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Abstract

An important aim in diagnostic medical research is comparison of the accuracy of two
diagnostic tests. In this paper, comparison of two diagnostic tests is presented using non-
parametric predictive inference (NPI) for future order statistics. The tests are assumed to
be applied on the same individuals from two groups, e.g. healthy and diseased individuals,
or from three groups with a known ordering, e.g. adding a group of severely diseased indi-
viduals to the two group scenario. Our comparison is explicitly in terms of lower and upper
probabilities for proportions of correctly diagnosed future individuals from each group, for
a given total number of such individuals. We include in our comparison the possibility that
it is more important to get a correct diagnosis for individuals from one group than from
another group.

Keywords: Comparing two diagnostic tests; lower and upper probabilities; nonparametric
predictive inference.

1. Introduction

The performances of two diagnostic tests are traditionally compared in terms of their
respective specificities and sensitivities, or by using a summary of these such as the area
under the receiver operating characteristic (ROC) curve, this area is often referred to as
AUC, see e.g. Pepe (2003, p77) and Zhou et al (2002, p27). In this paper, we present
nonparametric predictive inference (NPI) as an alternative method for the comparison of
two diagnostic tests.

NPI is a frequentist statistical method that is explicitly aimed at using few modelling as-
sumptions, enabled through the explicit focus on events involving future observations and the
use of lower and upper probabilities to quantify uncertainty (Augustin et al, 2014; Coolen,
2011). NPI has been introduced for many application areas where the predictive nature of
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this method plays an important role, including reliability, survival analysis, operations re-
search and finance (see www.npi-statistics.com for more information). Restricting attention
to one future observation, NPI has been developed for diagnostic test accuracy considering
different types of data. For example, Coolen-Maturi et al. (2012b) introduced NPI for diag-
nostic test accuracy with binary data, while Elkhafifi and Coolen (2012) presented NPI for
diagnostic tests with ordinal data. Coolen-Maturi et al. (2012a, 2014) proposed NPI for two
and three group ROC analysis with continuous data. The results in Elkhafifi and Coolen
(2012) have been generalised by Coolen-Maturi (2017a) for three group ROC analysis with
ordinal data. Coolen-Maturi (2017b) presented NPI for scenarios where two or more diag-
nostic tests are combined in order to improve the overall diagnostic accuracy. Recently, NPI
has been applied for inference on reproducibility of hypothesis tests (Coolen and Alqifari,
2018; Coolen and Bin Himd, 2014), presenting an interesting frequentist inference solution
to a long-standing problem in medical and other applications.

The main difference between the NPI approach and established inference methods in
the literature is that inferences in NPI are explicitly in terms of a given number of future
individuals. In this paper, we present NPI for comparing two diagnostic tests, assuming that
the two tests are applied to the same individuals from two or three groups. For two groups,
one can typically think about healthy and diseased individuals, while for three groups there
may e.g. be an added category of severaly diseased individuals. While such an association
to medical applications is used in this paper, the methods presented are widely applicable
in many fields. The predictive nature of the NPI approach can be attractive for diagnostic
tests as one tends to assess the quality of the diagnostic tests for a given number of future
individuals.

This paper is organized as follows. In Section 2, we give an overview of NPI for future
order statistics. Comparison of two diagnostic tests using NPI for future order statistics,
is presented in Section 3 for two groups of individuals, and in Section 4 for three groups.
Section 5 contains some concluding remarks.

2. NPI for future order statistics

NPI is a frequentist statistical framework based on Hill’s assumption A(n) (Hill, 1968),
which yields direct probabilities for one or more future observations, based on n observations
for related random quantities. A(n) does not assume anything else and it can be considered
as a post-data assumption related to exchangeability. Inferences based on A(n) are nonpara-
metric and predictive, and can be considered appropriate if there is hardly any information
or knowledge about the random quantities of interest, other than the n observations (Hill,
1988). A(n) does not provide precise probabilities for many events of interest, however it
provides bounds for all probabilities, these are lower and upper probabilities in the theory
of interval probability (Augustin and Coolen, 2004; Weichselberger, 2000).

The assumption A(n) partially specifies a predictive probability distribution for one future
observation. Suppose that X1, . . . , Xn, Xn+1 are continuous, real-valued and exchangeable
random quantities. Suppose that the ordered observations of X1, . . . , Xn are denoted by
x1 < x2 < ... < xn, and define x0 = −∞ and xn+1 = ∞ for ease of notation (or define
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x0 = 0 when dealing with non-negative random quantities). These n observations partition
the real-line into n+ 1 intervals Ij = (xj−1, xj), for j = 1, 2, . . . , n+ 1. The assumption A(n)

implies that the future observation Xn+1 is equally likely to fall in any of these intervals
with probability 1

n+1
(Coolen, 2011). In NPI uncertainty is quantified by lower and upper

probabilities for events of interest. Augustin and Coolen (2004) introduced predictive lower
and upper probabilities based on A(n) as follows: Lower probability P (Xn+1 ∈ B) and upper
probability P (Xn+1 ∈ B) for the event Xn+1 ∈ B, based on the intervals Ij = (xj−1, xj)
(j = 1, 2, . . . , n + 1) created by n real-valued non-tied observations, and the assumption
A(n), are

P (Xn+1 ∈ B) =
1

n+ 1

∑
j

1{Ij ⊆ B},

P (Xn+1 ∈ B) =
1

n+ 1

∑
j

1{Ij ∩B 6= ∅}.

