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14 ABSTRACT       

15 A variety of natural surfaces exhibit antibacterial properties; as a result significant efforts in 

16 the past decade have been dedicated towards fabrication of biomimetic surfaces that can help 

17 control biofilm growth. Examples of such surfaces include rose petals, which possess 

18 hierarchical structures like the micro-papillae measuring tens of microns and nano-folds that 

19 range in the size of 700 ±100 nm. We duplicated the natural structures on rose-petal surfaces 

20 via a simple UV-curable nanocasting technique, and tested the efficacy of these artificial 

21 surfaces in preventing biofilm growth using clinically relevant bacteria strains. The rose-petal 

22 structured surfaces exhibited hydrophobicity (contact angle~130.8º ±4.3º) and high contact 

23 angle hysteresis (~91.0° ±4.9°). Water droplets on rose-petal replicas evaporated following the 

24 constant contact line mode, indicating the likely coexistence of both Cassie and Wenzel states 

25 (Cassie-Baxter impregnating wetting state). Fluorescent microscopy and image analysis 
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26 revealed the significantly lower attachment of Staphylococcus epidermidis (86.1± 6.2% less) 

27 and Pseudomonas aeruginosa (85.9 ±3.2% less) on the rose-petal structured surfaces, 

28 compared with flat surfaces over a period of 2 hours. Extensive biofilm matrix was observed 

29 in biofilms formed by both species on flat surfaces after prolonged growth (several days), but 

30 was less apparent on rose-petal biomimetic surfaces. In addition, the biomass of S. epidermidis 

31 (63.2 ±9.4% less) and P. aeruginosa (76.0 ±10.0% less) biofilms were significantly reduced 

32 on the rose-petal structured surfaces, in comparison to the flat surfaces. By comparing P. 

33 aeruginosa growth on representative unitary nano-pillars, we demonstrated that hierarchical 

34 structures are more effective in delaying biofilm growth. The mechanisms are two-fold: 1) the 

35 nano-folds across the hemispherical micro-papillae restrict initial attachment of bacterial cells 

36 and delay the direct contacts of cells via cell alignment, and 2) the hemispherical micro-papillae 

37 arrays isolate bacterial clusters and inhibit the formation of a fibrous network. The hierarchical 

38 features on rose petal surfaces may be useful for developing strategies to control biofilm 

39 formation in medical and industrial contexts.

40

41 1. INTRODUCTION

42 Bacteria are ubiquitous in the environment and can adhere onto abiotic or biotic surfaces to 

43 form biofilms1. These three-dimensional (3D) communities of sessile cells are encased in a 

44 matrix of extracellular polymeric substances (EPS). Biofilms can be useful in biotechnological 

45 processes such as bioremediation, biofertilizers, and  in microbial fuel cells1. By contrast, 

46 certain biofilms can be detrimental to human health, causing infections and diseases1-2. It has 

47 been estimated that up to 80% of bacterial infections in humans are biofilm associated, and 

48 biofilms are responsible for the majority of hospital-acquired infections. Biofilm associated 

49 infections are the fourth leading cause of death worldwide, within the U.S. about 2 million 

50 annual cases lead to more than $5 billion USD in added medical costs per annum3-5. In the UK, 

51 about 300,000 people per annum in England suffer from hospital-acquired infections under 

52 NHS care and the costs also run into billions of pounds6. Hence, it is important to investigate 

53 techniques that can control biofilm growth and reduce the instances of infections. Bacterial 

54 biofilms are robust structures and are difficult to treat via traditional antibiotic therapy5-7. The 

55 EPS matrix acts as a barrier to agents trying to access the interior of the biofilm, subsequently 

56 triggering the development of antibiotic resistance7, which has been shown for both 

57 Staphylococcus epidermidis5 and Pseudomonas aeruginosa8. Physical strategies, in particular 

58 the use of rationally designed surface topographies, have gained interests  and present us with 
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59 an interesting approach to prevent bacterial adherence and biofilm growth without the 

60 requirement for antimicrobials9-10.

61 Natural surfaces with micro/nano topographical patterns have inspired researchers to design 

62 artificial biomimetic surfaces to control biofilm growth. For example, lotus leaf has 

63 hierarchical structures such as micro-papillae (measuring ~3–11 µm diameter) that are 

64 randomly covered by nano-tubules (~100 nm diameter)11-12. Water droplets on these surfaces 

65 cannot penetrate the air pockets formed within the hierarchical structures (i.e. Cassie state)11-12 

66 . As a result the lotus leaf is found to exhibit superhydrophobicity with a contact angle (CA) 

67 >150° and a low contact angle hysteresis (CAH) (i.e. <10°), which results in the easy rolling 

68 off of water droplets (i.e. self-cleaning effects) 12-14.  However, it is challenging to reproduce 

69 the hierarchical structures on lotus leaf in the laboratory15-17. Using lotus leaf as a template, it 

70 has only been possible to fabricate unitary structures based on the micro-papillae; the nano-

71 tubules are too small for this approach18-23. Hierarchical structures similar to the lotus leaf can 

72 be generated using chemical processes, but these are not exactly the same structures as found 

73 on natural lotus leaves24-27. Nevertheless, lotus leaf-inspired superhydrophobic surfaces 

74 (unitary structure or hierarchical structures) can mitigate biofouling by a range of bacteria 

75 including Staphylococcus aureus, S. epidermidis, P. aeruginosa and Planococcus maritimus, 

