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ABSTRACT

The distribution of the absorption line broadening observed in the Ly« forest carries
information about the temperature, 7, and widths, Ap, of the filaments in the intergalactic
medium (IGM), and the background hydrogen photoionization rate, I'y,. In this work,
we present and test a new method for inferring 7" and Ar and 'y, from combining the
distribution of the absorption line broadening and the median flux. The method accounts for
any underlying degeneracies. We apply our method to mock spectra from the reference model
of the EAGLE cosmological simulation, and we demonstrate that we are able to reconstruct
the IGM properties.

Key words: methods: data analysis — intergalactic medium — quasars: absorption lines — large-

scale structure of Universe.

1 INTRODUCTION

In the ACDM model of cosmology, the Universe emerges from
inflation in a quasi-homogeneous state, with small fluctuations in the
density field of matter. From these initial conditions, the Universe
evolves to its current state and becomes populated with structures
such as galaxies and galaxy clusters. Most of the baryons do not
reside in these dense structures, but in a diffuse medium that fills
intergalactic space, called the intergalactic medium (IGM), that
is organized in a network of sheets and filaments. The chemical
composition of the IGM is mostly primordial, with a minor
component of metals, produced by stars and likely injected in the
IGM by galactic winds and outflows, for a review, see e.g. Rauch
(1998), Meiksin (2009). Although Cantalupo et al. (2014) have
reported that the IGM can be observed in emission, it has mainly
been observed in absorption, in the spectra from distant and bright
sources, such as quasars. The lack of the Gunn—Perterson trough
(Gunn & Peterson 1965) since z ~ 5 implies that the IGM is in
a highly ionized state. According to the current understanding of
structures formation, the IGM is photoionized and photoheated by
a hydrogen-ionizing radiation background (UVB) originating from
galaxies and quasars (e.g. Haardt & Madau 1996; Madau & Haardt
2015). Recently, the UVB has been measured at z = 0 from Ho
fluorescence (Fumagalli et al. 2017) or at low redshift, z < 0.5, from
the study of the IGM (Gaikwad et al. 2017, 2018; Viel et al. 2017;
Khaire et al. 2019).

Hence, the IGM is observable through the absorption of light
emitted by distant bright objects, through the Ly « forest, which
is the collection of Ly o absorption lines. The Ly o forest is also
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fluctuating Gunn—Peterson absorption because the absorption traces
the fluctuations in the underlining neutral hydrogen density field.
The widths of the lines in the Ly o forest are determined by the
clustering of the absorbers and their temperature. For a review, we
refer the interested reader to Meiksin (2009). To gain information on
the timing of reionization and the nature of the responsible sources,
it is important to determine the IGM temperature. Moreover, the
IGM has been used as an indirect probe of dark matter, and
to investigate the free streaming length of dark matter (Seljak
et al. 2006). Recently, there has been some attempt to constrain
the nature of dark matter with high-redshift quasar spectra (Viel,
Schaye & Booth 2013). Nevertheless, these latest studies suffer
from uncertainties in the IGM temperature, the IGM temperature is
an astrophysical bias in the study of the nature of dark matter at the
smallest scales (Garzilli, Boyarsky & Ruchayskiy 2017), and from
the smallness of the quasar sample analysed (Garzilli et al. 2018).
Another motivation for measuring the temperature of the IGM is
the study of the second reionization of helium, which is known to
be completed at z >~ 2.7. The second ionization of helium happens
at energy £ = 54.4eV, which is four times larger than the energy
required to ionize hydrogen and about twice larger then the energy
for ionizing the first level of helium, hence much harder sources
than the ones responsible for hydrogen reionization are required for
second helium reionization.

Many groups have tried to measure the IGM temperature with
different methods, using Voigt profile fitting (Schaye et al. 1999;
Ricotti, Gnedin & Shull 2000; Schaye et al. 2000a; McDonald
et al. 2001; Rudie, Steidel & Pettini 2012; Bolton et al. 2014;
Hiss et al. 2017), studying the flux probability density function
(PDF) (Theuns, Schaye & Haehnelt 2000; Bolton et al. 2008; Viel,
Bolton & Haehnelt 2009; Calura et al. 2012; Garzilli et al. 2012),
the flux power spectrum, wavelet analysis, and curvature method
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(Theuns et al. 2000; Theuns & Zaroubi 2000; Zaldarriaga, Hui &
Tegmark 2001; Viel & Haehnelt 2006; Lidz et al. 2010; Becker
et al. 2011; Garzilli et al. 2012). The details of the results from the
different methods vary, but there is a general consensus that in the
redshift interval between 2 and 4, 5000 K < 7, < 30000 K, where
A = p/{p) is the overdensity and Ty = T(A = 1) is the temperature
of the IGM at the cosmic mean density.

The width of the structures causing the absorption has been
measured for the first time from pairs of quasars by Rorai et al.
(2017). The intensity of the photoionizing background, I'y,, has
been measured by the previous authors (Rauch et al. 1997; Mc-
Donald & Miralda-Escudé 2001; Meiksin & White 2004; Bolton
et al. 2005; Kirkman et al. 2005; Faucher-Giguere et al. 2008),
but always assuming a specific thermal history for the IGM,
(see Fumagalli et al. 2017 for a measurement of the ultraviolet
background at low redshift that is independent of the IGM). Over
the redshift interval between 2 and 4, the measurements agree in
finding 2 x 1073 s7! < Ty, <2 x 10712571,

As already pointed out by Hui, Gnedin & Zhang (1997), there are
at least two distinct physical effects that contribute to the minimum
line broadening in the Ly « forest:! the first is the thermal Doppler
effect, which is set by the temperature of the IGM, the second
is the extent of the filaments in the IGM — the filaments are not
virialized structures and there is a contribution of the differential
Hubble flow across the absorbers (Gnedin & Hui 1998; Theuns
et al. 2000; Schaye 2001; Desjacques & Nusser 2005; Peeples et al.
2010; Rorai, Hennawi & White 2013; Kulkarni et al. 2015; Garzilli,
Theuns & Schaye 2015b). The simulations of Schaye et al. (1999)
and Ricotti et al. (2000) showed that the minimum line broadening
as a function of overdensity can be approximated by a power law. In
Garzilli et al. (2015b), we demonstrated that, under the hypothesis
of a photoionized IGM, the lower envelope of the line broadening
distribution is a convex function of the baryon density, and hence of
the neutral hydrogen column density. We introduced an analytical
description for the minimum amount of line broadening present
in the Ly« forest. In this same work, we introduced the ‘peak
decomposition’ of the neutral hydrogen optical depth, which differs
from the standard Voigt profile fitting of the spectra described by,
e.g. Carswell et al. (1987).