The NPI lower probability P (Xn+1 ∈ B) is derived by taking only probability mass into
account that is necessarily within B, which is only the case for the probability mass 1

n+1

per interval Ij if this interval is completely contained within B. The upper probability
P (Xn+1 ∈ B) is achieved by taking all probability mass into account that could possibly be
within B, which is the case for the probability mass 1

n+1
, per interval Ij, if the intersection

of Ij and B is non-empty. Note that there are no further assumptions on the distribution
of the probability mass 1

n+1
in each interval Ij, so these lower and upper probabilities are

the maximum lower and minimum upper bound, respectively, that can be derived for the
event of interest. If one would make any further assumptions for the probability mass in
each interval Ij, one would always end up with a (possibly imprecise) probability for the
event Xn+1 ∈ B in between the NPI lower and upper probabilities.

We are interested in m ≥ 1 future observations, Xn+i for i = 1, . . . ,m. We link the
data and future observations via Hill’s assumption A(n) (Hill, 1968), or more precisely, via
A(n+m−1) (which implies A(n+k) for all k = 0, 1, . . . ,m−2), which can be considered as a post-
data version of a finite exchangeability assumption for n + m random quantities. A(n+m−1)
implies that all possible orderings of the n data observations and the m future observations
are equally likely, where the n data observations are not distinguished among each other,
and neither are the m future observations. Let Sj = #{Xn+i ∈ Ij, i = 1, . . . ,m}, then
assuming A(n+m−1) we have

P (
n+1⋂
j=1

{Sj = sj}) =

(
n+m

n

)−1
, (1)

where sj are non-negative integers with
∑n+1

j=1 sj = m. Let X(r), for r = 1, . . . ,m, be the
r-th ordered future observation, so X(r) = Xn+i for one i = 1, . . . ,m and X(1) < X(2) <
. . . < X(m). The following probability is derived by counting the relevant orderings, for
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j = 1, . . . , n+ 1, and r = 1, . . . ,m,

P (X(r) ∈ Ij) =

(
j + r − 2

j − 1

)(
n− j + 1 +m− r

n− j + 1

)(
n+m

n

)−1
. (2)

For this event NPI provides a precise probability, as each of the
(
n+m
n

)
equally likely orderings

of n past and m future observations has the r-th ordered future observation in precisely one
interval Ij (Coolen et al., 2018). The event that the number of future observations in an
interval (xa, xb), denoted by Cxa,xb , is greater than or equal to a particular value v, has the
following precise probability (Alqifari, 2017),

P (Cxa,xb ≥ v) =
m∑
i=v

(
n+m

n

)−1(
b− a− 1 + i

i

)(
n− b+ a+m− i

m− i

)
. (3)

We use these NPI results for future order statistics in the comparison of diagnostic tests in
this paper. For other applications of NPI for future order statistics we refer the reader to
the recent PhD thesis by Alqifari (2017) and the related paper by Coolen et al. (2018).

3. Comparison of two diagnostic tests for two groups

We compare the accuracies of two diagnostic tests by explicitly considering the appli-
cation of these tests to multiple future individuals. We assume that both diagnostic tests
are applied to the same people. Assume that we have real-valued data from two different
diagnostic tests on individuals from two groups in each test, say a ‘healthy group’ X and a
‘disease group’ Y , and there are nx observations from the healthy group and ny observations
from the disease group. In our notation we indicate to the two tests by using superscript
t; t = 1, 2, so we assume that we have data (x1i , x

2
i ), i = 1, ...nx and (y1j , y

2
j ), j = 1, ...ny,

where superscript 1 indicates test results of diagnostic test one and 2 indicates test results
of diagnostic test two. We assume throughout this paper that the outcomes of the two tests
are independent random quantities, given the disease states of the individuals, and that each
individual had undergone both tests.

This section presents the comparison between two diagnostic tests for mx and my future
individuals. A natural question is whether one test is better than the other for the mx and
my future individuals from groups X and Y , respectively, and we investigate the possible
influence of the choice of mx and my, which mostly we will assume to be equal (mx =
my = m). This paper present the NPI method for comparison of two diagnostic tests with
real-valued outcomes. It can be applied for any diagnostic tests, no matter which criterion
is used to select the test threshold. In line with our recent work on diagnostic tests from
NPI perspective, in our examples we will use the 2-NPI-L method for selecting the optimal
threshold for each diagnostic test (Alabdulhadi, 2018; Coolen-Maturi et al., 2020).