76 since the trapped air restricts the direct contact between the solid surfaces and micro-

77 orgasisms18, 20-21. The anti-fouling efficacy strongly depends on the lifetime of non-wetting 

78 (Cassie) state. The wetting transition (Cassie to Wenzel state) can occur within 1-4 hours in 

79 submerged environments, with a significant decrease in CA and  increase in CAH10, 18. Bacteria  

80 can also accelerate such transitions, for example by flagella-mediated motility10. Therefore, it 

81 is commonly accepted that surface topography features such as size, pitch or height play a 

82 primary role in delaying bacterial attachment or biofilm growth and that wettability (CA and 

83 CAH) is less important, especially when surfaces get fully wetted5, 10, 20, 28. 

84 Different surface topographies on many other natural surfaces including rice leaves29, shark-

85 skin30-32, gecko-skin9, 33-34, cicada wings5, 35-36, or dragonfly wings37-38 have also been 

86 demonstrated to have anti-biofilm properties to different levels. Topographical features larger 

87 than bacterial cells, such as the microstructures in Sharklet AFTM, constrain bacterial deposition 

88 to recessed regions and delay biofilm formation32. Topographies close in size to bacteria can 

89 lead to alignment of rod-shaped bacterial cells between the surface features and retard biofilm 

90 formation, possibly by blocking cell-cell communications39-42. By contrast, features such as 

91 tightly-spaced nano-spears that are smaller than bacterial cells can delay surface attachment 
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92 without necessarily restricting biofilm formation to a great extent 5, 10. Previous investigations 

93 have reported that rose petals have hierarchical structures with micro-papillae (~20 µm 

94 diameter) and nano-sized cuticular folds (~730 nm width)43-44. Such hierarchical structures 

95 make the rose-petal surface superhydrophobic even allowing it to exert a high adhesive force 

96 on droplets43. A few studies examined the dynamics of water droplets and efficacy of the 

97 structured surfaces in preventing bacterial growth43-44. However, the mechanism responsible 

98 for the inhibition of bacterial growth by the rose-petal structures is not well-understood. There 

99 was also lack of study about how such structures may affect bacteria alignment and biofilm 

100 formation. 

101 The present study focuses on investigating bacterial attachment and early-stage biofilm 

102 formation on biomimetic rose-petal surfaces. The imprints of rose-petal hierarchical structures 

103 were fabricated via nanocasting technique. The wettability of rose-petal replicas were accessed 

104 by the static/dynamic contact angle measurement and droplet evaporation tests. By using 

105 fluorescent microscopy and scanning electron microscope (SEM), growth of two clinically 

106 relevant biofilm forming strains S. epidermidis and P. aeruginosa were evaluated on the rose-

107 petal-structured and flat surfaces. In addition, by comparing the growth of P. aeruginosa on 

108 the model unitary nano-pillar structures, we demonstrated the efficacy of hierarchical structures 

109 in delaying biofilm growth. 

110

111 2. MATERIALS AND METHODS

112 2.1 Surface fabrication: One piece of fresh rose petal (Figure 1a) was attached to a glass slide 

113 (1 cm ×1 cm) via a double-sided adhesive tape (Figure 1b). A mixture of Poly(dimethylsiloxane) 

114 (PDMS) and its curing agent was prepared from SYLGARD 184 Elastomer Kit (Dow Corning 

115 Corporation, Midland, MI) with a ratio of 10:1 (wt/wt). The solution was thoroughly mixed 

116 and degassed in a vacuum chamber for 30 minutes to eliminate air bubbles. The mixture was 

117 poured over the glass slide with rose petals in a Petri dish (Figure 1c), and cured at room 

118 temperature for 48 hours. After curing, the PDMS mould was gently peeled off which left a 

119 negative imprint of the structures on the petal (Figure 1d). UV-curable epoxy (OG 142-87, 

120 Epoxy Technology, Inc.) was poured onto the negative imprint of the PDMS mould and was 

121 gently covered with a pre-cleaned glass slide (1 cm ×1 cm) as a substrate. The UV-curable 

122 epoxy was cured under a UV-lamp, with the luminous intensity of 100 mW/cm2 and the 
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123 wavelength of 365 nm, for 20–25 minutes until fully cured (Figure 1e). After cooling to room 

124 temperature, the cured epoxy was demoulded by bending the PDMS mould (Figure 1f).        

125 To better understand the advantage of the hierarchical structures over the unitary structures, a 

126 similar technique was used to produce periodic nano-pillar structures (diameter ~500 nm, pitch 

127 ~1 µm, height ~2 µm) with the same materials. More details can be found in the Supporting 

128 Information. 

129

130 Figure 1. Schematic of the fabrication method to obtain rose-petal replicas.

131 2.2 Characterization of rose-petal structured surfaces: The replicas of rose-petal surfaces 

132 were imaged using a scanning electron microscope (SEM). FEI Helios NanoLab 600 

133 DualBeam system was operated at an acceleration voltage of 5 KV, which allowed to get good 

134 magnifications, while will not damage the surfaces. We also measured the contact angles (CA) 

135 on flat and rose-petal-structured epoxy surfaces by placing a sessile drop of 3 µl deionized 

136 water (i.e. DI water), and evaluated by a CAM 100 optical contact angle meter (KSV 

137 Instruments Ltd., Finland). To characterize the evaporation dynamics, a 3 µl DI water droplet 

138 was placed on either of the surfaces, and their intensity projections were captured every 300 

139 seconds by the optical contact angle meter. The droplet edges were extracted by an in-house 

140 Matlab code and plotted in a single image to visualize the droplet transitions overtime. An in-

141 house goniometer45-46 was set-up to measure the advancing contact angles on flat and rose-

142 petal surfaces using a syringe-pump system (needle gauge ~25, water droplet volume ~10 μl, 

143 dispensing rate~ 0.2 ml/minute). Receding contact angles were also measured using the same 

144 method with the syringe pump operating in withdrawal mode. All the measurements were 
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145 repeated for three instances and the images were processed using ImageJ. Results are presented 

146 as the mean contact angles with standard deviations. 

