10.5. We find that at z=1–2, passive galaxies
show a slightly stronger clustering compared with SMGs.
Star-forming galaxies are less clustered compared with
SMGs at z=1–5. These results are consistent with the
suggested scenario that SMGs may be the progenitors of
most massive quiescent galaxies in the low-redshift
universe.
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Appendix
Redshift Selection Function

Following the discussions of Chen et al. (2016b), in the
absence of accurate information about intrinsic redshift and
luminosity distributions for the heterogeneous sample (Laigle
et al. 2016), we may approximate the selection function V(z) by
the PDF of the sample’s estimated redshifts in each slice (see
also Baugh & Efstathiou 1993). To do this, it is necessary to
account for the redshift uncertainties. In this work, we use a
mixture model as our underlying probabilistic assumption, to
be detailed as follows.

We denote the redshift (cumulative) distribution function
(CDF) of the ith source, as indicated by its zphot estimation and
uncertainty, by Fi(z), and let pi be the classification probability
of the same source. We consider the mutually exclusive, equal-
probability collection of random events Si, defined as Si={the
ith source being selected}, such that == SPr 1i

N
i0(⋃ ) , where N

is the total number of sources in a catalog. Our assumption
amounts to =S NPr 1i( ) . Furthermore, we identify each pi as
the conditional probability C SPr i( ∣ ), where C is the event of
inclusion by the classifier. The conditional CDF,

= <F z Z z CPr , 6Z ( ) ({ } ∣ ) ( )

is the antiderivative of the selection function V(z) for the whole
catalog. To express the selection function based on only a
subset (redshift slice) of the catalog, we denote the index set of
the sources in the slice by  and let = Î S Si i⋃ . The CDF
specific to (and conditional upon) the slice identified by the
indices in  is
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following the definition of conditional probability and the
theorem of total probability. The numerical value of

Ç C SPr( ) is determined by the normalization to unity,
+¥ =F ; 1Z ( ) , i.e.,

Ç å=
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

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It follows that the conditional CDF to be found is a weighted
sum of individual components (the mixture model), as in

å
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Î Î

 

 

F z
p F z

p
w F z; , 9Z

i i i
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where = å Îw p pi i i i( ) is the weight. Thus, the selection
function for the redshift slice is

å= =
Î






V z
dF z

dz
w f z;

;
, 10Z

i
i i( ) ( ) ( ) ( )

where fi is the PDF characterizing the zphot uncertainty of the ith
source. In our work, the individual fis (see Equation (10)) are

Figure 14. Selection functions for subsamples from each redshift bin, with the redshift PDF of the combined sample shown for comparison (dotted lines). Each
selection function reflects the aggregated probability density of source redshift from the respective subsample, and is normalized to unity individually. Vertical lines
mark the median redshifts of the corresponding subsample (see Table 3).
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modeled by Gaussian distributions indicated by zphot and the
68.3% uncertainty bounds. As a result of such uncertainties, the
selection function based on a slice can spread outside its
redshift cut and overlap with neighboring ones, as can be
observed in Figure 14. Also shown therein is the selection
function built from the full catalog, which is comparable to the
Figure 3 of Chen et al. (2016b).
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