Assume that we have real-valued data from two diagnostic tests on individuals from
two groups. There are nx observations from the healthy group X and ny observations
from the disease group Y . The ordered data from test t for groups X and Y are denoted by
xt1 < xt2 < . . . < xtnx

and yt1 < yt2 < . . . < ytny
, respectively. For ease of presentation, we define
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xt0 = yt0 = −∞ and xtnx+1 = ytny+1 = ∞. These nx observations for test t applied to group

X partition the real-line into nx + 1 intervals IX
t

i = (xti−1, x
t
i), for i = 1, 2, . . . , nx + 1, and

the ny observations for test t applied to group Y partition the real-line into ny + 1 intervals
IY

t

j = (ytj−1, y
t
j), for j = 1, . . . , ny + 1. In this section, we consider mx future individuals

from group X, with random results from diagnostic test t denoted by X t
nx+r, r = 1, . . . ,mx,

and my future individuals from group Y , with random results from diagnostic test t denoted
by Yny+s, s = 1, . . . ,my. We will particularly use the ordered future observations, we
denote the mx and my ordered future observations from groups X and Y , for test t, by
X t

(1) < X t
(2) < . . . < X t

(mx)
and Y t

(1) < Y t
(2) < . . . < Y t

(my)
, respectively.

We assume that small values of the diagnostic test results are associated with absence of
the disease and large values of the test results with presence of the disease. Of course, the
method can directly be applied if this were the other way around, but we restrict attention
to tests with such a simple pattern, hence which require only a single threshold for the
diagnosis. However, in Section 4 we consider a scenario with one ‘middle group’ and two
thresholds, this indicates how more complicated tests with two groups but which require
multiple thresholds, e.g. if a finite interval of values indicate ‘healthy’ while being outside
this interval on either side indicates ‘disease’, can also be studied in a similar way. So we
assume that a threshold ct ∈ R is used to classify individuals to either being healthy if their
test result is less than or equal to ct or having the disease if their test result is greater than
ct.

For a specific value of ct, CXt

ct denotes the number of correctly classified future individuals
from the healthy group X by test t, that is those with test results X t

nx+r ≤ ct (for r =

1, . . . ,mx), and CY t

ct denotes the number of correctly classified future individuals from the
disease group Y by test t, that is those with test results Y t

ny+s > ct (for s = 1, . . . ,my).
Let α and β be any two values in (0, 1] that are selected to reflect the desired quality of
the diagnoses and the importance of correct diagnosis for one group compared to correct
diagnosis for the other group. We consider the aim that the number of correctly classified
individuals out of mx future individuals from the healthy group X, is at least αmx, and that
the number of correctly classified individuals out of my future individuals from the disease
group Y is at least βmy.

Using the independence assumption between the two groups, the joint NPI lower and
upper probabilities for the event of interest can be derived as the products of the corre-
sponding NPI lower and upper probabilities for the individual events that involve CXt

ct and
CY t

ct , so

P (CXt

ct ≥ αmx, C
Y t

ct ≥ βmy) = P (CXt

ct ≥ αmx)× P (CY t

ct ≥ βmy), (4)

P (CXt

ct ≥ αmx, C
Y t

ct ≥ βmy) = P (CXt

ct ≥ αmx)× P (CY t

ct ≥ βmy). (5)

We use the NPI results for future order statistics, reviewed in Section 2, to derive the
NPI lower and upper probabilities in Equations (4) and (5). We first present the results for
group X, followed by those for group Y , for which deriving the results follows similar steps.
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Note that the event CXt

ct ≥ αmx is equivalent to the event X t
(dαmxe) ≤ ct, where dαmxe

denotes the smallest integer greater than αmx, and similar for group Y .
We introduce the notation IX

t

i = (xti−1, x
t
i) for i = 1, . . . , nx+1 and let ixct ∈ {1, 2, . . . , nx+

1} be such that ct ∈ IXt

ict
= (xtix

ct
−1, x

t
ix
ct

). The NPI lower and upper probabilities for the event

CXt

ct ≥ αmx are

P (CXt

ct ≥ αmx) = P (X(dαmxe) ≤ ct) =

ix
ct
−1∑

i=1

P (X(dαmxe) ∈ IX
t

i ), (6)

P (CXt

ct ≥ αmx) = P (X(dαmxe) ≤ ct) =

ix
ct∑
i=1

P (X(dαmxe) ∈ IX
t

i ), (7)

where the precise probabilities on the right hand sides of Equations (6) and (7) can be
obtained from Equation (2).

The NPI lower and upper probabilities for the event CY t

ct ≥ βmy are derived similarly.
Introducing notation IY

t

j = (ytj−1, y
t
j) for j = 1, . . . , ny + 1 and letting jyct ∈ {1, 2, . . . , ny + 1}

be such that ct ∈ IY t

jy
ct

= (yt
jy
ct
−1, y

t
jy
ct

), we have

P (CY t

ct ≥ βmy) = P (Y(my−dβmye+1) > ct) =

ny+1∑
j=jy

ct
+1

P (Y(my−dβmye+1) ∈ IY
t

j ), (8)

P (CY t

ct ≥ βmy) = P (Y(my−dβmye+1) > ct) =

ny+1∑
j=jy

ct

P (Y(my−dβmye+1) ∈ IY
t

j ). (9)