147 2.3 Bacteria culture, attachment and biofilm growth: Biofilm-forming strains of S. 

148 epidermidis FH8 and P. aeruginosa PAO1-mCherry were used in this study47-49. S. epidermidis 

149 FH8 was isolated from a chronic rhinosinusitis patient at the Freeman Hospital, Newcastle 

150 Upon Tyne49. PAO1-mCherry is the derivative of P. aeruginosa PAO1-N (Nottingham 

151 subline50), which was engineered via chromosomal insertion (attTn7::ptac-mcherry) to 

152 constitutively express a red fluorescent protein mCherry. S. epidermidis FH8 and P. aeruginosa 

153 PAO1-mCherry were routinely cultured in Tryptic Soy Broth (TSB, Melford Laboratories Ltd, 

154 UK), in an incubating shaker at 180 rpm, 37 ̊C for 16 hours and then used for experiments. 

155 The optical density of S. epidermidis FH8 was measured by a spectrophotometer (Biochrom 

156 Libra S11, Biochrom Ltd., Cambridge, UK) and diluted to OD600= 0.30 with fresh TSB medium. 

157 3 ml of the diluted bacterial culture was incubated with flat and rose-petal structured surfaces 

158 in 12-well culture plates for 2 hours at 37 ̊C and then removed for visualization. To monitor 

159 the early-stage biofilm formation, we cultured Staphylococcus epidermidis FH8 on flat/rose-

160 petal surfaces for up to 2 days. P. aeruginosa PAO1-mCherry colonizes surfaces rapidly. 

161 Therefore, to avoid overloading the system, different culture conditions were selected for P. 

162 aeruginosa with a lower bacterial inoculum (OD600= 0.01) and incubation in 100x diluted TSB 

163 for 2 hours (bacterial attachment assay) or 24 hours (biofilm formation assay) . This method 

164 enabled biofilm growth to be visualised on the different surfaces without shielding the initial 

165 surface structure.

166 2.4 Fluorescent Microscope Analysis:  After the bacterial attachment assay or biofilm 

167 formation assay, surfaces were gently rinsed three times with Phosphate Buffered Saline (PBS, 

168 pH=7.4) to remove loosely adhered bacteria. Surfaces incubated with PAO1-mCherry were 

169 directly visualized by fluorescent microscopy after washing. For S. epidermidis FH8, the 

170 adherent bacteria or biofilms were stained with SYTO®9 (Invitrogen, Life Technologies, 

171 Carlsbad, CA, USA) following the standardized methods. All surfaces were visualized using 

172 an Olympus BX61 upright fluorescent microscope with a 20x objective. For the bacterial 

173 attachment assay (2 hours), surfaces were examined (see Support Information) by acquiring 

174 2D fluorescent images in a single focal plane (121.25 × 108.75 µm2). For biofilms, z-stacks 

175 were performed through the thickness of biofilms from 5 random locations on the surfaces. The 

176 biomass in each field of view (430.00 × 324.38 µm2) was determined using the COMSTAT2 
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177 plugin (Lyngby, Denmark) in ImageJ. Three independent experiments were performed for each 

178 surface type.

179 2.5 SEM Analysis: Surfaces (with bacteria or biofilms) were washed three times with PBS and 

180 fixed in 2% glutaraldehyde with 3M Sorenson’s phosphate buffer, overnight at 4°C. Then they 

181 were dehydrated through a series of ethanol solutions of 25% (v/v), 50%, 75%, and 100%, 

182 followed by critical point drying (Leica EM CPD300). The dried surfaces (with bacteria or 

183 biofilms) were sputter-coated with 16 nm platinum to increase the surface conductivity, 

184 enabling higher resolution imaging by the SEM.  

185 2.6 Statistical Analysis: Data are represented as mean values with standard error. Student’s t-

186 test assuming unequal variations was applied and *p < 0.05 was considered statistically 

187 significant in this study.

188

189 3. RESULTS AND DISCUSSION

190 3.1 Characterization of surface topography and wettability of rose-petal replicas

191 SEM imaging of the UV-epoxy rose-petal replicas (Figure 2 a1) revealed the existence of 

192 periodic arrays of hemispherical micro-papillae in the diameter of 23 ±3 µm , similar to the 

193 microstructures on natural rose petals (~ 20 µm)43-44. The magnified SEM images in Figure 2 

194 a2 shows the existence of cuticular folds were found at the top of micro-papillae, closely 

195 mirroring the hierarchical topographies of the natural rose petal. The width of each fold was 

196 measured to be in the range of 700 ±100 nm, similar to the size as previously reported (~ 730 

197 nm43-44) and the gap between each fold was measured to be 500 ±150 nm (Figure 2 a3). 