In this work, we present a new method for measuring the prop-
erties of the IGM from quasar absorption spectra, considering only
the Ly o forest for each quasar spectrum. We develop the method
using mock sightlines extracted from hydrodynamical simulations.
We carry out the measurements using the distribution of Doppler
parameters measured as described in Paper 1 (Garzilli et al. 2015b).
We also combine the distribution of absorption line broadening with
the median of the flux, and we obtain the constraints on the IGM
properties that are the main result of this work.

This paper is organized as follows. In Section 2, we describe the
reference EAGLE simulation, from which we have extracted the
mock spectra. In Section 3, we discuss the analytical description of
the line broadening we use in this method, and the modifications
with respect to the equations presented in Garzilli et al. (2015b). In
Section 4, we discuss the reconstruction of the line broadening in the
case of spectra with noise. In Section 4.2, we discuss the ability of
our method to correctly constrain the IGM parameters from quasar
spectra with noise. In Section 5, we present our conclusions. In
Appendix A, we compare with Voigt profile fitting, which has been

IThere is an additional contribution from the finite resolution of the
spectrograph.
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used widely in previous works. In Appendix B, we have explicitly
shown that our method is robust respect to the calibration with
numerical simulations. In Appendix C, we will show that our
conclusions do not change in the case of lower signal-to-noise
spectra: in this case we merely obtain larger error bars on the
estimated parameters.

2 SIMULATIONS

2.1 The EAGLE simulations and the 7/A relation

In this paper, we use the 25 cMpc (co-moving Mpc) high-resolution
reference simulation of the EAGLE suite (Crain et al. 2015; Schaye
etal. 2015; McAlpine et al. 2016), labelled ‘LO025N0752’ in table 2
of Schaye et al. (2015). The simulation is based on the Planck
Collaboration XVI (2014) values of the cosmological parameters,
and the initial baryonic particle mass is 1.81 x 10°Mg. This
cosmological smoothed particle hydrodynamics (SPH) simulation
is performed using the GADGET-3 incarnation of the code described
by Springel (2005), with modifications to the hydrodynamics
algorithm referred to as ANARCHY (described in the appendix A
of Schaye et al. 2015, see also Schaller et al. 2015). The reference
model incorporates a set of subgrid models to account for unresolved
physics, which include star formation, energy feedback, and mass-
loss feedback from stars, black halo formation, accretion and
merging, and thermal feedback from accreting black holes. The
parameters that encode these subgrid models are calibrated to
observations of z ~ 0 galaxies, namely the galaxy stellar mass
function, galaxy sizes, and the stellar mass — black holes mass
relation, as described in detail by Crain et al. (2015).

The simulation also accounts for photoheating and radiative
cooling in the presence of the imposed background of UV, X-
ray, and CMB radiation described by Haardt & Madau (2001),
using the interpolation tables computed by Wiersma, Schaye &
Smith (2009a). The optically thin limit is assumed in these
simulations.

Photoheating and radiative cooling, adiabatic cooling due to the
expansion of the Universe, and shocks from structure formation and
feedback, result in a range of temperatures for cosmic gas at any
given density. However, the majority of the gas follows a single-
valued relation — or better, follows a well-defined relation between
the temperature and the density, the so-called temperature—density
relation (TDR for short). We will indicate the overdensity of the gas
with A = p/{p), where p is the density of the gas and (p) the cosmic
mean density, whereas we will indicate the temperature of the gas at
any given overdensity, A, with 7(A). At A <3, the TDR is set by the
interplay between photoheating and adiabatic cooling, resulting in
an approximately power-law relation 7 = Ty A”~! (Hui & Gnedin
1997; Theuns et al. 1998a; Sanderbeck, D’Aloisio & McQuinn
2016). When the temperature of the cosmic gas is increased rapidly
by photoheating, as happens during hydrogen reionization, the slope
is y &~ 1, whereas asymptotically long after reionization, it becomes
y &~ 14 1/1.7 = 1.6, as discussed by Hui & Gnedin (1997) and
Theuns et al. (1998a). The fact that y in this limiting case is close
to that of the adiabatic index of a mono-atomic gas, y = 5/3, is a
coincidence. During the second reionization of helium, which we
know to be completed by z = 2.7, the picture is a bit different
because different sources of ionizing radiation are involved. In
fact, the second level of helium requires an ionization energy
E = 54.4keV, which is four times larger than the ionization energy
of hydrogen. While early galaxies are thought to be the source of
hydrogen ionization, the sources of second helium reionization are
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thought to be quasars. Because of the different distribution of the
sources and hardness of their spectra, the temperature configuration
in density is also different, giving a power law with y ~ 1.3 and
much larger scatter (McQuinn et al. 2009; Puchwein et al. 2015,
2019; Gaikwad et al. 2019).

At higher overdensity, T is set by the balance between photo-
heating and radiative cooling. This causes a gentle turnover in the
T — A relation around A = 3 at redshift z > 1 (above A ~ 30 at
z = 0.5). In this work, we will consider the simple case that the
T — A relation is a power law, and we leave the investigation of
more physically motivated 7 — A relations for future work.