We use the NPI lower and upper probabilities from Equations (4) and (5) to compare
two diagnostic tests. We consider it a strong indication that test 1 is better than test 2 if

P (CX1

c1 ≥ αmx, C
Y 1

c1 ≥ βmy) > P (CX2

c2 ≥ αmx, C
Y 2

c2 ≥ βmy). (10)

We further consider it a weak indication for test 1 being better than test 2 if both

P (CX1

c1 ≥ αmx, C
Y 1

c1 ≥ βmy) > P (CX2

c2 ≥ αmx, C
Y 2

c2 ≥ βmy), (11)

and
P (CX1

c1 ≥ αmx, C
Y 1

c1 ≥ βmy) > P (CX2

c2 ≥ αmx, C
Y 2

c2 ≥ βmy). (12)

Next, the NPI method for comparison of two diagnostic tests with two groups, as in-
troduced above, is illustrated in an example which is created to provide insight into the
method, followed by an example showing the application of the method with data from the
literature. For more exploration of the method through further examples we refer to the
PhD thesis of the first-named author (Alabdulhadi, 2018).
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Example 3.1. Consider an artificial data set from two different diagnostic tests applied to
the same individuals from two groups, containing the test results from nx = ny = 10 indi-
viduals from each group. Note that our nonparametric method effectively works with ranks,
hence for these first two illustrative examples we use integer data that could be interpreted as
ranks. For test 1, the data for the healthy group, are {1, 2, 3, 4, 5, 7, 9, 10, 11, 12} and for the
disease group the data are {6, 8, 13, 14, 15, 16, 17, 18, 19, 20}. Note that in the general pre-
sentation of our method above, these data were denoted by x1i and y1j , for i, j = 1, 2, . . . , 10,
respectively. For test 2, the data for the healthy group are {1, 2, 6, 7, 10, 11, 12, 13, 16, 18}
and for the disease group we have the observations {3, 4, 5, 8, 9, 14, 15, 17, 19, 20}. These
data clearly suggest that test 1 differentiates groups X and Y better than test 2. To deter-
mine the thresholds used for the tests, we applied the 2-NPI-L method (Alabdulhadi, 2018;
Coolen-Maturi et al., 2020), aimed at optimal diagnostic performance by actually choosing
the thresholds in order to maximize the NPI lower probability of interest, so as presented
in Equation (4). With α = β = 0.6, this resulted in optimal thresholds c1 ∈ (12, 13) for test
1 and c2 ∈ (13, 14) for test 2, for all the considered values of m. Applying these thresholds
to the empirical data would lead to all 10 healthy people and 8 of the 10 diseased people
being correctly diagnosed for test 1, while test 2 would provide the correct diagnosis for 8
of the 10 healthy people and 5 of the 10 diseased people. It should be noted that, for the
novel method to compare two diagnostic tests presented in this paper, the method used to
determine the thresholds is irrelevant, hence we do not pay more attention to this here.

The NPI lower and upper probabilities given by Equations (4) and (5) for test 1 and
test 2, where we consider the same number m = mx = my future observations for both the
healthy and disease groups, with the results for m = 1, 2, . . . , 30 presented in Figure 1. The
values α = β = 0.6 are used for the left plot and α = 0.9, β = 0.1 for the right plot. The
left plot, for α = β = 0.6, shows that test 1 quite easily leads to a successful test according
to the criterion that at least 60% of future individuals from each of the two groups should
be correctly diagnosed, as the NPI lower probabilities for this event (the left end-point of
the plotted intervals), for the different values of m, are quite large and the corresponding
upper probabilities (the right end-points) are mostly close to 1. The results show quite some
variability for small values of m, this is due to the discrete nature of the number of required
future successes. In particular, for m = 2 it is harder to achieve the criterion of at least 60%
correct diagnoses for both groups than for m = 1. This effect becomes smaller for larger
values of m, hence there is less variation in the results for larger m. So, for α = β = 0.6,
our method provides a strong indication that test 1 performes better than test 2 for all
considered values of m.

We have included the second case, with α = 0.9, β = 0.1 to illustrate our method in
a scenario where it is very important to get the correct diagnosis for the healthy group X
but hardly relevant for the disease group Y . Of course, this is probably quite an unrealistic
scenario, and in practice one could even neglect the results for group Y , but we include it to
illustrate some further features of our method. The optimal threshold, according to the NPI
lower method (Alabdulhadi, 2018; Coolen-Maturi et al., 2020), is now again c1 ∈ (12, 13)
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Figure 1: Comparison of Test 1 (blue, thick) and Test 2 (red, thin).

for test 1, for all considered values of m. This is logical as these are the smallest values of
c1 for which all empirical observations from group X are correctly diagnosed. But for test
2 it is quite different from the scenario discussed above, as now the optimal threshold is
c2 ∈ (13, 14) for m = 1, 2, 3 and c2 ∈ (18, 19) for m = 4, . . . , 30.

The right plot in Figure 1 shows that, for small values of m, there remains a strong
indication that test 1 is better than test 2, with this criterion emphasizing the importance
to get the diagnoses for group X correct. However, for m ∈ {5, 6, . . . , 30}, there is only a
weak indication that test 1 is better than test 2. This illustrates that the specific value of
m can affect the conclusion of the comparison of diagnostic tests.