198 Collectively, the rose-petal replicas exhibit as hierarchical structures with micro-papillae and 

199 nano-folds in two different scales. 

200 The static water contact angle (CA) on the flat surface was measured to be 60.5º ±6.5º (Figure 

201 2b), indicating that the cured flat epoxy surface was intrinsically hydrophilic. For the rose-petal 

202 replicas, the CA value on surfaces was measured to be 130.8º ±4.3º (Figure 2b), indicating that 

203 the hierarchical structures had enhanced the surface hydrophobicity significantly. The water 

204 droplets stayed pinned on rose-petal structured surfaces under different tilt angles ranging from 

205 30 - 180° (Figure 2c), implying that there exist highly adhesive interactions between the drops 

206 and the structured surfaces43-44. Contact angle hysteresis (CAH) measurement which is an 

207 indicator of slipperiness (water-repellence), were conducted by using the dynamic CA method 
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208 (by increasing or decreasing the volumes of water droplets using a needle51). CAH (also defined 

209 as the difference between the advancing and receding angle of a water droplet) of the rose-petal 

210 structured surfaces (91.0° ±4.9°) was measured to be significantly higher than that of the flat 

211 surfaces (44.8° ±4.3°), as shown in Figure 2b. This indicates the presence of a large number of 

212 pinning points on rose-petal structured surfaces, which cause the adhesion of liquid droplets. 

213 We also evaluated the evaporation dynamics of water droplets on these two surfaces (Figure 

214 2d), as CAH has been attributed to be the main factor affecting drop evaporation52. Figure e-f 

215 shows the evolution of CA and contact radius of a water droplet during the evaporation process. 

216 For the flat surface, the evaporation started with the constant contact line (CCL) mode up to 

217 900s (Figure f): the CA decreased, while the contact radius remained constant. After that, the 

218 CA decreased to its receding CA (i.e. 37.6° ± 4.5° in this study), and contact line started to 

219 recede. The CA remained almost constant ranging from 900-1500s (Figure e), indicating that 

220 this is the constant contact angle (CCA) mode during this period of time. At the end of 

221 evaporation (1500-1800s), both CA and contact radius decreased (i.e. mixed mode) as shown 

222 in Figure f. This observation was consistent with the normal evaporation process which was 

223 reported on smooth hydrophilic surfaces53. By contrast, rose-petal structured surfaces exhibited 

224 mostly as CCL mode over time (Figure d &f & S1) due to its higher CAH. The CA of rose-

225 petal surfaces require more time to decrease to its receding CA (i.e. 37.2° ± 4.3° in this study). 

226 Therefore, the contact line is pinned and contact radius keeps constant during the evaporation. 
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227      

228        

229 Figure 2. (a) SEM images of the rose-petal replicas made by UV-epoxy. (a1) an overview of 

230 the hierarchical structures on surface, taken at 1000x. (a2) A typical SEM image taken at 8000x 

231 showing the hemispherical micro-papillae with cuticular folds, and the inset was taken at 20° 

232 tilt with the magnification of 12000x.  (a3) The magnified SEM image taken at 25000x showing 

233 the detailed cuticular nano-folds. (b) Static water contact angle (CA) and contact angle 

234 hysteresis (CAH) measurements on flat and rose-petal structured surfaces, *p=6.7×10-6 for CA 

235 and *p=2.0×10-13 for CAH. (c) Digital images of 3 μl water droplets on the rose-petal structured 

236 surfaces under different tilt angles. (d) A typical example of the edges of 3 μl water droplets, 

237 when evaporated on the flat and rose-petal structured surfaces overtime. The outside of droplet 

238 edge was extracted at the time of 0 s, and the time interval between each edge was 300 s. (e-f) 
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239 Evolution of contact angle (f) and contact radius (g) of water droplets (3 μl) evaporating on flat 

240 and rose-petal structured surfaces. 

241 The evaporation process on rose-petal replicas didn’t agree with the normal observations of 

242 hydrophobic surfaces, which is dominated by CCA mode as previously reported52-53. The 

243 normal hydrophobic or superhydrophobic surface like lotus leaf allows air to remain inside the 

244 texture (i.e. Cassie state), thereby have a low CAH. This results in the evaporation process 

245 follows as CCA mode with the easy receding of contact line53. However, it is believed that 

246 there have the coexistence of air pockets and water–solid contacts on rose-petal surface. This 

247 results in Cassie and Wenzel states coexist on rose-petal-like surfaces (also known as Cassie-

248 Baxter impregnating wetting state43-44). Therefore, rose-petal surface is hydrophobic but have 

249 a high CAH54. This special wetting state is attributed to the hierarchical micro- (i.e. arrays of 

250 papillae) and nanostructures (i.e. cuticular folds) on rose-petal surface. The relatively large and 

251 periodic arrays of papillae can exert a capillary force that facilitates the penetration of water 

252 into papillae valleys55. However, the water cannot enter into the nanoscale structures (i.e. 

253 cuticular folds) at the top where tapped air pockets exist. This kind of special wetting state on 

254 the rose-petal surfaces is also termed as the “petal effect” and has been well investigated by 

255 researchers43-44, 55.

256

257 3.2 Bacterial adherence is delayed by the rose-petal structured surfaces

258 We initially assessed the attachment of two common human pathogens, S. epidermidis 

259 (spherical-shape) and P. aeruginosa (rod-shape) on the different surfaces after 2 hours. A 

260 standard practice for counting planktonic cells is measuring colony forming units (CFU)56. 