2.2 Mock sightlines

We compute mock sightlines from the EAGLE simulation. We begin
by sampling the simulation volume with sightlines parallel to its
z-axis, using pixels of velocity width W, = 1.4kms~!, which is
small enough to resolve any absorption features. We next use the
interpolation tables from Wiersma et al. (2009b) to compute the
neutral hydrogen fraction for each SPH particle in the optically
thin limit, taking the cosmic gas to be photoionized at the rate
calculated by Haardt & Madau (2001). We then compute the
contribution of each gas particle to the spectrum (or better, to
the temperature, density, and line-of-sight velocities along the
spectrum) by integrating a kernel over each pixel, calculating the
H 1density, and the H 1-weighted temperature and peculiar velocity.
This is similar to the algorithm described in the Appendix of
Theuns et al. (1998a), except that here we integrate over each pixel
rather than evaluating the kernel at the centre of the pixel. Kernel
integration is much simplified using a Gaussian kernel rather than
the M4-spline used in GADGET, and we do so as described by Altay &
Theuns (2013).
Each pixel generates a Gaussian absorption profile of the form

T =1 exp(—vz/b%) (D

b = (2"BT) @
my

7 = ooﬂl,%bT N 3)

o0 = (3”8”)1/2 Jof. 4

where v = v, pix — Uy, part 18 the velocity difference between the pixel
and the particle in the z-direction, and Ny is the neutral hydrogen
column density of the pixel.” The physical constant appearing in
these equations are the speed of light, ¢, Boltzmann’s constant, kg,
the hydrogen mass, my, and the Thompson cross-section, or. For
the Ly o transition, the wavelength and f-values are taken to be
o = 1215.6701 A and f = 0.416, see Menzel & Pekeris (1935).
Since we are analysing cosmic gas at densities around the mean
density, we do not need to use the more accurate Voigt profile. For
more details, we refer the reader to the appendix A4 in Theuns
et al. (1998b).

While the simulation is running, we output those particles that
contribute to 100 randomly chosen sightlines, for every 10 per cent
increase in the cosmic expansion factor. This allows us to ac-
count accurately for any redshift evolution in the generated mock
sightlines. The computation of the mock sightlines only takes into

2In practice, we integrate the Gaussian in equation (1) over a pixel, rather
than evaluating it at the pixel centre.
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account the Ly « transition. We leave the consideration of other
transitions of the Lyman series for future work. In addition to
computing 7, we record the optical-depth weighted temperature,
peculiar velocity, and overdensity as a function of wavelength.
Garzilli, Theuns & Schaye (2015a) demonstrate (their fig. 1) that
the relation between optical depth weighted temperature and density
follows that of the actual TDR.

In the next section, we analyse mock sightlines generated with
and without noise. We intend to mimic the properties of some
observed spectra, and, for example, we consider the properties of
spectra measured with HIRES (Vogt et al. 1994). Hence, mock
sightlines with noise are obtained by convolving the transmission
exp (— 7) with a Gaussian profile with full width at half-maximum,
rebinning the sightlines into pixels of W, = 4km s7L, frwrM, equal
to 6.6 km s~! and adding random Gaussian noise corresponding to a
chosen signal-to-noise per pixel at the continuum, S/N = 100 or 30.
This ensures that resolution and signal to noise in the mock spectra
are comparable to those of high-quality high resolution echelle
spectrometer (HIRES) or ultraviolet and visual echelle spectrograph
(UVES) spectra (Kim et al. 2007).

3 ANALYTICAL EXPRESSION FOR THE
MINIMUM ABSORPTION LINE BROADENING

In Garzilli et al. (2015b), we provided an analytical expression
for the minimum absorption line broadening, b, as a function of
the overdensity, A, associated to the line. Unfortunately, A cannot
be measured directly from the observed spectra. Hence, here we
derived arelation between b and the central neutral hydrogen optical
depth in an absorption line, 7.

We start from the expression of the optical depth as in Miralda-
Escude & Rees (1993):

—1

ug
nyg; | du
T(ug) = 2/ — |  ondu,
uy 1+2z|dx
. (u—ug)*
C T2
Oy = Oy T

by ’
du H(z 0Upec
d _ HG@) | v,

dx 14z dx

where ny, is the neutral hydrogen number density, x is the comoving
spatial coordinate, u is the velocity along the line of sight, u, and
up are the extremes of the absorber expressed in velocity along the
line of sight, o, is the Ly o cross-section profile, by = (2kg T/my)'"?
is the thermal Doppler broadening, T is the temperature of the gas,
Upee 18 peculiar velocity, z is the mean redshift associated with
the absorber, and H(z) is the Hubble parameter at redshift z, the
summation is made over multiple streams of x with the same u.

As already demonstrated by Theuns et al. (2000), the eftect of
peculiar velocities on the line broadening is

&)

(i) shifting the position of the absorption lines and

(i1) narrowing or broadening the absorption lines — peculiar
velocities do not always broaden the absorption lines, as if they
were a turbulent contribution.

We have explicitly tested the effect of peculiar velocities on
the absorption line broadening distribution. We have demonstrated
that they do not affect the its overall shape (Garzilli et al. 2015b).
For clarify, we want to make explicit that the turbulent motion is
due to peculiar velocities, hence saying that peculiar velocities are
negligible for our purposes is equivalent to say that turbulence is
negligible. For these reasons, we neglect peculiar velocities and we
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assume a Gaussian profile for the neutral hydrogen number density,
nfy, exp { —(u — ug)*/b? }, where nf}, is the neutral hydrogen num-
ber density at the centre of the line and b;, is the width of Gaussian
profile of ny ;. Hence, the neutral hydrogen optical depth becomes

UocnOHIQ _(“*b%ﬂ
H(iz) b ’

where we will assume the line broadening to be equal to the
‘minimal’ line broadening:

() = (6)

b= b= (b2 +02)". )
The width of the Gaussian profile for ny, can be expressed as
H(z)
by = r o 3)
b4

as in Garzilli et al. (2015b), where Ag is the proper extent of the
absorbing structure. Again as in Garzilli et al. (2015b), we make
the Ansatz that

A = fir (D), )

where f is a constant that parametrizes the time-dependent Jeans-
smoothing of the gas density profiles (Gnedin & Hui 1998), and A;
is the local Jeans length of an absorber (Schaye 2001). Here, we
use

40 1/2 ki 1/2
MA) = — — | (A+27PH, w2,
9 my

xTV2A12 (10)

where p is the mean molecular mass, €2, is the matter density
parameter, and H, is the Hubble constant. In the following, we
will indicate with Ar the proper extent of absorbing structure at the
cosmic mean density.