Example 3.2. In this example, we use the data set from a study to develop screening
methods to detect carriers of a rare genetic disorder. The data were discussed by Cox
et al (1982), and are available from Carnegie Mellon University Statlib Datasets Archive
(http://lib.stat.cmu.edu/datasets/ ). Four different tests were used for each patient, denoted
by TM1, TM2, TM3 and TM4. For some patients, there are several samples of which the
average is considered, and five missing values are excluded from the analysis. The remaining
sample, which is used in this example, consists of 120 observations, 38 for carriers of the rare
genetic disorder, which is the disease group Y in our terminology, and 82 for non-carriers,
the healthy group X. In this example, we use this data set for pairwise comparisons of these
four diagnostic tests, using the NPI method presented in this section.

To compare any two of these four tests, the 2-NPI lower and upper probabilities as
given in Equations (4) and (5), for m = 1, . . . , 30, are presented in Figures 2 and 3, for the
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Figure 2: Pairwise comparisons of TM1, TM2, TM3 and TM4, with α = β = 0.5.

scenarios α = β = 0.5 and α = 0.5, β = 0.7, respectively. The heading of each plot states the
two diagnostic tests for which these lower and upper probabilities are presented by intervals
with these values as endpoints, the first named test is presented in blue (thick line) and the
second named test in red (thin line).

The optimal threshold for each test has again been determined by the NPI lower method
(Alabdulhadi, 2018; Coolen-Maturi et al., 2020), which corresponds to the NPI method for
comparison of diagnostic tests as presented in this paper. The optimal thresholds lead to
the following numbers of correctly classified individuals in the data. For α = β = 0.5, test
TM1 correctly classifies 70 out of 82 individuals from group X and 32 out of 38 from group
Y , for all m = 1, . . . , 30. For test TM2 the numbers are 56 out of 82 for group X and 28 out
of 38 for group Y for m = 1, 2, while for all m = 3, . . . , 30 the numbers are 58 out of 82 from
group X and 27 out of 38 from group Y . Test TM3 classifies 74 out of 82 of the data from
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group X correctly, together with 24 out of 38 from group Y when the optimal threshold for
the case m = 1 is used. If m = 2, . . . , 11 these numbers change to 70 out of 82 from group
X and 25 out of 38 from group Y . If m = 12, . . . , 30, test TM3 classifies 57 out of 82 data
values from group X correctly, together with 27 out of 38 from group Y . Test TM4 leads to
the same optimal threshold for all considered values of m, namely 67 out of 82 from group
X and 31 out of 38 from group Y . So, the empirical results for these tests indicate that
the numbers of correctly classified individuals from both groups for the largest for test TM1,
followed by the numbers for test TM4. If we consider m = 1, . . . , 11 then the numbers of
correctly classified individuals from both groups for TM3 are greater than the corresponding
numbers for TM2. But for m = 12, . . . , 30, the number of correctly classified individuals
from group X is greater for TM2 than for TM3 while the numbers from group Y are equal
for these two tests. We have included this discussion of the empirical performances of these
tests as they are also reflected in the predictive performances as used in the NPI method to
compare diagnostic tests presented in this paper.

For the case α = β = 0.5, presented in Figure 2, our NPI method to compare two
diagnostic tests leads to the following conclusions. The first two plots show that there is a
strong indication that test TM1 is better than both tests TM2 and TM3 for all considered
values of m. The third plot shows that for the larger values of m there is a weak indication
that test TM1 is better than TM4, but for smaller values of m there is a strong indication
that TM1 is better than TM4. Note that both these tests clearly do well on satisfying the
predictive criterion of classifying at least half the future people from both the healthy and
disease groups correctly. From the first plot in the second row we notice that there is either
a strong or weak indication that TM3 is better than TM2 for smaller values of m, whereas
for larger values of m are nested there is a weak indication that TM2 performs better than
TM3. This is of course in line with the above discussed empirical performances of these two
methods, and it clearly illustrates that conclusions on comparative predictive performances
of two diagnostic tests can depend on the number of future individuals considered. The
final two plots show that there is a strong indication that TM4 is better than both TM2 and
TM3 for all considered values of m. It should be noted that the imprecision, that is the
difference between corresponding upper and lower probabilities, is smaller in this example
than in Example 3.1. This is due to the fact that we have considerably more data in this
example leading to reduced imprecision.