261 However, this is not straightforward for enumeration of bacteria in biofilms on patterned 

262 surfaces owing to difficulties of removing all cells from the surface and breaking up aggregates 

263 into single cells without killing them5, 56. Therefore, fluorescence microscopy and quantitative 

264 image analysis was employed to enumerate bacterial cells in biofilms and to assess their 

265 distributions on the surface. 

266 The distribution of fluorescence signals (green for S. epidermidis and red for P. aeruginosa) 

267 was relatively uniform on the flat surfaces, indicating that the bacterial cells had attached 

268 uniformly across the surface (Figure 3 a1&3). However in the case of rose-petal structured 

269 surfaces, the fluorescent patches of S. epidermidis or P. aeruginosa were sparsely scattered, 

270 and large areas without fluorescent signal were observed. This indicated that cells were only 
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271 able to attach to specific regions on the rose-petal structure (Figure 3 a2&4). Figure 3b shows 

272 that the surface area covered by S. epidermidis and P. aeruginosa on rose-petal structured 

273 surface, which was significantly lower (86.1± 6.2% less and 85.9 ±3.2% less, respectively) in 

274 comparison to the area covered by bacteria on flat surfaces. It is possible that the wash steps 

275 passing through the air-liquid interfaces may have selectively removed relatively weakly 

276 attached cells and affected the distribution of cells on surfaces57. Therefore, control 

277 experiments were performed where samples were never passed through an air-water interface 

278 and were imaged using a water dipping lens. The distribution of cells was very similar to those 

279 seen in washed samples (data not shown), indicating that forces exerted during wash steps do 

280 not have a major impact on attached bacterial cells. Overall, the observations indicate that the 

281 rose-petal structures have the ability to inhibit the initial bacterial attachment.        

282

283 Figure 3. Adherence of S. epidermidis and P. aeruginosa on different surfaces after 2 hours’ 

284 incubation. (a) Fluorescent microscopy (1-4) and SEM (5-8) images of S. epidermidis and P. 

285 aeruginosa on flat and rose-petal structured surfaces. (b) The surface area coverage of each 

Page 11 of 26

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



12

286 type of bacteria in the field of view (121.25 × 108.75 µm2) for each surface was determined by 

287 ImageJ. *p=2.1×10-9 for S. epidermidis and *p=5.1×10-11 for P. aeruginosa. (c) A zoomed in 

288 view of the cross-section in a8 showed the existence of cellular appendages (yellow arrow), 

289 which might mediate bacterial attachment of P. aeruginosa, by connecting isolated cells. 

290 To investigate the interactions at a higher spatial resolution, SEM was used to visualize S. 

291 epidermidis/ P. aeruginosa on different surfaces. On flat surfaces, S. epidermidis tended to 

292 cluster into small aggregates (Figure 3 a5). By contrast, on the rose-petal surfaces, which 

293 comprised of hierarchically arranged micro- (i.e. arrays of papillae) and nanostructures (i.e. 

294 cuticular folds), 85.6 ±5.8% of S. epidermidis cells (based on SEM images, n=9) were localized 

295 in the valleys or crevices between micro-papillae (Figure 3 a6 & S2). Cells were not commonly 

296 seen at the top of the micro-papillae. These observations were consistent with the acquired 

297 fluorescent images (Figure 3 a2&4), where large areas without fluorescent cells were seen and 

298 presumably represented the sites of nano-folds. We did not observe cell aggregates of S. 

299 epidermidis on rose-petal surface and found that most of the attached cells were isolated 

300 (Figure 3 a6 & S2). Similar observations were also found for P. aeruginosa, as shown in Figure 

301 3 a7-8 & S3. In this case, 90.4 ±3.1% of cells (based on SEM images, n=9) were present in the 

302 valleys. The major difference between the cell types was that P. aeruginosa cells were 

303 connected by long tube-like appendages, which may have mediated cellular attachment by 

304 connecting the isolated cells together (Figure 3c). 

305

306 3.3 Biofilm growth is delayed by the rose-petal structured surfaces

307 3.3.1 Biofilm growth of S. epidermidis on different surfaces

308 To investigate whether the rose-petal structures are effective in delaying biofilm growth, S. 

309 epidermidis biofilms were cultured for 2 days and then analysed using fluorescent microscopy 

310 as well as SEM (Figure 4). Maximum intensity projections through the thickness of S. 

311 epidermidis biofilms showed bright patches on the flat surface (Figure 4 a1), indicating a 

312 typical biofilm growth comprising multiple layers of cells. Few smaller green patches were 

313 observed on the rose-petal structured surface, which appeared as circular or oval structures with 

314 centrally located dark regions that lacked fluorescence (Figure 4 a2). The diameter of these 

315 circular regions were measured to be 21 ± 4 µm, which is similar to the dimensions of 

316 hemispherical micro-papillae (i.e. 23 ± 3 µm in diameter) on the rose-petal structures. This 

317 indicates that S. epidermidis clusters/biofilms preferentially form around the micro-papillae. 
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318 The total biomass on the rose-petal surface was significantly lower (63.2 ±9.4% less) compared 

319 with the biomass on the flat surface (see Figure 4c), indicating that rose-petal structure can 

320 delay the biofilm growth. A dense biofilm network was observed on the flat surface, and string-

321 like structures consisting of filamentous fibrils appeared to bridge S. epidermidis cells together 

322 (Figure 4 b1&2). These filamentous fibrils are known to be part of EPS structure of S. 