We consider the TDR we have described in Section 2.1. Because
we consider explicitly the temperature—density relation, our method
takes explicitly into account the dependence of the temperature with
density. We make explicit how b and the optical depth at the centre of
the line, 7, depend on A, the temperature at cosmic mean density,
Ty, the slope of the TDR, y, the proper width of the absorbers
of the Ly o forest, A, and the intensity of the hydrogen ionizing
background, I'y;:

= opend, by, an

H(z) /D2 + b

(muG) 22 = V)1 = Y)(1 + 2)°Ho* 2

0 _
M = %050

TO —0.76
x FH171 ( o K) A2.7670A76y

3

ap =4 x 107 Bem’s™!, (12)

where €2, is the baryon density parameter, Y is the helium fraction
by mass, G is the gravitational constant, «( is the recombination
constant at 7 = 10* K. We do not provide an explicit the relation
between 7 and b, but it can be computed by inverting numerically
equation (12) with respect to A.

We intend to quantify the minimal line broadening as a function
of the density and compare with our analytical description of the
broadening. As we have already discussed the density is not directly
observable in the observed spectra. Hence, we resort to quantify the
minimal line broadening as a function of the optical depth, so that
we can compare with equation (12). In the following, we will show
that in the presence of noise we cannot reconstruct the minimal
line broadening over a wide range of optical depth, but we can
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Figure 1. The line broadening probability distribution for lines with 0.8 <
A < 1.2, estimated by Kernel Density. We show the 10th and the 50th
percentiles of the distribution as the dashed blue and dotted red lines,
respectively.

reconstruct the median of the line broadening as a function of the
optical depth.

We now make a comparison with our fiducial simulation. We
measure Doppler parameters by applying the peak identification
method from paper I (Garzilli et al. 2015b), not to be confused with
the traditional Voigt profile fitting — a comparison between the two
methods is given in Appendix A. Our peak identification method
has been formulated to be applicable to spectra without noise. While
the traditional Voigt profile fitting method consider the flux in the
spectrum, in our peak identification method we consider the optical
depth of the spectrum as a function of velocity. Then, we identify
the minima of the optical depth, each stretch of spectrum between
two consecutive minima is considered a ‘peak’, and the maximum
optical depth within the peak is the ‘central optical depth’, and
it is considered to be an estimator for t,. Because we consider
spectra without noise, we can compute the second derivative of
the optical depth with respect to velocity at the maximum of each
peak in the spectra, 7} = ji—;lo. For each identified peak in the
spectrum, we can associate a line broadening, b, from the central
optical depth and the second derivative, b*> = —270/7 . In Fig. 1,
we show the probability density function of the line broadening
for the interval 0.9 < A < 1.1 (absorbers around the cosmic mean
density), and we show the 10th and 50th percentiles of the line
broadening distribution. The number of lines decreases rapidly
when b < mode(b), which implies that the 10th percentiles of the
probability density function can be used to approximate the absolute
lower limit of b.

In Fig. 2, we compare the distribution of the line broadening in
the plane b—A and in the plane b—7, to highlight their similarity,
the absorbing lines are being binned in A (or 7). The error bars
on the 10th and 50th percentiles of the b-distribution are computed
by bootstrapping the lines of sight, rather than the absorption lines
themselves. The minimum line broadening is a difficult quantity to
measure. It is possible in noiseless spectra to measure an arbitrary
percentile of the distribution of the line broadening, but that can
only approximate the minimum line broadening. For this reason,
we adapt equation (7), which we have written for the minimum line
broadening, to the case of a generic percentile of the line broadening
distribution, bpere

Bpere = Npere (D7 +b7) (13)
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Figure 2. Percentiles of the line broadening, b, from 100 noiseless mock spectra versus the peak density contrast, A (left-hand panel), and the peak neutral
hydrogen optical depth, 7¢ (right-hand panel), in the redshift interval 2.9 < z < 3.0. The black dots (the red stars) are the 10th (50th) percentiles of the
b-distribution in the mock spectra. The error bars represent the 1o uncertainty on the percentiles. In the left-hand panel, the green dashed (the solid black)
line is a fit of our expression for the line broadening, Equation (13), to the 10th (50th) percentiles of the b-distribution divided in logarithmically and equally
spaced intervals of A. The values of 7 and y are the result of the fit to the temperature—density relation, the values of fj and n are the result of the fit of the
b-A relation. In the right-hand panel, we have presented the analogous fit to the percentiles of the b-distribution as a function of 7. In the transition from b—A
space to b—1, the fitted values of fj agree to within 15 per cent. Our analytical expression for the line broadening correctly describes both the 10th and the 50th
percentiles of line width distribution in our reference simulation, except for high values of 7o, where the downturn in b is due to the onset of radiative cooling.

where 7, is a constant that will depend on the chosen percentile
of the b-distribution. This constant must be determined from
simulations; an incorrect calibration will imply a systematic effect
on the reconstruction of the IGM parameters. The impact of varying
Npere 18 discussed in Appendix B. Equation (13) describes well both
the 10th and the 50th percentiles of the absorption line broadening
distribution up to tg ~ 10. Nevertheless, the values of f; can
differ in the fits to the b—A distribution or to b—t, distribution.
The discrepancy in fj between these two distribution can be up
to ~ 15 per cent. For 7 £ 10 radiative cooling becomes relevant,
although the precise value of 7 for which this occurs depends on
the specific values of Ty, y, Ap, and ['y;. In this work, we only
consider the case of power-law TDR, but we intend to address the
problem of a general TDR in a future publication.