We also consider our method with the required proportions of correctly classified indi-
viduals per group set at α = 0.5 and β = 0.7. With these values, the optimal thresholds
vary a bit more for the tests than in the case discussed above. Applying the NPI lower
method (Alabdulhadi, 2018; Coolen-Maturi et al., 2020) to determine the optimal diagnos-
tic threshold, leads to the following numbers of correctly classified individuals from the data
set. For test TM1, 70 out of 82 from group X and 32 out of 38 from group Y are correctly
classified for m = 1, 2, 4, 5, 7, 9, 11, while for m = 6, 8, 12, 13, 16, 18, 22, 23, 24, 26, 28, 29, 30
the numbers are 56 out of 82 from group X and 34 out of 38 from group Y , and for
m = 3, 10, 14, 15, 17, 19, 20, 21, 25, 27 we have 60 out of 82 from group X and 33 out of 38
from group Y correctly classified. For test TM2, for m = 1, 5, 7 there are 56 out of 82
correctly classified individuals for group X and 28 out of 38 for group Y , while for all other
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Figure 3: Pairwise comparisons of TM1, TM2, TM3 and TM4, with α = 0.5, β = 0.7.

values of m considered the numbers are 36 out of 82 and 35 out of 38. For test TM3, the case
m = 1 leads to 74 out of 82 correctly classified individuals in the data from group X and 24
out of 38 from group Y . For m = 2, 3, 4, 5, 6, 8, 9, 12, 13, 16, test TM3 leads to 42 out of 82
correctly classified data observations from group X and 35 out of 38 from group Y , while
for m = 7, 10, 11, 15, 17, . . . , 30 this test leads to 52 out of 82 correctly classified individuals
from group X and 30 out of 38 from group Y . Finally, for test TM4 we have, for m = 1, 67
out of 82 correct classifications for the data from group X and 31 out of 38 from group Y ,
while for m = 2, 6 the numbers are 55 out of 82 from group X and 34 out of 38 from group
Y . For all other considered valued of m, TM4 correctly classifies 61 out of 82 individuals in
the data from group X and 33 out of 38 from group Y .

Our new NPI method for comparison of two diagnostic test is presented in the six plots
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of pairwise comparisons in Figure 3 for this case with α = 0.5, β = 0.7. The results are
largely similar to those with the values α = β = 0.5 as presented in Figure 2 and discussed
above. Of course, the NPI lower and upper probabilities for the events of interest are now
lower than before because the required number of correctly classified future individuals from
group Y is larger that β = 0.5. The plots show somewhat more variation, which reflects the
same increased variation in the results for the empirical data classifications discussed above.
One of the small changes compared to the previous case can be seen from the third plot, as
test TM1 is not always better anymore than TM4, indeed there are now several values of m
for which there is a weak indication that TM1 is better than TM4 and also several values of
m for which the opposite is weakly indicated. Of course, considering the actual values of
the NPI lower and upper probabilities in this comparison between TM1 and TM4 it is clear
that they are very close.

4. Comparison of two diagnostic tests for three groups

In this section we extend the method of the previous section to comparison of two
diagnostic tests with three ordered groups. Such a scenario occurs, for example, if the
diseased individuals can be divided into two groups, with less and more severe levels of the
disease, which may be relevant with regard to their treatments. We extend the notation
introduced above by denoting this third group of most severely diseased individuals by Z,
and we suppose to have nz observed test results, for both tests considered, for members of this
group. The ordered data from test t for this group are denoted by zt1 < zt2 < . . . < ztnz

, and we

define zt0 = −∞ and ztnz+1 =∞. These nz observations create the intervals IZ
t

l = (ztl−1, z
t
l ),

for l = 1, 2, . . . , nz+1. Let the diagnostic test results of test t applied to mz future individuals
be denoted by Zt

nz+k
, k = 1, . . . ,mz, and let the corresponding ordered future observations

be denoted by Zt
(1) < Zt

(2) < . . . < Zt
(mz)

. Assume that the three groups are ordered in the
sense that, for both tests considered, observations from group X tend to be smaller than
those from group Y , which in turn tend to be smaller than those from group Z. For a
diagnostic decision rule for test t, two thresholds ct1 < ct2 are required to classify individuals
into one of the three groups. If test value, for test t, is less than or equal to ct1 the diagnosis
is that the individual belongs to group X. A test value which is greater than ct1 and less
than or equal to ct2 is an indication that the individual belongs to group Y , while a test value
greater than ct2 leads to the diagnosis that the individual belongs to group Z. The numbers
of correctly classified individuals, using test t, out of the mx, my and mz future individuals
for groups X, Y and Z, are denoted by CXt

ct1
, CY t

(ct1,c
t
2)

and CZt

ct2
, respectively.

We also extend the criterion for successful diagnostic performance of a test by introducing
γ ∈ (0, 1] to denote the minimum proportion of future individuals from group Z which the
test should diagnose correctly, in addition to the proportions α and β for groups X and Y .
Assuming that the three groups are fully independent, in the sense that any information
about individuals in one group does not provide any information about individuals in the
other groups, the joint NPI lower and upper probabilities for the event of interest are
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P (CXt

ct1
≥ αmx, C

Y t

(ct1,c
t
2)
≥ βmy, C

Zt

ct2
≥ γmz) =

P (CXt

ct1
≥ αmx)× P (CY t

(ct1,c
t
2)
≥ βmy)× P (CZt

ct2
≥ γmz), (13)

P (CXt

ct1
≥ αmx, C

Y t

(ct1,c
t
2)
≥ βmy, C

Zt

ct2
≥ γmz) =

P (CXt

ct1
≥ αmx)× P (CY t

(ct1,c
t
2)
≥ βmy)× P (CZt

ct2
≥ γmz). (14)