323 epidermidis biofilms58 which indicates a more mature biofilm growth. By contrast, no 

324 filamentous fibrils were observed on the rose-petal surfaces (Figure 4 b3&4). A few cellular 

325 clusters were sparsely scattered on the rose-petal structure and the majority of cells occupied 

326 the valleys between the micro-papillae (Figure 4 b3 & S4), consistent with the findings of 

327 fluorescent imaging (Figure 4 a2) which revealed cells preferentially surrounding the micro-

328 papillae. Small aggregates of around ~20 cells were observed on the cuticular folds (Figure 4 

329 b4), however 3D clusters or aggregates on the cuticular folds at the top of micro-papillae were 

330 relatively rare. The diameter of S. epidermidis cells were measured to be 700 ±70 nm in this 

331 study, which is of similar dimensions compared to the feature size of folds (width ~700 ±100 

332 nm, gap ~500 ±150 nm). S. epidermidis cells can deposit into these fold gaps thereby forming 

333 small aggregates at the top of micro-papillae over time (Figure S4).    
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334
335 Figure 4. Biofilm formation (2 days) on the flat and rose-petal structured surfaces. (a) 

336 Fluorescent images of S. epidermidis biofilms on different surfaces. The cells on the rose-petal 

337 surfaces are distributed in oval shaped patterns which is highlighted by a dashed white line in 

338 a2. (b) SEM images of S. epidermidis biofilms on different surfaces. b1 and b3 are lower 

339 magnification images; b2 and b4 are high magnifications. Yellow arrows indicate the 

340 filamentous fibrils from the EPS of biofilms. (c) Biomass volume per unit area on the different 

341 surfaces calculated from ImageJ Comstat2. *p=1.8×10-6 for S. epidermidis and *p=3.8×10-11 

342 for P. aeruginosa. (d) Fluorescent images showing P. aeruginosa biofilms on different surfaces. 

343 The dashed white line highlights a cuticular region, with cells distributed in a circular pattern 

344 around the edge of micro-papillae. (e) SEM images of P. aeruginosa biofilms on different 

345 surfaces at lower magnifications (e1 and e3) and higher magnifications (e2 and e4). Yellow 

346 arrows indicate the filamentous fibrils from the EPS of biofilms and red arrows indicate the 

347 isolated bacterial cells within the cuticular folds. (f) High-magnification SEM images of P. 
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348 aeruginosa biofilms on rose-petal surface, yellow arrows indicate the bacterial alignment 

349 within the cuticular nano-folds, and red dash lines indicate the boundary of folds, as shown in 

350 f1. P. aeruginosa aggregates can form in the valleys of micro-papillae, as shown in f2. 

351

352 3.3.2 Biofilm growth of P. aeruginosa on different surfaces

353 Maximum intensity projections through the thickness of P. aeruginosa biofilms and the 

354 corresponding SEM images of the different surfaces are shown in Figure 4 d-e. Circular or oval 

355 shaped structures were observed in the fluorescent images of rose-petal surface (Figure 4 a4). 

356 This indicates that P. aeruginosa biofilm preferentially grew in between micro-papillae, akin 

357 to the growth mechanism of S. epidermidis. The total biomass of P. aeruginosa biofilms was 

358 significantly reduced on the rose-petal structured surfaces (76.0 ±10.0% less), comparing to 

359 the biomass on the flat surface (see Figure 4c). Figure 4e (1&2) shows the existence of P. 

360 aeruginosa clusters with a developed network of filamentous fibrils surrounding the cell bodies 

361 on the flat surface. In contrast to S. epidermidis, P. aeruginosa biofilms did not contain 

362 significant aggregates or clusters on the rose-petal surface, possibly due to the lower initial 

363 bacterial density and the nutrient-limited conditions arising from rapid cellular growth (Figure 

364 4e 3 & S5). Most cells were found to be isolated on structured surfaces, in contrast to the flat 

365 surface (Figure 4e). At a higher magnification, small bacterial aggregates were observed, 

366 comprising ~10 cells in the valleys of micro-papillae on the rose-petal surface (Figure 4f 2 & 

367 S5 b), without showing the long filamentous fibrils. P. aeruginosa cells were also occasionally 

368 found attached within the cuticular nano-folds at the top of micro-papillae (Figure 4 e4& f1). 

369 We measured the gap between folds to be 500 ±150 nm (Figure 2 a3) which is similar to the 

370 diameter of P. aeruginosa and found that a single P. aeruginosa cell was capable of settling 

371 into these gaps over time. The cells tended to align with the folds (Figure 4 f1 & S5 c-d) and 

372 the preference for alignment along the nano-folds was strong even though the fold structure 

373 was irregular. The crowns of the cuticular folds were visible after the long-term bacterial 

374 growth (i.e. 24 hours), as the bacteria tended to remain confined in the ridges between the nano-

375 folds (Figure 4 f1 & S5 c-d). To further assess P. aeruginosa biofilm growth, the period of 

376 biofilm development was extended to 48 hours - the same incubation time of S. epidermidis 

377 biofilms. In these experiments, the biomass on rose-petal structured surface was also found to 

378 be significantly lower (68.7 ± 13.4% less) in comparison of the biomass on the flat surface 