4 METHOD FOR RECONSTRUCTING THE
ABSORPTION LINE BROADENING

In this section, we will discuss how to reconstruct the minimum line
broadening from spectra with noise, and then how to estimate 7" and
Ar. In the presence of noise and instrumental broadening, we cannot
apply directly the formalism that we have developed in Garzilli et al.
(2015b) for measuring the line broadening occurring in the Ly o
forest to observed quasar spectra. In there, the line broadening was
estimated directly from the second derivative of the optical depth
from mock spectra without noise, compare equation (18) of Garzilli
et al. (2015b). In spectra with noise, the computation of the second
derivative in the measurement of b is not stable under noise. In order
to smooth out the noise, we first fit the sightlines with a superposition
of Voigt profiles, and then apply the procedure we have already
developed for noiseless sightlines on the spectra reconstructed from
their Voigt profile decompositions, and determine b and 7( for
each absorber. We then apply equation (13). In this section, we
consider the case of mock sightlines to which we added noise with

S/N = 100. We use a sample size of a total 500 sightlines for each
considered redshift interval, each spectrum has a length of 25 cMpc.
If we analyse together all the signal coming from bins in redshift of
Az = 0.1, then for redshifts ranging from z = 4 to 2, 500 sightlines
correspond to a number of Ly o quasar spectra varying from 180
to 85. This sample size is comparable with current sample size
of observed high-resolution and high-signal-to-noise quasars, for
example, there are ~500 quasar spectra collected in Murphy et al.
(2019).

4.1 Reconstructing the line broadening in the Ly « forest

We attempt to remove the noise in the mock sightlines, by fitting the
Ly « stretch in the mock sightlines with noise with VPFIT (Carswell
et al. 1987; Webb 1987). The full spectrum flux is divided into
intervals of variable length, between 10 and 15 A. We start from the
minimum wavelength in the Ly « stretch, A}, then we search for the
maximum of the flux in the interval [A; + 10 A, A+ 15 A], the
wavelength corresponding to the maximum flux will be A,. Then,
the maximum of the flux in the interval [A, + 10 A, X+ 15 A]
is identified and the corresponding wavelength will be A3. These
maxima do not always coincide with the continuum; there is always
some residual absorption. This process is repeated until the end
of the spectrum has been reached. In this way, the spectrum
is subdivided into intervals of variable length. Each interval of
transmitted flux is fit independently with VPFIT. The stopping
criteria that we have considered is given by the change of the
chi-square, A2, between iteration steps. If x> < 15 then the
iteration terminates if Ax?/x?> < 5 x 1074, otherwise if x? >
15 the iteration terminates if Ay2/x? <5 x 1073. The flux is also
reconstructed separately for each independent stretch. We do not
attempt to perform a full Voigt profile fitting of the entire Ly o
forest because of the long computing time required for fitting
automatically the entire Ly o forest in one batch. We are only
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Figure 3. Comparison between the percentiles of the distribution of line broadening in the noiseless sightlines, and in the sightlines reconstructed with VPFIT,
in the case of high and low signal-to-noise, for the redshift range 2.9 < z < 3.0. We have considered 500 lines of sight, each of length 25 cMpc . The left-hand
panels correspond to the noiseless case, the middle panel corresponds to the sightlines with noise with S/N = 30, and the right-hand panel to S/N = 100.
The black dots (the red stars) are the 10th (50th) percentiles of the line broadening as a function of the central optical depth, to. The green dashed (black
solid) line is the result of the fit of equation (13) to the 10th (50th) percentiles of the b-distribution, where Ty and y are inferred from the temperature—density
relation, and fj and n are free parameters in the fit. In the case of reconstructed sightlines with VPFIT, the 10th percentiles of the b-distribution are very poorly
reconstructed. In contrast, the 50th percentiles of the b-distribution are reconstructed well over a larger range of 7. The robustness under reconstruction with
VPFIT makes the 50th percentiles more suitable for the study of the properties of the IGM.
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Figure 4. The probability density distribution of the logarithm of the line broadening, In b, for two values of the central optical depth, t(, for 100 mock
sightlines without noise and with noise (S/N = 100). The probability density function has been estimated through kernel density estimate, with Gaussian kernel
and the kernel bandwith is optimized by cross-validated grid-search over a grid. The left-hand panel refers to the line broadening corresponding to 0.08 < 7
< 0.12, the right-hand panel to 0.8 < 79 < 1.2. The black solid line is the PDF in the noiseless sightlines; the red-dashed line is the one from the sightlines
with noise. The black vertical line corresponds to the 50th percentile of the b-distribution in the noiseless sightlines; the red-dashed vertical line corresponds to
the 50th percentile of the b-distribution in the sightlines with noise. For the interval centred on 7 ~ 0.1, the number density of lines in the noiseless sightlines
iS Mnoiseless = 7.1 x 1074 skm™!, whereas the number of lines per length in the sightlines with noise is 7ppise = 7.0 X 10~* skm™!. For the interval centred on
7o ~ 1, the number density of lines in the noiseless sightlines is 7pgiseless = 9.4 X 10~* skm™!, whereas the number of lines per length in the sightlines with
NOise i$ Mpojise = 8.4 x 1074 skm™!.