For IX
t

i = (xti−1, x
t
i) with i = 1, . . . , nx+1 and ct1 ∈ IX

t

i
ct1

= (xti
ct1
−1, x

t
i
ct1

), ict1 ∈ {1, . . . , nx+

1}, the NPI lower and upper probabilities for the event CXt

ct1
≥ αmx are

P (CXt

ct1
≥ αmx) = P (Xdαmxe ≤ ct1) =

i
ct1
−1∑

i=1

P (Xdαmxe ∈ IX
t

i ), (15)

P (CXt

ct1
≥ αmx) = P (Xdαmxe ≤ ct1) =

i
ct1∑
i=1

P (Xdαmxe ∈ IX
t

i ). (16)

For IY
t

j = (ytj−1, y
t
j) with j = 1, . . . , ny + 1 and ct1 ∈ IYj

ct1

= (yj
ct1
−1, yj

ct1

) and ct2 ∈ IYj
ct2

=

(yj
ct2
−1, yj

ct2

), with jct1 ∈ {1, . . . , ny +1} and jct2 ∈ {1, . . . , ny +1}, with ct2 ≥ ct1, which implies

that jct2 ≥ jct1 , we get NPI lower and upper probabilities

P (CY t

(ct1,c
t
2)
≥ βmy) = P (CY t

(yj
ct1

,yj
ct2

−1)
≥ βmy), (17)

P (CY t

(ct1,c
t
2)
≥ βmy) = P (CY t

(yj
ct1

−1,yj
ct2

) ≥ βmy). (18)

The probabilities on the right-hand sides of these equations can be computed using Equation
(3).

For IZ
t

l = (ztl−1, z
t
l ) with l = 1, . . . , nz + 1 and ct2 ∈ IZ

t

l
ct2

= (ztl
ct2
−1, z

t
l
ct2

), lct2 = 1, . . . , nz + 1,

the NPI lower and upper probabilities are

P (CZt

ct2
≥ γmz) = P (Z(mz−dγmze+1) > ct2) =

nz+1∑
l=l

ct2
+1

P (Z(mz−dγmze+1) ∈ IZ
t

l ), (19)

P (CZt

ct2
≥ γmz) = P (Z(mz−dγmze+1) > ct2) =

nz+1∑
l=l

ct2

P (Z(mz−dγmze+1) ∈ IZ
t

l ). (20)

Similar to the NPI comparison of two diagnostic tests with two groups presented above,
we compare the two diagnostic tests with three groups as follows. We consider it a strong
indication that test 1 is better than test 2 if

P (CX1

c11
≥ αmx, C

Y 1

(c11,c
1
2)
≥ βmy, C

Z1

c12
≥ γmz) >

P (CX2

c21
≥ αmx, C

Y 2

(c21,c
2
2)
≥ βmy, C

Z2

c22
≥ γmz). (21)
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We consider it a weak indication that test 1 is better than test 2 if both

P (CX1

c11
≥ αmx, C

Y 1

(c11,c
1
2)
≥ βmy, C

Z1

c12
≥ γmz) >

P (CX2

c21
≥ αmx, C

Y 2

(c21,c
2
2)
≥ βmy, C

Z2

c22
≥ γmz), (22)

and

P (CX1

c11
≥ αmx, C

Y 1

(c11,c
1
2)
≥ βmy, C

Z1

c12
≥ γmz) >

P (CX2

c21
≥ αmx, C

Y 2

(c21,c
2
2)
≥ βmy, C

Z2

c22
≥ γmz). (23)

As before, our NPI method to compare two diagnostic tests can be applied for any
thresholds used in the tests. For illustration of our method in the following example, which
uses data from the literature, we have used the 3-NPI-L method that we recently introduced
(Alabdulhadi, 2018; Coolen-Maturi et al., 2020). This method determines the thresholds ct1
and ct2 which maximise the joint NPI lower probability given in Equation (13).

Example 4.1. The interleukin-6 (IL-6) and serum soluble triggering receptor expressed
(sTREM-1) are common diagnostic tests for detection of late onset sepsis (LOS) in neonates
(Sarafidis et al, 2010). Both these diagnostic tests were applied to 52 neonates assessed
as suspicious for LOS. They were classified into three groups, 21 non-infected neonates (no
laboratory evidence of sepsis and negative blood cultures), 9 possible sepsis (laboratory
evidence of sepsis however negative blood cultures) and 22 confirmed sepsis (positive blood
cultures for fungi and microbes). We refer to these groups as X, Y and Z, respectively, they
are logically ordered in sense of severeness of the disease to the individual.

The NPI lower and upper probabilities as given in Equations (13) and (14) for tests
IL-6 and sTREM-1 are presented in Figure 4, for m = 1, . . . , 30, we have used mx = my =
mz = m throughout this example. We have considered two different criteria expressed by
the proportions α, β and γ. The 3-NPI-L method was applied to determine the two optimal
thresholds for each test (Alabdulhadi, 2018; Coolen-Maturi et al., 2020). First we consider
the numbers of correctly classified individuals in the data set, using these thresholds.