379 (Figure S5). The observations confirm that the rose-petal structure was able to delay the early 

380 stage biofilm growth of P. aeruginosa.
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381 3.4 Bacterial growth of P. aeruginosa on unitary nano-pillars

382 We used a simpler surface pattern containing unitary nano-pillars to examine the alignment of 

383 P. aeruginosa and evaluate anti-microbial performance against the hierarchical rose-petal 

384 structures. The unitary nano-pillar structured surface was moderately hydrophobic (CA of 

385 94.8°±3.7°) and the dimensions of the topographical features was similar to the nano-folds on 

386 rose-petals and comparable to the size of P. aeruginosa cells. Figure 5a and b1 showed that 

387 bacterial cells aligned with gaps between the nano-pillars after 2 hours, consistent with 

388 previous investigations39. Bacterial appendages tended to link to pillars (Figure 5b2). The total 

389 surface area covered by bacteria after 2 hours was significantly lower on the nano-pillar surface 

390 compared with the rose-petal surface (see Figure 5c&3b, 107.2±28.6 µm2 vs 143.8±71.2 µm2, 

391 p=0.012), possibly owing to the restricted area (pillar pitch) where bacteria can make the initial 

392 contacts to material surface. However, the biomass of P. aeruginosa after 24 hours (15.7±4.3 

393 µm3/µm2, Figure 5c) on nano-pillars was significantly higher than on rose-petal replica surfaces 

394 (7.3±2.8 µm3/µm2, Figure 4c) (p=0.002). Bacteria continued to deposit into the nanopillar 

395 pitches, and dense filamentous fibrils were observed surrounding the cells, similar to the flat 

396 surfaces (Figure 5d2 and S7). However, the biomass on nano-pillars after 24 hours is still 

397 significant lower comparing to that on the flat surfaces (31.1±6.0 µm3/µm2, Figure 4c) (p= 
398 2.7×10-7), indicating that unitary nanostructures can still isolate cells and delay biofilm growth. 

399

400 Figure 5. (a) Fluorescent microscopy and (b) SEM images of P. aeruginosa on nano-pillar 

401 surfaces after 2 hours, showing the cell patterning/aligning behaviour and a structure emanating 

402 from a bacterial cell (red arrow). (c) The surface area coverage (2 hours) and biomass (24 hours) 

403 of P. aeruginosa on nano-pillar surfaces. (d) Fluorescent microscopy and SEM images of P. 
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404 aeruginosa on nano-pillar surfaces after 24 hours, showing dense filamentous networks (red 

405 arrows).

406

407 3.5 The mechanism of inhibiting biofilm growth on rose-petal surface

408 The efficiency of bacterial attachment on surfaces is dictated by chemical and physical 

409 properties of surfaces1. We fabricated flat, rose-petal and nano-pillar structured surfaces using 

410 a nanocasting technique with UV-curable epoxy, so the surface chemistry in each case can be 

411 assumed to be the same. The major difference was the surface topographical features and this 

412 was a critical determinant of bacterial attachment and biofilm growth. 

413 We hypothesized that hierarchical structures (i.e. micro-papillae and nano-folds) on rose-petal 

414 surfaces inhibit initial bacterial attachment after 2 hours. As a result of these structures, the 

415 rose petal surface exhibits as a modified state of hydrophobicity, termed as the Cassie-Baxter 

416 impregnating wetting state. The nanostructured cuticular folds can trap air within the folds, 

417 corresponding to the Cassie-state of lotus-leaf; thereby bacterial cells cannot penetrate the air-

418 layer over short timeframes (Figure 6). This mechanism is similar to the lotus-leaf where the 

419 trapped air restricts the direct contact between bacteria and surfaces. However, unlike the lotus-

420 leaf that has a low CAH, the papillae valleys can trap water thereby resulting in a high CAH. 

421 Visualizing the bacteria-material interfaces under the Cassie impregnating wetting state which 

422 combines wetting and non-wetting, is not an easy task. It may require sophisticated imaging 

423 such as high-resolution Cryo FIB-SEM instead of conventional microscopy59, especially down 

424 to the 1µm scale. However, as seen in Figure 3, cells only preferentially colonize the valleys 

425 surrounding the papillae and this region is also devoid of nano-folds. The hypothesis which 

426 describes the lack of bacterial attachment within nano-folds (Figure 6) is consistent with our 

427 observation of S. epidermidis and P. aeruginosa adherence behaviour on rose petal surfaces 

428 (~2 hours). 

429 If the bacterial growth extends to 1-2 days (biofilm assay), bacterial cells still only accumulate 

430 surrounding the papillae forming ring/oval-like structures (Figure 6). The initial wetted micro-

431 papillae valleys can harbour more bacterial cells as they tend to increase the overall surface 

432 area, thereby are more favourable for cell colonization if comparing to the nano-folds (Figure 

433 6). However, unlike biofilms spreading on the flat or unitary nano-pillar surfaces, we found 

434 that either S. epidermidis or P. aeruginosa biofilms on rose-petal surfaces were isolated and 

435 overall biofilm growth was impaired (Figure 4). Notably, we found that the bacterial growth 
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436 was lower on unitary nano-pillars after 2 hours, whilst biofilm formation was increased after 

437 24 hours if comparing with the rose-petal surfaces. On unitary nano-pillars, the fibres produced 

438 by bacteria established connections between isolated cells, and thus may mediate cell-cell 