Table 1. Values of nsom, appearing in equation (13), Table 2. Prior ranges considered for the parameter of the

calibrated from the noiseless mock spectra from our maximum-likelihood analysis, used for fitting the mock median

reference simulation as a function of redshift, z. line broadening data to the model given by equation (13). We
have chosen logarithmic priors on Ty, 'y, and A and a linear

z 50th prior on y. Here and in the rest of the paper, log indicates the
logarithm in base 10.

2.95 1.32

3.05 1.27 Min Max

3.15 1.25

3.25 1.28 log (To[K]) 0 5

3.34 1.26 y 1 2

3.45 1.26 log (Ar[cMpc]) -3 3

3.56 1.25 log(Tyi[s~'1) —13 —11
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Figure 5. The effect on the line broadening of varying T, y, Ar, and 'y, independently. The line broadening is computed from equation (13) for z = 3.0
(with n = 1). The parameters that are not shown in the label are fixed to Ty = 17000K, Ap = 1.4cMpc, y = 1.3, and I'y; = 101251,

interested in a noiseless reconstruction of the flux in the minimum
x? sense. On the reconstructed optical depth, we apply the ‘peak
identification’ method and estimate the line broadening as described
in Garzilli et al. (2015b) for the case of noiseless sightlines.

In Fig. 3, we show a comparison between the 10th and 50th
percentiles of the b-distribution for noiseless sightlines and for
the reconstructed flux for the case of high and low S/N. We
have considered 500 sightlines in the redshift interval 2.9 < z <
3.0. We would like to measure the minimum line broadening in
the sightlines, hence ideally we would like to consider the 10th
percentiles of the line broadening. Nevertheless, we can see that
qualitatively the 10th percentiles are not reconstructed very well in
the sightlines with noise. Instead, the 50th percentiles (or medians)
of the line broadening are reconstructed over a larger 7 range. The
reason is that noise increases the dispersion of the line broadening
distribution at fixed A. Hence, while the median of the distribution
is not changed by this added dispersion, the 10th percentiles are
changed. For this reason, in the following we will characterize
the line broadening by considering the 50th percentiles of the b-
distribution, rather than the 10th.

In Fig. 4, we compare the PDF of the b-distribution as found
in the noiseless sightlines and in the sightlines with noise, for two
distinct intervals in 7o. For 0.08 < t( < 0.12, the PDF of the
reconstructed b is much flatter then the PDF of the noiseless b, and
the two PDFs do not match each other well. The number density
of lines in the noiseless sightlines is #2pgjseiess = 9.4 x 10~ skm ™!,

whereas the number of lines per length in the sightlines with noise
iS Mpoise = 8.4 x 107*skm™". For 0.8 < 7y < 1.2, the PDFs of the
reconstructed and noiseless b are quite similar, they both exhibit
a sharp cut-off for low values of b and a declining tail for large
values of b. We conclude that the line broadening is reconstructed
less accurately for smaller values of 7. For 0.8 < 7( < 1.2, the
number of lines per length in the noiseless sightlines is 7ppiseless =
7.1 x 10~*skm™!, whereas the number of lines per length in the
sightlines with noise is 7pgjse = 7.0 x 107 skm™'. We note that
the number density of reconstructed lines refers to both genuine
absorption lines and to fictitious lines originating from noise. We
can see that the number of reconstructed line is comparable to
the number of genuine lines for both interval of the overdensity.
This comparison allows us to say that we can determine the 50th
percentiles of b well for 7y ~ 1.

4.2 Estimation of the IGM parameters

We have considered the estimation of the IGM parameters over a
redshift interval z € [2.9, 3.6], with a redshift step Az = 0.1.

We intend to estimate 7y, y, A, and I'y;. Ty and y are the
parameters of the TDR, and they have been the subject of many
studies in the past, whereas the role of A in setting the line
broadening has been recognized only relatively recently, I'y; is
a parameter that is usually kept fixed to a value. We have decided
to vary 'y, because it affects the optical depth. In fact, when I'y,
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Figure 6. The likelihood contours for the analysis of the median line broadening distribution at z = 3.05. The likelihood exploration has been done with
MONTEPYTHON (Audren et al. 2013) and the result plotted with GETDIST utility in COSMOMC. The likelihood contours that we have shown in the panels refers to
68 per cent and 95 per cent confidence level. The measured value of Ty is anticorrelated with both y and Ap. The value of I'y; is correlated with Ag. The origin
of these degeneracies can be understood by comparing to Fig. 5. The true values in the simulations are represented by the horizontal and vertical dashed lines.

is inferred from observations, Ty is assumed. As an example, we
consider the cases of Becker et al. (2011), (Becker & Bolton 2013),
and (Faucher-Giguere et al. 2008). In those work, 'y, is fixed to
a value, the T is measured. From the measurement of 7, a new
measurement of ['y; is inferred.

In order to get an estimate of all the parameters that are relevant
for the IGM, we fit the measured 50th percentile of the b-distribution
from the sightlines with noise with the model b(z, Ty, ¥, Ar, I'uy),
our analytical formula for line broadening, equation (13). We have
chosen the interval for the reconstructed central optical depth vy =
[0.1, 4], in order to exclude the region affected by cooling and

MNRAS 492, 2193-2207 (2020)

by noise. We divide the central optical depth into equi-spaced
logarithmic intervals, and we compute the median of the line broad-
ening for each central optical depth bin. We indicate the resulting
collection of central optical depth and median line broadening
values with 7;, l;i, where i is index that varies on the bins of the
central optical depth. We also estimate the 1o error on bi, o(by).
The errors are estimated by bootstrapping the lines of sight, rather
than the absorption lines. The theoretical model is indicated with
the notation b;(Ty, y, Ar, I'u1) = b(zi, Ty, v, Ag, ['xy). The constant
Nsom, appearing in equation (13), has been calibrated using our
reference simulation, separately for each redshift interval, as in
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Figure 7. The likelihood contours for the joint analysis of the median line broadening distribution and the median flux at z = 3.05, same conventions as
in Fig. 6. There is a slight anticorrelation between 7 and A, a slight correlation between Ar and 'y, and an evident correlation between I'y; and w. The
estimated parameters ranges are in excellent agreement with their true values (w is a nuisance parameters and it does not have an associated true value).