For α = β = γ = 0.5, the numbers of correctly classified individuals from groups X,
Y and Z for test IL-6 are 18 out of 21, 6 out of 9 and 11 out of 22, respectively, for all
m = 1, . . . , 30. For test sTREM-1 the corresponding numbers are 16 out of 21, 5 out of 9 and
6 out of 22, also for all considered values of m. So, with α = β = γ = 0.5, test IL-6, applied
to the available data, meets the criteria set on the proportions from each group that are
correctly diagnosed, for each of the three groups X, Y and Z. However, test sTREM-1 does
not correctly classify at least 50% of the data observations from group Z. This is reflected
in the predictive results from our new NPI method, presented in the first plot in Figure
4, which provides a strong indication that test IL-6 (blue, thick line) is better than test
sTREM-1 (red, thin line) for all m = 1, . . . , 30. Clearly, test sTREM-1 is highly unlikely to
meet the joint criteria set for the three groups, while test IL-6 does considerably better but
the NPI lower and upper probabilities remain quite low. There is much more imprecision
in the values for IL-6 than for sTREM-1, this is simply due to the fact that the NPI upper
probabilities for the latter are quite close to 0.
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Figure 4: Comparison of IL-6 (blue, thick) and sTREM-1 (red, thin).

As the performance of the test sTREM-1 is poor for group Z, we also illustrate our
method for the scenario with α = β = 0.8, γ = 0.2. The optimal test thresholds based on
the 3-NPI-L method (Alabdulhadi, 2018; Coolen-Maturi et al., 2020), with these required
proportions of successful future diagnoses, lead to the following empirical results. For test
IL6 the empirical results are identical to those reported above for the case with all three
minimum required proportions equal to 0.5. For test sTREM-1, the numbers of correctly
classified individuals from groups X, Y and Z are 16 out of 21, 5 out of 9 and 6 out of
22 respectively, for m = 1, 2, 6, 11, which are the same numbers as above, but for the other
considered values of m these numbers are 16 out of 21, 7 out of 9 and 2 out of 22 respectively.
Note that this latter case has a substantially lower number of data from the Z group correctly
diagnosed, which is in line with the low criterion now set for that group. However, it should
be noted that, when considering the empirical data, both tests fail to meet the criteria set
for all three groups together.

The predictive comparison using our new method, as presented in this section, is based on
the lower and upper probabilities shown in the second plot in Figure 4. For most considered
values of m, there is a weak indication that test IL-6 is better than test sTREM-1, according
to this predictive requirement. However, for m = 1, 2, there is a strong indication that test
IL-6 is better than test sTREM-1. It should be noted that, in both these plots, we see again
the effect of the discrete nature of the numbers of future individuals that must be correctly
diagnosed in the three groups, which e.g. implies that the criteria with α = β = 0.8, γ = 0.2
are easier achieved for m = 5 than for m = 4, as in both cases 4 out of m future individuals
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from groups X and Y must be correctly classified, together with 1 out of m for group Z.

5. Concluding remarks

This paper presents comparison of two diagnostic tests by explicitly focussing on their
predictive performance when applied to future individuals. The theory was developed for
possibly different numbers of future individuals from the two or three groups. While we
illustrated the method in the examples with these numbers assumed to be equal, the flexi-
bility of the method may be an advantage for practical application. Specific choice of these
numbers is left as a topic for future research, two ideas worth considering are as follows. One
may have an idea about the likely numbers of people from each group to present themselves
for diagnoses over a given future time period, in which these numbers can be used to reflect
the expected practical circumstances. An alternative choice could be to set mi = ni for each
i = x, y, z. This could provide insight into reproducibility of the overall diagnostic perfor-
mance of the test as indicated empirically by using the available data. This is in line with
the recently presented use of NPI for reproducibility of statistical tests (Coolen and Alqifari,
2018; Coolen and Bin Himd, 2014) and this is an interesting topic for future research.

The method presented in this paper requires choice of the minimum proportions of correct
diagnoses for future individuals from each group, α, β and γ. This provides a simple way to
take the importance of correct diagnosis for each group into account. Of course, one could
argue that these values should be close to 1, but this may lead to extremely small values
for the NPI lower and upper probabilities of the event that the criteria will be met for each
of the two or three groups. If these proportions are set very low, on the other hand, these
NPI lower and upper probabilities will be very large, which is also unlikely to provide useful
insights into the performance of the tests. Further research is required into sensible choice
of these proportions. One could, for example, set them close to the empirical proportions,
in order to get NPI lower and upper probabilities which are not too close to 0 or 1. The
main idea of using these proportions has been to provide a simple predictive criterion for the
comparison of the two tests. It is also possible to use different predictive criteria, for example
the use of the (possibly weighted) sum of correctly classified individuals for all groups has
also been studied in the recent PhD thesis of the first-named author (Alabdulhadi, 2018),
and it is an interesting topic for future research to consider more predictive criteria for
successful performance of diagnostic tests and to use these to compare such tests.
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