439 communication (Figure S7). However, no large bacterial clusters or dense filamentous 

440 structures were found within micro-papillae on rose-petal surfaces (Figure 4). The papillae 

441 depth may play an important role as a physical barrier to hinder the development of fibrous 

442 network. Therefore, the communication between the neighbouring cell aggregates/clusters that 

443 self-developed in each papillae valley may get blocked, and consequently retard biofilm 

444 development (Figure 6). Such a hindrance of biofilm development by specific topographically 

445 engineered surfaces has been observed previously7, 60-61. For example, colloidal crystals of a 

446 larger diameter (~1500 nm) can more effectively separate cell bodies than the ones in a 

447 diameter of 450 nm, thereby delaying biofilm growth60. Other studies have tested biofilm 

448 growth on micro-posts (~20×20 µm, pitch~10 µm), similar to the dimension of micro-papillae 

449 on the rose-petals61. Decreased biofilm growth was observed within the valleys between the 

450 unitary micro-posts, while more biofilm was formed on the top of posts (i.e. protruding 

451 plateaus)61. This indicated that a larger scaled topography size helps to isolate cells while its 

452 larger contact area on the top may facilitate more bacterial growth.

453 However, no significant clusters within nano-folds were found, indicating that creating a 

454 secondary topography on the microstructure is more effective to delay bacterial growth 

455 compared with the bare microstructures. When submerged in water, the trapped air in nano-

456 folds would vanish over time, similar to the lotus-leaf structures, resulting in the transition of 

457 Cassie to Wenzel state. Bacterial cells can eventually make contacts with the nano-folds after 

458 this region is completely wetted (Figure 6). The dimensions of nano-folds (width ~700 ±100 

459 nm, gap ~500 ±150 nm) are similar to the bacterial size. Therefore, either S. epidermidis or P. 

460 aeruginosa cells can deposit into the folds and align with the fold structure, especially for P. 

461 aeruginosa (Figure 4& 6). P. aeruginosa cells also align within unitary nano-pillars (Figure 5), 

462 which maximizes the contact area with the material surfaces. Similar observations have been 

463 reported by other researchers, although the underpinning mechanism is not yet clear10, 62-64. 

464 Specific bacterial mutants could be a useful tool to investigate cell alignment and surface 

465 structure mediated cell-cell communication, and this will be a target for future work. However, 

466 the long and irregular fold ridges can isolate cells via the alignment on rose-petal (Figure 

467 S5c&6), and such isolation behaviour is also identical on our nano-pillars with showing the 

468 lower biofilm biomass comparing to the flat surfaces. This delayed the formation of cell-cell 
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469 connections, thereby hindering their communication and constraining bacterial cluster 

470 development. 

471

472 Figure 6. Hypothesized anti-biofilm mechanisms for the transition from bacterial attachment 

473 to biofilm growth on rose petal structured surfaces. 

474

475 CONCLUSIONS

476 In summary, our study has revealed that rose-petal structured surfaces can delay bacterial 

477 attachment and biofilm formation with clinically relevant strains of bacteria. We successfully 

478 demonstrated the fabrication of a hierarchical rose-petal structure via a simple UV-curable 

479 nanocasting technique, which is cost-effective when compared with fabrication methods like 

480 e-beam lithography and nanoimprinting lithography. The rose-petal replicas exhibit a high CA 

481 and CAH as a Cassie impregnating wetting state. Similar to superhydrophobic lotus-leaf, the 

482 trapped air within nano-folds may hinder the bacterial attachment. While bacteria preferentially 

483 form clusters within the valleys of micro-papillae, as they are preferentially wetted and offer 

484 more favourable colonization sites when comparing to the nano-folds. We specifically 

485 discussed the anti-biofilm mechanism of hierarchical structures under submerged conditions, 

486 and the different topography size influence biofilm formation via different mechanisms: micro-

487 papillae blocked the bacterial clusters in between the valleys, limiting the potential for cell-cell 

488 communication via fibrous networks, thereby resulting in impaired biofilm growth. At the same 

489 time, having a secondary nanostructure (nano-folds) on microstructures can align bacterial cells 

490 within the constrained gaps, thereby delaying in developing cell clusters during short term 

491 growth of biofilm. 
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492 Rose-petal surfaces have shown potential in parallel and multistep droplet manipulation owing 

493 to their high CAH. The hierarchical structures characterized here may be useful for the 

494 development of microfluidics and portable/wearable biosensors65. In addition, such 

495 hierarchical structures can capture and release circulating tumor cells (CTCs) for subsequent 

496 analysis66, exhibiting great potential in biomedical devices. Therefore, this study is a significant 

497 step toward the application of rose-petal surfaces where biofilm control is also important. 

498 Furthermore, hierarchical structures may be useful to study the roles of microbial cell-cell 

499 interactions in biofilm formation. Determining the most effective topography size for 

500 controlling biofilm development is an important next step for the development of antifouling 

501 surfaces. Future studies will also aim to investigate the anti-biofilm mechanisms in more detail, 

502 for example by comparing the anti-biofilm efficacy of rose-petal hierarchical structures with 

503 other artificial unitary or hierarchical structures with different scales, investigating bacterial 

504 patterning on rose-petal nano-folds and their effects on biofilm formation, and determining 

505 whether rose petal replica surfaces are capable of inhibiting growth of biofilms by different 

506 species of bacteria. 

507
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