Table 1. In Appendix B, we have explicitly tested the effect of
changing 750 by =£5 per cent, and we have demonstrated that our
results are unchanged.

In order to perform the fit, we compute the chi-squared function,
%2, defined as

A2 N
x> =Y (biTo, v, 2p, Tu) = b;) " Jo(Bi)? (14)
where b(Tp, v, Ay, 'yy) is the line broadening as computed from
equation (13), b is the 50th percentile of b-distribution. We compute
the corresponding likelihood function by £ = exp(—x?/2) and
maximize the likelihood using MONTEPYTHON (Audren et al. 2013),

cosMoMC (Lewis & Bridle 2002), and POLYCHORD (Handley,
Hobson & Lasenby 2015a,b). We have chosen logarithmic priors
on Ty, 'yy, and Ap and a flat prior on y, which are summarized in
Table 2.

Before presenting the joint fit of all parameters, we show in Fig. 5
how the minimal line broadening is affected by each parameter
independently, using our analytical model of the line broadening in
equation (13). Changing 7} is almost equivalent to changing the line
broadening by a multiplicative factor. Changing Ar mostly affects
the line broadening at small 7. Changing y affects the slope of the
line broadening at all 7. Changing 'y, has the effect of changing
the neutral fraction of hydrogen, hence it affects the A—t relation,
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Figure 8. The result of estimation of Ty, y, A%, and I'y; for the analysis as in Fig. 7 for all the redshift intervals . The black error bars indicate the 1o errors,

and the red error bars are the 20 contours. The numbers on the top of each panel show the reduced chi-squared, XAZ = x2/ngot, where ngof is the number
of degrees of freedom, that in this analysis is 13—5 = 8 for each redshift interval. The solid blue lines are the values of the parameters measured from the

simulations. All the parameters are constrained in all the redshift bins.

and it shifts the position in the minimum of the b—7 relation. The
effect of I'y; is only to shift the curves of line broadening left
to right, but not up and down. We can expect some degeneracies
between the estimated parameters in the final analysis: y and 'y,
appear to be correlated, 7j and y appear to be anticorrelated, 7j and
Ar anticorrelated, Ar and 'y, correlated.

In Fig. 6, we show the likelihood contours for the parameters
estimated for the redshift interval 3.0 < z < 3.1. The number of
data points is 12 and the number of free parameters is 4, hence the
number of degree of freedom is 8. The expected anticorrelations in
Mp—Ty and y-T, are visible, and also the correlation between I'y,
and Ap. In order to improve the constraining power of our method,
resolve the degeneracies between the parameters, and mitigate the
effect of the assumed priors on I'y; and Ap, we combine the fit to
the distribution of the line broadening with the fit of the median of
the flux. We consider the analytical description of the optical depth
that we have given in equation (11), we can verify that it correctly
describes the median optical depth at the peak as a function of
the density contrast. We attempt to use this relation to describe
the median flux, by applying F = exp (— t), and considering the
distribution of density contrast as found in our reference simulation.
When we consider the median of the flux (on all the spectra
and not only on the peaks of the optical depth), we find that
equation (11) does not match the results found in mock spectra. This

MNRAS 492, 2193-2207 (2020)

was expected because equation (11) describes the relation between
the optical depth at the peak of the line and the underlying density
contrast.

In order to account for this unknown factor, in the comparison
with the mean optical depth, we will consider the 7 intervening in
equation (11) as an additional nuisance parameter, which we will
call . The x? for the joint analysis of the line broadening and
median flux will be the sum of the x? in equation (14) and

2 =3 (Malexp(—t(A, @, v, i, i)

2
~M(F)) [o(M(F), (1)

where T(A, w, y, A, ['y;) is the relation between 7( and A in
equation (11) (with the nuisance parameter o instead of Tp),
M (y(A)) represents taking the median of the function y by varying
A over all the values of the density contrast in the simulation, M(F)
is the median of F as found in the mock spectra, and o (M(F)) is
the error on the median flux in mock spectra and it is computed
by bootstrap. In the future application of this method to observed
spectra, we will consider the distribution of density contrast as
found in our reference simulation. We let the nuisance parameter
free to vary in the interval [0, 5]. Now the number of data points
is 13, the number of free parameters is 5, hence the number of
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degree of freedom is 8. In Fig. 7, we show the likelihood contours
for the parameters estimated for the redshift interval 3.0 < z <
3.1. There is an anticorrelation between 7, and Ag, between y and
Ty, and between 'y, and w, whereas y and Ag are correlated. We
show the results of this joint analysis between the line broadening
distribution and the median flux in Fig. 8. The parameters 7y, y,
and A are detected at 2o level in all the considered redshift bins,
and in excellent agreement with the true values measured from the
simulation, whereas there exist lower limits for I'y; at 2o level.

Here, we note that the comoving size of the filaments at cosmic
mean density is ~ 1 cMpc in all the examined redshift intervals.
This value exceeds by an order of magnitude the estimate of the
filtering length given in Rorai et al. (2017). Indeed, Rorai et al. use
N-body simulations for modelling the distribution of dark matter,
then they impose a smoothing filter, with a single filtering length,
for describing the baryonic density. As discussed in Schaye et al.
(2000b), and as we have explicitly shown in fig. 3 of Garzilli et al.
(2015b), the physical size of the absorbers is not a single value, but
it is a power-law relation of the density. Because Rorai et al. do not
explicitly quantify to which density range they are more sensitive,
it is not possible to make a direct comparison with their work.

5 CONCLUSIONS

We have described a new method to measure the IGM temperature
and the widths of the filaments that are responsible for the absorption
in the Ly o forest, based on the description of the minimum line
broadening that we have developed in Garzilli et al. (2015b) and on
the description of the median flux that we have described here. In the
original formulation, we derived a relation between the minimum
line broadening of the Ly o forest and the overdensity, A. Because
A is a quantity that cannot be measured directly in observed quasar
spectra, we reformulated the minimum line broadening description
in terms of the central line optical depth, 7, that can be measured
directly.

In this work, we considered the problem of reconstructing
the line broadening in spectra with noise and finite instrumental
resolution. We used automatic Voigt profile decompositions by
VPFIT to reconstruct noiseless spectra from noisy data, and to this
reconstructed spectra we applied the method for finding the lines
and computing the line broadening for noiseless sightlines that we
described in Garzilli et al. (2015b). We have found that the 10th
percentiles of the line broadening are not very well reconstructed
for the smallest values of 7, whereas the median line broadening
is more robust.

We applied our method to a sample of mock sightlines extracted
from our reference simulation with low and high signal to noise.
Our method is calibrated to our reference numerical simulation in
two ways. Concerning the line broadening distribution, we have
determined the multiplying factor needed to match the median
line broadening to the minimal line broadening from the reference
simulation. Concerning the median flux, we consider the density
contrast taken from our reference simulation, and we use it to
compute the observable median flux. We combine the analysis of
the line broadening distribution with the analysis of the median
flux. We are going to discuss in an upcoming work the application
of our method to observational data. In fact, our method allows us
to reconstruct the properties of the IGM, such as the temperature,
the size of the expanding filaments at the cosmic mean density, and,
partially, the photoionization rate of neutral hydrogen.

We aim to apply this method to observed quasar spectra, in order
to obtain new measurements of the IGM temperature and of the sizes

Measuring the properties of Ly a absorbers 2203

of the absorbing structures. These measurements will be presented
in a forthcoming paper.
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APPENDIX A: A COMPARISON WITH
TRADITIONAL VOIGT PROFILE FITTING

We consider the reconstruction of percentiles of line broadening
obtained from Voigt profile fitting, which has been widely used in the
literature. Voigt profile fitting has been considered in Schaye et al.
(1999), Schaye et al. (2000a), Ricotti et al. (2000), McDonald et al.
(2001), Bolton et al. (2012), and Rudie et al. (2012) for measuring
the IGM temperature, and it is the only line decomposition technique
applied so far to the Ly« forest, using a variety of codes like
VPFIT, FITLYMAN (Fontana & Ballester 1995), or AUTOVP (Dave
et al. 1997). Voigt profile fitting is a global fitting method that
implies fitting the entire shape of the transmitted flux. Hence, it is
sensitive to the clustering of the absorbers in the Ly « forest, in other
words, it is sensitive to the underlying density distribution of the
gas. In fact, some Voigt profiles with very small byp; are present
because they improve the overall convergence of the fit. Instead,
our ‘peak decomposition’ only measures the line broadening at
‘local maxima’ in the optical depth. We have applied Voigt profile
fitting to our mock sightlines with noise using VPFIT (Carswell et al.
1987; Webb 1987). In Fig. Al, we show the resulting byppr—Nu;
distribution, and compare it with the amount of line broadening
described by equation (13). The upturn of the b—Ny, distribution
that is expected for small Ny, is visible neither in the 10th nor 50th
percentiles of the bypgr distribution.
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Figure Al. The distribution of line broadening as obtained from VPFIT,
byprir, versus the neutral hydrogen column density, Ny;. The colour scheme
encodes the number density of the lines in the byprr—Np; plane. The blue
dots (the green triangles) connected by a dotted (dashed) line are the 50th
(10th) percentiles of the bypgr-distribution in equally spaced logarithmic
intervals of Ny ;. The solid black line is the line of minimum line broadening,
from equation (25) of Garzilli et al. (2015b). Both the 10th and the 50th
percentiles of the bypgr-distribution turn towards low values of bypgr for low
values of Ny, these percentiles look different from the case of b measured
with our method, shown in Fig. 3, where the percentiles of the b distribution
turn towards high values of b for low values of (), as expected theoretically.
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APPENDIX B: EFFECT OF THE
UNCERTAINTY ON ps

We show that changing the values of nsy by -5 per cent does not
affect the result of our analysis. In Fig. B1 (Fig. B2), we show the
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constraints on the IGM parameters for the case that 75 is increased
(decreased) by 5 per cent. We infer that a variation of 15y within
5 per cent does not affect the result of our analysis.
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Figure B1. The results of Ty, y, A, and 'y estimation for a value of n5q increased by 5 per cent respect to the value calibrated from our reference simulation.
The analysis is performed as in Fig. 8, and we apply the same conventions. The result of this analysis shows that our method is robust respect to calibration for

an increase of nso of 5 per cent.
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Figure B2. The results of Ty, ¥, Ar, and 'y, estimation for a value of 150 decreased by 5 per cent respect to the value calibrated from our reference simulation.
The analysis is performed as in Fig. 8, and we apply the same conventions. The result of this analysis shows that our method is robust with respect to calibration
for an decrease of nso of 5 per cent.
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APPENDIX C: CONSIDERING LOWER S/N

In Fig. C1, we show the results of the parameters estimation for
the case of a low signal-to-noise sample of spectra (S/N = 30)
for the central optical depth interval 7o € [0.3, 4] (which is
different from the optical depth interval that we have chosen for
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the high-signal-to-noise sample). The results are similar to the
ones found in the high-signal-to-noise case, but with larger error
bars.

We conclude that our method also works with lower signal-to-
noise spectra, and it is hence applicable to existing spectra.
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Figure C1. The results of Ty, y, Ap, and 'y estimation for the case of lower signal-to-noise spectra (S/N = 30); each redshift bin is analysed independently.
The b7 relation is fitted in the interval 7 € [0.3, 4]. There are no constraints on I'y;. Same conventions as in Fig. 8.
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